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Chapter 1

Newtonian mechanics

1.1 Reference frames

An important aspect of the fundamental law of Newtonian mechanics,

F = ma, (1.1.1)

is that it is formulated in a reference frame which is either at rest or moving with
a uniform velocity (the velocity must be constant both in magnitude and in direc-
tion). Such frames are called inertial frames. A reference frame is a set of three
axes attached to a point O called the origin. The position of the origin in space is
arbitrary, but some specific choices are sometimes convenient. For example, when
describing a system of N bodies it is usually a good idea to place the origin at the
centre of mass (which will be introduced below). The origin of an inertial frame
is either fixed or moving uniformly relative to another inertial frame. The orienta-
tion of the axes is also arbitrary, but some specific choices can again simplify the
description. For example, when studying the motion of a particle in a gravitational
field it is convenient to align one of the coordinate axes with the direction of the
gravitational force.

The coordinate axes define a set of basis vectors x̂, ŷ, and ẑ. (These are some-
times denoted i, j, and k.) These vectors point in the directions of increasing x,
y, and z, respectively, and they all have a unit norm: x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1;
this property is indicated by the “hat” notation. Relative to a choice of origin O, a
particle has a position vector r(t) at time t. This is decomposed in the basis as

r(t) = x(t)x̂ + y(t)ŷ + z(t)ẑ. (1.1.2)

The functions x(t), y(t), and z(t) are the particle’s coordinates relative to the refer-
ence frame. The coordinates change as t varies, and the particle traces a trajectory
in three-dimensional space. The central goal of Newtonian mechanics is to deter-
mine this trajectory, assuming that the force F acting on the particle is known at
all times.

The particle’s velocity vector is

v(t) =
dr

dt
= ẋ(t)x̂ + ẏ(t)ŷ + ż(t)ẑ, (1.1.3)

where we have introduced the notation ẋ = dx/dt = vx; we shall also use ṙ = dr/dt
as an alternative notation for the vector v. The particle’s momentum vector is
defined by

p = mv, (1.1.4)

where m is the particle’s mass. The particle’s acceleration vector is

a(t) =
dv

dt
= ẍ(t)x̂ + ÿ(t)ŷ + z̈(t)ẑ, (1.1.5)
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2 Newtonian mechanics
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Figure 1.1: Two reference frames, S0 and S1, separated by a displacement b.

with the notation ẍ = d2x/dt2 = v̇x = ax. Newton’s equation, ma = F , has the
mathematical structure of a system of second-order differential equations for the
coordinates x(t), y(t), and z(t). To describe the particle’s trajectory, knowing the
force, it is necessary to integrate these differential equations.

Suppose that we have two reference frames, S0 and S1, separated by a dis-
placement b (see Fig. 1.1). Relative to S1 the position vector of a particle is r1;
relative to S0 it is r0. The transformation between the two position vectors is clearly
r0 = b + r1, or

r1 = r0 − b. (1.1.6)

Suppose now that S1 moves relative to S0, so that the vector b depends on time.
Since the position vectors also depend on time, Eq. (1.1.6) should be written as
r1(t) = r0(t)− b(t). Taking a time derivative produces the transformation between
the velocity vectors:

v1 = v0 − ḃ. (1.1.7)

Taking a second time derivative gives us the transformation between the acceleration
vectors:

a1 = a0 − b̈. (1.1.8)

If S0 is an inertial frame, then the equations of motion for the particle as viewed in
S0 are ma0 = F . In S1 the equations are instead

ma1 = F − mb̈. (1.1.9)

We see that Newton’s equation is preserved only if b̈ = 0, that is, if ḃ is a constant
vector. In this case S1 moves relative to S0 with a constant velocity, and it is also
an inertial frame. When, however, S1 is not inertial, the equations of motion do
not take the Newtonian form. We have instead Eq. (1.1.9), which can be rewritten
as

ma1 = F + Ffictitious,

with Ffictitious = −mb̈. The second term on the right can be thought of as a
fictitious force that arises from the fact that the reference frame is not inertial. A
well-known example is the centrifugal force, which arises in a rotating (and therefore
non-inertial) frame of reference.

We now consider a situation in which S1 and S0 are both inertial. We assume,
in fact, that they share a common origin O, but that they differ in the orientation
of the coordinate axes. A concrete example (see Fig. 1.2) is one in which S1 is
obtained from S0 by a rotation around the z axis. In this case the basis vectors x̂1

and ŷ1 differ in direction from x̂0 and ŷ0. Similarly, the particle’s coordinates x1(t)
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Figure 1.2: The frame S1 is obtained from S0 by a rotation around their common z
axis.

and y1(t) differ from x0(t) and y0(t). But it is an important fact that the position
vector r(t) is not affected by the rotation:

r1 = x1x̂1 + y1ŷ1 + z1ẑ1

= x0x̂0 + y0ŷ0 + z0ẑ0

= r0.

This conclusion follows simply from the fact that r = r1 = r0 is a vector which
points from O to the particle, independently of the orientation of the reference
frame. So although the basis vectors and the coordinates all change separately under
a rotation of the frame, the position vector is invariant. From this observation it
follows that v1 = v0 = v and a1 = a0 = a: the velocity and acceleration vectors also
are invariant under a rotation of the reference frame. Similar considerations reveal
that the vector F is invariant, and we conclude that the form of Newton’s equation
F = ma is not affected by a rotation of the reference frame. (These invariance
properties are exactly what motived the formulation of Newton’s mechanics in terms
of vectorial quantities.)

Exercise 1.1. Determine how the coordinates x and y, as well as the basis vectors x̂ and
ŷ, change under a rotation around the z axis by an angle α. Then show mathematically
that r is invariant under the transformation.

1.2 Alternative coordinate systems

The discussion of the previous section will have made it clear that the Cartesian
coordinates (x, y, z) play an important role in Newtonian mechanics. We might even
say that they have a preferred status. The same can be said of the associated set of
basis vectors x̂, ŷ, and ẑ. We are aware, however, of situations in which it may be
advantageous not to use the Cartesian coordinates, but to switch to another, more
convenient system. What happens then to the formulation of our fundamental law,
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F = ma? The answer, as we shall see in this section, is that while the law itself
does not change, its concrete mathematical form may actually look very different.

To keep things specific we choose here to work in the x-y plane (we set z = 0)
and to consider a specific example of an alternative coordinate system, the polar
coordinates r and φ. These are defined by

x = r cos φ, y = r sinφ; (1.2.1)

the radial coordinate r measures the distance from the origin to the particle, and
φ is the angle relative to the x axis. In terms of the new coordinates the position
vector is

r = (r cos φ)x̂ + (r sin φ)ŷ, (1.2.2)

and it is now a function of r and φ. We may express this as r = r(r, φ), and the
vector r points to the position identified by the coordinates (r, φ). Notice that r is
the magnitude of the position vector: r · r = r2.

As the particle moves in the plane its coordinates r and φ vary with time, and
the particle’s velocity vector is v = ṙ, or

v = (ṙ cos φ − rφ̇ sin φ)x̂ + (ṙ sinφ + rφ̇ cos φ)ŷ. (1.2.3)

Notice that the magnitude of the velocity vector is not equal to ṙ; instead v · v =
ṙ2 + r2φ̇2. The acceleration vector is then a = v̇, or

a = (r̈ cos φ − 2ṙφ̇ sin φ − rφ̇2 cos φ − rφ̈ sinφ)x̂

+ (r̈ sin φ + 2ṙφ̇ cos φ − rφ̇2 sin φ + rφ̈ cos φ)ŷ. (1.2.4)

As presented here, these vectors are resolved in the Cartesian basis x̂ and ŷ. It is
more convenient to resolve them instead in the polar basis r̂ and φ̂, where

r̂ = unit vector pointing in the direction of increasing r (1.2.5)

and
φ̂ = unit vector pointing in the direction of increasing φ. (1.2.6)

It is important to note that these new basis vectors, unlike x̂ and ŷ, are not constant
vectors: their directions change as we move from point to point in the plane.

To find an expression for r̂ we observe that by construction, the infinitesimal
vector

δr ≡ r(r + δr, φ) − r(r, φ) =
∂r

∂r
δr

points in the direction of increasing r. This means that r̂ must be proportional to
∂r/∂r. Looking back at Eq. (1.2.2), we see that this is given by cosφ x̂ + sin φ ŷ,
and we find that this vector already has a unit norm: (∂r/∂r) · (∂r/∂r) = cos2 φ +
sin2 φ = 1. We conclude that

r̂ =
∂r

∂r
= cos φ x̂ + sin φ ŷ (1.2.7)

is the desired basis vector. We proceed similarly to find an expression for φ̂. We
observe that the infinitesimal vector

δr ≡ r(r, φ + δφ) − r(r, φ) =
∂r

∂φ
δφ

points in the direction of increasing φ. (Be careful: this is a different δr from the
one considered before!) This means that φ̂ must be proportional to ∂r/∂φ, which
is given by −r sin φ x̂ + r cos φ ŷ. The squared norm of this vector is (∂r/∂φ) ·
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(∂r/∂φ) = r2 sin2 φ+r2 cos2 φ = r2, and to get a unit vector we must divide ∂r/∂φ
by r. We conclude that

φ̂ =
1

r

∂r

∂φ
= − sin φ x̂ + cos φ ŷ (1.2.8)

is the desired basis vector.

Exercise 1.2. Check that r̂ · φ̂ = 0.

Let us now work out the components of the vectors r, v, and a in the basis
(r̂, φ̂). According to Eqs. (1.2.2) and (1.2.7) we have

r · r̂ =
[

(r cos φ)x̂ + (r sinφ)ŷ
]

·
[

cos φ x̂ + sin φ ŷ
]

= r cos2 φ + r sin2 φ

= r.

Similarly, Eqs. (1.2.2) and (1.2.8) give

r · φ̂ =
[

(r cos φ)x̂ + (r sin φ)ŷ
]

·
[

− sin φ x̂ + cos φ ŷ
]

= −r sin φ cos φ + r sinφ cos φ

= 0.

From these results we infer that
r = r r̂, (1.2.9)

and this expression should not come as a surprise, given the meaning of the quanti-
ties involved. Proceeding similarly with the vectors v and a, we find that they are
decomposed as

v = ṙ r̂ + rφ̇ φ̂ (1.2.10)

and

a =
(

r̈ − rφ̇2
)

r̂ +
1

r

d

dt

(

r2φ̇
)

φ̂ (1.2.11)

in the new basis. As we have pointed out, the components of r in the polar basis
are obvious, and the components of v also can be understood easily: The radial
component of the velocity vector must clearly be vr = ṙ, and the tangential compo-
nent must be vφ = rφ̇ because the factor of r converts the angular velocity φ̇ into
a linear velocity.

The components of the acceleration vector are not so easy to interpret. It is im-
portant to notice that the radial component of the acceleration vector is not simply
ar = r̈, and the angular component is not simply aφ = φ̈. It is a general observation
that the components of the acceleration vector are not simple in nonCartesian coor-
dinate systems. It should be observed that the radial component of the acceleration
vector contains both a radial part r̈ and a centrifugal part −rφ̇2 = −v2

φ/r.

Exercise 1.3. Verify by explicit calculation that Eqs. (1.2.10) and (1.2.11) are correct.

Suppose now that the force F has been resolved in the polar basis (r̂, φ̂). We
have

F = Frr̂ + Fφφ̂, (1.2.12)

and Newton’s law F = ma breaks down into two separate equations, the radial
component

r̈ − rφ̇2 =
Fr

m
(1.2.13)
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and the angular component
d

dt

(

r2φ̇
)

=
rFφ

m
. (1.2.14)

These are the equations of motion for a particle subjected to a force F , expressed
in polar coordinates (r, φ). When, for example, Fφ = 0 and the force is purely

radial, then according to Eq. (1.2.14), r2φ̇ = rvφ is a constant of the motion.
When, in addition, r̈ = 0 and the particle travels on a circle r = constant, then
Eq. (1.2.13) reduces to rφ̇2 = v2

φ/r = −Fr/m; this is the familiar equality between

the centrifugal acceleration v2
φ/r and (minus) the radial component of the force

(divided by the mass).

Exercise 1.4. Consider the spherical coordinates (r, θ, φ) defined by x = r sin θ cos φ,
y = r sin θ sin φ, and z = r cos θ. Show that in this alternative coordinate system, the basis
vectors are given by

r̂ =
∂r

∂r
= sin θ cos φ x̂ + sin θ sin φŷ + cos θ ẑ,

θ̂ =
1

r

∂r

∂θ
= cos θ cos φ x̂ + cos θ sin φŷ − sin θ ẑ,

φ̂ =
1

r sin θ

∂r

∂φ
= − sin φ x̂ + cos φŷ.

Verify that these vectors are all orthogonal to each other.

1.3 Mechanics of a single body

In this section we explore some consequences of the law F = ma when it applies to
a single particle.

1.3.1 Line integrals

We begin with a review of some relevant mathematics. Let A be a vector field
in three-dimensional space. (A vector field is a vector that is defined in a region
of space and which may vary from position to position in that region.) Let C be
a curve in three-dimensional space, and let ds be the displacement vector along
the curve. The displacement vector is defined so that ds is everywhere tangent to
the curve, and such that its norm ds = |ds| is equal to the distance between two
neighbouring points on the curve; the total length of the curve is the integral

∫

C
ds.

Now introduce
∫ 2

1

A · ds,

the line integral of the vector field A between point 1 and point 2 on the curve C.
Such integrals occur often in physics. In the present context the force F will play
the role of the vector field A, and the particle’s trajectory will play the role of the
curve C; we then have ds = dr = vdt and the line integral will be the work done
by the force as the particle moves from point 1 to point 2.

It is a fundamental theorem of vector calculus that if a line integral between
two fixed points in space does not depend on the curve joining the points, then the
vector field A must be the gradient ∇f of some scalar function f . This theorem is
essentially a consequence of the identity

∫ 2

1

∇f · ds =

∫ 2

1

df

ds
ds = f(2) − f(1) independently of the curve,
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Figure 1.3: Line integrals of a vector field A.

which is a generalization of the statement
∫ b

a
(df/dx) dx = f(b)−f(a) from ordinary

calculus. Another way of presenting this result is to say that if A = ∇f , then
∮

A · ds = 0 for any closed curve C in three-dimensional space. This last statement
follows because if the curve C is closed, point 2 is identified with point 1, and
∮

∇f · ds = f(1) − f(1) = 0.
To illustrate these notions let us work through a concrete example. Consider

the vector field A = (x, y) in two-dimensional space. We wish first to evaluate the
line integral of A along the x axis, from x = −1 to x = +1 (see Fig. 1.3). The safest
way to proceed is to first obtain a parametric description of the curve C, which in
this case is the line segment that links the points x = ∓1. We may describe this
curve in the following way:

x(u) = −1 + 2u, y(u) = 0,

where the parameter u is restricted to the interval 0 ≤ u ≤ 1. (The choice of param-
eterization is arbitrary; we might just as well have chosen x as the parameter, but it
is generally a good idea to keep the parameter distinct from the coordinates.) From
these equations it follows that the displacement vector on C has the components
dx = 2 du and dy = 0, so that ds = (2 du, 0). The vector field evaluated on C is
A = (−1 + 2u, 0), and we have A · ds = 2(−1 + 2u) du. The line integral is then

∫

C

A · ds =

∫ 1

0

2(−1 + 2u) du.

Evaluating this ordinary integral is straightforward, and the result is zero. We
therefore have

∫

C

A · ds = 0

for this choice of curve linking the points (x = −1, y = 0) and (x = 1, y = 0).
Let us now evaluate the line integral of A along a different curve C ′ which joins

the same two endpoints (refer again to Fig. 1.3); we choose for C ′ a semi-circle of
unit radius, which we describe by the parametric relations

x(θ) = − cos θ, y(θ) = sin θ,
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with a parameter θ running from θ = 0 to θ = π. Now we have dx = sin θ dθ,
dy = cos θ dθ, and the displacement vector on C ′ is ds = (sin θ dθ, cos θ dθ). The
vector field evaluated on C ′ is A = (− cos θ, sin θ), and we have A · ds = 0. The
line integral is obviously

∫

C′

A · ds = 0

for this choice of curve also. You might experiment with other curves, and invariably
you will find that

∫

A ·ds = 0 for all curves C that link the points (−1, 0) and (1, 0)
in the x-y plane.

Exercise 1.5. Evaluate the line integral
R

C′′
A · ds for the vector field A = (x, y), for

a curve C′′ that consists of a line segment that goes from (−1, 0) to (0,−1) and another
line segment that goes from (0,−1) to (1, 0).

Because the line integral is independent of the path, A must be the gradient
of a scalar function f . We must have Ax = ∂f/∂x = x and Ay = ∂f/∂y = y.
Integrating the first equation gives

f =
1

2
x2 + unknown function of y,

where we indicate that the “constant of integration” can in fact depend on y, which
is held fixed during integration with respect to x. Integrating instead the second
equation gives

f =
1

2
y2 + unknown function of x.

These results are compatible only if the unknown function of y is in fact 1
2y2, and

the unknown function of x is 1
2x2. We may still add a true constant to the result,

and we find that the function f must be given by

f =
1

2

(

x2 + y2
)

+ f0,

where f0 = constant. It is then easy to verify that ∇f = A. It now becomes clear
why the line integral had to be zero for any path linking the points (−1, 0) and
(1, 0): Irrespective of the path the integral has to be equal to f(1, 0) − f(−1, 0) =
( 1
2 + f0) − ( 1

2 + f0) = 0, as we have found for C and C ′.

1.3.2 Conservation of linear momentum

We now proceed with our exploration of the consequences of the dynamical law
F = ma. The first main consequence follows immediately from Newton’s equation:
In the absence of a force acting on the particle, the linear momentum p = mv is a
constant vector. This follows from the alternative expression of Newton’s law,

F =
dp

dt
; (1.3.1)

if F = 0 then dp/dt = 0 and the vector p must be constant. We therefore have
conservation of (linear) momentum in the absence of an applied force.

1.3.3 Conservation of angular momentum

Relative to a choice of origin O, the angular momentum of a particle at position r

is defined by
L = r × p = mr × v. (1.3.2)
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The angular-momentum vector changes if the origin of the reference frame is shifted
to a different point in space. The torque acting on the particle is defined by

N = r × F . (1.3.3)

(This is also called the moment of force.) We have, as a consequence of Newton’s
equation, dL/dt = m(v×v+r×a) = r×F , since the first term obviously vanishes.
This gives

dL

dt
= N , (1.3.4)

and we obtain a statement of angular-momentum conservation: In the absence of a
torque acting on the particle, the angular momentum L is a constant vector. It is
clear that N = 0 when F = 0, but it is possible to have a vanishing torque even
when F 6= 0; this occurs when F always points in the direction of r.

1.3.4 Conservation of energy

The statements of conservation of linear and angular momenta were easy to formu-
late and prove, but these statements hold only in very rare circumstances: F must
vanish for p to be constant, and N must vanish for L to be constant. As we shall
see, the statement of conservation of energy is more difficult to make, but it holds
much more widely.

Let a particle move from point 1 to point 2 under the action of a force F . The
total work done on the particle by the force, as it moves from 1 to 2, is by definition
the line integral

W12 =

∫ 2

1

F · dr, (1.3.5)

where dr = v dt is the displacement vector along the particle’s trajectory. As we
shall now infer, the line integral is equal to the total change in the particle’s kinetic
energy,

T =
1

2
mv2 = kinetic energy, (1.3.6)

as it moves from 1 to 2. We have introduced the notation v2 = v · v = |v|2. The
statement of the work-energy theorem is thus

W12 = T (2) − T (1). (1.3.7)

To prove this we substitute F = mdv/dt and dr = v dt inside the line integral of
Eq. (1.3.5). We get

W12 = m

∫ 2

1

dv

dt
· v dt.

The integrand is

dv

dt
· v =

dvx

dt
vx +

dvy

dt
vy +

dvx

dt
vy

=
1

2

d

dt
v2

x +
1

2

d

dt
v2

y +
1

2

d

dt
v2

z

=
1

2

d

dt

(

v2
x + v2

y + v2
z

)

=
d

dt

(

1

2
v2

)

,

and the line integral becomes

W12 =

∫ 2

1

d

dt

(

1

2
mv2

)

dt =

∫ 2

1

dT

dt
dt =

∫ 2

1

dT = T (2) − T (1).
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This is the same statement as in Eq. (1.3.7), and we have established the work-
energy theorem.

In very many situations the line integral
∫ 2

1
F · dr is actually independent of the

trajectory adopted by the particle to go from point 1 to point 2. In these situations
we must have that F is the gradient of some scalar function f(r). We write f = −V ,
inserting a minus sign for reasons of convention, and express the force as

F = −∇V (r). (1.3.8)

The scalar function V is known as the potential energy of the particle. When F is
expressed as in Eq. (1.3.8) the line integral of Eq. (1.3.5) becomes

W12 = −
∫ 2

1

∇V · dr = −
[

V (2) − V (1)
]

,

and this is clearly independent of the particle’s trajectory: The total work done is
equal to the difference V (1) − V (2) no matter how the particle moves from 1 to 2.
Equation (1.3.7) then becomes V (1)−V (2) = T (2)−T (1), or T (1)+V (1) = T (2)+
V (2). This tells us that the quantity T + V stays constant as the particle moves
from point 1 to point 2. We therefore have obtained the statement of conservation
of total mechanical energy

E = T + V =
1

2
mv2 + V (r) (1.3.9)

for a particle moving under the action of a force F that derives from a potential V .
We can verify directly from Eq. (1.3.9) that the total energy is a constant of the

motion. We have
dE

dt
=

1

2
m

dv2

dt
+

dV

dt
.

As we have seen,
dv2

dt
= 2

dv

dt
· v.

The potential energy V depends on time only through the changing position of the
particle: V = V (r(t)) = V (x(t), y(t), z(t)). We therefore have

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
+

∂V

∂z

dz

dt

= ∇V · v.

All of this gives

dE

dt
= ma · v + ∇V · v
= F · v − F · v
= 0,

as expected.
An example of a force that derives from a potential is gravity: The force

Fgravity = mg = mg(0, 0,−1) (1.3.10)

is the negative gradient of
Vgravity = mgz. (1.3.11)

We have indicated that the vector g points in the negative z direction (down,
that is); its magnitude is the gravitational acceleration g ≃ 9.8 m/s2. The total
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mechanical energy E is conserved when a particle moves under the action of the
gravitational force.

An example of a force that does not derive from a potential is the frictional force

Ffriction = −kv, (1.3.12)

where k > 0 is the coefficient of friction; this force acts in the direction opposite to
the particle’s motion and exerts a drag. It is indeed easy to see that Ffriction cannot
be expressed as the gradient of a function of r. (The expression Vfriction = kv · r
might seem to work, but this potential depends on both r and v, and this is not
allowed.) This implies that in the presence of a frictional force, the total mechanical
energy of a particle is not conserved. The reason is that the friction produces heat,
which is rapidly dissipated away; because this heat comes at the expense of the
particle’s mechanical energy, E cannot be conserved. Energy conservation as a
whole, of course, applies: the amount by which E decreases matches the amount of
heat dissipated into the environment.

It is important to understand that the work-energy theorem of Eq. (1.3.7) is
always true, whether or not the force F derives from a potential. But whether
E is conserved or not depends on this last property: When F = −∇V we have
dE/dt = 0 and the total mechanical energy is conserved; but E is not in general
conserved when the force does not derive from a potential.

1.3.5 Case study #1: Particle in a gravitational field

To illustrate the formalism presented in the preceding subsections we now review the
problem of determining the motion of a particle in a gravitational field. The force
is given by Eq. (1.3.10), F = mg = mg(0, 0,−1), and the potential by Eq. (1.3.11),
V = mgz. The equations of motion are

ẍ = 0, ÿ = 0, z̈ = −g. (1.3.13)

These are easily integrated:

x(t) = x(0) + vx(0)t, y(t) = y(0) + vy(0)t, z(t) = z(0) + vz(0)t − 1

2
gt2.

(1.3.14)
These equations describe parabolic motion. Here x(0), y(0), z(0) are the positions
at time t = 0, and vx(0), vy(0), and vz(0) are the components of the velocity vector
at t = 0; these quantities are the initial conditions that must be specified in order
for the motion to be uniquely known at all times. The velocity vector at time t is
obtained by differentiating Eqs. (1.3.14); we get

vx(t) = vx(0), vy(t) = vy(0), vz(t) = vz(0) − gt. (1.3.15)

With Eqs. (1.3.14) and (1.3.15) we have sufficient information to compute the total
mechanical energy E = T + V of the particle. After some simple algebra we obtain

E =
1

2
m

[

vx(0)2 + vy(0)2 + vz(0)2
]

+ mgz(0) (1.3.16)

for all times t; this is clearly a constant of the motion.

Exercise 1.6. Verify that Eqs. (1.3.14) really give the solution to the equations of
motion r̈ = g. Then compute E and make sure that your result agrees with Eq. (1.3.16).
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1.3.6 Case study #2: Particle in a gravitational field subjected to air
resistance

We now suppose that the particle is subjected to both a gravitational force mg and
a frictional force −kv supplied by the ambient air. For convenience we set k = m/τ ,
thereby defining the quantity τ , and the total applied force is

F = m(g − v/τ). (1.3.17)

The equations of motion are ma = F , or a = g − v/τ , or again

r̈ + ṙ/τ = g. (1.3.18)

We assume that the particle is released from a height h with a zero initial
velocity. The initial conditions are therefore z(0) = h and ż(0) = 0. We assume
also, for simplicity, that there is no motion in the x and y directions. The only
relevant component of Eq. (1.3.18) is therefore

v̇ + v/τ = −g, (1.3.19)

where we have set v = ż. To arrive at Eq. (1.3.19) we have used the fact that
g = g(0, 0,−1).

Our task is to solve the first-order differential equation of Eq. (1.3.19). We use
the method of variation of parameters. Suppose first that g = 0. In this case the
equation becomes dv/dt = −v/τ or dv/v = −dt/τ . This is easily integrated, and we
get ln(v/c) = −t/τ , or v = c e−t/τ . This is the solution for g = 0, and the constant
of integration c is the solution’s parameter. To handle the case g 6= 0 we allow c to
depend on time — we vary the parameter — and we substitute the trial solution

v(t) = c(t)e−t/τ

into Eq. (1.3.19). We have v̇ = ċe−t/τ − v/τ and −g = v̇ + v/τ = ċe−t/τ . The
differential equation for c(t) is therefore

ċ = −get/τ ,

so that
c(t) = −gτet/τ + c0,

where c0 is a true constant of integration. The result for v(t) is then

v(t) = −gτ + c0e
−t/τ .

To determine c0 we invoke the initial condition v(0) = 0. Because v(0) = −gτ + c0

we have that c0 = gτ . Our final answer is therefore

v(t) = −gτ
[

1 − e−t/τ
]

. (1.3.20)

This is ż, the z component of the particle’s velocity vector. Integrating Eq. (1.3.20)
gives z(t), the position of the particle as a function of time.

Exercise 1.7. Integrate Eq. (1.3.20) and obtain z(t). Make sure to impose the initial
condition z(0) = h.

Equation (1.3.20) simplifies when t is much smaller than τ = m/k. At such
early times, when t/τ ≪ 1, the exponential is well approximated by e−t/τ ≃ 1− t/τ
and Eq. (1.3.20) becomes

v(t) ≃ −gt,
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Figure 1.5: Forces acting on the pendulum.

in agreement with Eq. (1.3.15). At such early times the velocity is low, and the
frictional force is so weak that it has no noticeable effect on the motion. As v
increases the frictional force becomes more important and it starts to dominate
over gravity. At late times, when t is much larger than τ , the exponential term in
Eq. (1.3.20) is very small, and the velocity is now approximated by

v(t) ≃ −gτ.

At such late times the velocity is constant: The particle has reached its terminal
velocity given by vterminal = gτ = gm/k.

1.3.7 Case study #3: Motion of a pendulum

We now examine the motion of a pendulum, which consists of an object of mass m
attached to a massless, but rigid, rod of length ℓ. The geometry of the problem is
illustrated in Fig. 1.4; we shall describe the motion of the pendulum in terms of the
swing angle θ.

As shown in Fig. 1.5, there are two forces acting on the pendulum. The first is
gravity, pulling down, and the second is the tension within the rod, which always
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pulls in the rod’s direction. The geometry of the problem suggests that it might be
a good idea to involve the polar coordinates introduced in Sec. 1.2. Adapting the
notation somewhat, we express the Cartesian coordinates x and z of the mass m in
terms of the new coordinates r and θ; the relationship is

x = r sin θ, z = r cos θ. (1.3.21)

At a later stage of the calculation we will incorporate the fact that the distance
r between m and the origin of the coordinate system is constant: r = ℓ. For the
moment, however, we shall pretend that r is free to change with time.

The polar coordinates (r, θ) come with the basis of unit vectors r̂ and θ̂, with

r̂ =
∂r

∂r
= sin θ x̂ + cos θ ẑ

and

θ̂ =
1

r

∂r

∂θ
= cos θ x̂ − sin θ ẑ,

where r(r, θ) = r sin θ x̂ + r cos θ ẑ is the position vector expressed in terms of the
polar coordinates. The unit vector r̂ points in the direction of increasing r (always
away from the origin), while the unit vector θ̂ points in the direction of increasing
θ.

As we have seen in Sec. 1.2, the acceleration vector of the mass m can be
expressed in the polar coordinates and resolved in the new basis vectors. Repeating
the calculations carried out there, we find

a = (r̈ − rθ̇2) r̂ +
1

r

d

dt
(r2θ̇) θ̂. (1.3.22)

The net force acting on the mass m is F = T +mg, the vectorial sum of the tension
and gravitational forces, respectively. Because the tension is directed along the rod,
we have T = −T r̂, with T denoting the magnitude of the tension. The force of
gravity, on the other hand, is directed along the z direction, and we have mg = mgẑ.
Resolving this in the new basis (Fig. 1.5), we have mg = mg cos θ r̂ − mg sin θ θ̂,
and the net force is

F = (−T + mg cos θ) r̂ − mg sin θ θ̂. (1.3.23)

Equating this to ma produces

m(r̈ − rθ̇2) = −T + mg cos θ,
1

r

d

dt
(r2θ̇) = −g sin θ,

the equations of motion for the pendulum.
These equations simplify considerably when we finally incorporate the fact that

r = ℓ and does not change with time (so that ṙ = r̈ = 0). The first equation gives
us an expression for the tension: T = m(ℓθ̇2 +g cos θ). The second equation reduces
to ℓθ̈ = −g sin θ, or

θ̈ + ω2 sin θ = 0, (1.3.24)

where
ω =

√

g/ℓ (1.3.25)

has the dimensions of inverse time (or frequency).

