Mecánica Cuántica Curso 2023

Repartido 7. Teoría de Perturbaciones

- 1. Considere una perturbación de un pozo de potencial infinito unidimensional en la región (0, a) dada por una función delta de Dirac $W(x) = \alpha \delta(x a/2)$, con α una constante real.
- a) Encuentre la corrección de primer orden a las energías permitidas para una partícula en el pozo. Explique por qué las energías E_n no se ven afectadas para n par.
- b) Encuentre los primeros tres términos no nulos en el desarrollo de la corrección al estado base de la partícula en el pozo $|\phi_1^1\rangle$.
- c) Encuentre la corrección de segundo orden a las energías E_n . Se puede sumar la serie explícitamente, da $-2m(\alpha/\pi\hbar n)^2$ para n impar.
- 2. Halle la corrección relativista de orden más bajo a los niveles de energía del oscilador armónico unidimensional.

Pista: escriba el operador momento en términos de los operadores a $y a^{\dagger}$.

3. Considere un sistema de momento angular j = 1.

El espacio de estados es el generado por la base $\{|1 + 1\rangle, |1 0\rangle, |1 - 1\rangle\}$ de autovectores de J^2 y J_z con los autovalores correspondientes para cada operador.

El Hamiltoniano del sistema es:

$$H_0 = aJ_z + \frac{b}{\hbar}J_z^2$$

donde a y b son constantes positivas con dimensiones de frecuencia angular.

a) ¿Cuáles son los niveles de energía del sistema? ¿Para qué valor del cociente b/a existe degeneración?

Se aplica un campo magnético $\vec{B_0}$ en la dirección $\hat{u}(\theta,\varphi)$. La interacción con el campo magnético del momento magnético del sistema se describe con el hamiltoniano

$$W = \omega_0 J_u$$

donde $\omega_0 = -g|B_0|$ es la frecuencia de Larmor y

$$J_u = sen(\theta)cos(\varphi)J_x + sen(\theta)sen(\varphi)J_y + cos(\theta)J_z.$$

- b) Escriba la matriz del hamiltoniano W en la base de autoestados de H_0 .
- c) Asuma que b = a y que $\hat{u} = \hat{x}$, y considere $\omega_0 \ll a$. Calcule las energías de sistema perturbado a primer orden en ω_0 y los autoestados a orden cero en ω_0 .