Exercise 1.8. Make sure that you can reproduce all the algebra that goes into the
derivation of Eqs. (1.3.24) and (1.3.25).

Exercise 1.9. Equation (1.3.24) can also be derived on the basis of Eq. (1.3.4),
dL/dt = N , where L = mr × v is the pendulum’s angular momentum and N = r × F
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the net torque acting on it. Work through the details and verify that this equation does
indeed lead to Eq. (1.3.24). This method of derivation does not require the new basis of
unit vectors; all calculations can be carried out in the Cartesian basis.

The second-order differential equation of Eq. (1.3.24) determines the motion of
the pendulum. It can immediately be integrated once with respect to time. The
trick is to multiply Eq. (1.3.24) by θ̇; this gives

θ̈θ̇ + (ω2 sin θ)θ̇ = 0.

Now note that

θ̈θ̇ =
1

2

d

dt
θ̇2

and

(sin θ)θ̇ = − d

dt
cos θ.

We therefore have
d

dt

(

1

2
θ̇2 − ω2 cos θ

)

= 0,

or
1

2
θ̇2 − ω2 cos θ = ε = constant. (1.3.26)

This is a first-order differential equation for θ(t).
It seems intuitively plausible that the conserved quantity ε should have some-

thing to do with the pendulum’s total energy E. This is indeed the case. The kinetic
energy is T = 1

2m(ẋ2 + ż2) = 1
2mℓ2θ̇2, according to our previous results. The po-

tential energy associated with the gravitational force is V = −mgz = −mgℓ cos θ =
−mℓ2ω2 cos θ, where we have used Eq. (1.3.25). The potential energy associated
with the rod’s tension is zero: The tension always acts in the rod’s direction, which
is always perpendicular to the direction of the motion; the tension does no work on
the pendulum. We finally have E = T + V = mℓ2( 1

2 θ̇2 − ω2 cos θ), or

E = mℓ2ε. (1.3.27)

We shall call ε the pendulum’s reduced energy. Similarly, we shall call 1
2 θ̇2 the

reduced kinetic energy and ν(θ) ≡ −ω2 cos θ the reduced potential energy.
The qualitative features of the pendulum’s motion can be understood without

further calculation, purely on the basis of the following graphical construction. We
draw an energy diagram, a plot of the reduced potential energy ν(θ) = −ω2 cos θ
as a function of θ, together with the constant value of the reduced energy ε (see
Fig. 1.6). According to Eq. (1.3.26), which we rewrite as

1

2
θ̇2 = ε − ν(θ), ν(θ) = −ω2 cos θ, (1.3.28)

the difference between ε and ν(θ) is equal to the reduced kinetic energy 1
2 θ̇2. For

motion to take place this difference must be positive, and a quick examination of
the diagram reveals immediately the regions for which ε − ν(θ) ≤ 0. Motion is
possible within these regions, and impossible outside.

For example, when ε < ω2 we see that the motion of the pendulum takes place
between the two well-defined limits θ = ±θ0; motion is impossible beyond these
points. This situation corresponds to ordinary pendulum motion: The weight oscil-
lates back and forth around the horizontal axis (θ = 0), with an amplitude θ0. The
diagram reveals that the angular velocity |θ̇| is maximum when the weight crosses
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Figure 1.6: Energy diagram for the pendulum. The difference between the line ε =
constant and the curve ν(θ) = −ω2 cos θ is the reduced kinetic energy 1

2
θ̇2, which must be

positive for motion to take place. The lower value of ε is such that ε < ω2. The higher
value is such that ε > ω2. In the plot ω2 is set equal to 1.

θ = 0, and that the pendulum comes to a momentary rest (θ̇ = 0) when θ = ±θ0.
This amplitude is determined by setting θ̇ = 0 in Eq. (1.3.28); we have

ε = ν(θ0) = −ω2 cos θ0. (1.3.29)

This equation can be solved for θ0 whenever ε < ω2; there are no solutions otherwise.
When ε > ω2 the diagram reveals that there are no intersections between the line
ε = constant and the curve ν(θ). There are no points at which 1

2 θ̇2 = 0, θ is
allowed to increase without bound, and the motion is not limited. This high-energy
situation corresponds to the weight doing complete revolutions around the pivot
point.

Points in the energy diagram at which the line ε = constant meets the curve ν(θ)
are called turning points. At these points the reduced kinetic energy 1

2 θ̇2 drops to

zero and θ̇ changes sign, either from the positive to the negative (if θ was increasing
toward θ0), or from the negative to the positive (if θ was decreasing toward −θ0).
These are the points at which the pendulum reaches its maximum angle and turns
around.

Combining Eqs. (1.3.28) and (1.3.29) gives

1

2
θ̇2 = ω2(cos θ − cos θ0), (1.3.30)

and this is a first-order differential equation for θ(t). This equation, unfortunately,
cannot be solved in closed form, unless θ0 is assumed to be very small (we shall deal
separately with this simple case at the end of this subsection). The best we can do
is to express t in terms of an integral involving θ. First we take the square root of
Eq. (1.3.30),

θ̇ = ±
√

2ω
√

cos θ − cos θ0,
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Figure 1.7: Motion of a pendulum with four different amplitudes. We plot the swing
angle θ (in radians) as a function of time. The unit of time is 2π/ω. Notice that the period
of oscillation increases with the amplitude. Notice also that for high amplitude, the curve
differs significantly from a sinusoid.

and we solve for dt. After integration we get

t = ± 1√
2ω

∫

dθ√
cos θ − cos θ0

+ constant. (1.3.31)

This integral must be evaluated numerically, and the result t(θ) must be inverted
to give θ(t); the inversion must also be done numerically. To obtain these details
requires some labour, and this will not be pursued here. The results of a numerical
integration are presented in Fig. 1.7.

The motion of the pendulum is clearly periodic, and Eq. (1.3.31) allows us to
calculate the period P , the time required for the pendulum to complete a full cycle
of oscillation (θ going from −θ0 to +θ0 and then back to −θ0.) This is twice the
time required to go from −θ0 to +θ0, or four times the time required to go from
θ = 0 to θ = θ0. So the period is given by

P =
4√
2ω

∫ θ0

0

dθ√
cos θ − cos θ0

.

To put this integral in standard form we change the variable of integration to

z =
sin 1

2θ

sin 1
2θ0

and introduce the parameter
s = sin 1

2θ0. (1.3.32)

Simple manipulations reveal that

dz

dθ
=

√
1 − s2z2

2s
,

√

cos θ − cos θ0 =
√

2s
√

1 − z2,
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Figure 1.8: A plot of K(s2), the complete elliptic integral of the first kind, as a function
of s2 in the interval 0 ≤ s2 < 1. The function diverges as s2 approaches 1. Also plotted is
the approximation given in the text.

and the expression for P becomes

P =
4

ω
K(s2), (1.3.33)

where

K(s2) =

∫ 1

0

dz
√

(1 − z2)(1 − s2z2)
(1.3.34)

is a special function known as the complete elliptic integral of the first kind. A plot
of this function is shown in Fig. 1.8. While this result is perhaps not too revealing,
it allows us to conclude that the period increases with the amplitude of the motion.
This follows because P depends on s2 = sin2 1

2θ0 through the elliptic integral.

Exercise 1.10. Make sure that you can reproduce all the algebra that goes into the
derivation of Eqs. (1.3.33) and (1.3.34).

We can be more explicit when s = sin 1
2θ0 is fairly small compared with 1. In

this situation it is known that the elliptic integral can be approximated by

K =
π

2

[

1 +

(

1

2

)2

s2 +

(

1 · 3
2 · 4

)2

s4 +

(

1 · 3 · 5
2 · 4 · 6

)2

s6 + · · ·
]

.

Substituting this into Eq. (1.3.33) gives

P =
2π

ω

[

1 +
1

4
s2 +

9

64
s4 +

25

256
s6 + · · ·

]

. (1.3.35)

When the oscillations are very small, that is when θ0 ≪ 1, we have that s2 ≪ 1
and the period is well approximated by the leading term in the power expansion,
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P ≃ 2π/ω. In this limit the period becomes independent of the motion’s amplitude.

Exercise 1.11. It is not too difficult to derive the preceding approximation to the
elliptic integral. When s2 is small the factor (1−s2z2)−1/2 inside the integral of Eq. (1.3.34)
can be expressed as a Taylor series about s = 0. Show that this gives

(1 − s2z2)−1/2 = 1 +
1

2
s2z2 +

3

8
s4z4 +

5

16
s6z6 + · · · .

With this expansion the elliptic integral becomes

K =

Z

1

0

dz√
1 − z2

+
1

2
s2

Z

1

0

z2 dz√
1 − z2

+
3

8
s4

Z

1

0

z4 dz√
1 − z2

+
5

16
s6

Z

1

0

z6 dz√
1 − z2

+ · · · .

Evaluate these integrals and verify that your result agrees with the expression quoted in
the text.

The case of small oscillations is particularly simple to deal with. Go back to
Eq. (1.3.24), θ̈ + ω2 sin θ = 0, and assume that θ is so small that sin θ is well
approximated by θ. The equation simplifies to

θ̈ + ω2θ = 0, (1.3.36)

and we have simple harmonic motion. The general solution to this equation is

θ(t) = θ0 cos(ωt + δ), (1.3.37)

where θ0 is the amplitude and δ the initial phase. The solution reveals that the
period of the motion is P = 2π/ω, in complete agreement with our previous results.

1.4 Mechanics of a system of bodies

1.4.1 Equations of motion

Generalizing the discussion of the preceding section, we now consider a system of
N bodies subjected to their mutual forces. For simplicity we assume that there are
no external forces acting on the particles; these would originate from outside the
system. Each particle in the system is labeled by a number A = 1, 2, 3, · · · , N . The
motion of body A is governed by the equation

mAaA = FA, (1.4.1)

where mA is the mass of the body, aA its acceleration, and FA is the force acting
on the body due to all other bodies. Relative to an arbitrary choice of origin O, the
position vector of body A is rA(t), its velocity is vA(t) = ṙA, and its acceleration
is aA(t) = v̇A = r̈A.

The force acting on body A can be expressed as a sum of individual forces
exerted by each other body. We write

FA =
∑

B 6=A

FAB . (1.4.2)

Here, FAB is the force exerted on A by B; the sum over B obviously excludes A
because a body does not exert a force on itself. We assume Newton’s third law,
which states that

FBA = −FAB . (1.4.3)

In words, the force exerted on B by A is equal in magnitude and opposite in direction
to the force exerted on A by B. Suppose, for example, that the force exerted on A
by B is repulsive; then the force exerted on B by A will also be repulsive, and it
will point in the opposite direction.
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1.4.2 Centre of mass

The centre of mass of a system of N bodies is at a position R which is defined by

R =
1

M

∑

A

mArA, (1.4.4)

where
M =

∑

A

mA (1.4.5)

is the total mass of the system.
The centre of mass moves in accordance with Newton’s law, which implies

MR̈ =
∑

A

mAaA

=
∑

A

FA

=
∑

A,B,A 6=B

FAB ,

where we have used Eq. (1.4.2). In the last line we sum over both A and B (both
from 1 to N), but we make sure to exclude all terms for which A = B. Let us
examine the double sum in the special case of three particles. We have

∑

A,B,A 6=B

FAB =

N
∑

A=1

N
∑

B=1

FAB

=

N
∑

A=1

(

FA1 + FA2 + FA3

)

=
(

F21 + F31

)

+
(

F12 + F32

)

+
(

F13 + F23

)

=
(

F21 + F12

)

+
(

F31 + F13

)

+
(

F32 + F23

)

= 0.

The double sum vanishes by virtue of Newton’s third law, and this property remains
true for arbitrary values of N . We therefore have

R̈ = 0, ⇒ R(t) = R(0) + Ṙ(0)t. (1.4.6)

The centre of mass moves with a uniform velocity, and it therefore defines the origin
of another inertial frame.

It is usually convenient to shift the origin of the reference frame to the centre of
mass, by defining new positions vectors r′

A(t) according to

r′

A = rA − R. (1.4.7)

It should be kept in mind that the centre of mass defines the origin of an inertial
frame only when there are no external forces acting on the particles. When external
forces are present each particle moves according to mAaA = F internal

A + F external
A ,

where the first term represents the internally-produced force acting on A, and the
second term represents the external force. It is then easy to show that the centre of
mass will move according to MR̈ =

∑

A F external
A ; it is accelerated by the net sum

of all the external forces.

Exercise 1.12. Prove the preceding statement.
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1.4.3 Total linear and angular momenta

The total linear momentum of the system of N bodies is defined by

P =
∑

A

pA =
∑

A

mAvA, (1.4.8)

where pA are the individual momenta. We have

P =
d

dt

∑

A

mArA,

or, according to Eq. (1.4.4),

P = MṘ. (1.4.9)

The total momentum therefore follows the motion of the centre of mass. Because
Ṙ(t) = Ṙ(0) according to Eq. (1.4.6), we have the important statement that the
total linear momentum is a constant vector. If the origin of the inertial frame is
at the centre of mass, then R = 0 and Ṙ = 0; this means that P = 0. In this
centre-of-mass frame, the total momentum of the system of particles is zero.

The total angular momentum of the system is

L =
∑

A

rA × pA =
∑

A

mArA × vA. (1.4.10)

Its rate of change is calculated as

L̇ =
∑

A

mA

(

vA × vA + rA × aA

)

=
∑

A

rA × FA

=
∑

A,B,A 6=B

rA × FAB ,

where we have again involved Eq. (1.4.2). Let us examine the double sum for the
special case of three particles. We have

∑

A,B,A 6=B

rA × FAB =
∑

A

(

rA × FA1 + rA × FA2 + rA × FA3

)

=
(

r2 × F21 + r3 × F31

)

+
(

r1 × F12 + r3 × F32

)

+
(

r1 × F13 + r2 × F23

)

=
(

r1 − r2

)

× F12 +
(

r1 − r3

)

× F13 +
(

r2 − r3

)

× F23,

where we have used Eq. (1.4.3). The vector r1−r2 is directed from body 2 to body
1. In most circumstances the force F12 also is directed from body 2 to body 1 (or in
the opposite direction). Under these conditions the vector product (r1−r2)×F12 is
zero, and this is true for all other pairs of bodies. The double sum is therefore zero.
These considerations generalize to an arbitrary number of bodies, and we conclude
that

L̇ = 0 (1.4.11)

whenever the force FAB points in the direction of the relative separation rA −
rB . Under these conditions we have conservation of the system’s total angular
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momentum.

Exercise 1.13. Calculate dP /dt and dL/dt when there are also external forces acting
on the particles.

Let us express the position vector of body A as in Eq. (1.4.7),

rA = R + r′

A, (1.4.12)

where r′

A is its position relative to the centre of mass. We write, similarly,

vA = Ṙ + v′

A. (1.4.13)

We make these substitutions into Eq. (1.4.10), and get

L =
∑

A

mA

(

R + r′

A

)

×
(

Ṙ + v′

A

)

=
∑

A

mA

(

R × Ṙ + R × v′

A + r′

A × Ṙ + r′

A × v′

A

)

=
(

R × Ṙ
)

∑

A

mA + R ×
∑

A

mAv′

A − Ṙ ×
∑

A

mAr′

A +
∑

A

mAr′

A × v′

A.

This mess simplifies. For the first term on the right-hand side we have
∑

A mA = M ,
the total mass of the system. In the second term we recognize that

∑

A mAv′

A is
the system’s total momentum as measured in the centre-of-mass frame; this is zero.
The third term vanishes also, and we finally have

L = MR × Ṙ +
∑

A

mAr′

A × v′

A. (1.4.14)

In this expression, the first term represents the angular momentum of the centre
of mass, while the second term is the total angular momentum of the system of
particles relative to the centre of mass. When the origin of the inertial frame is
placed at the centre of mass, we have R = 0 and the first term disappears. In
general, we see that L depends on the choice of origin.

1.4.4 Conservation of energy

The presentation here parallels closely our discussion of Sec. 1.3.4 on energy con-
servation for a single particle. The notation of this section, however, will be slightly
more cumbersome, because we now have to keep track of many particles.

We begin by calculating the total work done on all the particles as they move
from a configuration labeled 1 to another configuration labeled 2. (This means that
in the interval of time over which we follow the particles, each moves from a point
1 to a point 2 on its trajectory.) This is

W12 =
∑

A

∫ 2

1

FA · drA =
∑

A

∫ 2

1

FA · vA dt, (1.4.15)

where drA = vA dt is the displacement vector on the trajectory of particle A.
Substituting the equations of motion (1.4.1) gives

W12 =
∑

A

∫ 2

1

mA
dvA

dt
· vA dt.
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But since vA · dvA/dt = 1
2dv2

A/dt, where v2
A = vA · vA, this becomes

W12 =
∑

A

∫ 2

1

d

dt

(

1

2
mAv2

A

)

dt =
∑

A

[

TA(2) − TA(1)
]

where TA = 1
2mAv2

A is the kinetic energy of particle A. Introducing the total kinetic
energy of the system

T =
∑

A

TA =
∑

A

1

2
mAv2

A, (1.4.16)

we have obtained the statement of the work-energy theorem,

W12 = T (2) − T (1). (1.4.17)

In words, this states that the total work done on all the particles is equal to the
difference in total kinetic energy between the configurations 2 and 1.

Exercise 1.14. Express the total kinetic energy of the system in terms of the centre-
of-mass quantities R, Ṙ and the relative quantities r′

A, v′

A. You should find an expression
analogous to Eq. (1.4.14).

To proceed further we shall assume that the mutual force FAB can be derived
from a potential VAB = VBA that depends only on the distance rAB between the
bodies A and B. We shall therefore have

VAB = VAB(rAB), rAB ≡ |rAB |, rAB ≡ rA − rB . (1.4.18)

The force acting on A exerted by B is given by

FAB = −∇AVAB , (1.4.19)

where ∇A = (∂/∂xA, ∂/∂yA, ∂/∂zA) is the gradient operator with respect to the
coordinates rA = (xA, yA, zA) of body A. Similarly, the force acting on B exerted
by A is

FBA = −∇BVAB , (1.4.20)

where ∇B us the gradient operator with respect to the coordinates rB = (xB , yB , zB)
of body B. (To be fully symmetrical we might have written FBA = −∇BVBA, but
this produces the same result because VBA is by definition equal to VAB .)

Let us verify that FBA = −FAB and that the forces are directed along the vector
rA − rB , that is, in the direction of the relative separation between the two bodies.
Let us examine, say, the x component of FAB . According to Eq. (1.4.19) we have

FAB,x = − ∂

∂xA
VAB .

Because VAB depends on xA only through its dependence on the distance rAB , we
apply the chain rule to evaluate the partial derivative:

FAB,x = −dVAB

drAB

∂rAB

∂xA
= −V ′

AB

∂rAB

∂xA
,

where the prime indicates differentiation with respect to rAB . To calculate the
partial derivative of rAB with respect to xA we start with the definition

r2
AB =

(

xA − xB

)2
+

(

yA − yB

)2
+

(

zA − zB

)2
.
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Differentiating both sides gives

2rAB
∂rAB

∂xA
= 2

(

xA − xB

)

,

and finally,
∂rAB

∂xA
=

xA − xB

rAB
.

Returning to our main calculation we find that the x component of the force is

FAB,x = −xA − xB

rAB
V ′

AB ,

and very similar calculations would reveal also the y and z components. The com-
plete vectorial expression is

FAB = −rAB

rAB
V ′

AB , V ′
AB =

dVAB

drAB
. (1.4.21)

This shows that FAB is indeed directed along rAB = rA − rB .
We now calculate FBA. Looking also at its x component we get from Eq. (1.4.20)

that

FBA,x = −dVAB

drAB

∂rAB

∂xB
= −V ′

AB

∂rAB

∂xB
.

Repeating the same steps as before we find that

∂rAB

∂xB
= −xA − xB

rAB
,

which differs by a sign from the preceding expression for ∂rAB/∂xA. We finally
obtain

FBA,x =
xA − xB

rAB
V ′

AB

and the vectorial generalization

FBA =
rAB

rAB
V ′

AB . (1.4.22)

This also is directed along rAB = rA − rB . Comparing Eqs. (1.4.21) and (1.4.22)
shows that, as required, FBA = −FAB .

The calculations presented above are important and they occur frequently. To
go through them with some efficiency it is useful to memorize the rule ∇BVAB =
−∇AVAB , which is valid whenever VAB depends on rA and rB only through its
dependence on rAB = |rA − rB |.

Having made our assumptions regarding the mutual forces FAB , we now return
to the work integral of Eq. (1.4.15). Substituting Eq. (1.4.2) gives

W12 =
∑

A,B,A 6=B

∫ 2

1

FAB · drA.

To examine this we again specialize to the case of three particles. We have

W12 =

∫ 2

1

(

F21 · dr2 + F31 · dr3 + F12 · dr1 + F32 · dr3 + F13 · dr1 + F23 · dr2

)

=

∫ 2

1

[

F12 ·
(

dr1 − dr2

)

+ F13 ·
(

dr1 − dr3

)

+ F23 ·
(

dr2 − dr3

)

]

.
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But dr1 − dr2 = d(r1 − r2) = dr12, so this can be expressed as

W12 =

∫ 2

1

(

F12 · dr12 + F13 · dr13 + F23 · dr23

)

.

At this stage of the derivation we incorporate the fact that the mutual forces
are derived from a potential. As we have seen, F12 = −∇1V12, where ∇1 =
(∂/∂x1, ∂/∂y1, ∂/∂z1). But since V12 depends on (x1, y1, z1) only through its de-
pendence on (x12, y12, z12) (where, for example, x12 = x1 − x2), the force can also
be expressed as F12 = −∇12V12, where ∇12 is the gradient operator with respect
to r12 = (x12, y12, z12),

∇12 =

(

∂

∂x12
,

∂

∂y12
,

∂

∂z12

)

.

This is possible because ∂x12/∂x1 = 1, and so on.
So we now have

W12 =

∫ 2

1

(

−∇12V12 · dr12 − ∇13V13 · dr13 − ∇23V23 · dr23

)

.

Each integral can be evaluated (refer back to Sec. 1.3.1), giving

W12 = −
[

V12(2) − V12(1)
]

−
[

V13(2) − V13(1)
]

−
[

V23(2) − V23(1)
]

≡ −
[

V12 + V13 + V23

]2

1
.

Since V21 = V12 and so on, we may write this as

W12 = −1

2

[

V12 + V13 + V21 + V23 + V31 + V32

]2

1
,

where we now sum over all possible pairs of indices, provided that each index is not
repeated. Generalizing to an arbitrary number of particles, this is

W12 = −
[

1

2

∑

A,B,A 6=B

VAB

]2

1

.

We define the total potential energy of the system to be

V =
1

2

∑

A,B,A 6=B

VAB . (1.4.23)

With this notation our previous result is W12 = −[V (2) − V (1)], and Eq. (1.4.17)
becomes −V (2) + V (1) = T (2) − T (1) or T (1) + V (1) = T (2) + V (2).

We have finally established that the total mechanical energy of the system,

E = T + V =
∑

A

1

2
mAv2

A +
1

2

∑

A,B,A 6=B

VAB(rAB), (1.4.24)

stays unchanged as the particles move from configuration 1 to configuration 2. We
recall that the mutual potentials VAB are assumed to depend on rAB = |rA − rB |
only; the mutual forces are then given by Eqs. (1.4.21) and (1.4.22). This is the
statement of energy conservation for a system of particles.

Exercise 1.15. Starting from the definition of Eq. (1.4.24), prove directly that dE/dt =
0.
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1.5 Kepler’s problem

To give concreteness to the formal developments of the preceding section we exam-
ine, in this section, the specific situation of two bodies subjected to their mutual
gravitational forces. This could be the Earth-Moon system, or the Sun-Jupiter sys-
tem, or again a binary system of two main-sequence stars. Our goal is to determine
the motion of the two bodies, that is, to find a solution to Kepler’s problem.

1.5.1 Gravitational force

The force acting on body 1 due to the gravity of body 2 has a magnitude Gm1m2/r2
12,

where G is Newton’s gravitational constant, m1 the mass of body 1, m2 the mass of
body 2, and r12 is the distance between the two bodies. The force is directed along
the vector r2 − r1, which points from body 1 to body 2. Introducing the notation

r = r1 − r2, r = |r1 − r2| ≡ r12, (1.5.1)

we write
F12 = −Gm1m2

r

r3
. (1.5.2)

The force acting on body 2 due to the gravity of body 1 is

F21 = Gm1m2
r

r3
, (1.5.3)

and it is directed along r1 − r2, which points from body 2 to body 1.
These forces can be derived from a mutual potential

V12 = −Gm1m2

r
. (1.5.4)

This means that the force of Eq. (1.5.2) is given by

F12 = −∇1V12, (1.5.5)

where ∇1 is the gradient operator with respect to the coordinates r1 = (x1, y1, z1)
of body 1. Similarly, the force of Eq. (1.5.3) can be expressed as

F21 = −∇2V12, (1.5.6)

where ∇2 is the gradient operator with respect to the coordinates r2 = (x2, y2, z2)
of body 2. To verify these statements, let us calculate, say, the z component of F21.
We have

F21,z = −∂V12

∂z2
= −dV12

dr

∂r

∂z2
.

The first factor is
dV12

dr
=

Gm1m2

r2
,

and to calculate the second factor we start with

r2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2

and differentiate both sides with respect to z2. This gives

2r
∂r

∂z2
= −2(z1 − z2)

or
∂r

∂z2
= −z1 − z2

r
.
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So finally,

F21,z = Gm1m2
z1 − z2

r3
,

and this is clearly compatible with Eq. (1.5.3). Similar calculations would return
all other components of F21 and all components of F12, and Eqs. (1.5.5) and (1.5.6)
would be fully verified.

According to Eq. (1.4.23), the total potential energy of the two-body system is

V =
1

2

∑

A,B,A 6=B

VAB =
1

2
(V12 + V21),

or
V = V12. (1.5.7)

This result will allow us, in the following subsections, to omit the label “12” from
the mutual potential; we shall write, simply, V12 = V = −Gm1m2/r.

1.5.2 Equations of motion

Newton’s equations for the two bodies are m1r̈1 = F12 = −Gm1m2r/r3 and m2r̈2 =
F21 = Gm1m2r/r3. Simplifying, we arrive at

r̈1 = −Gm2
r

r3
(1.5.8)

and
r̈2 = Gm1

r

r3
, (1.5.9)

where, we recall, r = r1 − r2 and r = |r|.
The position vectors r1 and r2 can be expressed in terms of R, the position of

the centre of mass, and r, the relative position. We have, according to Eq. (1.4.4),
MR = m1r1 + m2r2, where M = m1 + m2 is the total mass. Simple algebra gives

r1 = R +
m2

M
r (1.5.10)

and
r2 = R − m1

M
r. (1.5.11)

The motion of the centre of mass is determined by the equation MR̈ = m1r̈1 +
m2r̈2 = −Gm1m2r/r3 + Gm1m2r/r3 = 0. As we had discovered in Sec. 1.4.2, the
centre of mass moves uniformly:

R(t) = R(0) + Ṙ(0)t. (1.5.12)

The motion of the relative position, on the other hand, is determined by the equation
r̈ = r̈1 − r̈2 = −Gm2r/r3 − Gm1r/r3, or

r̈ = −GM
r

r3
, M = m1 + m2. (1.5.13)

Exercise 1.16. Verify Eqs. (1.5.10) and (1.5.11).

The centre of mass defines the origin of an inertial frame, and the mathematical
description of the two-body system is simplest in this reference frame. We shall
therefore set R = 0, which brings Eqs. (1.5.10) and (1.5.11) to the simpler form

r1 =
m2

M
r, r2 = −m1

M
r. (1.5.14)
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The vector r(t) is determined by integrating Eq. (1.5.13). Once the solution is
known we obtain immediately, from Eqs. (1.5.14), the vectors r1(t) and r2(t), which
describe the trajectories of the two individual bodies. In Eq. (1.5.13) we have the
reduction of our original two-body problem to a simpler effective one-body problem.
The effective body is fictitious; it moves with a position vector r(t) in the gravita-
tional field of another fictitious mass M = m1 + m2 situated at the centre of mass
of the original system.

1.5.3 Conservation of angular momentum

From Eq. (1.5.13) we can immediately derive the statement

r × r̈ = −GM
r × r

r3
= 0.

But d(r × ṙ)/dt = ṙ × ṙ + r × r̈ = r × r̈, and it follows that d(r × ṙ)/dt = 0. The
vector

h = r × ṙ (1.5.15)

is therefore constant during the motion. This must be related to the system’s
total angular momentum which, according to the discussion of Sec. 1.4.3, is also a
constant vector. The definition of Eq. (1.4.10) gives

L =
∑

A

mArA × ṙA = m1r1 × ṙ1 + m2r2 × ṙ2.

Substitution of Eqs. (1.5.14) gives

L =
m1m

2
2

M2
r × ṙ +

m2m
2
1

M2
r × ṙ =

m1m2(m1 + m2)

M2
r × ṙ.

Simplification produces

L =
m1m2

M
h, (1.5.16)

and we find that, sure enough, the vector h is a rescaled version of the total angular-
momentum vector. We shall call h the reduced angular-momentum vector of our
two-body system.

The position vector r(t) must be at all times orthogonal to the constant vector
h, because r ·h = r · (r× ṙ) = 0. This simple fact has the far-reaching consequence
that the motion must always take place within a plane that is orthogonal to the fixed
direction of the vector h. The planar nature of the motion is illustrated in Fig. 1.9.

Conservation of total angular momentum therefore implies planar motion. To
describe this mathematically we orient the coordinate system so that the orbital
plane is the x-y plane, and we direct the vector h along the z axis. We have

r(t) = x(t)x̂ + y(t)ŷ, (1.5.17)

ṙ(t) = ẋ(t)x̂ + ẏ(t)ŷ, (1.5.18)

and
h = hẑ. (1.5.19)

A simple calculation, based on Eqs. (1.5.15) and (1.5.17)–(1.5.19), reveals that

h = xẏ − yẋ = constant. (1.5.20)

Exercise 1.17. Verify Eq. (1.5.20).



1.5 Kepler’s problem 29

r

h

orbital plane

Figure 1.9: The position vector r(t) always lies in a plane orthogonal to the constant
vector h. This plane is called the orbital plane.

1.5.4 Polar coordinates

To proceed with our calculations it is convenient to involve the polar coordinates r
and φ that were first introduced in Sec. 1.2. These, we recall, are defined by

x = r cos φ, y = r sinφ. (1.5.21)

In terms of the new coordinates and the associated basis of unit vectors r̂ and φ̂,
we have

r = r r̂, (1.5.22)

v = ṙ r̂ + rφ̇ φ̂, (1.5.23)

a =
(

r̈ − rφ̇2
)

r̂ +
1

r

d

dt

(

r2φ̇
)

φ̂ (1.5.24)

for the position, velocity, and acceleration vectors, respectively.
If we now substitute Eq. (1.5.24) for a = r̈ into the equations of motion of

Eq. (1.5.13), we obtain

(

r̈ − rφ̇2
)

r̂ +
1

r

d

dt

(

r2φ̇
)

φ̂ = −GM

r3
r = −GM

r2
r̂.

Equating the radial components of both sides gives

r̈ − rφ̇2 = −GM

r2
, (1.5.25)

while equating the angular components gives

d

dt

(

r2φ̇
)

= 0. (1.5.26)

These are the equations of motion of the effective one-body problem, expressed in
their simplest form in terms of polar coordinates. In the following subsections we
will endeavour to find solutions to these equations.
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φr d 

rφd

Figure 1.10: The position vector moves by an angle dφ during a time dt.

1.5.5 Kepler’s second law

Kepler’s second law states that the position vector of a planet orbiting the Sun sweeps
out equal areas in equal times. The statement generalizes to any two massive bodies,
and in this case the position vector refers specifically to the relative separation
r(t) between the two bodies. This law comes as an immediate consequence of
Eq. (1.5.26), which implies the conservation statement r2φ̇ = constant.

Let us first show that this constant is in fact h, the magnitude of the constant
vector h defined by Eq. (1.5.15). According to Eq. (1.5.20), this is given by h =
xẏ − yẋ. Making use of Eqs. (1.5.21), we write this as

h = (r cos φ)(ṙ sin φ + rφ̇ cos φ) − (r sin φ)(ṙ cos φ − rφ̇ sin φ).

Simplifying this we obtain
h = r2φ̇ = constant, (1.5.27)

the expected result.
The fact that r2φ̇ is conserved gives us our statement of the second law. Consider

Fig. 1.10. During an interval dt of time the position vector moves by an angle dφ and
sweeps out an area dA. To a good approximation the area is shaped as a triangle
and we have dA = 1

2r(r dφ) = 1
2r2 dφ. The rate at which the position vector sweeps

out this area is therefore
dA

dt
=

1

2
r2φ̇ =

1

2
h. (1.5.28)

This is a constant, and we have the mathematical statement of Kepler’s second law.

1.5.6 Conservation of energy

With the substitution φ̇ = h/r2 obtained from Eq. (1.5.27), Eq. (1.5.25) becomes

r̈ +
GM

r2
− h2

r3
= 0. (1.5.29)

This equation can immediately be integrated by multiplying all members by ṙ.
(Recall that we used the same trick back in Sec. 1.3.7.) We have

r̈ṙ =
d

dt

(

1

2
ṙ2

)

,
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GM

r2
ṙ =

d

dt

(

−GM

r

)

,

−h2

r3
ṙ =

d

dt

(

h2

2r2

)

,

and the preceding equation becomes

d

dt

(

1

2
ṙ2 − GM

r
+

h2

2r2

)

= 0.

This implies 1
2 ṙ2 − GM/r + h2/(2r2) = ε, where ε is the constant of integration.

We shall write this result in the form

1

2
ṙ2 + ν(r) = ε, (1.5.30)

with

ν(r) = −GM

r
+

h2

2r2
. (1.5.31)

The first term on the left of Eq. (1.5.30) can be thought of as a reduced kinetic energy
for the radial component of the motion. The second term is a reduced effective
potential for this motion, and the constant ε is a reduced total energy. (Recall that
we introduced this terminology back in Sec. 1.3.7; by “reduced” we mean a rescaled
version of the usual quantities.)

The reduced energy ε is directly related to the system’s true total energy E. Let
us calculate it. The system’s total kinetic energy is T = 1

2m1|ṙ1|2 + 1
2m2|ṙ2|2, and

according to Eqs. (1.5.4) and (1.5.7), the potential energy is V = −Gm1m2/r. The
total energy is therefore

E =
1

2
m1|ṙ1|2 +

1

2
m2|ṙ2|2 −

Gm1m2

r
.

After involving Eq. (1.5.14) and cleaning up the algebra, this becomes

E =
m1m2

M

(

1

2
|ṙ|2 − GM

r

)

. (1.5.32)

Now Eq. (1.5.23) states ṙ = v = ṙr̂ + rφ̇φ̂, so that |ṙ|2 = ṙ2 + r2φ̇2 = ṙ2 + h2/r2.
So

E =
m1m2

M

(

1

2
ṙ2 − GM

r
+

h2

2r2

)

,

and comparing this with Eqs. (1.5.30) and (1.5.31) yields

E =
m1m2

M
ε. (1.5.33)

As promised, ε is a rescaled version of the total energy E. Recall that back in
Sec. 1.5.3 we had similarly obtained L = (m1m2/M)h.

Exercise 1.18. Verify Eq. (1.5.32) and check the algebra leading to Eq. (1.5.33).

1.5.7 Qualitative description of the orbital motion

The equations of motion have been reduced to the first-order form of Eqs. (1.5.27)
and (1.5.30), with the effective potential ν(r) given by Eq. (1.5.31). The equation
φ̇ = h/r2 informs us that φ increases monotonically with t: If h is positive φ̇ is
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Figure 1.11: Energy diagram for the radial component of the motion. When ε < 0 the
motion takes place between two turning points; this is elliptical motion. When ε > 0 the
motion takes place on the right of a single turning point; this is hyperbolic motion. When
ε = 0 the motion is parabolic.

always greater than zero and φ(t) is an increasing function; if h is negative φ̇ is
always smaller than zero and φ(t) is then a decreasing function. (The case h = 0
will be dealt with separately later.) The equation

1

2
ṙ2 + ν(r) = ε

governs the radial component of the motion. As in Sec. 1.3.7 we will describe this
qualitatively by constructing an energy diagram, a plot of the effective potential
ν(r) together with the constant value of the reduced energy ε. The energy diagram
is shown in Fig. 1.11. Recall the two main features of such diagrams: (i) The
difference between ε and ν(r) represents 1

2 ṙ2, the reduced kinetic energy, which
must be positive; and (ii) points on the diagram for which ν(r) = ε represent turning
points of the motion, at which ṙ changes sign, either from positive to negative, or
from negative to positive.

Because the effective potential can be negative, it is possible for ε to be either
negative or positive. The nature of the motion depends sensitively on this sign.

When ε < 0 the motion takes place between two turning points at r = rmin

and r = rmax. The motion is bounded, and as we shall see, the orbit possesses an
elliptical shape. When ε is equal to the minimum value of the effective potential,
ε = νmin < 0, motion can take place only at r = r0, the radius at which the
minimum occurs, which is defined by ν(r0) = νmin. The orbit is then circular,
because ṙ is always zero and r can therefore never change with time.

When ε > 0 the motion takes place only to the right of a single turning point
at r = rmin. The motion proceeds from r = ∞ (where ν = 0 and 1

2 ṙ2 = ε) down to
r = rmin (where ṙ changes sign from negative to positive), and then back to r = ∞.
The particle traces a hyperbola in the orbital plane, and the motion is said to be
hyperbolic.
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When ε = 0 the situation is qualitatively the same as before (for ε > 0). The
only difference is that the particle now starts at r = ∞ with a zero radial velocity,
because 1

2 ṙ2 = ε = 0. The particle then traces a parabola in the orbital plane, and
the motion is parabolic.

1.5.8 Circular orbits

Circular orbits are especially simple to describe. To have circular motion we need
both ṙ and r̈ to be zero, so that r always stays constant. The condition ṙ = 0 is
not sufficient, because ṙ might just happen to be in the process of changing sign at
a turning point; we need a permanent turning point, which we get by also imposing
r̈ = 0. To get ṙ = 0 we need to impose

ε = ν(r0) = −GM

r0
+

h2

2r2
0

,

where r0 is the orbital radius. To get r̈ = 0 we look back at Eq. (1.5.29) and impose

0 =
GM

r2
0

− h2

r3
0

= ν′(r0),

in which a prime indicates differentiation with respect to r. The second equation
determines h in terms of r0: we get h2 = GMr0, or

h =
√

GMr0, (1.5.34)

if we choose a positive sign for h. The first equation determines ε also in terms of
r0: we get ε = −GM/r0 + GM/(2r0), or

ε = −GM

2r0
. (1.5.35)

The angular velocity of a circular orbit is given by φ̇ = h/r2
0 =

√
GMr0/r2

0, or

φ̇ =

√

GM

r3
0

. (1.5.36)

The orbital period P is the time required for φ to advance by 2π. We have
√

GM/r3
0 = 2π/P , which gives

P = 2π

√

r3
0

GM
. (1.5.37)

This equation states that P 2 ∝ r3
0, and we have the statement of Kepler’s third law

for circular orbits.

1.5.9 Shape of orbits

To go beyond the qualitative description of the orbit we must now fully integrate
the equations of motion. We shall, to begin with, eliminate the time from the
equations and focus on the geometrical appearance of the orbit; we shall, in other
words, derive a differential equation for r(φ) and solve it. We will return later with
a description of the motion in time.

We go back to Eq. (1.5.29),

r̈ +
GM

r2
− h2

r3
= 0,
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and to Eq. (1.5.27),

φ̇ =
h

r2
.

To eliminate t from these equations we write

ṙ =
dr

dt
=

dr

dφ

dφ

dt
=

h

r2

dr

dφ
.

We then have

r̈ = −2h

r3
ṙ
dr

dφ
+

h

r2

d2r

dφ2
φ̇

= −2h2

r5

(

dr

dφ

)2

+
h2

r4

d2r

dφ2
.

The equation that determines the shape of the orbit is therefore

h2

r4

d2r

dφ2
− 2h2

r5

(

dr

dφ

)2

+
GM

r2
− h2

r3
= 0,

or
1

r2

d2r

dφ2
− 2

r3

(

dr

dφ

)2

− 1

r
+

GM

h2
= 0,

or

− 1

r2

d2r

dφ2
+

2

r3

(

dr

dφ

)2

+
1

r
=

GM

h2
. (1.5.38)

This is a second-order, nonlinear differential equation for r(φ).
The standard trick that is used to solve Eq. (1.5.38) is to adopt u = 1/r as the

dependent variable. Then r = 1/u,

dr

dφ
= − 1

u2

du

dφ
,

and
d2r

dφ2
=

2

u3

(

du

dφ

)2

− 1

u2

d2u

dφ2
.

With these transformations Eq. (1.5.38) becomes

− 2

u

(

du

dφ

)2

+
d2u

dφ2
+

2

u

(

du

dφ

)2

+ u =
GM

h2
,

or
d2u

dφ2
+ u =

GM

h2
, u =

1

r
. (1.5.39)

The equation is still of second order, but it is now linear. If we write v = u−GM/h2

it becomes even simpler:
d2v

dφ2
+ v = 0.

The solution is v = u0 cos(φ−φ0), where u0 and φ0 are the constants of integration.
We therefore have

u =
GM

h2
+ u0 cos(φ − φ0) ≡

GM

h2

[

1 + e cos(φ − φ0)
]

≡ 1

p

[

1 + e cos(φ − φ0)
]

,

where we have put u0 = GMe/h2 and p = h2/(GM).
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The final result for r(φ) is

r(φ) =
p

1 + e cos φ
, (1.5.40)

in which we have set φ0 = 0 to simplify the expression. This involves two constants:
We have p, which plays the role of average radius and is known officially as the
semilatus rectum, and we have e, which measures the range over which r varies and
is known as the eccentricity. We have seen that p is related to the reduced angular
momentum h by

h =
√

GMp. (1.5.41)

The eccentricity, on the other hand, can be related to the reduced energy ε; as we
shall calculate in a following paragraph,

ε = −GM

2p

(

1 − e2
)

. (1.5.42)

This equation is valid for e < 1, which means that ε < 0, and it is valid also for
e ≥ 1, which means that ε ≥ 0.

We have just observed that ε < 0 when e < 1. This is the case of bound
motion, which takes place between two turning points at r = rmin = p/(1 + e)
and r = rmax = p/(1 − e). As we see from Eq. (1.5.40), the motion proceeds from
r = rmin (known as the orbit’s pericentre) when φ = 0, to r = rmax (known as the
orbit’s apocentre) when φ = π, and then back to r = rmin when φ = 2π. When
e < 1 the equation r = p/(1 + e cos φ) describes an ellipse. The maximum length of
this ellipse is rmin + rmax = p/(1 + e) + p/(1 − e) = 2p/(1 − e2). Half of this is the
ellipse’s semi-major axis,

a =
p

1 − e2
. (1.5.43)

These statements give rise to Kepler’s first law: A body moving under the grav-
itational influence of another body follows an elliptical orbit when the motion is
bounded. When e = 0 we have that Eq. (1.5.40) reduces to r(φ) = p, and the el-
lipse has become a circle. In this case we have p ≡ r0, Eq. (1.5.41) becomes identical
to Eq. (1.5.34), and Eq. (1.5.42) becomes Eq. (1.5.35).

Exercise 1.19. Look up a reference book on elementary geometry and review the
properties of ellipses. Answer the following questions: (1) Is Eq. (1.5.40) really the equation
of an ellipse? (2) Where are the two foci of the ellipse? (3) What is the semi-minor axis b
of the ellipse? A good way to answer some of these questions is to show that Eq. (1.5.40)
is equivalent to the usual description of an ellipse via the equation X2/a2 + Y 2/b2 = 1.
But be careful! In this equation X is not equal to r cos φ and Y is perhaps not equal to
r sin φ, because the two coordinate systems do not share the same origin.

We have also observed that ε > 0 when e > 1. This is the case of unbound
motion, which takes place to the right of a single turning point at r = rmin =
p/(1+e). In this case the equation r = p/(1+e cos φ) describes a hyperbola, and we
have hyperbolic motion. In the special case e = 1 we have ε = 0, and the equation
r = p/(1+cos φ) describes a parabola; in this special case we have parabolic motion.
You may have learned that an ellipse, a hyperbola, and a parabola are all special
cases of a general family of curves called conic sections. The conic sections are all
described by the parametric equation r(φ) = p/(1 + e cos φ).

Let us now return to the derivation of Eq. (1.5.42). We go back to Eqs. (1.5.30)
and (1.5.31),

ε =
1

2
ṙ2 − GM

r
+

h2

2r2
,
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and we compute each member of the right-hand side. To evaluate ṙ we start with
Eq. (1.5.40) and get

ṙ =
ep sin φ

(1 + e cos φ)2
φ̇ =

e

p
r2φ̇ sin φ =

e

p
h sin φ.

This gives us

ε =
1

2

e2

p2
h2 sin2 φ − GM

p
(1 + e cos φ) +

h2

2p2
(1 + e cos φ)2,

and replacing h2 by GMp in this equation yields

ε =
GM

2p

[

e2 sin2 φ − 2(1 + e cos φ) + (1 + e cos φ)2
]

.

After simplification the expression within the square brackets becomes e2 sin2 φ −
1 + e2 cos2 φ = −1 + e2, and we arrive at

ε = −GM

2p
(1 − e2),

the same statement as in Eq. (1.5.42).

1.5.10 Motion in time

Now that r(φ) is known we must relate φ to the time t in order to have a complete
description of the motion. The relevant equations are φ̇ = h/r2, h =

√
GMp, and

r = p/(1 + e cos φ). Putting this all together, we obtain

dφ

dt
=

√

GM

p3
(1 + e cos φ)2. (1.5.44)

This is the differential equation that must be solved in order to obtain φ(t). Unless
e is very small, in which case approximate analytical results can be obtained, this
equation must be integrated numerically. Results of numerical integrations are
displayed in Fig. 1.12.

The integral form of Eq. (1.5.44) is

t =

√

p3

GM

∫

dφ

(1 + e cos φ)2
+ constant. (1.5.45)

This indefinite integral cannot be evaluated in closed form, but it provides a nice
way of calculating the orbital period P of bound orbits (e < 1). Because this is
equal to the time required for φ to advance by 2π, or twice the time required for φ
to advance by π, we have

P = 2

√

p3

GM

∫ π

0

dφ

(1 + e cos φ)2
.

This definite integral can be evaluated, and the result is π/(1−e2)3/2. We therefore
have

P = 2π

√

[p/(1 − e2)]3

GM
.

We obtain a cleaner form of this result by involving Eq. (1.5.43). In terms of the
semi-major axis a = p/(1 − e2), the orbital period is

P = 2π

√

a3

GM
. (1.5.46)

We have that P 2 ∝ a3, and this is the general statement of Kepler’s third law.
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Figure 1.12: Numerical integration of the equations of motion for an orbit with eccen-
tricity e = 0.5. The blue curve shows the angular velocity φ̇ as a function of time, the
green curve shows the radial velocity ṙ as a function of time, and the red curve shows the
radial position r as a function of time. The time variable is scaled by the orbital period
P , and three complete orbital cycles are displayed. Notice that the motion starts at the
pericentre with maximum angular velocity and zero radial velocity.
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1.5.11 Summary

The motion of two bodies subjected to their mutual gravity is described by the
relative position vector r = r1 − r2. When the origin of the coordinate system is
at the centre of mass we have

r1 =
m2

M
r, r2 = −m1

M
r, M = m1 + m2.

The vector h = r × ṙ is constant, and h is related to the system’s total angular
momentum by L = (m1m2/M)h. The fact that h is constant implies that the
motion takes place in a fixed plane. Using polar coordinates, the motion is described
by the functions r(t) and φ(t). These are determined by the first-order differential
equations

1

2
ṙ2 − GM

r
+

h2

2r2
= ε, φ̇ =

h

r2
.

The constant ε is related to the system’s total energy by E = (m1m2/M)ε. The
shape of the orbit is described by

r(φ) =
p

1 + e cos φ
.

The orbital elements (p, e) are related to (h, ε) by

h =
√

GMp, ε = −GM

p

(

1 − e2
)

.

The motion in time is determined by numerically integrating

φ̇ =

√

GM

p3
(1 + e cos φ)2.

When e < 1 the motion is elliptical, and the ellipse’s semi-major axis is

a =
p

1 − e2
.

The orbital period is then

P = 2π

√

a3

GM
.

1.6 Appendix: Numerical integration of

differential equations

Some of the results presented in this Chapter were obtained by numerical integra-
tion. Some of our future results also will be obtained using numerical techniques.
In this Appendix we explain the fundamental ideas behind these numerical meth-
ods. These ideas are implemented in various available packages, for example, within
Maple, or within subroutines found in the book Numerical Recipes.

To begin, we examine a first-order differential equation of the form

dy

dx
= f(y), (1.6.1)

where x is the independent variable, y the dependent variable, and f an arbitrary
function of y. A concrete example is

dφ

dt
=

√

GM

p3
(1 + e cos φ)2,
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which we encountered in Sec. 1.5; here x ≡ t, y ≡ φ, and f stands for what appears
on the right-hand side of the preceding equation.

We seek to determine y(x) in the interval xinitial < x < xfinal, starting from the
known value yinitial at x = xinitial. The essential idea is to break down the continuum
between xinitial and xfinal into a finite number of discrete points separated by a small
interval ∆. The computational grid is then

xn = xinitial + n∆, n = 0, 1, 2, · · · , N, (1.6.2)

where N is the total number of points; we have ∆ = (xfinal − xinitial)/N . Cor-
respondingly, we have the sampled values yn = y(xn) of the dependent variable,
which we wish to determine. We shall do so by turning the differential equation
dy/dx = f(y) into a finite-difference equation.

Consider the first step of moving from x0 = xinitial to x1. We know y0 = yinitial,
and we wish to determine y1. Because ∆ is small it is safe to assume that the
function f(y) changes by very little in the interval between y0 and y1. We may
approximate it by its Taylor expansion about y = y0:

f(y) = f(y0) + f ′(y0)(y − y0) + · · ·
= f(y0)

[

1 + f−1f ′(y0)(y − y0) + · · ·
]

.

The differential equation gives

dx =
dy

f(y)
=

1

f(y0)

[

1 − f−1f ′(y0)(y − y0) + · · ·
]

dy,

where we have used the identity (1 + ǫ)α = 1 + αǫ + O(ǫ2), which holds for any
small quantity ǫ and any power α — this identity also can be established by Taylor
expansion. Integrating the preceding equation gives

x1 − x0 =
1

f(y0)

[

(y1 − y0) −
1

2
f−1f ′(y0)(y1 − y0)

2 + · · ·
]

,

or

f(y0)∆ = (y1 − y0) −
1

2
f−1f ′(y0)(y1 − y0)

2 + · · · .

This equation can be solved formally for y1 − y0:

y1 − y0 = f(y0)∆ +
1

2
f−1f ′(y0)(y1 − y0)

2 + · · ·

= f(y0)∆ +
1

2
f−1f ′(y0)

[

f(y0)∆ + · · ·
]2

+ · · ·

= f(y0)∆ +
1

2
ff ′(y0)∆

2 + · · · .

We write this result as

y1 = y0 + f(y0)∆ +
1

2
ff ′(y0)∆

2 + O(∆3), (1.6.3)

indicating that the error of this approximation for y1 is of order ∆3 and therefore
quite small.

A cruder approximation for y1 is

y1 = y0 + f(y0)∆ + O(∆2),

and this approximation is at the core of Euler’s method to solve the differential
equation: From the known value y0 compute f(y0) and multiply by ∆; add the
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result to y0 to get y1, and repeat the procedure to get y2, y3, and so on. Euler’s
method is very simple and economical, but because its error term is of order ∆2,
it is not very accurate. With a little cleverness, however, it is possible to improve
the accuracy of the method so that its error term becomes of order ∆3 ≪ ∆2. One
way of achieving this would be to use Eq. (1.6.3) instead of its cruder version. The
price to pay would be the need to evaluate f ′(y), the derivative of the function with
respect to y. This may not be practical in some circumstances, and there is an
alternative method.

Consider evaluating the function f not at y = y0, but at the midpoint between
y0 and y1 ≃ y0 + f(y0)∆:

f(y0) → f(y0 + 1
2f0∆),

where we use the notation f0 = f(y0). By Taylor expansion we have

f(y0 + 1
2f0∆) = f(y0) + f ′(y0)(

1
2f0∆) + O(∆2)

= f(y0) +
1

2
ff ′(y0)∆ + O(∆2),

and this shows that Eq. (1.6.3) is equivalent to

y1 = y0 + f(y0 + 1
2f0∆)∆ + O(∆3). (1.6.4)

This approximation for y1 has an error term of order ∆3, and it is obtained simply
by evaluating the function f at the midpoint; the value of its derivative is not
needed.

By being increasingly clever it is possible to decrease further the size of the
error term. The fourth-order Runge-Kutta method consists of the following recipe.
Suppose that the differential equation has been integrated up to x = xn, and that
we wish to proceed to the next grid point, at x = xn+1. We have therefore obtained
yn and we wish to calculate yn+1. First we compute the auxiliary quantities

k1 = f(yn)∆,

k2 = f(yn + 1
2k1)∆,

k3 = f(yn + 1
2k2)∆,

k4 = f(yn + k3)∆,

and next we approximate yn+1 by

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 + O(∆5). (1.6.5)

As indicated, the judicious choice of coefficients in front of k1, k2, k3, and k4 ensures
that the error term is now of order ∆5, and therefore very small. The Runge-Kutta
method is easy to implement, it is accurate, and it is robust; it works well for most
functions f(y). The method can also be generalized to handle functions f(x, y) that
depend on both variables.

The method also generalizes to a set of differential equations

dy[i]

dx
= f [i]

(

y[1], y[2], · · ·
)

, i = 1, 2, · · · (1.6.6)

for a set of dependent variables y[i]. In this case the auxiliary quantities k1, k2, k3,
and k4 acquire an index [i]; for example we now have

k1[i] = f [i]
(

yn[1], yn[2], · · ·
)

∆
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and
k2[i] = f [i]

(

yn[1] + 1
2k1[1], yn[2] + 1

2k1[2], · · ·)∆.

This generalization is useful, because it allows us to use the method to integrate
second-order differential equations. Consider, for example, the pendulum equation
of Eq. (1.3.24),

θ̈ + ω2 sin θ = 0.

This can be recast as a system of two first-order differential equations. To do this
we define y[1] = θ and y[2] = θ̇. When then have the system

dy[1]

dt
= y[2],

dy[2]

dt
= −ω2 sin(y[1]).

In this instance we find that f [1](y[1], y[2]) = y[2] and f [2](y[1], y[2]) = −ω2 sin(y[1]).
This system of equations can be integrated straightforwardly, and the result for
y[1](t) is the numerical approximation to θ(t), the solution to the original second-
order equation.

1.7 Problems

1. Let
A = (3x2 − 6yz)x̂ + (2y + 3xz)ŷ + (1 − 4xyz2)ẑ.

Calculate
∫

C
A · ds along the following paths that link the point (0, 0, 0) to

the point (1, 1, 1):

(a) The curve described by x = u, y = u2, and z = u3, in which the parameter
u is restricted to the interval 0 < u < 1.

(b) The straight line that joins these points.

2. Let
A = (2xy + z3)x̂ + (x2 + 2y)ŷ + (3xz2 − 2)ẑ.

Find the function f such that A = ∇f . Then evaluate
∫

C
A · ds along any

path C that links the point (1,−1, 1) to the point (2, 1, 2).

3. Evaluate
∮

C
r · ds along all closed loops C, where r = xx̂ + yŷ + zẑ is the

position vector.

4. A projectile is launched with initial speed v0 at an angle α with the horizontal.
Calculate:

(a) the position vector as a function of time;

(b) the time required to reach the highest point;

(c) the maximum height reached by the projectile;

(d) the time of flight back to the Earth’s surface;

(e) the range of the projectile;

(f) the angle α which maximizes the range.

5. Suppose that in the preceding problem, the projectile is also subjected to a
frictional force equal to −kv, where v is the velocity vector and k a positive
constant. Find:

(a) the velocity vector as a function of time;
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(b) the position vector as a function of time;

(c) the terminal velocity of the projectile.

For ease of notation set k = m/τ .

6. A particle of mass m is traveling in the x direction. At time t = 0 it is located
at x = 0 and has a speed v0. The particle is subjected to a frictional force
which opposes the motion; its magnitude is equal to βv2, where v = v(t) is
the particle’s speed at time t and β is a positive constant.

(a) What is the speed of the particle as a function of time?

(b) What is the position of the particle as a function of time?

7. A particle of mass m rests on top of a sphere of radius R. The particle is then
displaced slightly so that it starts to move down the sphere. (It is assumed
that the particle slides down without rolling and without friction.) As it moves
down the sphere, the particle makes an angle θ with the vertical direction. At
some point the particle loses contact with the surface of the sphere, and it
proceeds to fall freely. We are interested in the motion of the particle from
the initial moment where it is at rest to the final moment where it leaves the
sphere.

(a) Derive an equation of motion for θ(t), and find an expression for N , the
magnitude of the normal force.

(b) At which angle θ does the particle leave the surface of the sphere?

(c) What is the speed of the particle when it leaves the surface of the sphere?

[Hint: This problem is involved. You may find it useful to resolve the force
and acceleration vectors into a basis that consists of r̂, a unit vector that
points in the direction normal to the sphere, and θ̂, a unit vector that points
in the direction of increasing θ.]

8. The planar pendulum of Sec. 1.2.7 is now subjected to a frictional force
Ffriction = −(m/τ)v, where τ is a positive constant. Derive the new equa-
tion of motion for the swing angle θ.

9. The equation of motion of the preceding problem reduces to

θ̈ + 2γθ̇ + ω2θ = 0

when the oscillations have a very small amplitude; here γ is a positive constant
that is related to τ in the preceding problem. Find the general solution to this
equation. Assume that ω2 > γ2, so that the oscillations are underdamped.
[Be sure that your final expression for θ(t) is a real (not complex) function.]

10. A mass m is allowed to move along the x axis, either in the positive or in the
negative direction. It is subjected to a constant force +F when x < 0 and to
a constant force −F when x > 0 (here F is positive).

(a) Describe the motion qualitatively with the help of an energy diagram.

(b) Calculate the period of the motion; express your result in terms of m, F ,
and the amplitude A of the motion.

11. A cylindrical cork is partially immersed in a liquid of (mass) density ρ. The
cork’s axis is oriented with the vertical direction, and the cork floats in the
liquid. The cylinder’s cross-sectional area is A, and its mass is m. The
cork is gently pushed down into the liquid and then released; it starts to
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oscillate. Neglecting any damping effect, calculate the angular frequency ω of
the oscillations.

[Hint: The restoring force is provided by the buoyancy of the liquid. According
to the Archimedes principle, the buoyant force is equal to the weight of the
liquid displaced by the cork.]

12. For Kepler’s problem, prove that the square of the velocity vector v = ṙ can
be expressed as

v2 = GM

(

2

r
− 1

a

)

,

where a = p/(1−e2) is the ellipse’s semi-major axis. What is v at pericentre?
What is v at apocentre? (Express your results in units of the average speed
v̄ =

√

GM/a.)

13. We have seen that the description of Keplerian motion in time can be ob-
tained by integrating Eq. (1.4.52). An alternative method is based on the
representation

r = a(1 − e cos ψ),

in which r is expressed in terms of the eccentric anomaly ψ; this is an angular
parameter that ranges from 0 to 2π as each body completes one full orbit. We
wish to find ψ as a function of time.

(a) Starting from the statement of energy conservation, 1
2 ṙ2 + ν(r) = ε, in

which you are to substitute h2 = GMa(1 − e2) and ε = −GM/(2a),
derive an expression for ψ̇. Make sure that this expression is simplified
to the full extent possible.

(b) Integrate the equation for ψ̇ that was obtained in part (a). Show that
the solution is

ψ − e sin ψ =

√

GM

a3

(

t − t0
)

,

where t0 is the time at which ψ = 0. This is Kepler’s equation, and
it can be numerically inverted to yield ψ(t). This method is the most
convenient to find the behaviour of r as a function of time.

14. We examine a special case of Kepler’s problem. We set h = 0, so that φ̇ = 0.
We have purely radial motion, and the equation for r(t) reduces to

1

2
ṙ2 − GM

r
= ε,

where ε is the reduced total energy.

(a) Construct an energy diagram for this situation. Describe the motion
qualitatively when ε > 0, when ε = 0, and when ε < 0.

In the rest of the problem we consider the subcase ε < 0 in some detail.

(b) Relate ε to rmax, the maximum value of r at which a turning point occurs.

(c) Imagine that the motion proceeds from r = rmax to r = 0. We represent
this mathematically in terms of an auxiliary variable, the angle η. We
write

r(η) =
1

2
rmax(1 + cos η),

and we let η vary from η = 0 to η = π. Calculate η̇ = dη/dt and solve
this for t(η). The motion is now completely determined. Provide a plot
of r as a function of t.
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(d) What is the total time required for the bodies to go from r = rmax to
r = 0?

15. Two particles move about each other in circular orbits under the influence
of their gravitational attraction; their orbital period is τ . Their motion is
suddenly stopped at a given instant of time, and they are then released and
allowed to fall into each other. Calculate the time required for them to collide;
express your answer in terms of τ .

[Hint: You will need the result of part (d) of the preceding problem.]

16. The escape velocity of a particle on Earth is the minimum velocity required on
the Earth’s surface for the particle to escape the Earth’s gravitational field.
Neglecting air resistance within the atmosphere, calculate this in terms of the
Earth’s mass M and its radius R. Evaluate this numerically and show that it
is close to 11 km/s.

17. Two bodies of mass m1 and m2 are subjected to their mutual forces, so that
the force acting on body 1 due to body 2 is F12 = −f(r)r̂, while the force
acting on body 2 due to body 1 is F21 = +f(r)r̂. Here f is an arbitrary
function of r = |r1 − r2|, the distance between the bodies, and the forces
are directed along r̂ = r/r, where r = r1 − r2; such forces are called central
forces.

(a) Derive an equation of motion for R, the position of the centre of mass.

(b) Derive an equation of motion for r, the position of body 1 relative to
body 2.

(c) Prove that h = r× ṙ is a constant vector; conclude that the motion takes
place in a fixed plane.

(d) Introduce the polar coordinates (r, φ) and prove that |h| = h = r2φ̇;
conclude that Kepler’s law — the law of areas — is valid for all central
forces, and not just for gravity.

(e) Show that the equation of motion for r reduces to

r̈ +
f

µ
− h2

r3
= 0,

where µ = m1m2/(m1 + m2) is known as the reduced mass of the two-
body system.

(f) Prove that the shape of the orbit is determined by

d2u

dφ2
+ u =

f

µh2u2
,

where u = 1/r.

18. A central force f = k/rn, where k is a constant and n an integer, is known to
produce an orbit described by r = ae−φ, where a is a constant.

(a) Plot this orbit in the x-y plane.

(b) Determine the integer n.

19. A central force f = k/rn, where k is a constant and n an integer, is known to
produce an orbit described by r = a

√
cos 2φ, where a is a constant.

(a) Plot this orbit in the x-y plane.
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(b) Determine the integer n.

20. A two-body system moves under the influence of a central force given by

f =
a

r2
+

b

r3
,

where a and b are constants.

(a) Show that the shape of the orbit is described by

r =
p

1 + e cos(kφ)
,

where p, e, and k are constants. Express p and k in terms of a, b, h2,
and µ. (Assume that b < µh2.)

(b) Plot the orbit in the x-y plane. Set p = 1, e = 0.6, k = 0.99, and let φ
range from 0 to 16π. What is happening to the major axis of the ellipse?

1.8 Additional problems

1. An inclined plane makes an angle α with the horizontal. A projectile is
launched from point A at the bottom of the inclined plane. Its initial speed
is v0, and its initial velocity vector makes an angle β with the horizontal.
The projectile eventually hits the inclined plane at point B. Air resistance is
negligible.

(a) Calculate the range R of the projectile, the distance between points A
and B. Show that it it can be expressed in the form

R = R0 sin(β − α) cos β

and find an expression for R0.

(b) Find the angle βmax which maximizes the range.

2. A particle traveling in the positive x direction is subjected to a force F = kx3.
The particle started from an initial position x0 < 0. Draw an energy diagram
for this situation and provide a qualitative description of the possible motions.

3. Two bodies of masses m1 and m2 are subjected to a mutual attractive force
F12 = −km1m2r, where k is a constant and r = r1−r2 is the relative position
vector.

(a) Show that the equation of motion for r(t) can be put in the form of an
energy equation,

1

2
ṙ2 + ν(r) = ε,

and find an expression for ν(r), the effective potential. Draw an energy
diagram for this system and give a qualitative description of the possible
motions.

(b) Prove that

r(φ) =
r0

√

2 − e − e cos(2φ)

describes the shape of the orbit, and solve for r0 in terms of the constants
e, M = m1 + m2, h, and k.
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4. The parabolic coordinates u and v are sometimes useful to describe the motion
of a particle in a two-dimensional plane. These are related to the Cartesian
coordinates x and y by

x = uv, y =
1

2
(u2 − v2).

(a) Sketch the shapes of the curves u = constant in the x-y plane.

(b) Sketch the shapes of the curves v = constant in the x-y plane.

(c) Find the unit vectors û and v̂ associated with this coordinate system.



Chapter 2

Lagrangian mechanics

2.1 Introduction: From Newton to Lagrange

The methods of Newtonian mechanics, based on the vectorial equation F = ma, are
very powerful and they can be applied to all mechanical systems. But they lack in
efficiency when Cartesian coordinates (x, y, z) do not give the simplest description
of a mechanical system. An example is the problem of the pendulum (Sec. 1.3.7),
which is best analyzed in terms of the swing angle θ; we have seen that to derive
the equation of motion for θ(t) requires somewhat laborious calculations, and the
reason is precisely that θ is not a Cartesian coordinate. Another example is Kepler’s
problem (Sec. 1.5), which is best analyzed in terms of the polar coordinates (r, φ);
again we saw (back in Sec. 1.5.4) that to derive equations of motion for r(t) and
φ(t) required some long calculations.

To increase the efficiency of the theoretical methods of mechanics, a number of
scientists in the centuries following Newton endeavoured to recast the Newtonian
laws into a more flexible formulation. The most famous players include Leonhard
Euler (1707–1783), Joseph Lagrange (1736–1813), William Rowan Hamilton (1805–
1865), and Carl Gustav Jacobi (1804–1851). Their new techniques proved extremely
useful, and they allowed them and others to solve increasingly challenging problems,
most notably in the context of celestial mechanics. These new powerful techniques
are the topic of this chapter on Lagrangian mechanics, and the following chapter
on Hamiltonian mechanics.

It is important to point out that the Lagrangian and Hamiltonian formulations
of the laws of mechanics are largely restricted to forces that can be derived from
a potential. For other problems, such as a particle subjected to air resistance, the
new techniques cannot be applied in a very straightforward way, and it is usually
best to go back to the old Newtonian methods. In this chapter and the next, we
shall consider only forces that can be derived from a potential.

The entire content of Lagrangian mechanics is summarized in the following sim-
ple recipe:

1. Select generalized coordinates qa to describe the degrees of freedom of a me-
chanical system. These coordinates are completely arbitrary. They need not
be the original Cartesian coordinates associated with an inertial frame. In-
deed, there is no need for the coordinates to even be attached to an inertial
frame. The index a = 1, 2, · · · labels each one of the generalized coordinates;
there is one coordinate for each degree of freedom.

2. In terms of the generalized coordinates, calculate the system’s total kinetic
energy T and total potential energy V . Then form what is known as the
Lagrangian function of the system, which is denoted L(qa, q̇a); this depends
on the generalized coordinates qa and the generalized velocities q̇a = dqa/dt.

47
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The Lagrangian is defined by

L = T − V ;

it is the difference between the kinetic and potential energies.

3. Substitute the Lagrangian into the Euler-Lagrange (EL) equations,

d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0.

This returns an equation of motion for each generalized coordinate qa(t).
There is one EL equation for each generalized coordinate.

4. The rest of the recipe is concerned with solving the equations of motion. The
methods for doing this are varied, and they depend on the particular situation,
just as they do in the Newtonian formulation.

Let us first verify that the recipe is compatible with Newton’s laws. Consider a
particle moving in three-dimensional space and subjected to a potential V (x, y, z).
As indicated, we use Cartesian coordinates to describe the motion of the particle.
In this case, therefore, the generalized coordinates are chosen as q1 = x, q2 = y, and
q3 = z. The particle’s kinetic energy is T = 1

2m(ẋ2 + ẏ2 + ż2), and the Lagrangian
function is

L(x, y, z, ẋ, ẏ, ż) =
1

2
m(ẋ2 + ẏ2 + ż2) − V (x, y, z).

To substitute this into the EL equation for q1 = x, say, we must first evaluate
∂L/∂ẋ. This is the derivative of L with respect to ẋ, treating all other variables
(including x) as constant parameters. This is given by

∂L

∂ẋ
= mẋ.

We next differentiate this with respect to t, and get

d

dt

∂L

∂ẋ
= mẍ.

Finally, we differentiate L with respect to x, treating all other variables (including
ẋ) as constant parameters; this gives

∂L

∂x
= −∂V

∂x
.

Substituting these results into the EL equation for x, we arrive at

mẍ +
∂V

∂x
= 0.

Repeating these calculations for y and z would eventually return the full vectorial
equation

ma + ∇V = 0,

or ma = F if we recall that the force is derived from the potential, so that F =
−∇V . This exercise reveals that indeed, the Lagrangian recipe is compatible with
the Newtonian law.

The true power of the recipe, however, is revealed when the generalized coor-
dinates are not Cartesian. Let us see what the recipe produces in the case of the
pendulum. Recall from Sec. 1.3.7 that the pendulum’s single degree of freedom
is best represented by the swing angle θ; this will be our generalized coordinate
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for this problem, and we write q ≡ θ. (We do not need a label a in this case, as
there is only one generalized coordinate.) The relation between θ and the original
Cartesian coordinates is x = ℓ sin θ and z = ℓ cos θ, with ℓ denoting the length of
the rod. The pendulum’s kinetic energy is T = 1

2 (ẋ2 + ż2) = 1
2mℓ2θ̇2. Its potential

energy is V = −mgz = −mgℓ cos θ = −mℓ2ω2 cos θ, where we have reintroduced
the quantity ω2 ≡ g/ℓ. The pendulum’s Lagrangian function is

L(θ, θ̇) = mℓ2
(

1

2
θ̇2 + ω2 cos θ

)

.

To substitute this into the EL equation we must first evaluate ∂L/∂θ̇, the partial
derivative of L with respect to θ̇. This is

∂L

∂θ̇
= mℓ2θ̇.

Next we differentiate this with respect to time, and obtain

d

dt

∂L

∂θ̇
= mℓ2θ̈.

Finally we calculate the partial derivative of L with respect to θ, which yields

∂L

∂θ
= −mℓ2ω2 sin θ.

Substituting these results into the EL equation produces

mℓ2
(

θ̈ + ω2 sin θ
)

= 0,

the same pendulum equation as in Eq. (1.3.24). Comparing the computations car-
ried out here to those required in Sec. 1.3.7, the greater efficiency of the Lagrangian
recipe should come out loud and clear.

It is possible to derive the Lagrangian recipe from Newton’s law, F = ma. The
derivation is fairly laborious, and it involves performing a transformation from the
original Cartesian system (x, y, z) to the generalized coordinates qa. It is possible,
however, and more interesting, to derive the recipe from a new physical principle.
Instead of postulating the validity of F = ma as the starting point of Newtonian
mechanics, we shall instead adopt the principle of least action as the starting point
of Lagrangian mechanics. As we shall see in the next two sections, the Euler-
Lagrange equations can be derived as a direct consequence of the principle of least
action, and as we have already seen, these are fully compatible with Newton’s law.
What we have, therefore, is the Newtonian postulate arising as a consequence of
the new principle. More importantly, we have the more flexible framework of the
EL equations arising as a consequence of the principle of least action.

As we shall see below, the principle of least action states that of all the possi-
ble paths qa(t) that a mechanical system could take to go from configuration 1 to
configuration 2, the paths that are actually taken are the ones which minimize the
system’s action functional, defined by

S[qa(t)] =

∫ t2

t1

L(qa, q̇a) dt.

This beautiful statement is mathematically equivalent to the full set of EL equa-
tions, which give rise to the equations of motion that determine the actual paths
of the system. This formulation of the laws of mechanics, in terms of a least-action
principle, is economical and conceptually compelling. It is also extremely powerful:
Virtually all fundamental laws of physics (including field theories) can be formulated
in terms of such an action principle.
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y

x = −1 x = 1

Figure 2.1: A curve in the x-y plane that links the points (−1, 0) and (1, 0).

2.2 Calculus of variations

In this section we introduce the mathematical tools — the calculus of variations
— that are required in the derivation of the Euler-Lagrange (EL) equations from
the principle of least action. We will look at this issue from a purely mathematical
point of view, and return to the physics in the next section.

2.2.1 Curve of maximum area

Let us examine the following mathematical problem. We consider the infinite num-
ber of curves in the x-y plane that link the point (x = −1, y = 0) to the point
(x = +1, y = 0); see Fig. 2.1. Of all these curves we select those that have a total
arc length (the total distance traveled along the curve) equal to π. Of all the curves
that are left we wish to find the one which maximizes the area under the curve.
(Notice that the mathematical problem involves maximization of an area, while the
physical problem involves minimization of an action. The mathematical techniques
to be developed below work for both cases, maximization and minimization, and
they do not care about the identity of the quantity to be extremized.)

We describe the family of curves introduced in the previous paragraph by para-
metric relations x(s) and y(s), in which the parameter s is the curve’s arc length,
calculated from the starting point (−1, 0). Because all the curves within the family
have a total arc length of π, the parameter s ranges from 0 to π as each curve runs
from (−1, 0) to (+1, 0). We have ds2 = dx2 + dy2, and this relation implies that
the functions x(s) and y(s) are not independent of each other. The area under the
curve is obtained by integration, A =

∫

y dx, which we write as

A =

∫ π

0

y(s)
dx

ds
ds.

We can replace the factor dx/ds by
√

1 − y′2, where y′ = dy/ds. This gives us,
finally,

A =

∫ π

0

y
√

1 − y′2 ds. (2.2.1)

We wish to find the function y(s) that produces the largest possible value for A.
Once this function is identified, x(s) can be obtained by integrating the equation

x′ =
√

1 − y′2. (2.2.2)

The maximal curve is then fully determined.
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f(x)

xx
_

Figure 2.2: A function with a maximum point at x = x̄. Because this is an extremum
point, a displacement around x̄ produces the smallest change in the function.

2.2.2 Extremum of a functional

To proceed it is helpful to broaden the scope of the preceding discussion and to
examine the general structure of the mathematical problem. We are given a func-
tional A[y], a function A of a function y(s), which we wish to maximize, or perhaps
minimize, with respect to the choice of path y(s). (In general we say that we wish to
find the extremum of the functional, and we shall never need to distinguish between
a maximum and a minimum.) The functional has the following structure:

A[y] =

∫ s1

s0

G(y, y′) ds; (2.2.3)

it is given by an integral over a parameter s of a function G which depends on the
path y(s) and its derivative y′(s) = dy/ds. The integral can be evaluated for any
choice of trial function ytrial(s), and the result is a number Atrial. We are looking for
the function ȳ(s) that produces the largest (or smallest) number. In mathematical
terms, we are looking for the extremum of the functional A[y].

The mathematical task of extremizing a function f(x) with respect to its argu-
ment x — the argument being a number — is a simple one: We simply calculate
the derivative of the function and set the result equal to zero; the solutions to
df/dx = 0 are all extremum points (minima and maxima) of the function. To ex-
tremize a functional A[y] with respect to a functional argument y(s) is a much more
delicate task. How does one do this?

Let us examine more closely the straightforward task of finding an extremum
of a function f(x). We imagine, for concreteness, that the function has a single
maximum at x = x̄; this is represented in Fig. 2.2. We have, of course, f ′(x̄) = 0,
with a prime indicating differentiation with respect to x.

An important property of x̄ is that it is the point from which the function
f(x) changes the least when x is displaced from x̄ to a neighbouring point x̄ + δx.
That this is so can easily be seen from the figure, but it is just as easy to prove it
mathematically. Let us calculate δf , the change induced in the function when its
argument x is moved to a neighbouring point x + δx. By Taylor’s theorem we have

δf ≡ f(x + δx) − f(x)

= f ′(x)δx +
1

2
f ′′(x)(δx)2 + · · · .
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y(s)

s s

y

y

0

0

1

1

s

Figure 2.3: A family of paths which leave y = y0 when s = s0 and arrive at y = y1

when s = s1.

From this calculation we learn that in general, the change in the function is propor-
tional to δx, as we might have expected. But when we let x become an extremum
point x̄, we get a different result. In this case we have f ′(x̄) = 0 and the preceding
equation becomes

δf =
1

2
f ′′(x̄)(δx)2 + · · · .

Now the change in the function is proportional to (δx)2, and this is much smaller
than what we get in the general case. We have just found that the variation δf is
smallest when it is taken at an extremum point. A useful way of characterizing an
extremum point is therefore to say that it is a point from which a displacement δx
produces a vanishing change δf , to linear order in δx. (The change is not actually
zero, but it is of second order in δx, as we have shown.)

We shall use the same idea to find the extremum path of a functional. We will
look for a path ȳ(s) — analogous to the extremum point x̄ — that has the property
that a displacement away from this path produces no change in the functional
A[y], to linear order in the displacement δy(s). In other words, if we evaluate the
function on the extremum path ȳ(s) and get the number Ā, we will find that if we
then evaluate the functional on the displaced path y(s) = ȳ(s) + δy(s), we will still
get the number Ā, except for a correction of second order in the displacement; the
change δA is zero to first order in δy(s).

To flesh this out let us consider all paths y(s) that leave the point y = y0 when
s = s0 and arrive at the point y = y1 when s = s1; members of this family of curves
are displayed in Fig. 1.3. Out of all these possible paths that link y0 and y1 we wish
to find the one which extremizes the functional A[y]. Our strategy will be to assume
the existence of an extremum path, which we denote ȳ(s), and which we treat as a
reference path. We shall examine what happens to A[y] when we displace the path
from y(s) = ȳ(s) to y(s) = ȳ(s) + δy(s). While we shall find that in general, this
produces a change δA that is proportional to δy(s), we will instead demand that δA
vanish to first order in the displacement; as we shall see, this procedure will permit
us to identify the extremum path ȳ(s). To carry out this procedure properly it is
important to ensure that all the considered paths begin and end at the same two
end points. The reference path ȳ(s) and the displaced paths y(s) = ȳ(s) + δy(s)
must all satisfy y(s0) = y0 and y(s1) = y1. This implies that the displacement
δy(s), which are completely arbitrary in the interval s0 < s < s1, must satisfy the
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Figure 2.4: The reference path ȳ(s) (in blue) and a displaced path y(s) = ȳ(s) + δy(s)
(in red). The displacement is arbitrary away from the two end points, but it must vanish
at the end points.

boundary conditions
δy(s0) = 0 = δy(s1). (2.2.4)

The situation is illustrated in Fig. 2.4.
We evaluate first the functional A[y] on the reference path ȳ(s); this is

Ā = A[ȳ] =

∫ s1

s0

G(ȳ, ȳ′) ds.

We next evaluate the functional on a displaced path y(s) = ȳ(s) + δy(s); this is

A[ȳ + δy] =

∫ s1

s0

G(ȳ + δy, ȳ′ + δy′) ds,

where δy′ ≡ y′ − ȳ′ = d(y − ȳ)/ds = d(δy)/ds. The change in the functional is

δA = A[ȳ + δy] − A[ȳ]

=

∫ s1

s0

[

G(ȳ + δy, ȳ′ + δy′) − G(ȳ, ȳ′)
]

ds,

and we wish to find conditions on ȳ(s) that will allow us to set δA = 0, up to
corrections of second order in δy.

The function G depends on two variables, y(s) and y′(s). By Taylor’s theorem
we have

G(ȳ + δy, ȳ′ + δy′) = G(ȳ, ȳ′) +
∂G

∂y

∣

∣

∣

∣

y=ȳ,y′=ȳ′

δy +
∂G

∂y′

∣

∣

∣

∣

y=ȳ,y′=ȳ′

δy′ + · · · ,

where we omit terms of higher order than first in the displacements δy(s) and δy′(s).
The change in functional is therefore

δA =

∫ s1

s0

[

∂G

∂y
δy +

∂G

∂y′ δy′
]

ds,

where we again neglect higher-order terms, and where we discard the signs |y=ȳ,y′=ȳ′

that instruct us to evaluate the partial derivatives on the reference path ȳ(s); this
operation will henceforth be understood.
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Recalling that δy′ = d(δy)/ds, we manipulate the second term within the inte-
gral:

∂G

∂y′ δy′ ds =
∂G

∂y′ d(δy)

= d

(

∂G

∂y′ δy

)

− δy d

(

∂G

∂y′

)

= d

(

∂G

∂y′ δy

)

− δy
d

ds

∂G

∂y′ ds.

This term can be integrated by parts, and we obtain

δA =
∂G

∂y′ δy

∣

∣

∣

∣

s1

s0

+

∫ s1

s0

[

∂G

∂y
− d

ds

∂G

∂y′

]

δy(s) ds.

This result simplifies by virtue of Eq. (2.2.4): Because the displacement δy must
vanish at the two end points, the boundary terms are necessarily zero. We end up
with

δA =

∫ s1

s0

[

∂G

∂y
− d

ds

∂G

∂y′

]

δy(s) ds. (2.2.5)

The functional A[ȳ] will be an extremum if δA vanishes for all displacements δy(s)
that satisfy the boundary conditions of Eq. (2.2.4). As we shall show presently,
this will happen if and only if the quantity within square brackets vanishes. We
therefore have the statement

δA = 0 ⇒ d

ds

∂G

∂y′ −
∂G

∂y
= 0. (2.2.6)

This is the Euler-Lagrange (EL) equation associated with the function G(y, y′)
which defines the functional A[y]. When fully worked out, the EL equation takes
the form of a second-order differential equation for the function y(s). Solving this
equation gives the extremum path ȳ(s).

To justify Eq. (2.2.6) we consider any integral of the form

∫ s1

s0

E(s)n(s) ds,

which is known to vanish for any choice of function n(s). [Here E(s) plays the
role of the quantity within square brackets in Eq. (2.2.5), and n(s) plays the role of
δy(s).] What does this tell us about E(s)? To answer this let us design the arbitrary
function n(s) to suit our purposes. Let us imagine that it is everywhere positive
and very sharply peaked near some value of s between s0 and s1, say s = s∗. Under
these conditions the integral can be approximated by

E(s∗)

∫ s1

s0

n(s) ds,

and since the integral cannot be zero, we must conclude that E(s∗) = 0. Because
the value of s∗ is arbitrary, we can safely conclude that E(s) must vanish everywhere
in the interval s0 < s < s1. In this way we have shown that Eq. (2.2.5) leads to
Eq. (2.2.6) whenever the displacement δy(s) is arbitrary.

To sum up, we have shown in this subsection that an extremum path of the
functional

A[y] =

∫ s1

s0

G(y, y′) ds
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is obtained by finding a solution ȳ(s) to the EL equation

d

ds

∂G

∂y′ −
∂G

∂y
= 0.

This statement is true whether the extremum is a maximum or a minimum, and it
is independent of the detailed nature of the function G(y, y′). Any function of the
two variables y(s) and y′(s) can thus be substituted inside the functional, and our
calculus of variations applies to a very wide range of situations.

2.2.3 Curve of maximum area (continued)

The function G that corresponds to our original problem is

G(y, y′) = y
√

1 − y′2. (2.2.7)

Substitution of this function into the EL equation will produce a second-order dif-
ferential equation for y(s). Solving this will give us the curve that maximizes the
area.

When we substitute Eq. (2.2.7) into Eq. (2.2.6) we must first calculate the
derivative of G with respect to y′, treating y as a constant parameter. This is

∂G

∂y′ = −yy′[1 − y′2]−1/2
.

We next differentiate this with respect to s. Because ∂G/∂y′ ≡ Gy′ depends on s
through its dependence on both y and y′, we must apply the chain rule. This gives

d

ds

∂G

∂y′ =
∂Gy′

∂y

dy

ds
+

∂Gy′

∂y′
dy′

ds

=
∂Gy′

∂y
y′ +

∂Gy′

∂y′ y′′.

We have
∂Gy′

∂y
= −y′[1 − y′2]−1/2

and
∂Gy′

∂y′ = −y
[

1 − y′2]−3/2
,

so that
d

ds

∂G

∂y′ = −y′2[1 − y′2]−1/2 − yy′′[1 − y′2]−3/2
.

The remaining quantity to calculate is

∂G

∂y
=

[

1 − y′2]1/2
.

After cleaning up the algebra we find that the EL equation is

yy′′ − y′2 + 1 = 0. (2.2.8)

This is a nonlinear, second-order differential equation for the function y(s).

Exercise 2.1. Make sure that you can reproduce the computations that lead to
Eq. (2.2.8).

The general solution to Eq. (2.2.8) is

y =
1

c1
sin c1(s + c2),
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where c1 and c2 are two constants. That this is indeed a solution can be verified
by direct substitution; that this is the general solution can be seen from the fact
that it depends on two arbitrary constants, the correct number for a second-order
differential equation. These constants are determined by enforcing the boundary
conditions y(s = 0) = 0 and y(s = π) = 0, which follow from the requirement that
the maximum curve must link the points (−1, 0) and (+1, 0). The first condition
gives (1/c1) sin(c1c2) = 0, which implies that c2 = 0. The second condition gives
(1/c1) sin(c1π) = 0, which implies that c1 must be an integer, which we call n. We
therefore have

y(s) =
1

n
sinns, y′(s) = cos ns.

We may now look for x(s), which is determined by Eq. (2.2.2),

x′ =
√

1 − y′2 =
√

1 − cos2 ns = sin ns.

This integrates to x = x0−(1/n) cos ns, where x0 is another constant of integration.
We must now impose the boundary conditions x(s = 0) = −1 and x(s = π) = +1.
The first condition gives x0 − 1/n = −1, so that x0 = −1 + 1/n. The second
condition gives −1 + (1 − cos nπ)/n = 1, or cos nπ = 1 − 2n, which implies that
n = 1. We therefore have x = − cos s, and the constraint n = 1 also implies
y = sin s.

Exercise 2.2. Verify that y = (1/c1) sin c1(s + c2) is a solution to Eq. (2.2.8), and
verify that the choices c1 = 1 and c2 = 0 are appropriate given the boundary conditions.

Our final result is this: The curve that maximizes the area A is described by
the parametric relations

x̄(s) = − cos s, ȳ(s) = sin s, 0 < s < π. (2.2.9)

This is a half-circle of unit radius that links the points (−1, 0) and (+1, 0). The
maximum area is then given by

Amax =

∫ π

0

ȳ(s)
dx̄

ds
ds =

∫ π

0

sin2 s ds =
π

2
≃ 1.5708.

To test whether this is really a maximum we evaluate A for a different choice of
curve, one which consists of two straight segments. The first segment connects the
points (−1, 0) and (0, y0), while the second segment connects the points (0, y0) and
(1, 0). The length of each segment is ℓ =

√

1 + y2
0 . Because the total length of

the curve must be equal to π, we must set y0 =
√

(π/2)2 − 1. The area under this
curve is the area of a triangle of base 2 and height y0, so

A =
1

2
(2)(y0) =

√

(π/2)2 − 1 ≃ 1.2114.

This area is indeed smaller than Amax.

2.2.4 Path of minimum length

The calculus of variations, introduced in Sec. 2.2.2, can be employed to solve many
different problems involving either the maximization or minimization of a functional.
A simple example is the problem of finding the curve y(x) that minimizes the
distance between two fixed points in the x-y plane. We already know that the
answer is a straight line, but it will be comforting to use the calculus to give a
mathematical proof of this statement.
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We shall take the two points to be (0, 0) and (x1, y1), respectively. We want to
calculate the distance s measured along the curve y(x), and we want to find the
path ȳ(x) that minimizes this distance. The increment of distance ds along the
curve is easy enough to calculate; it is given by

ds =
√

dx2 + dy2 =
√

1 + (dy/dx)2 dx =
√

1 + y′2 dx,

where we have set y′ = dy/dx. The total distance along the curve is obtained by
integration. We have

s =

∫ x1

0

√

1 + y′2 dx. (2.2.10)

This is a functional of the path y(x), and we wish to minimize this functional. So
here s plays the role of A[y], and x plays the role of the old parameter s. The
function G is given by

G(y, y′) =
√

1 + y′2. (2.2.11)

Notice that this depends only on y′; there is no explicit dependence on y.

The EL equation for this situation is

d

dx

∂G

∂y′ −
∂G

∂y
= 0.

Because G does not depend explicitly on y we have that ∂G/∂y = 0. The EL
equation implies

d

dx

∂G

∂y′ = 0,

and this states that the quantity ∂G/∂y′ is in fact a constant, independent of x.

We shall call this constant c. Calculating ∂G/∂y′ gives y′/
√

1 + y′2, and we have
obtained the statement

y′
√

1 + y′2
= c.

This equation can easily be solved for y′, and we get

y′ =
c√

1 − c2
≡ m,

where m is a new constant. Integration of this equation is straightforward, and we
obtain

y(x) = mx + b,

where b is a final constant of integration. This is the equation of the straight line,
the result we expected.

The constants m and b can be determined from the boundary conditions, y(x =
0) = 0 and y(x = x1) = y1. The first condition implies b = 0, while the second
condition implies m = y1/x1. The final result is therefore that the path which
minimizes the distance between (0, 0) and (x1, y1) is described by

ȳ(x) =
y1

x1
x. (2.2.12)

That this is indeed a minimum, instead of a maximum, is obvious from the fact
that the maximum distance between two points is always infinite.
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x(z)

x

(x , z )1 1

z

Figure 2.5: A particle falls on a slide whose shape is described by the function x(z).
The particle starts from rest at (x = 0, z = 0) and it reaches the point (x1, z1) after a time
t.

2.2.5 Brachistochrone

In this application of the calculus of variations we consider a particle released from
rest on a slide of a specified shape. The particle is subjected to gravity, and it
moves on the slide without friction. It eventually reaches the point (x1, z1) in a
time t, as illustrated in Fig. 2.5. We wish to determine the shape of the slide that
minimizes this time. This classic problem of mathematical physics is called the
brachistochrone; it was first solved by Johann Bernoulli in 1696.

The shape of the slide is specified by the unknown function x(z); this curve in
the x-z plane is required to link the points (0, 0) and (x1, z1). The increment of
length on the curve is given by

ds =
√

dx2 + dz2 =
√

1 + (dx/dz)2 dz =
√

1 + x′2 dz,

where we now use x′ to denote dx/dz. The speed of the particle on the slide is
v = ds/dt, and the increment of time is given by dt = ds/v. The total time
required by the particle to reach the point (x1, z1) is then

t =

∫

ds

v
=

∫ z1

0

√
1 + x′2

v(z)
dz.

To calculate v(z) we appeal to the conservation of mechanical energy. In this
situation the particle moves under the action of gravity, and its total energy is
E = 1

2mv2 − mgz. It is stated that the particle proceeds from rest (v = 0) at the
upper point of the slide (z = 0), and we conclude from this that its total energy is
zero. As a consequence we find that 1

2mv2 = mgz, or v(z) =
√

2gz. We therefore
have

t =
1√
2g

∫ z1

0

√
1 + x′2
√

z
dz,

and the functional that we wish to minimize is

√

2gt[x] =

∫ z1

0

√
1 + x′2
√

z
dz. (2.2.13)

Here the role of the parameter is played by z, and the function G is given by

G(x, x′) =

√
1 + x′2
√

z
. (2.2.14)
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Notice that this depends only on x′; there is no explicit dependence on x. Notice
further that there is an explicit dependence on the parameter z.

The EL equation for this situation is

d

dz

∂G

∂x′ −
∂G

∂x
= 0.

We have ∂G/∂x = 0, and we conclude immediately that

∂G

∂x′ = constant ≡ 1√
2a

.

(It turns out to be convenient to make this choice of constant.) Calculation gives

∂G

∂x′ =
x′

√
z
√

1 + x′2
,

and the EL equation reduces to

x′
√

z
√

1 + x′2
=

1√
2a

.

This can easily be solved for x′, and we obtain

x′ =
z√

2az − z2
.

This equation, finally, can be integrated, and a formal solution to our problem is

x(z) =

∫ z

0

z dz√
2az − z2

. (2.2.15)

It is this integral that determines the shape of the minimal slide.

Exercise 2.3. Make sure that you can reproduce the steps that lead to Eq. (2.2.15).

To evaluate the integral of Eq. (2.2.15) we change the variable of integration
from z to θ using the transformation

z = a(1 − cos θ),

which implies dz = a sin θ dθ. The angle θ runs from 0 when z = 0 to θ1 when
z = z1. After a short calculation we find that 2az − z2 = a2 sin2 θ, and it follows
that

x = a

∫ θ

0

(1 − cos θ) dθ = a(θ − sin θ).

The shape of the slide is therefore described by the parametric equations

x(θ) = a(θ − sin θ), z(θ) = a(1 − cos θ) 0 ≤ θ ≤ θ1. (2.2.16)

These describe a curve known as a cycloid. The constants a and θ1 are determined
by the condition that x = x1 and z = z1 when θ = θ1. For example, if we choose
x1 = 5 and z1 = 1, then we need a ≃ 0.89483 and θ1 ≃ 4.5946. This particular slide
is shown in Fig. 2.6. The figure reveals that contrary to expectations, the slide does
not always go down; it indeed turns around when θ = π ≃ 3.1416.

Exercise 2.4. Make sure that you can reproduce the steps that lead to Eq. (2.2.16).
Check that the constants a ≃ 0.89483 and θ1 ≃ 4.5946 do indeed produce x1 = 5 and
z1 = 1. Can you devise a method to determine a and θ1 given a choice for x1 and z1?
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Figure 2.6: A cycloid that connects the points (0, 0) and (5, 1).

This feature of the minimal slide is surprising. Can we be sure that this slide
truly minimizes the time? Would not a straight slide do a better job? To convince
ourselves that we do have the minimal slide, let us compare the times required for
the particle to go from (0, 0) to (5, 1) when it uses either the cycloid or a straight
slide. We shall calculate

√
2gt[x] for each case and compare the answers.

For the cycloid we have

√

2gtcycloid =

∫ z1

0

√
1 + x′2
√

z
dz.

With the change of variables introduced above we have x′ = (dx/dθ)/(dz/dθ) =
(1 − cos θ)/ sin θ, so that

√

1 + x′2 =

√

sin2 θ + (1 − cos θ)2

sin θ
=

√

2(1 − cos θ)

sin θ
.

It follows that

√

2gtcycloid =

∫ θ1

0

√

2(1 − cos θ)

sin θ

a sin θ dθ
√

a(1 − cos θ)
=

√
2a

∫ θ1

0

dθ,

or
√

2gtcycloid =
√

2aθ1 ≃ 6.1466,

using the numerical values listed previously.
The shape of the straight slide is described by x = 5z, which implies that x′ = 5.

In this case we have

√

2gtstraight =

∫ 1

0

√
26√
z

dz = 2
√

26z1/2
∣

∣

∣

1

0
,

or
√

2gtstraight = 2
√

26 ≃ 10.198,
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and this is a larger number.
We have found that, sure enough, tcycloid < tstraight. The particle spends less

time on the cycloid than on the straight slide, in spite of the fact that loses speed
on the way up toward (x1, z1). The reason is that it picks up a lot of speed on the
way down, and this more than makes up for the loss of speed on the way up. The
straight slide just does not measure up.

2.2.6 Multiple paths

It is useful, and necessary, to generalize the calculus of variations to functionals
A that depend not on one path only, but on a collection of paths. In this final
subsection we consider the task of extremizing the multi-path functional

A[y1, y2, · · ·] =

∫ s1

s0

G(y1, y
′
1; y2, y

′
2; · · ·) ds (2.2.17)

with respect to each individual path ya(s); the index a = 1, 2, · · · is used to label
each path within the collection.

This generalization is straightforward. For each variable ya(s) within the col-
lection we select a reference path ȳa(s) and we calculate A[ȳ1, ȳ2, · · ·]. We then
displace each path from ȳa(s) to ȳa(s) + δya(s) and calculate the new value A[ȳ1 +
δy1, ȳ2 + δy2, · · ·] for the functional. The extremum of A is found by demanding
that the variation δA = A[ȳ1 + δy1, ȳ2 + δy2, · · ·]−A[ȳ1, ȳ2, · · ·] vanish to first order
in the displacements δya(s). As before we impose that the reference and displaced
paths all begin and end at the same end points, ya(s0) and ya(s1). We therefore
impose that the variations δya all vanish at the end points, δya(s0) = 0 = δya(s1).

The change in functional that occurs when we displace the paths from the ref-
erence paths ȳa(s) is

δA =

∫ s1

s0

[

G(ȳ1 + δy1, ȳ
′
1 + δy′

1; ȳ2 + δy2, ȳ
′
2 + δy′

2; · · ·) − G(ȳ1, ȳ1
′; ȳ2, ȳ

′
2; · · ·)

]

ds.

By Taylor’s theorem,

G(ȳ1 + δy1, ȳ
′
1 + δy′

1; ȳ2 + δy2, ȳ
′
2 + δy′

2; · · ·) = G(ȳ1, ȳ1
′; ȳ2, ȳ

′
2; · · ·)

+
∂G

∂y1

∣

∣

∣

∣

y1=ȳ1,y′

1
=ȳ′

1
;y2=ȳ2,y′

2
=ȳ′

2
;···

δy1 +
∂G

∂y′
1

∣

∣

∣

∣

y1=ȳ1,y′

1
=ȳ′

1
;y2=ȳ2,y′

2
=ȳ′

2
;···

δy′
1

+
∂G

∂y2

∣

∣

∣

∣

y1=ȳ1,y′

1
=ȳ′

1
;y2=ȳ2,y′

2
=ȳ′

2
;···

δy2 +
∂G

∂y′
2

∣

∣

∣

∣

y1=ȳ1,y′

1
=ȳ′

1
;y2=ȳ2,y′

2
=ȳ′

2
;···

δy′
2

+ · · · .

Here G is differentiated with respect to each one of its variables, and the partial
derivatives are evaluated on the reference paths; we discard all terms that are not
linear in the displacements δya and δy′

a. We have, in a more compact notation,

δA =

∫ s1

s0

∑

a

(

∂G

∂ya
δya +

∂G

∂y′
a

δy′
a

)

ds,

where we sum over all the variables and omit the warning that all partial derivatives
must be evaluated on the reference paths, at ya = ȳa and y′

a = ȳ′
a.

We now write

δy′
a ≡ y′

a − ȳ′
a =

d

ds

(

ya − ȳa

)

=
d

ds
δya

and express the second term within the integral as

∂G

∂y′
a

d(δya) = d

(

∂G

∂y′
a

δya

)

− δyad

(

∂G

∂y′
a

)

.
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Integrating this term by parts gives

δA =
∑

a

∂G

∂y′
a

δya

∣

∣

∣

∣

s1

s0

+
∑

a

∫ s1

s0

(

∂G

∂ya
− d

ds

∂G

∂y′
a

)

δya ds.

Because the displacements must vanish at the end points, the two boundary terms
disappear. And because each displacement δya(s) is independent of any other dis-
placement, and the displacements are arbitrary in the interval s0 < s < s1, we
conclude that

δA = 0 ⇒ d

ds

∂G

∂y′
a

− ∂G

∂ya
= 0. (2.2.18)

We have one EL equation for each path ya(s). This simple statement provides the
desired generalization of the calculus of variations to multi-path functionals.

2.3 Hamilton’s principle of least action

In Chapter 1 we saw that Newton’s law, F = ma, can serve as the very foundation
of all of mechanics; conservation of momentum, angular momentum, and energy
could be derived as a consequence of this dynamical law. In this section we offi-
cially replace this old foundation by a new one, which is at once more practical,
more powerful, and more easily generalizable to other areas of physics. This new
foundation will be Hamilton’s principle of least action; the dynamical law F = ma,
and the statements of conservation, will all be derived as consequences of this new
principle.

The principle of least action states that of all the paths qa(t) that a system of
particles could take to go from an initial configuration qa(t0) to a final configuration
qa(t1), the paths q̄a(t) that the particles actually take are the ones that minimize
the action functional

S[qa] =

∫ t1

t0

L(qa, q̇a) dt, (2.3.1)

where
L = T − V (2.3.2)

is the Lagrangian function of the mechanical system. The Lagrangian is the differ-
ence between T , the system’s total kinetic energy, and V , the total potential energy.
The Lagrangian can be expressed in any system of generalized coordinates qa that
conveniently describe the system’s degrees of freedom. Because the Lagrangian is
a scalar function (as opposed to a vectorial function), the choice of coordinates is
immaterial to the formulation of Hamilton’s principle. In particular, it is not nec-
essary to adopt Cartesian coordinates attached to an inertial frame. (Of course,
nothing prevents us from making this choice if it is convenient.)

To find the paths q̄a(t) that minimize the action functional we follow the tech-
niques developed in Sec. 2.2. Here S[qa] is a multi-path functional, and the paths
qa(t) play the role of the functions ya(s); the Lagrangian plays the role of the func-
tion G, and the parameter is the time t. There is no need to repeat the calculations
described in Sec. 2.2.6; the conclusion is

δS = 0 ⇒ d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0. (2.3.3)

These are the Euler-Lagrange (EL) equations for the mechanical system; there is
one EL equation for each degree of freedom. The EL equations, when fully worked
out, become a set of second-order differential equations for the paths qa(t). The
solutions to these equations, which much be subjected to the boundary conditions
at t = t0 and t = t1, are the paths q̄a(t) that minimize the action functional.
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We have already seen in Sec. 2.1 that when the generalized coordinates qa(t) of
a particle are Cartesian, so that the Lagrangian takes the form L = 1

2m(ẋ2 + ẏ2 +
ż2)−V (x, y, z), then the EL equations become the vectorial equation ma+∇V = 0.
Recalling that the force acting on the particle is F = −∇V , this is obviously
F = ma, and we have derived Newton’s fundamental law from a deeper principle,
Hamilton’s principle of least action. The beauty of this Lagrangian formulation of
mechanics, however, is not so much that Newton’s equation follows from a deeper
principle. Its beauty is much more in the fact that Hamilton’s principle frees us
from the need to always set up the equations in terms of Cartesian coordinates. Any
system of generalized coordinates qa(t) will do; they all lead to the EL equations of
Eq. (2.3.3), and the choice is entirely one of convenience.

In the following sections we will explore the power of Hamilton’s principle in a
number of applications. We will take full advantage of the generalized nature of
the coordinates qa(t), and the EL equations will allow us to derive the equations of
motion very efficiently, with far less effort than would be required in the traditional
Newtonian formulation.

2.4 Applications of Lagrangian mechanics

2.4.1 Equations of motion in cylindrical coordinates

As was just stated, the principal advantage of the Lagrangian formulation of me-
chanics is that it is based on a scalar function L which can be expressed in any
coordinate system whatever. We shall begin our discussion with a derivation of the
equations of motion in cylindrical coordinates; the case of spherical coordinates will
considered next.

Suppose that a particle moves in the presence of a potential V that is most
simply expressed in terms of cylindrical coordinates (ρ, φ, z). These are related to
the usual Cartesian coordinates (x, y, z) by

x = ρ cos φ, y = ρ sin φ, z = z. (2.4.1)

To use cylindrical coordinates would be advantageous, for example, when the po-
tential is axially symmetric, so that it depends only on ρ and z, or cylindrically
symmetric, when it depends only on ρ.

From Eq. (2.4.1) we obtain the total differentials

dx = (cos φ) dρ − (ρ sin φ) dφ,

dy = (sin φ) dρ + (ρ cos φ) dφ,

dz = dz.

It follows that the squared distance between two neighbouring points is given by
ds2 = dx2 + dy2 + dz2, or

ds2 = dρ2 + ρ2 dφ2 + dz2. (2.4.2)

The squared velocity is then

v2 =
(ds

dt

)2

= ρ̇2 + ρ2φ̇2 + ż2,

and the particle’s kinetic energy is T = 1
2m(ρ̇2 + ρ2φ̇2 + ż2). The Lagrangian is

therefore

L(ρ, ρ̇;φ, φ̇; z, ż) =
1

2
m(ρ̇2 + ρ2φ̇2 + ż2) − V (ρ, φ, z). (2.4.3)
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Exercise 2.5. Verify Eq. (2.4.2).

The equations of motion for the particle are obtained by substituting L into the
EL equations for qa = (ρ, φ, z). We begin with the equation for ρ. We have, from
Eq. (2.4.3),

∂L

∂ρ̇
= mρ̇.

This implies
d

dt

∂L

∂ρ̇
= mρ̈.

We also have
∂L

∂ρ
= mρφ̇2 − ∂V

∂ρ
,

and the EL equation gives

mρ̈ − mρφ̇2 +
∂V

∂ρ
= 0. (2.4.4)

We continue with the equation for φ. We now have

∂L

∂φ̇
= mρ2φ̇,

which implies
d

dt

∂L

∂φ̇
= m

d

dt

(

ρ2φ̇
)

.

Notice that we choose to leave the total time derivative unevaluated; to evaluate it
would require some care, because both φ̇ and ρ2 depend on time in this expression.
We also have

∂L

∂φ
= −∂V

∂φ
,

and the EL equation gives

m
d

dt

(

ρ2φ̇
)

+
∂V

∂φ
= 0. (2.4.5)

We conclude with the equation for z. Here the computations are quite easy. We
have

∂L

∂ż
= mż,

so that
d

dt

∂L

∂ż
= mz̈,

and we also have
∂L

∂z
= −∂V

∂z
.

The EL equation for z is therefore

mz̈ +
∂V

∂z
= 0. (2.4.6)



2.4 Applications of Lagrangian mechanics 65

The equations of motion (2.4.4)–(2.4.6) could also be derived by resolving New-
ton’s equation F = ma in the vectorial basis (ρ̂, φ̂, ẑ). The results would be
identical, but the computations would be much more laborious.

Exercise 2.6. Challenge yourself: Derive Eqs. (2.4.4)–(2.4.6) the hard way, as described
in the previous paragraph. Begin by computing the acceleration vector a in terms of the
cylindrical coordinates (ρ, φ, z). Next, find the basis vectors ρ̂, φ̂, and ẑ using the method
outlined in Sec. 1.2. Finally, resolve the equation ma + ∇V = 0 in this basis, and use the
chain rule to calculate ∂V/∂ρ and ∂V/∂φ in terms of ∂V/∂x and ∂V/∂y. The end result
should resemble Eqs. (2.4.4)–(2.4.6). If you are not already, after all this you will be fully
convinced of the superiority of the Lagrangian methods!

2.4.2 Equations of motion in spherical coordinates

Suppose now that a particle moves in the presence of a potential V that is most
simply expressed in terms of spherical coordinates (r, θ, φ). Their relation with the
usual Cartesian coordinates (x, y, z) is

x = r sin θ cos φ, y = r sin θ sinφ, z = r cos θ. (2.4.7)

The use of spherical coordinates would be advantageous, for example, when the
potential is axially symmetric, so that it depends only on r and θ, or spherically
symmetric, when it depends only on r.

From Eq. (2.4.7) we obtain the total differentials

dx = (sin θ cos φ) dr + (r cos θ cos φ) dθ − (r sin θ sin φ) dφ,

dy = (sin θ sinφ) dr + (r cos θ sinφ) dθ + (r sin θ cos φ) dφ,

dz = (cos θ) dr − (r sin θ) dθ.

It follows that the squared distance between two neighbouring points is given by

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2. (2.4.8)

The squared velocity is then v2 = ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2, and the Lagrangian is

L(r, ṙ; θ, θ̇;φ, φ̇) =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2) − V (r, θ, φ). (2.4.9)

Exercise 2.7. Verify Eq. (2.4.8).

The equations of motion for the particle are obtained by substituting L into the
EL equations for qa = (r, θ, φ). We have, from Eq. (2.4.9),

∂L

∂ṙ
= mṙ,

so that
d

dt

∂L

∂ṙ
= mr̈.

We also have
∂L

∂r
= mr(θ̇2 + sin2 θ φ̇2) − ∂V

∂r
,

and the EL equation for r is

mr̈ − mr(θ̇2 + sin2 θφ̇2) +
∂V

∂r
= 0. (2.4.10)
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Moving on, we now have
∂L

∂θ̇
= mr2θ̇,

which implies
d

dt

∂L

∂θ̇
= m

d

dt

(

r2θ̇
)

.

We also have
∂L

∂θ
= mr2 sin θ cos θ φ̇2 − ∂V

∂θ
,

and the EL equation gives

m
d

dt

(

r2θ̇
)

− mr2 sin θ cos θ φ̇2 +
∂V

∂θ
= 0. (2.4.11)

Finally, we have
∂L

∂φ̇
= mr2 sin2 θ φ̇,

which implies
d

dt

∂L

∂φ̇
= m

d

dt

(

r2 sin2 θ φ̇
)

.

We also have
∂L

∂φ
= −∂V

∂φ
,

and the EL equation gives

m
d

dt

(

r2 sin2 θ φ̇
)

+
∂V

∂φ
= 0. (2.4.12)

The equations of motion (2.4.10)–(2.4.12) could also be derived by resolving
Newton’s equation F = ma in the vectorial basis (r̂, θ̂, φ̂). The results would be
identical, but as in the preceding subsection the computations would be much more
laborious.

Exercise 2.8. Challenge yourself once again: Derive Eqs. (2.4.10)–(2.4.12) the hard
way, as described in the previous paragraph. Or finally cry uncle and pledge allegiance to
the Lagrangian way of life!

2.4.3 Motion on the surface of a cone

As our first real application of the Lagrangian formalism, we consider a particle
that is constrained to move on the surface of a cone, subjected to gravity. As shown
in Fig. 2.7, the cone has an opening angle of 2α, and it is placed vertically in the
gravitational field. The particle is at a distance r(t) from the cone’s apex, and at
an angle φ(t) relative to the x axis. Because the particle is confined to the cone’s
surface, its angle θ with respect to the z axis is a constant; it is in fact equal to α.

The motion of the particle is best described in terms of spherical coordinates
(r, θ, φ), with θ restricted at all times to the value α. According to the results of
Sec. 2.4.2, its kinetic energy is T = 1

2m(ṙ2 + r2 sin2 α φ̇2), and its potential energy
is V = mgz = mgr cos α. The Lagrangian is therefore

L(r, ṙ;φ, φ̇) =
1

2
m(ṙ2 + r2 sin2 α φ̇2) − mgr cos α. (2.4.13)

The equations of motion for r(t) and φ(t) are obtained by substituting this La-
grangian into the EL equations.
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Figure 2.7: A particle of mass m moves on the surface of a cone of opening angle 2α.
The motion is described by the coordinates r(t) and φ(t).

We have
∂L

∂ṙ
= mṙ,

so that
d

dt

∂L

∂ṙ
= mr̈.

We also have
∂L

∂r
= mr sin2 α φ̇2 − mg cos α,

and the EL equation for r is

r̈ − r sin2 α φ̇2 + g cos α = 0. (2.4.14)

Moving on, we observe that L is independent of φ, and the fact that ∂L/∂φ = 0
means that the EL equation for φ reduces to

d

dt

∂L

∂φ̇
= 0.

This implies that the quantity ∂L/∂φ̇ is a constant, which we shall call mh. Calcu-
lating the partial derivative gives ∂L/∂φ̇ = mr2 sin2 α φ̇, and we finally obtain the
statement

r2 sin2 α φ̇ = h = constant. (2.4.15)

The quantity h is readily interpreted as the z component of the particle’s reduced
angular momentum vector, and it is a constant of the motion. Equation (2.4.15)
shows that φ̇ is always of the same sign; the angular part of the motion is monotonic.

Substituting φ̇ = h/(r2 sin2 α) into Eq. (2.4.14) produces

r̈ − h2

r3 sin2 α
+ g cos α = 0.

This equation can be integrated by using the standard trick of multiplying each
term by ṙ (recall that we used this trick back in Sec. 1.5.6). We have

r̈ṙ − h2ṙ

r3 sin2 α
+ gṙ cos α = 0,
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Figure 2.8: Energy diagram for a particle moving on a cone. The motion always takes
place between two turning points at r = r±.

or
d

dt

(

1

2
ṙ2 +

h2

2r2 sin2 α
+ gr cos α

)

= 0.

This finally gives us the conservation statement

1

2
ṙ2 + ν(r) = ε = constant, (2.4.16)

where ε is the particle’s reduced total mechanical energy, and

ν(r) =
h2

2r2 sin2 α
+ gr cos α (2.4.17)

is an effective potential for the radial part of the motion. Equations (2.4.16) and
(2.4.17) give rise to the energy diagram of Fig. 2.8. From this diagram we immedi-
ately conclude that the motion takes place between two turning points at r = r±;
these are determined by the condition ν(r±) = ε.

To obtain a full picture of the motion Eqs. (2.4.14) and (2.4.15) must be inte-
grated numerically. Results of such a numerical integration are presented in Fig. 2.9.
To carry out these integrations the equations are recast into the following set of
first-order equations:

ṙ = v, v̇ =
h2

r3 sinα
− g cos α, φ̇ =

h

r2 sin2 α
,

where we have introduced the auxiliary variable v. We start the integration at
r = r−, setting v = 0 (as we must) and φ = 0. The constant h can be determined
in terms of r− and r+ by using the relation ν(r−) = ν(r+), which follows from
Eq. (2.4.16). The result is

h2 = 2g sin2 α cos α
(r+r−)2

r+ + r−
.
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Figure 2.9: Numerical integration of the equations of motion for a particle moving on
the surface of a cone. To produce these results we have chosen α = 0.8, r− = 1, and
r+ = 4. The upper panel shows the raw results for r(t), ṙ(t), and φ̇(t). Notice that the
radial velocity is zero whenever r = r± and that it oscillates between positive and negative
values. Notice also that φ̇ is always positive; it is maximum whenever r = r− and minimum
whenever r = r+. The lower panel shows the projection of the particle’s motion in the
x-y plane. To obtain this we let x(t) = r(t) sin α cos φ(t) and y(t) = r(t) sin α sin φ(t). The
motion proceeds counterclockwise and the figure is that of a regressing ellipse.
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Figure 2.10: The motion of a spherical pendulum is described in terms of the angles
θ(t) and φ(t).

Exercise 2.9. Verify the quoted relation between h2 and r±.

2.4.4 Spherical pendulum

We now examine the situation of a pendulum which is free to move in all directions
about its pivot point. The pendulum has a mass m, a constant length ℓ, and its
motion is described in terms of the two angles θ(t) and φ(t), as shown in Fig. 2.10.
These coordinates are related to the standard Cartesian coordinates by

x = ℓ sin θ cos φ, y = ℓ sin θ sin φ, z = ℓ cos θ.

As shown in the figure, the z axis is pointing down, in the direction of the grav-
itational acceleration g. It is clear that we are once more dealing with spherical
coordinates. This time, however, it is the radial coordinate r that is held fixed to
the value ℓ. According to the results of Sec. 2.4.2 the pendulum’s kinetic energy
is T = 1

2mℓ2(θ̇2 + sin2 θ φ̇2). Its potential energy is V = −mgz = −mgℓ cos θ =
−mℓ2ω2 cos θ, where we have re-introduced the quantity

ω =
√

g/ℓ. (2.4.18)

The pendulum’s Lagrangian is

L(θ, θ̇;φ, φ̇) =
1

2
mℓ2(θ̇2 + sin2 θ φ̇2) + mℓ2ω2 cos θ. (2.4.19)

The equations of motion for θ(t) and φ(t) are obtained by substituting this La-
grangian into the EL equations.

We compute
∂L

∂θ̇
= mℓ2θ̇,
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which implies
d

dt

∂L

∂θ̇
= mℓ2θ̈.

We also have
∂L

∂θ
= mℓ2 sin θ cos θ φ̇2 − mℓ2ω2 sin θ,

and the EL equation for θ is

θ̈ − sin θ cos θ φ̇2 + ω2 sin θ = 0. (2.4.20)

Moving on, we observe that L is independent of φ, and the fact that ∂L/∂φ = 0
means that the EL equation for φ reduces to

d

dt

∂L

∂φ̇
= 0.

This implies that the quantity ∂L/∂φ̇ is a constant, which we shall call mℓ2h.
Calculating the partial derivative gives ∂L/∂φ̇ = mℓ2 sin2 θ φ̇, and we finally obtain
the statement

sin2 θ φ̇ = h = constant. (2.4.21)

The quantity h is once more interpreted as the z component of the pendulum’s
reduced angular momentum vector, and it is a constant of the motion. In the
special case h = 0 the pendulum is prevented to move in the φ direction, and
Eq. (2.4.20) for θ reduces to θ̈+ω2 sin θ = 0; this is the same equation that was first
derived in Sec. 1.3.7, and then again in Sec. 2.1, and which describes the motion of
a planar pendulum. In the general case (h 6= 0) we see that φ̇ is always of the same
sign, so that φ(t) is a monotonic function of time; this means that the pendulum
rotates in a consistent direction around the z axis.

With the substitution φ̇ = h/ sin2 θ Eq. (2.4.20) becomes

θ̈ − h2 cos θ

sin3 θ
+ ω2 sin θ = 0.

Multiplying each term by θ̇ allows us to integrate this equation. The result is the
conservation statement

1

2
θ̇2 + ν(θ) = ε = constant, (2.4.22)

where ε is the pendulum’s reduced total mechanical energy, and

ν(θ) =
h2

2 sin2 θ
− ω2 cos θ (2.4.23)

is an effective potential for the motion in the θ direction. Equations (2.4.22) and
(2.4.23) give rise to the energy diagram of Fig. 2.11. From this diagram we may
immediately conclude that the motion takes place between two turning points at
θ = θ±; these are determined by the condition ν(θ±) = ε.

Exercise 2.10. Verify that Eqs. (2.4.22) and (2.4.23) do indeed follow from the
equations of motion.

In Fig. 2.12 we present the results of a numerical integration of the equations of
motion, which we recast into the first-order form

θ̇ = v, v̇ =
h2 cos θ

sin3 θ
− ω2 sin θ, φ̇ =

h

sin2 θ
.
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Figure 2.11: Energy diagram for the spherical pendulum. The motion always takes
place between two turning points at θ = θ±.

We start the integration at θ = θ−, setting v = 0 and φ = 0. The constant h can
be determined in terms of θ− and θ+ by using the relation ν(θ−) = ν(θ+), which
follows from Eq. (2.4.22). The result, after some algebra, is

h2 = 2ω2 (sin θ+ sin θ−)2(cos θ− − cos θ+)

(sin θ+ − sin θ−)(sin θ+ + sin θ−)
.

Exercise 2.11. Verify the quoted relation between h2 and θ±.

2.4.5 Rotating pendulum

Another variation on the pendulum theme has the pivot point of a planar pendulum
forced to rotate with a constant angular velocity Ω on a circle of radius a. This
situation is shown in Fig. 2.13. Once more we describe the motion of the pendulum
in terms of the swing angle θ(t), which is defined relative to the vertical direction;
this we now associate with the y-direction.

The Cartesian coordinates of the pendulum, relative to the pivot point, are

xrelative = ℓ sin θ, yrelative = −ℓ cos θ.

The Cartesian coordinates of the pivot point are

xpivot = a cos Ωt, ypivot = a sin Ωt.

The Cartesian coordinates of the pendulum, relative to the origin of the coordinate
system, are therefore

x = a cos Ωt + ℓ sin θ, y = a sin Ωt − ℓ cos θ. (2.4.24)
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Figure 2.12: Numerical integration of the equations of motion for a spherical pendulum.
To produce these results we have chosen θ− = 0.2, θ+ = 2.5, and set ω = 2π. The
upper panel shows the raw results for θ(t), θ̇(t), and φ̇(t). Notice that θ̇ is zero whenever
θ = θ± and that it oscillates between positive and negative values. Notice also that
φ̇ is always positive; it reaches a local maximum whenever θ = θ±. The lower panel
shows the projection of the pendulum’s motion in the x-y plane. To obtain this we let
x(t) = sin θ(t) cos φ(t) and y(t) = sin θ(t) sin φ(t). The motion proceeds counterclockwise.
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Figure 2.13: The motion of a rotating pendulum is described in terms of the swing
angle θ(t). The pivot point rotates with a constant angular velocity Ω on a circle of radius
a.

The components of the velocity vector are

ẋ = −aΩsin Ωt + ℓθ̇ cos θ, ẏ = aΩcos Ωt + ℓθ̇ sin θ.

The squared velocity is then calculated as

v2 = ẋ2 + ẏ2 = (aΩ)2 + 2aℓΩθ̇ sin(θ − Ωt) + ℓ2θ̇2,

and the kinetic energy of the pendulum is T = 1
2mv2. Its potential energy is

V = mgy = mg(a sin Ωt − ℓ cos θ).

Exercise 2.12. Verify the preceding result for v2.

The Lagrangian of the rotating pendulum is, finally,

L(θ, θ̇; t) =
1

2
m

[

(aΩ)2+2aℓΩθ̇ sin(θ−Ωt)+ℓ2θ̇2
]

−mℓω2(a sin Ωt−ℓ cos θ), (2.4.25)

where we have once more introduced ω2 = g/ℓ. A new feature of this Lagrangian is
that it depends explicitly on time; this comes about because the pendulum is not left
alone to its own devices, but is instead acted upon and forced to follow a rotational
motion. In this circumstance we cannot expect the energy of the pendulum to be
conserved: There will be at all times a transfer of energy between the pendulum and
the external agent that is responsible for the rotational motion. Globally the total
energy is conserved, but the energy of the pendulum is not individually conserved.

To obtain the equation for motion we must first calculate

∂L

∂θ̇
= maℓΩsin(θ − Ωt) + mℓ2θ̇.

Differentiating this with respect to time gives

d

dt

∂L

∂θ̇
= maℓΩcos(θ − Ωt)(θ̇ − Ω) + mℓ2θ̈.
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We next compute

∂L

∂θ
= maℓΩθ̇ cos(θ − Ωt) − mℓ2ω2 sin θ,

and substituting all this into the EL equation produces

θ̈ + ω2 sin θ − (a/ℓ)Ω2 cos(θ − Ωt) = 0. (2.4.26)

This is the equation of motion of a rotating pendulum.
Equation (2.4.26) cannot be integrated with the help of the θ̇ trick; this is

prevented by the fact that the equation depends explicitly on time through the
term in cos(θ − Ωt). As a consequence, the motion cannot be analyzed with the
help of an energy diagram; this can be understood from the very fact that the total
mechanical energy of the rotating pendulum is not conserved. The only tool that
remains at our disposal to analyze the motion is numerical integration, and Fig. 2.14
displays the results.

The graphs reveal that when the pendulum is driven at a frequency Ω that is
close to its natural frequency ω, the response is more violent: the amplitude of
the oscillations is then much larger. This is the phenomenon of resonance. This
phenomenon can be illustrated in the context of a simpler model, one which can
be solved exactly. We consider a simple harmonic oscillator which is driven by an
oscillating external force. The equations of motion for this simplified model is

θ̈ + ω2θ = A cos Ωt. (2.4.27)

When Ω 6= ω a solution to this equation is

θ(t) =
A

ω2 − Ω2
cos Ωt (Ω 6= ω). (2.4.28)

In this situation the pendulum oscillates at the driving frequency Ω, and the oscil-
lations have a constant amplitude. Notice, however, that the amplitude grows as Ω
approaches the natural frequency ω. The solution of Eq. (2.4.28) is not valid when
Ω = ω. In this case we have instead

θ(t) =
At

2ω
sin ωt (Ω = ω). (2.4.29)

In this case the oscillations keep growing in amplitude; the simple harmonic oscil-
lator is in resonance with the driving force.

Exercise 2.13. Verify that Eqs. (2.4.28) and (2.4.29) are solutions to Eq. (2.4.27). A
more challenging question: What is the general solution to Eq. (2.4.27) when Ω 6= ω and
when Ω = ω? The general solution should be parameterized in terms of the initial angle
θ(0) and the initial angular velocity θ̇(0). What choices of initial conditions give rise to
Eqs. (2.4.28) and (2.4.29)?

When the rotating pendulum is driven at resonance we observe a growth in the
amplitude of oscillations, but this growth is bounded; it saturates and the amplitude
then starts to decrease. This saturation is produced by nonlinear effects: When
the amplitude grows the natural period of the oscillations changes (as we learned
back in Sec. 1.3.7) and the pendulum is no longer driven at its natural frequency.
As resonance stops the amplitude starts to decrease and the pendulum’s natural
frequency returns to its original value. At this stage the conditions are once more
suitable for a resonant growth of the amplitude, and the cycle repeats.

For certain choices of parameters the driving force can have a dramatic influence
on the pendulum. This is illustrated in Fig. 2.15, for which the driving frequency
was set to Ω = 0.9ω. Here we see the driving force causing the pendulum to
go beyond θ = π, completing one or two revolutions before returning to a short
oscillation cycle.
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Figure 2.14: The motion of a rotating pendulum. Each graph shows the swing angle
θ(t) of the driven pendulum in blue, and the swing angle of a free pendulum in red. In
the first graph the pendulum is driven at a low frequency set at Ω/ω = 0.4. In the second
graph the pendulum is driven at a high frequency set at Ω/ω = 2.4. In the third graph the
pendulum is driven at resonant frequency, so that Ω/ω = 1.0; notice the large amplitude
of oscillations in this case. In all cases we have set (a/ℓ)Ω2 = 0.2, and the initial conditions
are θ(0) = 0.2 and θ̇(0) = 0.3.
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Figure 2.15: The motion of a rotating pendulum, with Ω/ω = 0.9, (a/ℓ)Ω2 = 0.2,
θ(0) = 0.2, and θ̇(0) = 0.3.

2.4.6 Rolling disk

As our next application we consider a disk of mass m and radius R that rolls without
slipping on an inclined plane of total length ℓ; the plane’s inclination relative to the
horizontal is α. As shown in Fig. 2.16, the distance from the top position on the
plane to the disk’s centre of mass — its geometric centre — is denoted s, and θ is
the angle of a selected point on the disk’s rim relative to an axis perpendicular to
the inclined plane.

There is both a translational motion of the centre of mass and a rotational
motion of the disk in this problem. The disk’s kinetic energy is

T =
1

2
mṡ2 +

1

2
Iθ̇2,

where I = 1
2mR2 is the disk’s moment of inertia. The coordinates s and θ, however,

are not independent; they are related by the no-slip condition, which implies s = Rθ.
So we have ṡ = Rθ̇ and the kinetic energy becomes

T =
1

2
mR2θ̇2 +

1

4
mR2θ̇2 =

3

4
mR2θ̇2.

The disk’s potential energy is V = mgz = mg(l − s) sin α = mg(ℓ − Rθ) sinα.
The Lagrangian is therefore

L(θ, θ̇) =
3

4
mR2θ̇2 − mg(ℓ − Rθ) sinα. (2.4.30)

To obtain the disk’s equation of motion we substitute this into the EL equation.
We first compute

∂L

∂θ̇
=

3

2
mR2θ̇,

which implies
d

dt

∂L

∂θ̇
=

3

2
mR2θ̈.
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s

θ

α
(l−s)sin α

Figure 2.16: A disk rolling without slipping on an inclined plane. The plane has a
length ℓ and its inclination angle is α. The distance from the disk’s centre to the top of
the plane is s; the height of the disk’s centre is (ℓ − s) sin α.

We also compute
∂L

∂θ
= mgR sin α.

The equation of motion is then

θ̈ =
2g sin α

3R
, (2.4.31)

and we find that the disk is under constant angular acceleration.
If we assume that the disk started with zero angular velocity, then Eq. (2.4.31)

integrates to

θ(t) =
g sinα

3R
t2. (2.4.32)

The time tbottom required for the disk to reach the bottom of the inclined plane is
determined by the condition θ(tbottom) = ℓ/R. Solving this gives

tbottom =

√

3ℓ

g sinα
. (2.4.33)

Notice that tbottom is independent of R, the disk’s radius.

2.4.7 Kepler’s problem revisited

As a final application of the Lagrangian formalism we will rederive the main equa-
tions of Kepler’s problem. As we shall see, the Lagrangian methods give a much
more efficient way of obtaining these equations.

As in Sec. 1.5.2 we express the position vectors r1 and r2 of the two massive
bodies in terms of the relative separation vector r = r1−r2 and the position R of the
centre of mass, which is determined by MR = m1r1 + m2r2, where M = m1 + m2

is the total mass. We have r1 = R+(m2/M)r, r2 = R− (m1/M)r, and after some
algebra we find that the system’s kinetic energy is

T =
1

2
m1ṙ1 · ṙ1 +

1

2
m2ṙ2 · ṙ2

=
1

2
MṘ · Ṙ +

1

2

m1m2

M
ṙ · ṙ.
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The system’s potential energy, on the other hand, was calculated in Sec. 1.5.1, and
it is given by

V = −Gm1m2

r
,

where r = |r| = |r1 − r2| is the distance between the two bodies. The system’s
Lagrangian is

L(R, Ṙ; r, ṙ) =
1

2
MṘ · Ṙ +

1

2
µṙ · ṙ +

GµM

r
, (2.4.34)

where
µ =

m1m2

M
, M = m1 + m2 (2.4.35)

is known as the reduced mass of the two-body system.

Exercise 2.14. Go through the algebra that leads to our previous expression for the
kinetic energy in terms of Ṙ and ṙ.

Notice that the Lagrangian of Eq. (2.4.34) separates into two independent pieces.
The first piece depends on R only, and is independent of r; this is the Lagrangian
of the centre of mass,

LCM(R, Ṙ) =
1

2
MṘ · Ṙ.

The second piece depends on r only, and is independent of R; this is the Lagrangian
of the relative separation between the two bodies,

Lrel(r, ṙ) =
1

2
µṙ · ṙ +

GµM

r
.

Notice now that LCM contains only a kinetic-energy term. The absence of a
potential-energy term implies that the motion of the centre of mass is free. As
a quick calculation will verify, the EL equations for R take the form R̈ = 0, for
which the solution is R(t) = R(0)+Ṙ(0)t. As we have seen in Sec. 1.5.2, the centre
of mass moves freely, and it can be placed at the origin of an inertial frame. The
relative Lagrangian, on the other hand, contains both a kinetic-energy term and a
potential-energy term. It describes the motion of a fictitious particle of mass µ in
the gravitational field of a central mass M , also fictitious. As we have witnessed
before in Sec. 1.5.2, our original two-body problem has simplified into an effective
one-body problem.

To proceed we may switch from the Cartesian coordinates r = (x, y, z) to any
system of generalized coordinates qa. Recalling from Sec. 1.5.3 that the motion takes
place in the x-y plane (a fact that could be re-derived on the basis of Lagrangian
mechanics), we adopt the polar coordinates (r, φ), related to x and y by x = r cos φ
and y = r sin φ. We have ẋ = ṙ cos φ− rφ̇ sinφ, ẏ = ṙ sin φ + rφ̇ cos φ, and it follows
that

ṙ · ṙ = ẋ2 + ẏ2 = ṙ2 + (rφ̇)2.

The Lagrangian therefore becomes

Lrel(r, ṙ;φ, φ̇) =
1

2
µ
[

ṙ2 + (rφ̇)2
]

+
GµM

r
. (2.4.36)

Notice that this Lagrangian is actually independent of φ, a feature that was en-
countered also in previous examples.

To obtain the equation of motion for r we compute

∂Lrel

∂ṙ
= µṙ ⇒ d

dt

∂Lrel

∂ṙ
= µr̈
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and
∂Lrel

∂r
= µrφ̇2 − GµM

r2
.

This gives

r̈ − rφ̇2 +
GM

r2
= 0. (2.4.37)

This is the same statement as Eq. (1.5.25). To obtain the equation of motion for
φ we observe that since Lrel is independent of φ, we must have that ∂Lrel/∂φ̇ is
a constant of the motion. Calling this constant µh and calculating the partial
derivative, we get

r2φ̇ = h = constant. (2.4.38)

This is the same statement as Eq. (1.5.27), and h is identified as the reduced angular
momentum of the two-body system.

The equations of motion (2.4.37) and (2.4.38) can be analyzed with the same
mathematical techniques as those employed in Sec. 1.5. It should be clear that
compared with the Newtonian methods of Chapter 1, the Lagrangian methods
provide a much simpler way of obtaining these equations.

2.5 Generalized momenta and conservation

statements

2.5.1 Conservation of generalized momentum

In the applications of Lagrangian mechanics presented in Sec. 2.4 it occurred a
number of times that the Lagrangian was independent of one of the generalized
coordinates (mostly it was the φ coordinate), and we saw that this fact always
translated into the existence of a constant of the motion (which we usually called
h). A specific example is the case of a particle moving on the surface of a cone
(Sec. 2.4.3), for which the Lagrangian is indeed independent of φ and for which the
constant of the motion was h = r2 sin2 α φ̇. A similar situation occurred for the
spherical pendulum (Sec. 2.4.4) and for Kepler’s problem (Sec. 2.4.7).

It is easy to generalize this discussion and to derive the very useful fact that
whenever the Lagrangian does not depend explicitly on one (or more) of the gen-
eralized coordinates qa, there exists a corresponding constant of the motion. To
establish this statement we shall first introduce the notion of a generalized momen-
tum.

Consider a Lagrangian L(qa, q̇a) that depends on a number of generalized coor-
dinates qa and a number of generalized velocities q̇a. The quantities

pa =
∂L

∂q̇a
(2.5.1)

feature prominently in the EL equations, which can be written in the form

ṗa =
∂L

∂qa
. (2.5.2)

The quantities pa are the generalized momenta of the mechanical system. There is
one generalized momentum pa for each generalized coordinate qa.

The generalized momenta can represent either a component of the linear-momentum
vector or a component of the angular-momentum vector. Generally speaking, when-
ever qa represents a linear variable the corresponding pa will be a linear momen-
tum; and whenever qa represents an angular variable its corresponding pa will be
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an angular momentum. Consider, for example, the Lagrangian of a free particle in
cylindrical coordinates (Sec. 2.4.1). This is

L =
1

2
m(ρ̇2 + ρ2φ̇2 + ż2).

The generalized momenta are

pρ =
∂L

∂ρ̇
= mρ̇,

pφ =
∂L

∂φ̇
= mρ2φ̇,

pz =
∂L

∂ż
= mż.

In the case of pρ and pz we clearly have quantities that represent components
of a linear-momentum vector. But the case of pφ is different. Here we have

pφ = m(ρ)(ρφ̇), and this clearly represents the component of an angular-momentum
vector.

Exercise 2.15. Show that pρ = p · ρ̂ and pz = p · ẑ, where p is the particle’s
momentum vector. Show, on the other hand, that pφ = L · ẑ, where L is the particle’s
angular-momentum vector.

Suppose now that a Lagrangian L(q1, q̇1; q2, q̇2, · · ·) happens not to depend ex-
plicitly on one of its generalized coordinates, say q∗. Then

∂L

∂q∗
= 0

and it follows from the EL equation for q∗ that

dp∗
dt

= 0,

where p∗ = ∂L/∂q̇∗ is the generalized momentum associated with the coordinate q∗.
This equation states that p∗ is a constant of the motion, and we have established
the following theorem:

Whenever the Lagrangian of a mechanical system does not depend ex-
plicitly on a generalized coordinate q∗, the corresponding generalized
momentum p∗ = ∂L/∂q̇∗ is a constant of the motion.

A coordinate q∗ that does not appear in L is sometimes called a cyclic coordinate.
A Lagrangian may contain any number of cyclic coordinates.

As an example consider the following Lagrangian, again in cylindrical coordi-
nates,

L =
1

2
m(ρ̇2 + ρ2φ̇2 + ż2) − V (ρ).

Here it is assumed that the potential energy V depends only on ρ; the mechanical
system is cylindrically symmetric. This implies that φ and z are cyclic coordinates,
and that pφ = mρ2φ̇ and pz = mż are constants of the motion.

This theorem on cyclic coordinates and conserved quantities is extremely im-
portant and very useful. To find all the constants of the motion is usually a key
step during the integration of the equations of motion, and the theorem provides a
very efficient algorithm to identify at least some of them.
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2.5.2 Conservation of energy

Conservation of total mechanical energy E is also an important aspect of the motion
of a mechanical system and a key to solving the equations of motion. In this
subsection we show that energy is conserved whenever the Lagrangian does not
depend explicitly on time t.

To begin the discussion let us consider a Lagrangian L(qa, q̇a, t) that depends on
a number of generalized coordinates qa, a number of generalized velocities q̇a, and
let us consider the possibility that it depends also explicitly on time. (An example
is the Lagrangian of a rotating pendulum, which was written down in Sec. 2.4.5.)
Applying the chain rule, we find that the total time derivative of the Lagrangian is
given by

dL

dt
=

∑

a

∂L

∂qa
q̇a +

∑

a

∂L

∂q̇a
q̈a +

∂L

∂t
.

The first term accounts for the time dependence contained in each qa(t), the second
term for the time dependence contained in each q̇a(t), and the third term accounts
for the explicit dependence of the Lagrangian on t.

We have defined the generalized momenta pa by

pa =
∂L

∂q̇a

and the EL equations can be expressed in the form

ṗa =
∂L

∂qa
.

We make these substitutions in the previous equation, and obtain

dL

dt
=

∑

a

(

ṗaq̇a + paq̈a

)

+
∂L

∂t
,

or
dL

dt
=

d

dt

(

∑

a

paq̇a

)

+
∂L

∂t
,

which is equivalent to the previous form by virtue of the chain rule.
We have obtained the equation

d

dt

(

∑

a

paq̇a − L

)

= −∂L

∂t
, (2.5.3)

and a statement of conservation follows immediately:

Whenever L does not depend explicitly on time, so that ∂L/∂t = 0, we
have that

h(qa, q̇a) ≡
∑

a

paq̇a − L (2.5.4)

is a constant of the motion, dh/dt = 0.

Surely the function h(qa, q̇a) must have something to do with the system’s total
mechanical energy. Let us first figure out the relationship in the context of a sim-
ple example. We go back to the Lagrangian of a particle expressed in cylindrical
coordinates,

L =
1

2
m(ρ̇2 + ρ2φ̇2 + ż2) − V (ρ, φ, z),
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but this time we place no constraints on the potential energy. The generalized
momenta are pρ = mρ̇, pφ = mρ2φ̇, and pz = mż. We then have

h = pρρ̇ + pφφ̇ + pz ż − L

= mρ̇2 + mρ2φ̇2 + mż2 − 1

2
m(ρ̇2 + ρ2φ̇2 + ż2) + V (ρ, φ, z)

=
1

2
m(ρ̇2 + ρ2φ̇2 + ż2) + V (ρ, φ, z).

This is indeed the total mechanical energy, the sum of kinetic and potential energies.
To verify that h(qa, q̇a) is always equal to the total mechanical energy we use

the fact that the kinetic energy is usually a quadratic function of the generalized
velocities,

T =
1

2

∑

a,b

Aabq̇aq̇b.

The coefficients Aab may in general depend on the coordinates qa, and without loss
of generality we may assume that Aba = Aab. The Lagrangian is then

L =
1

2

∑

a,b

Aabq̇aq̇b − V (qa).

The generalized momentum pa is obtained by differentiating L with respect to q̇a.
To see what this amounts to let us consider a special case in which the mechanical
system possesses three degrees of freedom. In this case we have, explicitly,

L =
1

2
A11q̇

2
1 + A12q̇1q̇2 + A13q̇1q̇3 +

1

2
A22q̇

2
2 + A23q̇2q̇3 +

1

2
A33q̇

2
3 − V (q1, q2, q3).

It follows that

p1 =
∂L

∂q̇1
= A11q̇1 + A12q̇2 + A13q̇3,

p2 =
∂L

∂q̇2
= A12q̇1 + A22q̇2 + A23q̇3,

p3 =
∂L

∂q̇3
= A13q̇1 + A23q̇2 + A33q̇3

are the generalized momenta. These relations are summarized by

pa =
∑

b

Aabq̇b,

and the same expression is always obtained, regardless of the number of degrees of
freedom. The function h is then

h =
∑

a

paq̇a − L

=
∑

a

(

∑

b

Aabq̇b

)

q̇a − 1

2

∑

a,b

Aabq̇aq̇b + V (qa)

=
1

2

∑

a,b

Aabq̇aq̇b + V (qa),

and we conclude that

h(qa, q̇a) = T (qa, q̇a) + V (qa) = total mechanical energy. (2.5.5)

In all generality, therefore, the function h is the system’s total energy, and this is
conserved whenever L does not depend explicitly on time.
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2.5.3 Invariance of the EL equations under a change of Lagrangian

Suppose that we are given a Lagrangian L(qa, q̇a, t) and that we decide to define a
second Lagrangian L′(qa, q̇a, t) by adding to the first Lagrangian a term of the form
df/dt, where f(qa, t) is any function of the generalized coordinates qa and of time
t. What we have then is the operation

L → L′ = L +
d

dt
f(qa, t). (2.5.6)

Notice that f is quite arbitrary, but that it is not allowed to depend on the gener-
alized velocities q̇a.

We assert that the equations of motion derived from L and L′ will be identical.
The Lagrangians L and L′ are therefore equivalent, in the sense that they produce
the same set of EL equations. In practice this formal property of Lagrangians can
be useful: A complicated Lagrangian L′ can be turned into a simpler Lagrangian
L by removing a superfluous total time derivative. We will use this method of
simplification in a later section.

Exercise 2.16. Read through Sec. 2.4 again and figure out where a Lagrangian could
have been simplified using this method.

To prove our assertion we show that the change in Lagrangian,

∆L =
df

dt
=

∑

b

∂f

∂qb
q̇b +

∂f

∂t
,

produces no change in the equations of motion. The EL equations derived from L′

are

0 =
d

dt

∂L′

∂q̇a
− ∂L′

∂qa
.

Writing L′ = L + ∆L, this becomes

0 =
d

dt

∂L

∂q̇a
− ∂L

∂qa
+

d

dt

∂∆L

∂q̇a
− ∂∆L

∂qa
.

These will be identical to the EL equations derived from L if and only if

d

dt

∂∆L

∂q̇a
− ∂∆L

∂qa
= 0.

Let us verify that this equation is always satisfied.
Because f does not depend on q̇a, we have that

∂∆L

∂q̇a
=

∂

∂q̇a

(

∑

b

∂f

∂qb
q̇b +

∂f

∂t

)

=
∑

b

∂f

∂qb

∂q̇b

∂q̇a

=
∂f

∂qa
,

because ∂q̇b/∂q̇a is 1 when b = a and 0 otherwise. For example, q̇1 depends only on
q̇1 and on no other variable, so that ∂q̇1/∂q̇1 = 1 while ∂q̇1/∂q̇2 = ∂q̇1/∂q̇3 = · · · = 0.
From this it follows that

d

dt

∂∆L

∂q̇a
=

d

dt

∂f

∂qa

=
∑

b

∂2f

∂qb∂qa
q̇b +

∂2f

∂t∂qa
.
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On the other hand,

∂∆L

∂qa
=

∂

∂qa

(

∑

b

∂f

∂qb
q̇b +

∂f

∂t

)

=
∑

b

∂2f

∂qa∂qb
q̇b +

∂2f

∂qa∂t
,

and this is equal to the previous result, because the order in which one evaluates
second partial derivatives does not matter. We conclude that

d

dt

∂∆L

∂q̇a
=

∂∆L

∂qa

and that the change of Lagrangian has no effect on the EL equations. The equations
of motion that derive from L′ = L+df/dt are indeed identical to the equations that
derive from L.

There is a more elegant way to prove this result. In this alternative derivation
we appeal directly to Hamilton’s principle. The action S′ =

∫ t1
t0

L′ dt associated

with L′, and the action S =
∫ t1

t0
Ldt associated with L, are related by

S′ = S +

∫ t1

t0

∆Ldt

= S +

∫ t1

t0

df

dt
dt

= S + f
(

qa(t1), t1
)

− f
(

qa(t0), t0
)

.

The equations of motion are obtained from S′ or S by varying the paths qa(t) and
demanding that the variation of the action be zero to first order in the variations
δqa(t). The variations, you may recall, must be subjected to the boundary condi-
tions δqa(t0) = δqa(t1) = 0; the paths must all begin at the same qa(t0) and end at
the same qa(t1). But under these conditions we find that the values f(qa(t0), t0) and
f(qa(t1), t1) can never change under a variation of the paths, and we must conclude
that

δS′ = δS.

An extremum of S will also be an extremum of S′, and the equations of motion
derived from L and L′ are guaranteed to be the same.

While the operation L → L′ = L+df/dt does not affect the equations of motion,
it may nevertheless change the expressions for the generalized momenta pa and the
total energy h. The new momenta p′a are given by

p′a =
∂L′

∂q̇a
=

∂L

∂q̇a
+

∂∆L

∂q̇a
,

or

p′a = pa +
∂f

∂qa
, (2.5.7)

according to our previous computations. The new energy function h′ is given by
h′ =

∑

a p′aq̇a − L′, so

h′ =
∑

a

(

pa +
∂f

∂qa

)

q̇a − L − ∆L

= h +
∑

a

∂f

∂qa
q̇a −

∑

b

∂f

∂qb
q̇b −

∂f

∂t
.
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The sums cancel each other out, and we are left with

h′ = h − ∂f

∂t
. (2.5.8)

We find that the expression for the energy is affected only when f depends explicitly
on time.

2.6 Charged particle in an electromagnetic field

The Lagrangian formulation of mechanics is well suited to mechanical systems for
which the forces can all be derived from a potential-energy function V (qa); these
forces will depend on the positions qa, but that they might also depend on the
velocities q̇a is normally out of the question. There is, however, an important
mechanical system for which the forces do depend on velocity: a charged particle
moving in the presence of an electromagnetic field. In this case the particle is
subjected to the Lorentz force, and the equations of motion are

ma = q(E + v × B). (2.6.1)

Can this equation be derived on the basis of a Lagrangian?
The answer is in the affirmative. An interesting property of this Lagrangian

is that it depends on the scalar potential Φ and vector potential A instead of
depending on the fields E and B. Recall that the fields can be expressed in terms
of the potentials as

E = −∂A

∂t
− ∇Φ, B = ∇ × A. (2.6.2)

The potentials are usually introduced to simplify the structure of Maxwell’s equa-
tions. The definition of E implies

∇ × E = − ∂

∂t
∇ × A − ∇ × (∇Φ);

since the curl of a gradient is always zero, this gives

∇ × E = −∂B

∂t
,

one of the four Maxwell equations. Similarly, the definition of B implies

∇ · B = ∇ · (∇ × A);

since the divergence of a curl is always zero, this gives

∇ · B = 0,

another one of the Maxwell equations. The remaining two equations can then be
recast into equations that Φ and A must satisfy.

It is convenient to express the fields in terms of the potentials, but it is important
to understand that the potentials do not have direct physical meaning. Indeed, it
is even possible to change the potentials by a certain transformation and leave the
fields unaffected. This transformation is given by

Φ → Φ′ = Φ − ∂f

∂t
, A → A′ = A + ∇f, (2.6.3)

where f(r, t) is an arbitrary function of position and time. Such a transformation
of the potentials is known as a gauge transformation, and its defining property is
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that the transformation leaves the fields invariant. Different sets of potentials that
are related by a gauge transformation describe the same fields and therefore the
same physical situation.

Exercise 2.17. Show that the transformation of Eq. (2.6.3) leaves the fields unaffected.
That is, show that the transformation produces E → E ′ = E and B → B′ = B.

The Lagrangian for a particle of charge q in an electromagnetic field is

L =
1

2
mv2 − qΦ + qA · v, (2.6.4)

where v2 = v · v. As stated previously, this depends on the potentials Φ and A

instead of the fields E and B. Another interesting property of the Lagrangian is
that the potential-energy term V = qΦ − qA · v depends on the velocity vector v

as well as the position r. The dependence on position, of course, comes from the
potentials, which may also depend explicitly on time.

Let us verify that the Lagrangian of Eq. (2.6.4) does indeed give rise, via the
EL equations, to the Lorentz-force equation of Eq. (2.6.1). It will suffice to verify
the x component of the equation, which we write as

mẍ = qEx + q(v × B)x = qEx + q(ẏBz − żBy).

Similar computations would allow us to verify also the y and z components, but we
will not present these here.

We begin by presenting the Lagrangian in a more explicit form, as

L =
1

2
m(ẋ2 + ẏ2 + ż2) − qΦ + q(ẋAx + ẏAy + żAz).

We have
∂L

∂ẋ
= mẋ + qAx,

and this implies

d

dt

∂L

∂ẋ
= mẍ + q

(

∂Ax

∂x
ẋ +

∂Ax

∂y
ẏ +

∂Ax

∂z
ż +

∂Ax

∂t

)

.

In this step we took into account the fact that Ax depends on time through its
dependence on the coordinates x(t), y(t), and z(t), and also through its own explicit
dependence on t; the total time derivative had to be evaluated by using the chain
rule. Finally, we have

∂L

∂x
= −q

∂Φ

∂x
+ q

(

ẋ
∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x

)

.

The EL equations are

0 = mẍ+q

(

∂Ax

∂t
+

∂Φ

∂x

)

+qẋ

(

∂Ax

∂x
− ∂Ax

∂x

)

−qẏ

(

∂Ay

∂x
− ∂Ax

∂y

)

+qż

(

∂Ax

∂z
− ∂Az

∂x

)

,

or

mẍ = q

(

−∂Ax

∂t
− ∂Φ

∂x

)

+ qẏ

(

∂Ay

∂x
− ∂Ax

∂y

)

− qż

(

∂Ax

∂z
− ∂Az

∂x

)

.

In the first set of brackets we recognize Ex, in the second Bz, and in the third By.
We therefore have

mẍ = qEx + q(ẏBz − żBy) = q(E + v × B)x,
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and we have recovered the x component of the Lorentz-force equation, as required.

Exercise 2.18. Make sure that you can also recover the y and z components of
Eq. (2.6.1).

In the course of this computation we came across the result

∂L

∂ẋ
= mẋ + qAx.

The left-hand side, we recall, is what was defined in Sec. 2.5.1 as the generalized
momentum px associated with the coordinate x. Generalizing, we find that

p = mv + qA (2.6.5)

is the generalized momentum vector of a charged particle. It contains a direct
contribution mv from the particle and an additional contribution qA from the
electromagnetic field.

The energy function h of a charged particle is given by the general expression
of Eq. (2.5.4), h =

∑

a paq̇a − L. We have

h = p · v − L

= (mv + qA) · v − 1

2
mv2 + qΦ − qA · v,

or

h =
1

2
mv2 + qΦ. (2.6.6)

It is interesting to see that the terms containing A have canceled each other out;
the energy function includes only the scalar potential Φ.

We might ask how L, p, and h change under a gauge transformation. This
is easily worked out. If we change the potentials from (Φ,A) to (Φ′,A′) using
Eq. (2.6.3) we find that the Lagrangian becomes

L′ =
1

2
mv2 − qΦ′ + qA′ · v

=
1

2
mv2 − q

(

Φ − ∂f

∂t

)

+ q(A + ∇f) · v

= L + q

(

∂f

∂t
+ ∇f · v

)

.

In other words,

L′ = L + q
df

dt
. (2.6.7)

Because the two Lagrangians differ by the total time derivative of a function qf(r, t),
the equations of motion derived from L′ and L will be identical (refer back to
Sec. 2.5.3). And because the equations of motion involve the gauge-invariant fields
E and B, this conclusion should not come as a surprise.

Under a gauge transformation the generalized momentum vector becomes

p′ = mv + qA′

= mv + q(A + ∇f),

so that
p′ = p + q∇f ; (2.6.8)
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the momenta are not gauge invariant. The energy function, on the other hand,
becomes

h′ =
1

2
mv2 + qΦ′

=
1

2
mv2 + q

(

Φ − ∂f

∂t

)

,

so that

h′ = h − q
∂f

∂t
; (2.6.9)

the energy function also is not invariant under a gauge transformation.

2.7 Motion in a rotating reference frame

It was mentioned previously that in Lagrangian mechanics, the generalized coor-
dinates qa are entirely arbitrary, and that in particular they do not have to be
attached to an inertial frame. (For example, noninertial coordinates were employed
in Sec. 2.4.5.) A consequence of this fact is that the Lagrangian methods can greatly
facilitate the description of a mechanical system viewed in a reference frame that is
not inertial. In this section we examine the motion of particles as viewed in rotating
frames. We shall first consider the simple case of a particle moving on a turntable,
and we shall next consider the more interesting case of a reference frame attached
to a rotating Earth.

2.7.1 Motion on a turntable

We consider performing mechanical experiments on particles that move on, or above,
a turntable that is rotating with a uniform angular velocity Ω. Our instruments
are attached to the turntable, and we wish to analyze the motion of the particles
as measured in the rotating frame. This frame, of course, is not an inertial frame,
but the methods of Lagrangian mechanics can nevertheless be applied.

We denote by S′ the original inertial frame, and we let (x′, y′, z′) be its associated
system of Cartesian coordinates; the primes indicate that we will not, ultimately,
describe the motion of our particles in this coordinate system. We denote by S the
rotating frame of the turntable, and its associated system of Cartesian coordinates
is (x, y, z). The turntable is placed in the x′-y′ plane, and it is rotating around the
z′ axis, which coincides with the z axis of the rotating frame. As shown in Fig. 2.17,
the angle between the x and x′ axes is Ωt; this is also the angle between the y and
y′ axes.

To work out the relationship between the coordinate systems we use, as a tool,
the spherical coordinates (r, θ, φ) and (r′, θ′, φ′) assigned to an arbitrary point P .
Because the frames S and S′ share the same origin, we have in fact that r′ = r. And
because they share also the same z axis, we also have θ′ = θ. The angles φ′ and φ
differ, however, and Fig. 2.17 makes it clear that they are related by φ′ = φ + Ωt.
We have

x = r sin θ cos φ, y = r sin θ sinφ, z = r cos θ

and

x′ = r sin θ cos φ′, y′ = r sin θ sin φ′, z′ = r cos θ.

The relationship is obtained by substituting φ′ = φ + Ωt into the previous expres-
sions. It is a bit more efficient to first construct the complex combinations

x + iy = r sin θ(cos φ + i sin φ) = r sin θ eiφ
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Figure 2.17: The rotating frame S of the turntable, as viewed in the inertial frame S′.
A point P is referred to the inertial frame by its Cartesian coordinates (x′, y′, z′) or its
spherical coordinates (r, θ, φ′ = φ+Ωt). It is referred to the rotating frame by its Cartesian
coordinates (x, y, z) or its spherical coordinates (r, θ, φ).

and
x′ + iy′ = r sin θ(cos φ′ + i sin φ′) = r sin θ eiφ′

.

Then we have
x′ + iy′ = r sin θ ei(φ+Ωt) = eiΩtr sin θ eiφ,

or
x′ + iy′ = eiΩt(x + iy). (2.7.1)

When fully expanded, this is

x′ = x cos Ωt − y sinΩt, y′ = y cos Ωt + x sin Ωt, z′ = z. (2.7.2)

Exercise 2.19. Verify that Eq. (2.7.2) follows from Eq. (2.7.1). Then work out the
inverse transformation, (x′, y′, z′) → (x, y, z).

A particle moving in the rotating frame S with a position vector r(t) = [x(t), y(t), z(t)]
moves in the inertial frame S′ with a position vector r′(t) = [x′(t), y′(t), z′(t)]; these
are related by the transformation of Eq. (2.7.2). The components of the velocity
vectors are then related by

ẋ′ = ẋ cos Ωt − ẏ sinΩt − Ω(x sin Ωt + y cos Ωt),

ẏ′ = ẏ cos Ωt + ẋ sinΩt − Ω(y sin Ωt − x cos Ωt),

ż′ = ż.

After a fairly laborious calculation, we find that the squared velocity, as measured
in the inertial frame, is

v′2 = ẋ′2 + ẏ′2 + ẏ′2

= ẋ2 + ẏ2 + ż2 − 2Ω(yẋ − xẏ) + Ω2(x2 + y2). (2.7.3)
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The particle’s kinetic energy is then T = 1
2mv′2. It contains a contribution from ṙ,

the particle’s velocity vector as measured in the rotating frame, and contributions
from the rotational motion of the frame (the terms that involve Ω).

Exercise 2.20. Verify Eq. (2.7.3). You will save yourself some work if you use the trick
of forming complex combinations.

The particle’s potential energy can be expressed in terms of the inertial coordi-
nates (x′, y′, z′), but after the transformation of Eq. (2.7.2) it becomes a function
of the rotating coordinates (x, y, z). Denoting this function V (x, y, z), we find that
the particle’s Lagrangian is

L =
1

2
m(ẋ2 + ẏ2 + ż2) − mΩ(yẋ − xẏ) +

1

2
mΩ2(x2 + y2) − V (x, y, z). (2.7.4)

The equations of motion for the particle are then obtained by substituting this into
the EL equations for x, y, and z.

The computations that lead to the equations of motion will be left as an exercise
for the reader. We find

mẍ = −∂V

∂x
+ 2mΩẏ + mΩ2x, (2.7.5)

mÿ = −∂V

∂y
− 2mΩẋ + mΩ2y, (2.7.6)

mz̈ = −∂V

∂z
. (2.7.7)

These equations can be expressed in vectorial form if we introduce the angular-
velocity vector Ω, defined by

Ω = Ωẑ = [0, 0,Ω]. (2.7.8)

The vectorial form is

mr̈ = Fapplied + FCoriolis + Fcentrifugal, (2.7.9)

where
Fapplied = −∇V (2.7.10)

is the true applied force on the particle, given by the gradient of the potential energy,
while

FCoriolis = 2mṙ × Ω = [2mΩẏ,−2mΩẋ, 0] (2.7.11)

and
Fcentrifugal = mΩ × (r × Ω) = [mΩ2x,mΩ2y, 0] (2.7.12)

are fictitious forces that arise because the reference frame S is not an inertial frame
(refer back to the discussion of Sec. 1.1). The Coriolis force is linear in the angular
velocity Ω, and it depends on the particle’s velocity vector ṙ; its effect on the
particle depends on its state of motion. The centrifugal force is quadratic in Ω, and
it depends only on the position vector r; this is always an outward force that points
away from the centre of motion.

Exercise 2.21. Verify that Eqs. (2.7.5)–(2.7.7) follow from the Lagrangian of Eq. (2.7.4).

Exercise 2.22. Show that Eqs. (2.7.5)–(2.7.7) are equivalent to the vectorial equation
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(2.7.9), together with the definitions of Eqs. (2.7.10)–(2.7.12).

2.7.2 Case study #1: Particle attached to a spring

As our first application of the rotating-frame formalism we examine a particle at-
tached to a linear spring that is free to rotate around the z axis. The particle is
thus subjected to the potential V = 1

2k(x2 + y2), which we write in the alternative
form

V =
1

2
mω2(x2 + y2), (2.7.13)

in which ω2 ≡ k/m is a stand-in for the spring constant k. For simplicity we assume
that the particle is confined to the x-y plane and we set, accordingly, z = ż = 0 in
all equations.

The equations of motion of Eqs. (2.7.5) and (2.7.6) become

ẍ = 2Ωẏ + (Ω2 − ω2)x, ÿ = −2Ωẋ + (Ω2 − ω2)y. (2.7.14)

Let us first analyze these equations in the limit of no rotation, Ω = 0. In this case
they reduce to ẍ = −ω2x and ÿ = −ω2y, the equations of simple harmonic motion.
The general solution to the equations of motion is then

xΩ=0(t) = a cos(ωt + α), yΩ=0(t) = b cos(ωt + β). (2.7.15)

The four constants a, b, α, and β can be related to the four initial values x(0), ẋ(0),
y(0), and ẏ(0). Equations (2.7.5) are parametric equations for the motion of the
particle in the x-y plane, and it is easy to show that the trajectory is elliptical.

To analyze the equations in the general case (Ω 6= 0) we once more employ the
clever trick of forming complex combinations. We introduce ξ = x + iy and we
combine the two equations (2.7.14) into a single equation for ξ:

ξ̈ = ẍ + iÿ

= 2Ω(ẏ − iẋ) + (Ω2 − ω2)(x + iy)

= −2iΩ(ẋ + iẏ) + (Ω2 − ω2)(x + iy),

or
ξ̈ + 2iΩξ̇ − (Ω2 − ω2)ξ = 0. (2.7.16)

To find solutions to this equation we use a trial expression of the form ξ = ceiλt,
where c and λ are complex constants. Substitution into Eq. (2.7.16) produces a
quadratic equation for λ,

λ2 + 2Ωλ + (Ω2 − ω2) = 0,

which factorizes as
(λ + Ω + ω)(λ + Ω − ω) = 0.

The solutions, obviously, are λ = −(Ω ± ω), and the general solution for ξ is

ξ = c1e
−i(Ω+ω)t + c2e

−i(Ω−ω)t,

or
ξ = e−iΩt

(

c1e
−iωt + c2e

iωt
)

,

where c1 and c2 are complex numbers.
To help us understand what we have just found, we observe that if we let Ω go

to zero, our general solution for ξ becomes c1e
−iωt + c2e

iωt. This is the solution in
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the limit of no rotation, and this must be equal to xΩ=0 + iyΩ=0, which was given
by Eq. (2.7.15) above. So we can write our general solution as

ξ(t) = e−iΩt
[

xΩ=0(t) + iyΩ=0(t)
]

. (2.7.17)

Written in full, this is

x(t) = xΩ=0(t) cos Ωt + yΩ=0(t) sin Ωt, y(t) = yΩ=0(t) cos Ωt − xΩ=0(t) sin Ωt.
(2.7.18)

What is the meaning of these results? The answer is simple. Comparison with the
transformations of Eqs. (2.7.1) and (2.7.2) shows that the motion of the particle on
the turntable is a rotated version of the motion that would take place in an inertial
frame; the rotation angle is here −Ωt instead of +Ωt. This is easy to understand:
The motion xΩ=0(t), yΩ=0(t) is what the particle would do in an inertial frame;
because, however, we are measuring this motion in a rotating frame, we see a
rotated version of the inertial motion. This conclusion is confirmed by substituting
our solution of Eqs. (2.7.17), (2.7.18) into Eqs. (2.7.1), (2.7.2); the result is

x′(t) = xΩ=0(t), y′(t) = yΩ=0(t),

as expected. The motion of the particle as measured in the rotating frame is shown
in Fig. 2.18 for three selected values of Ω.

Exercise 2.23. Fill in the mathematical gaps that were left behind in the presentation
of this subsection.

2.7.3 Motion on a rotating Earth. Kinematics

We wish to describe the motion of a mechanical system from the point of view of an
observer attached to a point P on the surface of a rotating Earth. This will be done
with the help of a Cartesian frame (x, y, z) whose origin will be at P , and which will
rotate along with the Earth. We will construct this Cartesian coordinate system
in two stages. In the first stage we will momentarily assume that the Earth does
not, in fact, rotate around its polar axis; in the second stage we will incorporate
the rotation.

We first place a Cartesian frame (x′, y′, z′) at the centre of the nonrotating
Earth. Neglecting the Earth’s motion around the Sun, we consider this to be an
inertial frame. Our end goal in this subsection is to relate (x, y, z), the local frame
at P , to the inertial frame (x′, y′, z′). Our first step toward this goal is to introduce
the spherical coordinates (r′, θ′, φ′), which are related to the original Cartesian
coordinates by

x′ = r′ sin θ′ cos φ′, y′ = r′ sin θ′ sinφ′, z′ = r′ cos θ′.

As shown in Fig. 2.19, our point P on the Earth’s surface is at a distance r′ = R
from the centre, and its position on the sphere is determined by the colatitude θ′

and the longitude φ′. (The latitude λ′ is related to the colatitude by λ′ = π
2 − θ′;

thus the colatitude of the equator is 90◦ while its latitude is 0◦.) Because the Earth
is not yet rotating the longitude of P is a fixed angle; when we later incorporate the
rotation into the picture we will put φ′ = Ωt, with Ω denoting the Earth’s angular
velocity.

The spherical coordinates come with a set of basis vectors (r̂′, θ̂′, φ̂′). Following
the discussion of Sec. 1.2, we derive that these vectors are related to the Cartesian
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Figure 2.18: A particle attached to a linear spring is viewed from a rotating frame. The
upper graph was generated with Ω/ω = 0.3, the middle graph with Ω/ω = 0.7, and the
lower graph with Ω/ω = 1.3. In all cases the initial values were set to x(0) = 1, ẋ(0) = 0,
y(0) = 0, and ẏ(0) = 0.4. The elliptical motion of the particle, which takes place when
Ω = 0 for the same initial conditions, is also shown for comparison.
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R

Figure 2.19: An inertial frame (x′, y′, z′) attached to the centre of the Earth, and a
point P on the surface, described by colatitude θ′ and longitude φ′. The position vector
of P relative to the inertial frame is R.

basis (x̂′, ŷ′, ẑ′) by

r̂′ =
∂r′

∂r′
= sin θ′ cos φ′ x̂′ + sin θ′ sin φ′ŷ′ + cos θ′ ẑ′, (2.7.19)

θ̂′ =
1

r′
∂r′

∂θ′
= cos θ′ cos φ′ x̂′ + cos θ′ sinφ′ŷ′ − sin θ′ ẑ′, (2.7.20)

φ̂′ =
1

r′ sin θ′
∂r′

∂φ′ = − sin φ′ x̂′ + cos φ′ŷ′. (2.7.21)

Here r′ is the position vector expressed in terms of the spherical coordinates,

r′ = r′ sin θ′ cos φ′ x̂′ + r′ sin θ′ sin φ′ ŷ′ + r′ cos θ′ ẑ′. (2.7.22)

The position vector of the point P on the surface is

R = R sin θ′ cos φ′ x̂′ + R sin θ′ sin φ′ ŷ′ + R cos θ′ ẑ′. (2.7.23)

The spherical coordinates are useful to specify the position of the laboratory on
the Earth’s surface, but they are not so useful to describe the motion of mechanical
bodies that would take place in this laboratory. For this purpose we introduce
another Cartesian frame (x, y, z) whose origin will be at P . The orientation of this
frame will be set by the directions of the basis vectors (r̂′, θ̂′, φ̂′). Thus, the z axis
will point away from the surface, and will be aligned in the direction of r̂′; the x
axis will point in the southern direction, and will be aligned in the direction of θ̂′;
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and the y axis will point in the eastern direction, and will be aligned in the direction
of φ̂′. We therefore set

x̂ = θ̂′, ŷ = φ̂′, ẑ = r̂′. (2.7.24)

The situation is illustrated in Fig. 2.20.
We denote by r the position vector of a particle located at a point Q near the

surface of the Earth, relative to the surface point P to which our frame (x, y, z) is
attached. As usual we will resolve this vector in the basis (x̂, ŷ, ẑ) and identify the
components with the particle’s coordinates. We have

r = x x̂ + y ŷ + z ẑ,

and if we involve Eq. (2.7.24) we obtain

r = x θ̂′ + y φ̂′ + z r̂′.

If we now substitute Eqs. (2.7.19)–(2.7.21) and rearrange what we get, we find

r = (x cos θ′ cos φ′ − y sin φ′ + z sin θ′ cos φ′)x̂′

+ (x cos θ′ sin φ′ + y cos φ′ + z sin θ′ sinφ′)ŷ′

+ (−x sin θ′ + z cos θ′)ẑ′.

The position vector of the particle relative to the centre of the Earth is R + r.
According to Eq. (2.7.23) and our previous result, this is

R + r =
[

x cos θ′ cos φ′ − y sin φ′ + (R + z) sin θ′ cos φ′]x̂′

+
[

x cos θ′ sin φ′ + y cos φ′ + (R + z) sin θ′ sinφ′]ŷ′

+
[

−x sin θ′ + (R + z) cos θ′
]

ẑ′.

The components of this vector in the original Cartesian basis (x̂′, ŷ′, ẑ′) are the
original Cartesian coordinates (x′, y′, z′) of the particle at Q. We have obtained,
therefore, the transformation

x′ = x cos θ′ cos φ′ − y sin φ′ + (R + z) sin θ′ cos φ′, (2.7.25)

y′ = x cos θ′ sinφ′ + y cos φ′ + (R + z) sin θ′ sin φ′, (2.7.26)

z′ = −x sin θ′ + (R + z) cos θ′, (2.7.27)

between the two systems of Cartesian coordinates.
Our considerations so far have relied on the fiction of a nonrotating Earth. To

finally incorporate its rotation into the picture we set φ′ = Ωt into Eqs. (2.7.25)–
(2.7.27), with Ω denoting the Earth’s angular velocity. We also, at the same time,
fix the colatitude of our laboratory to θ′ = α. The transformation between the local
rotating frame (x, y, z) and the original inertial frame (x′, y′, z′) is finally given by

x′ = x cos α cos Ωt − y sinΩt + (R + z) sin α cos Ωt, (2.7.28)

y′ = x cos α sin Ωt + y cos Ωt + (R + z) sin α sinΩt, (2.7.29)

z′ = −x sinα + (R + z) cos α. (2.7.30)

We recall that R is the Earth’s radius, that the x direction points due south, that
the y direction points due east, and that the z direction points up, away from the
surface.

Exercise 2.24. Fill in the mathematical gaps that were left behind in the presentation
of this subsection.
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Figure 2.20: The local Cartesian frame (x, y, z) at P . The x direction points south, the
y direction points east, and the z direction points up. The position vector of a point Q
relative to P is denoted r.

2.7.4 Motion on a rotating Earth. Dynamics

Having established the transformation of Eqs. (2.7.28)–(2.7.30) we may now turn
to the task of describing the dynamics of a particle as viewed in the local rotating
frame. The particle’s coordinates (x, y, z) are changing with time and we let (ẋ, ẏ, ż)
denote the components of the velocity vector in the local rotating frame. In the
inertial frame, according to Eqs. (2.7.28)–(2.7.30), the components of the velocity
vector are

ẋ′ = ẋ cos α cos Ωt − ẏ sin Ωt + ż sin α cos Ωt

− Ω
[

x cos α sin Ωt + y cos Ωt + (R + z) sin α sin Ωt
]

,

ẏ′ = ẋ cos α sinΩt + ẏ cos Ωt + ż sin α sin Ωt

+ Ω
[

x cos α cos Ωt − y sin Ωt + (R + z) sin α cos Ωt
]

,

ż′ = −ẋ sin α + ż cos α.

A fairly laborious calculation then returns the squared velocity; we find

v′2 = ẋ2 + ẏ2 + ż2 + 2Ω
{

[

(R + z)ẏ − yż
]

sin α +
[

xẏ − yẋ
]

cos α
}

+ Ω2
{

[

x cos α + (R + z) sin α
]2

+ y2
}

. (2.7.31)

The particle’s kinetic energy is T = 1
2mv′2. Again (as in Sec. 2.7.1) we see that

the kinetic energy has a contribution from the particle’s motion within the local
rotating frame, and contributions from the motion of the frame; these depend on Ω
and the laboratory’s colatitude α.

Exercise 2.25. Verify Eq. (2.7.31).

The particle’s potential energy comes from two different sources, which we choose
to distinguish in this subsection. The first is the Earth’s gravity, and this contribu-
tion to the potential energy is Vgravity = mgz, as usual. The second contribution
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comes from all the other forces acting on the particle; we write this as Vother = U .
The total potential energy is then

V = mgz + U(x, y, z). (2.7.32)

The particle’s Lagrangian is, finally,

L =
1

2
m(ẋ2 + ẏ2 + ż2) + mΩ

{

[

(R + z)ẏ − yż
]

sin α +
[

xẏ − yẋ
]

cos α
}

+
1

2
mΩ2

{

[

x cos α + (R + z) sin α
]2

+ y2
}

− mgz − U(x, y, z). (2.7.33)

The equations of motion in the local rotating frame are obtained by substituting
this into the EL equations.

Omitting the detail of the calculations, the equations of motion are

mẍ = −∂U

∂x
+ 2mΩẏ cos α + mΩ2

[

x cos α + (R + z) sin α
]

cos α, (2.7.34)

mÿ = −∂U

∂y
− 2mΩ(ẋ cos α + ż sin α) + mΩ2y, (2.7.35)

mz̈ = −mg − ∂U

∂z
+ 2mΩẏ sinα + mΩ2

[

x cos α + (R + z) sin α
]

sinα. (2.7.36)

These equations can be expressed in vectorial form if we introduce the angular-
momentum vector Ω. This is given by Ω = Ωẑ′, and in the local rotating frame we
have the components Ωx = Ω · x̂ = Ωẑ′ · θ̂′ = −Ωsin α, Ωy = Ω · ŷ = Ωẑ′ · φ̂′ = 0,
and Ωz = Ω · ẑ = Ωẑ′ · r̂′ = Ωcos α. The vector is therefore given by

Ω = −Ωsin α x̂ + Ωcos α ẑ = [−Ωsin α, 0,Ωcos α] (2.7.37)

in the local rotating frame. We also re-express the vector R of Eq. (2.7.23) as

R = Rẑ = [0, 0, R]; (2.7.38)

this gives the position of the laboratory relative to the Earth’s centre.
The vectorial equation is

mr̈ = mg + Fapplied + FCoriolis + Fcentrifugal, (2.7.39)

where g = −gẑ = [0, 0,−g] is the acceleration of gravity, Fapplied = −∇U is the
net force coming from all other interactions,

FCoriolis = 2mṙ × Ω (2.7.40)

is the Coriolis force, and

Fcentrifugal = mΩ ×
[

(R + r) × Ω
]

(2.7.41)

is the centrifugal force. In Eq. (2.7.39), mg and Fapplied are genuine forces acting
on the particle, while FCoriolis and Fcentrifugal are fictitious forces that arise from
the rotational motion of the frame.

Exercise 2.26. Verify that Eqs. (2.7.34)–(2.7.36) follow from the Lagrangian of
Eq. (2.7.33).

Exercise 2.27. Show that Eqs. (2.7.34)–(2.7.36) are equivalent to the vectorial equation
(2.7.39), together with the definitions of Eqs. (2.7.37), (2.7.38), (2.7.40), and (2.7.41).
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2.7.5 Case study #2: Particle released from rest

To gain some insight into the effects of Earth’s rotation we shall determine what
happens to a particle that is released from rest at a great height h in the Earth’s
gravitational field. Because the Earth’s rotation is quite slow, it will be sufficient to
work consistently to first order in the angular velocity Ω. We will therefore neglect
all terms of order Ω2 in the equations of motion; this means that we will keep the
Coriolis term, but discard the centrifugal term.

At this level of accuracy the equations of motion (2.7.34)–(2.7.36) reduce to

ẍ = 2Ωẏ cos α, ÿ = −2Ω(ẋ cos α + ż sin α), z̈ = −g + 2Ωẏ sin α. (2.7.42)

We impose the initial conditions x(0) = y(0) = 0, z(0) = h, as well as ẋ(0) = ẏ(0) =
ż(0) = 0.

We shall solve Eqs. (2.7.42) by the method of successive approximations. We
first express the particle’s coordinates x(t), y(t), and z(t) as formal expansions in
powers of Ω. Thus,

x(t) = x0(t)+Ωx1(t)+· · · , y(t) = y0(t)+Ωy1(t)+· · · , z(t) = z0(t)+Ωz1(t)+· · · .

In terms of these new quantities the initial conditions become x0(0) = y0(0) = 0,
z0(0) = h, x1(0) = y1(0) = z1(0) = 0, as well as ẋ0(0) = ẏ0(0) = ż0(0) = ẋ1(0) =
ẏ1(0) = ż1(0) = 0. Substituting the expansions into Eq. (2.7.42) yields

ẍ0 + Ωẍ1 + · · · = 2Ω(ẏ0 + · · ·) cos α,

ÿ0 + Ωÿ1 + · · · = −2Ω(ẋ0 cos α + ż0 sinα + · · ·),
z̈0 + Ωz̈1 + · · · = −g + 2Ω(ẏ0 + · · ·) sin α.

Equating powers of Ω produces the set of equations

ẍ0 = 0, ÿ0 = 0, z̈0 = −g,

ẍ1 = 2ẏ0 cos α, ÿ1 = −2ẋ0 cos α − 2ż0 sin α, z̈1 = 2ẏ0 sin α.

The zeroth-order equations are easy to solve. In view of the initial conditions, the
solutions are

x0(t) = 0, y0(t) = 0, z0(t) = h − 1

2
gt2.

With ẋ0 = ẏ0 = 0 and ż0 = −gt the first-order equations become

ẍ1 = 0, ÿ1 = 2gt sin α, z̈1 = 0.

These equations also are easy to solve. Taking once more the initial conditions into
account, we find that the solutions are

x1(t) = 0, y1(t) =
1

3
gt3 sin α, z1(t) = 0.

The complete solution to the equations of motion is therefore

x(t) = 0 + O(Ω2), (2.7.43)

y(t) =
1

3
(gΩsin α)t3 + O(Ω2), (2.7.44)

z(t) = h − 1

2
gt2 + O(Ω2). (2.7.45)

Observe that the factor gΩsin α is positive for any colatitude α, except at the North
and South poles where it is zero. The fact that y increases during the motion means
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Figure 2.21: Geometry of Foucault’s pendulum. The motion of the pendulum is de-
scribed by the swing angle θ and the rotation angle φ.

that the particle, which would just fall straight down in the absence of rotation, is
in fact drifting away in the eastward direction.

The time required for the particle to hit the ground is t = (2h/g)1/2, and by
this time to total eastward displacement is

ytotal =
1

3
(gΩsin α)

(

2h

g

)3/2

. (2.7.46)

If the object is released from a height of 100 m at Guelph’s colatitude (approximately
47◦), this amounts to approximately 1.6 cm. The Coriolis force produces a rather
small effect.

Exercise 2.28. Compute this number.

2.7.6 Case study #3: Foucault’s pendulum

A dramatic demonstration of Earth’s rotation came from Foucault’s celebrated pen-
dulum, which was first displayed in front of an audience at the Observatoire de Paris
in 1851. The idea is that while the Earth rotates the pendulum keeps oscillating
in a fixed plane as viewed from an inertial frame; as seen from the Earth’s rotating
frame, however, it is the pendulum that appears to be rotating. More precisely
stated, as viewed in the local rotating frame the pendulum is swinging in a plane
which rotates at a steady rate Ωplane; this is directly related to Ω, the rate at which
the Earth itself is rotating.

In this last application we will examine the motion of a pendulum in the local
rotating frame. We aim to calculate Ωplane, in an approximation in which we neglect
the centrifugal effects (which are proportional to Ω2) but retain the Coriolis effects
(which are proportional to Ω), and in an approximation in which the amplitude of
the pendulum’s oscillations is assumed to be small.

In the spirit of Lagrangian mechanics we will use the generalized coordinates θ
and φ to describe the motion of the pendulum, as illustrated in Fig. 2.21. (Notice
that θ, as defined here, is not the standard spherical coordinate.) The relation
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between these generalized coordinates and the original Cartesian system (x, y, z) is
given by

x = ℓ sin θ cos φ, y = ℓ sin θ sin φ, z = h − ℓ cos θ. (2.7.47)

The pendulum has a constant length ℓ, and its pivot point is attached at a height
h above the Earth’s surface. As usual we introduce the quantity

ω2 = g/ℓ, (2.7.48)

and we will use it instead of g.
The two degrees of freedom of the pendulum are represented by the angles θ

and φ. The first angle, θ, is the usual swing angle of the pendulum. In the absence
of rotation, the pendulum would swing in a fixed plane, and φ would stay constant;
in this situation there would be a single degree of freedom. But as we shall see,
the Earth’s rotation will force φ to change steadily with time, and the plane of the
pendulum will rotate in the x-y plane; in this situation there are two degrees of
freedom, and φ is the rotation angle of the swing plane.

According to Eq. (2.7.47) the pendulum’s velocity vector has the components

ẋ = ℓ cos θ cos φ θ̇ − ℓ sin θ sinφ φ̇,

ẏ = ℓ cos θ sinφ θ̇ + ℓ sin θ cos φ φ̇,

ż = ℓ sin θ θ̇.

It follows that the squared velocity is

v2 = ℓ2θ̇2 + ℓ2 sin2 θ φ̇2.

We make this substitution, along with z = h − ℓ cos θ, into the Lagrangian of
Eq. (2.7.33), and we allow ourselves (once more) to neglect the centrifugal terms
that are proportional to Ω2. This yields

L =
1

2
mℓ2(θ̇2 + sin2 θ φ̇2)

+ mΩ
{

[

(R + h − ℓ cos θ)ẏ − yż
]

sinα +
[

xẏ − yẋ
]

cos α
}

− mg(h − ℓ cos θ).

In this Lagrangian we recognize a term mΩ(R + h)ẏ sin α and another term −mgh
that can both be discarded. We can omit the first term because it is the time
derivative of the function mΩ(R + h)y sin α, and as we have learned in Sec. 2.5.3,
such a term will not contribute to the equations of motion. And we can omit the
second term for the simple reason that it is a constant; it will also contribute nothing
to the equations of motion.

The Lagrangian simplifies to

L =
1

2
mℓ2(θ̇2 + sin2 θ φ̇2)

+ mΩ
{

−
[

ℓ cos θ ẏ + yż
]

sinα +
[

xẏ − yẋ
]

cos α
}

+ mgℓ cos θ.

This becomes

L = mℓ2
{

1

2

(

θ̇2 + sin2 θ φ̇2
)

− Ωsin α
(

sin φ θ̇ + sin θ cos θ cos φ φ̇
)

+ Ωcos α sin2 θ φ̇ + ω2 cos θ

}

, (2.7.49)
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after involving the transformation between the Cartesian coordinates (x, y, z) and
our generalized coordinates (θ, φ). This is the pendulum’s Lagrangian, up to terms
of order Ω2 that have been neglected.

Exercise 2.29. Verify Eq. (2.7.49).

We may simplify the Lagrangian further if we assume that the amplitude of the
pendulum’s oscillations is sufficiently small that we can use the approximations

sin θ ≃ θ, cos θ ≃ 1 − 1

2
θ2.

Neglecting all terms of order θ3 and higher, we obtain

L = mℓ2
{

1

2

(

θ̇2 + θ2 φ̇2
)

− Ωsin α
(

sin φ θ̇ + θ cos φ φ̇
)

+ Ωcos α θ2φ̇ + ω2

(

1 − 1

2
θ2

)}

.

In this simplified Lagrangian we recognize a term proportional to

sin φ θ̇ + θ cos φ φ̇ =
d

dt

(

θ sin φ
)

;

we can discard this term from the Lagrangian because this is a total time derivative.
We may also remove the constant term ω2. After these simplifications, our final
Lagrangian will be

L = mℓ2
{

1

2

(

θ̇2 + θ2 φ̇2
)

+ Ωcos α θ2φ̇ − 1

2
ω2θ2

}

. (2.7.50)

This is the simplified Lagrangian for Foucault’s pendulum, and it is valid in the
limit of small swing angles.

The equations of motion are obtained by substituting the Lagrangian of Eq. (2.7.50)
into the EL equations. Omitting all details, we find that the equation for θ is

θ̈ + ω2θ − φ̇(φ̇ + 2Ωcos α)θ = 0. (2.7.51)

And the fact that the Lagrangian does not depend explicitly on φ implies that the
(rescaled) generalized momentum

pφ = θ2(φ̇ + Ωcos α) (2.7.52)

is a constant of the motion.

Exercise 2.30. Verify that the EL equations produce Eqs. (2.7.51) and the statement
that pφ, as defined by Eq. (2.7.52), is constant.

Solving Eq. (2.7.52) for φ̇ gives φ̇ = −Ωcos α+pφ/θ2. We see that unless pφ = 0,

φ̇ would blow up as θ → 0, that is, whenever the pendulum crosses the z axis. To
eliminate this unphysical behaviour we set pφ = 0, so that

φ̇ = −Ωcos α. (2.7.53)

This is our key result. In the absence of rotation we would find that φ̇ = 0, and
we would conclude that the pendulum swings in a fixed plane, as we had foreseen
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at the beginning of this subsection. With the Earth’s rotation, however, we find
instead that φ̇ = −Ωcos α, and this means that the swing plane is rotating with a
constant angular velocity given by

Ωplane = −Ωcos α. (2.7.54)

This is the Foucault effect.
When the pendulum is located in the northern hemisphere, we have that cosα >

0 and we find that Ωplane < 0, so that the swing plane rotates clockwise. When,
on the other hand, we go to the southern hemisphere, we have that cosα < 0 and
Ωplane > 0, so that the swing plane rotates counterclockwise. The Foucault effect
is maximum at the poles, and it vanishes at the equator.

Exercise 2.31. Calculate ∆φ, the angular displacement of the swing plane after 1
hour, when the Foucault pendulum is located in Guelph (colatitude 47◦).

Exercise 2.32. This is the laboratory component of the course. There is a Foucault
pendulum in the foyer of the MacNaughton building, and you are asked to determine its
value for ∆φ. Measure the angular position of the swing plane when you first arrive in
the Department of Physics, and record the time. Repeat the measurement when you are
about to leave. Divide the difference in angular positions by the time interval measured in
hours, and obtain your experimental value for ∆φ. How close is it to the theoretical value
obtained in the previous exercise?

To finish off our discussion of the Foucault pendulum we return to Eq. (2.7.51),
in which we substitute Eq. (2.7.53). The result is

θ̈ + ω2θ − (−Ωcos α)(+Ω cos α)θ = 0,

or
θ̈ + (ω2 + Ω2 cos2 α)θ = 0.

This is the equation for simple harmonic motion, and it appears to indicate that
the natural frequency of the pendulum is shifted from ω to

√
ω2 + Ω2 cos2 α by

the Earth’s rotation. This conclusion, however, is premature. In the course of our
calculations we have consistently neglected all terms of order Ω2, starting with the
Lagrangian of Eq. (2.7.49). We must continue to do so, and the previous equation
must be approximated by

θ̈ + ω2θ = 0. (2.7.55)

This is still the equation for simple harmonic motion, with the original natural
frequency ω =

√

g/ℓ. The general solution to this equation is θ(t) = θ0 cos(ωt + δ),
where θ0 and δ are constants.

To sum up, we have found that to first order in Ω, the pendulum swings as a
simple harmonic oscillator, but that it does so in a plane that rotates around the
vertical direction with an angular velocity Ωplane = −Ωcos α.

2.8 Problems

1. (a) Find the curve y(x) that passes through the endpoints (0, 0) and (1, 1)
and minimizes the functional

I[y] =

∫ 1

0

[

(dy

dx

)2

− y2

]

dx.
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(b) What is the minimum value of the functional?

(c) Evaluate I[y] for a straight line that passes through the same two end-
points. Is this smaller or larger than your answer in part (b)?

2. You are mounting an expedition to reach the other side of a volcano, and
you wish to determine the path that will minimize the distance traveled. To
perform this calculation you decide to use cylindrical coordinates (ρ, φ, z) and
you model the volcano as the conical surface z = 1 − ρ. [The cylindrical
coordinates are defined by x = ρ cos φ, y = ρ sin φ, and z = z.] You describe
the path by the function ρ(φ) and let the angle φ range through the interval
−π

2 ≤ φ ≤ π
2 . The starting point of the expedition is (ρ = 1, φ = −π

2 , z = 0)
and the end point is (ρ = 1, φ = +π

2 , z = 0). You wish to find the path ρ(φ)
that minimizes the total distance traveled from this side of the volcano to the
other side.

(a) Prove that the functional that must be minimized is

s[ρ] =

∫ π

2

−π

2

√

2ρ′2 + ρ2 dφ,

where ρ′ = dρ/dφ.

(b) Find the differential equation that the minimal path must satisfy.

(c) Show that

ρ(φ) =
cos

(

π
2
√

2

)

cos
(

φ√
2

)

is a solution to this differential equation, and that it satisfies the bound-
ary conditions; conclude that this must be the minimal path. Produce a
plot of z = 1 − ρ as a function of φ.

(d) Calculate the minimum distance smin. Compare this with the distance
that would be traveled if the path were instead chosen to be ρ(φ) = 1.

3. A bead of mass m slides on a frictionless wire that is shaped in the form of a
cycloid. This is described by the parametric equations

x = a(θ − sin θ), y = a(1 + cos θ),

where a is a constant and the parameter θ ranges through the interval 0 ≤
θ ≤ 2π. The bead is subjected to gravity, and it oscillates back and forth on
the wire.

(a) Using θ as a generalized coordinate, calculate the bead’s Lagrangian.

(b) Show that the equation of motion for the bead is

2(1 − cos θ)θ̈ + sin θ θ̇2 − g

a
sin θ = 0.

(c) Show that the transformation u = cos( 1
2θ) brings this equation to the

much simpler form

ü + ω2u = 0,

and find an expression for ω.

(d) What is the period of the bead’s oscillations?
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4. A particle of mass m moves on a paraboloid of revolution described by the
equation

z =
1

a

(

x2 + y2
)

,

where a is a constant (see the figure). The particle is subjected to gravity,
so that its potential energy is V = mgz. Using the cylindrical coordinates ρ
and φ as generalized coordinates, find the Lagrangian of the particle. [The
cylindrical coordinates are defined by x = ρ cos φ, y = ρ sin φ.]

x

z

y
φ

ρ

m

z

5. A straight frictionless wire is attached at a height h to the z axis, and it makes
an angle α relative to the z axis. The wire rotates around the z axis with
a constant angular velocity Ω. A bead of mass m slides on the wire and is
subjected to gravity; it is at a distance r from the point at which the wire is
attached to the z axis (see the figure).

(a) Using r as a generalized coordinate, calculate the bead’s Lagrangian.

(b) Obtain the equation of motion for the bead.

(c) Solve the equation of motion, assuming that the bead starts from rest at
the point of attachment; this means that r(t = 0) = 0 and ṙ(t = 0) = 0.
Show that your solution can be expressed in the form

r(t) =
g cos α

k2

[

cosh(kt) − 1
]

,

where k = Ωsin α.
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6. In Sec. 2.4.5 we examined the motion of a planar pendulum whose pivot point
was forced to rotate with a constant angular velocity Ω. Here we consider
instead a planar pendulum whose pivot point is forced to move horizontally
with a constant acceleration a. This motion takes place in the x direction,
and xpivot = 1

2at2.

(a) Using the swing angle θ as a generalized coordinate, find the pendulum’s
Lagrangian.

(b) Derive the equation of motion for the pendulum.

(c) Show that the pendulum can be in an equilibrium state in which θ(t) =
θeq = constant. Show that the equilibrium position is determined by

tan θeq = −a

g
.

(d) Suppose that the pendulum oscillates about its equilibrium position, so
that θ = θeq + φ, with φ denoting the angular deviation away from
equilibrium. Assuming that φ is a small angle, show that its behaviour
is governed by an equation of the form

φ̈ + ω2φ = 0.

Find an expression for ω2 in terms of g, a, and ℓ.

7. In this problem we examine the motion of the same pendulum as in the pre-
ceding problem, but we now let the pivot point move vertically upward with
a constant acceleration a. Find the pendulum’s Lagrangian and derive its
equation of motion.

8. A particle of mass m is constrained to move on the surface of a cylinder. The
cylinder is described in cylindrical coordinates by the equation ρ = R, where
ρ is the distance from the z axis and R is the cylinder’s radius. The particle is
subjected to a force directed toward the origin of the coordinate system and
proportional to the distance between the particle and the origin; this force is
described by F = −kr, where k is a constant and r is the particle’s position
vector.

(a) Using the cylindrical coordinates z and φ as generalized coordinates, find
the particle’s Lagrangian.
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(b) Derive the particle’s equations of motion and find their general solutions.

9. A particle of mass m and electric charge q moves in the presence of a vector
potential

A =
1

2
B0

(

−yx̂ + x ŷ
)

,

where B0 is a constant.

(a) What is the magnetic field B?

(b) What is the particle’s Lagrangian?

(c) What are the particle’s equations of motion?

(d) What is the general solution to these equations? Describe how the par-
ticle moves in this magnetic field.

10. A particle of mass m and electric charge q moves in the presence of a vector
potential

A =
E0

kc
sin

[

k(z − ct)
]

x̂,

where E0 is a constant, c is the speed of light, and k is another constant.

(a) What are the electric field E and magnetic field B? What kind of elec-
tromagnetic field does this vector potential represent?

(b) What is the particle’s Lagrangian?

(c) What are the particle’s equations of motion?

(d) Find the general solution to these equations in the nonrelativistic limit,
in which ẋ/c ≪ 1, ẏ/c ≪ 1, and ż/c ≪ 1.

11. A plumb bob at rest near Earth’s surface, in a laboratory at colatitude α, is
subjected to a force F = mg + Fcentrifugal when viewed in a local rotating
frame. We write this force as F = mgeff and define

geff = g + Fcentrifugal/m

as the effective gravitational field felt by the plumb bob. Assuming that
Ω2R/g is a small number (which it is), calculate:

(a) The fractional difference |geff − g|/g between the magnitudes of the effec-
tive and true gravitational fields; quote your result as a percentage.

(b) The angle that geff makes relative to the z direction; quote your result
in degrees.

Assume that the laboratory is situated in Guelph, at a colatitude of 47◦.

12. A projectile is launched from Earth’s surface with an initial velocity v(t =
0) = v1x̂ + v2ŷ + v3ẑ. The launch pad is situated at the origin of a local
rotating frame at colatitude α, and the motion of the projectile is examined
in this reference frame. Working consistently to first order in Ω (and therefore
neglecting centrifugal effects), obtain the motion of the projectile for all times
t. In other words, solve the equations of motion for the functions x(t), y(t),
and z(t), incorporating the initial conditions x(0) = y(0) = z(0) = 0, as well
as ẋ(0) = v1, ẏ(0) = v2, and ż(0) = v3.



108 Lagrangian mechanics

13. A projectile is launched directly upward from Earth’s surface (so that v1 =
v2 = 0 but v3 6= 0). The launch pad is situated at the origin of a local
rotating frame at colatitude α, and the motion of the projectile is examined
in this reference frame. Working consistently to first order in Ω, calculate the
projectile’s position when it finally hits the ground. Express your result in
terms of g, Ω, α, as well as h, the maximum height reached by the projectile.
In which direction is the projectile displaced? [This problem is a special case
of the preceding problem. You may find it useful to solve the general problem
first.]

14. A cannonball is fired due east with an initial speed v0, and with an angle θ with
the horizontal. The cannon is placed at the origin of a local rotating frame at
colatitude α, and the motion of the cannonball is examined in this reference
frame. Working consistently to first order in Ω, calculate the cannonball’s
lateral displacement when it finally hits the ground. In which direction is
it displaced? Does this direction depend on whether the cannon is in the
northern or southern hemisphere? [The same remark as in the preceding
problem applies.]

2.9 Additional problems

1. Two particles of mass m1 and m2 are attached to a string of constant length
ℓ. The first particle moves on a frictionless table. The string goes through a
hole in the middle of the table, and the second particle swings underneath the
table. The first particle therefore moves in the x-y plane under the action of
an attractive force directed toward the hole, and the second particle behaves
as a planar pendulum with a variable distance to the pivot point.

The first particle is at a distance r to the hole, and its position vector makes
an angle χ relative to the x axis. The swing angle of the second particle
(relative to the vertical) is denoted ψ.

Using r, χ, and ψ as generalized coordinates, find the Lagrangian of this
mechanical system.

2. In an experiment designed to measure the Coriolis effect, a particle of mass m
is set to move on a large frictionless table. The table is placed in a laboratory
at colatitude α, and the table is oriented along the x and y directions (with
x pointing south and y pointing east). The Earth’s angular velocity is Ω.

At all times the particle moves on the table with z = 0. It begins its motion
(when t = 0) at the origin x = y = 0 of the reference frame. Initially it is
heading due south, with a velocity v(t = 0) = v0 x̂ as measured in the local
rotating frame. At later times the particle is observed to move laterally, as
predicted by the Coriolis effect.

Calculate the lateral displacement y as a function of the forward displacement
x. You must perform the calculation consistently to first order in Ω, but you
may neglect all terms of order Ω2 (and higher powers).

Express your result for y in terms of x, Ω, α, and v0.

3. A particle of mass m moves on the interior surface of a hollow hemisphere
of radius a. The particle’s position on the hemisphere is determined by the
usual angles θ and φ.

(a) Show that the particle’s Lagrangian is

L =
1

2
ma2(θ̇2 + sin2 θ φ̇2) + mga cos θ.
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(b) Derive the equations of motion for the particle. Show that the equation
for θ can be expressed in the form

1

2
θ̇2 + ν(θ) = ε,

and find an expression for the effective potential ν(θ). (The constant ε
is proportional to the particle’s total mechanical energy.)

(c) Provide a rough sketch of ν(θ).

(d) Show that a possible solution to the equations of motion is θ(t) = θ0 =
constant.

(e) Calculate the particle’s speed v when it follows the path described in part
(d); express your result in terms of a, g, and θ0.
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Chapter 3

Hamiltonian mechanics

3.1 From Lagrange to Hamilton

As we saw in Chapter 2, the Lagrangian formulation of the laws of mechanics offers
increased flexibility and efficiency relative to the Newtonian methods, and it is
based on an appealing principle of least action. In this chapter we add a layer
of mathematical sophistication to this formulation of mechanics. The resulting
Hamiltonian formulation of the laws of mechanics gives this area of theoretical
physics an aura of perfection that has probably not been surpassed by any other
area of theoretical physics.

The main goal of the Hamiltonian formulation is to displace the emphasis from
the generalized velocities q̇a to the generalized momenta pa, and from the La-
grangian L(qa, q̇a, t) to a new function H(qa, pa, t) called the Hamiltonian func-
tion of the mechanical system, which is numerically equal to the system’s total
mechanical energy. The motivation behind this shift of emphasis is clear: While
the generalized velocities are rarely conserved quantities, the generalized momenta
sometimes are, and while the Lagrangian is never conserved, the Hamiltonian usu-
ally is. The Hamiltonian formulation therefore involves all the dynamical quantities
that have a chance of being constants of the motion, and this constitutes a useful
and interesting refinement of the original Lagrangian methods.

3.1.1 Hamilton’s canonical equations

To see how the reformulation is accomplished, let us go back to Eq. (2.5.4), which
gives the definition of the function h(qa, q̇a, t), which is also numerically equal to
the total mechanical energy of the system. This is

h(qa, q̇a, t) =
∑

a

paq̇a − L(qa, q̇a, t), (3.1.1)

where

pa =
∂L

∂q̇a
(3.1.2)

is the generalized momentum associated with the generalized coordinate qa. Notice
that here we allow L and h to depend explicitly on time. And notice that the energy
function is denoted h, not H; we will explain this distinction later.

We construct the total differential of h:

dh =
∑

a

(q̇a dpa + pa dq̇a) − dL.

To calculate dL we invoke the chain rule, and write

dL =
∑

a

(

∂L

∂qa
dqa +

∂L

∂q̇a
dq̇a

)

+
∂L

∂t
dt.
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Combining these results gives

dh =
∑

a

[

q̇a dpa +

(

pa − ∂L

∂q̇a

)

dq̇a − ∂L

∂qa
dqa

]

− ∂L

∂t
dt.

From the definition of the generalized momentum we recognize that the coefficient
of dq̇a is zero. And since the Euler-Lagrange (EL) equations can be expressed in
the form ṗa = ∂L/∂qa, what we have is

dh =
∑

a

(q̇a dpa − ṗa dqa) − ∂L

∂t
dt. (3.1.3)

Suppose now that h is given as a function of qa, pa, and t. Then it would follow
as a matter of mathematical identity that the total differential of h(qa, pa, t) is

dh =
∑

a

(

∂h

∂qa
dqa +

∂h

∂pa
dpa

)

+
∂h

∂t
dt.

Comparing this with Eq. (3.1.3) reveals that we can make the identifications

q̇a =
∂h

∂pa
, ṗa = − ∂h

∂qa
,

∂L

∂t
= −∂h

∂t
.

The first two equations are evolution equations for the dynamical variables qa(t) and
pa(t). These are almost Hamilton’s equations, except for one important subtlety.

The previous identifications can be made if and only if the function h is expressed
in terms of qa, pa, and t. If it is so expressed, then we have learned that q̇a is the
partial derivative of h with respect to pa keeping qa constant, while ṗa is (minus)
the partial derivative of h with respect to qa keeping pa constant. Our function
h, however, has not yet been expressed in terms of the new variables; it is still
expressed in terms of the old variables qa, q̇a, and t. Before we can write down
Hamilton’s equations we must solve for q̇a in terms of qa and pa, and we must make
the substitution in h. We must therefore evaluate

h
(

qa, q̇a(qa, pa), t) ≡ H(qa, pa, t), (3.1.4)

and this is what we shall call the Hamiltonian function of the mechanical system.
The functions h and H are numerically equal, they both represent the total me-
chanical energy of the system, but only the Hamiltonian H is the required function
of qa, pa, and t.

Having clarified this point and made the change of variables from (qa, q̇a) to
(qa, pa), we can finally write down Hamilton’s equations,

q̇a =
∂H

∂pa
, ṗa = −∂H

∂qa
. (3.1.5)

This system of equations is formally equivalent to the original set of EL equations.
But instead of representing a set of n second-order differential equations for the
coordinates qa(t) — there is one equation for each of the n degrees of freedom —
Hamilton’s equations represent a set of 2n first-order differential equations for the
new dynamical variables qa(t) and pa(t). The generalized momenta are now put on
an equal footing with the generalized coordinates.

The recipe to arrive at Hamilton’s canonical equations goes as follows:

1. Begin with the Lagrangian L(qa, q̇a, t) of the mechanical system, expressed in
terms of any set of generalized coordinates qa and the corresponding general-
ized velocities q̇a.
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2. Construct the generalized momenta pa = ∂L/∂q̇a, and solve for the general-
ized velocities to obtain q̇a(qa, pa, t).

3. Construct the Hamiltonian function

H(qa, pa, t) =
∑

a

paq̇a − L

and express the result entirely in terms of qa, pa, and t; at this stage the
generalized velocities have completely disappeared from sight.

4. Formulate Hamilton’s equations,

q̇a =
∂H

∂pa
, ṗa = −∂H

∂qa

and solve the equations of motion for qa(t) and pa(t); observe that the general-
ized velocities q̇a have reappeared, but now as a consequence of the dynamical
equations.

Concrete applications of this recipe will be given in the next section. For the
time being we prefer to explore some of the formal consequences of Hamilton’s
formulation of the laws of mechanics.

3.1.2 Conservation statements

We begin with an examination of what Hamilton’s equations have to say regarding
the existence of constants of the motion.

It follows immediately from the dynamical equation

ṗa = −∂H

∂qa

that if the Hamiltonian H happens not to depend explicitly on one of the generalized
coordinates, say q∗, then ∂H/∂q∗ = 0 and ṗ∗ = 0. This means that p∗ will be a
constant of the motion, and we have established the theorem:

Whenever the Hamiltonian of a mechanical system does not depend ex-
plicitly on a generalized coordinate q∗, the corresponding generalized
momentum p∗ is a constant of the motion.

We made a similar statement back in Sec. 2.5.1, but in terms of the Lagrangian
instead of the Hamiltonian.

Hamilton’s equations allow us also to state another theorem, which is very sim-
ilar: Whenever the Hamiltonian of a mechanical system does not depend explicitly
on a generalized momentum p∗, the corresponding generalized coordinate q∗ is a
constant of the motion. This statement is a true consequence of Hamiltonian dy-
namics, but it is less useful in practice: If q∗ were a constant of the motion it is
likely that it would not have been selected as a coordinate in the first place!

What do Hamilton’s equations have to say about conservation of energy? To
answer this let us consider a general Hamiltonian of the form H(qa, pa, t), which
includes an explicit dependence on t. Its total time derivative is

dH

dt
=

∑

a

(

∂H

∂qa
q̇a +

∂H

∂pa
ṗa

)

+
∂H

∂t
.

By Hamilton’s equations this becomes

dH

dt
=

∑

a

(

−ṗaq̇a + q̇aṗa

)

+
∂H

∂t
,
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q
2

q1

t = 0

Figure 3.1: A trajectory in a two-dimensional configuration space. It is possible for the
trajectory to intersect itself, because the system can go back to the same position after a
given interval of time.

or
dH

dt
=

∂H

∂t
. (3.1.6)

This gives us the statement

Whenever the Hamiltonian of a mechanical system does not depend
explicitly on t, it is a constant of the motion: dH/dt = 0.

Recall that back in Sec. 2.5.2 we derived the relation dh/dt = −∂L/∂t. Here we
have instead dH/dt = ∂H/∂t. These statements are compatible by virtue of the
fact that ∂L/∂t = −∂H/∂t; you will recall that we came across this identification
back in Sec. 3.1.1.

3.1.3 Phase space

Suppose that a mechanical system possesses n degrees of freedom represented by
n generalized coordinates qa (with a = 1, 2, · · · , n labeling each one of the n co-
ordinates, as usual). The n-dimensional space spanned by the qa’s is called the
configuration space of the mechanical system. The motion of the entire system can
be represented by a trajectory in configuration space, and the generalized velocities
q̇a represent the tangent to this trajectory. This is illustrated in Fig. 3.1. The figure
shows that a trajectory in configuration space can cross itself: The system could
return later to a position qa with a different velocity q̇a.

The Hamiltonian formulation of the laws of mechanics gives us an alternative
way of representing the motion. Because the coordinates qa and the momenta pa

are placed on an equal footing, it is natural to form a 2n-dimensional space that
will be spanned by the n coordinates and the n momenta. This new space is called
the phase space of the mechanical system. While the phase space is twice as large
as the configuration space, it allows a much simpler representation of the motion.
The reason is that a point (qa, pa) in phase space represents the complete state of
motion of a mechanical system at a given time; by identifying the point we obtain the
complete information about the positions and momenta of all the particles within
the system. (By contrast, in configuration space the complete state of motion would
be represented by a point and the tangent to a trajectory that passes through this
point.) As the coordinates and momenta change with time the mechanical system
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t = 0

q

p

Figure 3.2: A trajectory in a two-dimensional phase space. So long as the Hamiltonian
does not depend explicitly on time, it is impossible for the trajectory to intersect itself.

traces a trajectory in phase space; each point on this curve represents a new time
and a new state of motion. The tangent to a phase-space trajectory gives the
phase-space velocity field, (q̇a, ṗa). This is illustrated in Fig. 3.2.

So long as the Hamiltonian does not depend explicitly on time, a trajectory in
phase space can never intersect itself; as we have seen, this is quite unlike a tra-
jectory in configuration space. This property of phase-space trajectories is another
reason why motion in phase space is simpler than motion in configuration space. It
follows from the fact that the Hamiltonian H(qa, pa) is a single-valued function of
its arguments: there is only one value of H at each point in phase space. To see the
connection, observe that if H is single-valued, then its partial derivatives ∂H/∂qa

and ∂H/∂pa will be single-valued also; and by Hamilton’s equations this implies
that the tangent (q̇a, ṗa) to a phase-space trajectory is a single-valued vector field
over phase space. If the tangent of a trajectory is unique at every phase-space point,
the trajectory can never intersect itself.

Exercise 3.1. Explain why this conclusion does not apply when the Hamiltonian
depends explicitly on time.

When the total energy of the mechanical system is conserved we find that the
coordinates and momenta are constrained by the energy equation H(qa, pa) = E =
constant. In this case the motion will proceed on a fixed “surface” in phase space;
this “surface”, which is called an energy surface, has an intrinsic dimensionality
of 2n − 1. The existence of other constants of the motion would also restrict the
motion to a “surface” of lower dimensionality. We will encounter specific examples
of such “surfaces” in the next section.

3.1.4 Hamilton’s equations from Hamilton’s principle

Hamilton’s equations can be derived directly from Hamilton’s principle of least
action, δS = 0. For this purpose the action functional must be expressed in terms
of the Hamiltonian instead of the Lagrangian. Because H =

∑

a paq̇a −L, we write
it as

S =

∫ t1

t0

Ldt =

∫ t1

t0

(

∑

a

paq̇a − H

)

dt,
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or

S =

∫ t1

t0

(

∑

a

pa dqa − H dt

)

. (3.1.7)

The action S[qa, pa] must now be thought of as a functional of the variables qa(t)
and pa(t); all these variables are considered to be independent of each other — they
become connected only after the action has been extremized and the dynamical
equations have been imposed. What we have, therefore, is a multi-path functional
that depends on n paths qa(t) and n additional paths pa(t). Alternatively, we may
think of S[qa, pa] as a functional of a single path in a 2n-dimensional phase space.

We intend to compute how the action of Eq. (3.1.7) changes when the paths
are displaced relative to some reference paths q̄a(t) and p̄a(t). We will derive the
equations of motion by demanding that δS = 0 to first order in the displacements
δqa(t) and δpa(t). We will impose the boundary conditions δqa(t0) = δqa(t1) = 0:
As in the usual form of the variational principle, all paths must begin and end
at the same end points in configuration space, qa(t0) and qa(t1). We will not,
however, impose any conditions on the variations δpa(t); these remain completely
free, including at t = t0 and t = t1.

The variation of the action is given by

δS =

∫ t1

t0

[

∑

a

(

dqa δpa + pa dδqa

)

−
∑

a

(

∂H

∂qa
δqa +

∂H

∂pa
δpa

)

dt

]

=

∫ t1

t0

∑

a

[

pa dδqa +

(

dqa − ∂H

∂pa
dt

)

δpa − ∂H

∂qa
dt δqa

]

.

To simplify this we write

pa dδqa = d
(

paδqa

)

− δqa dpa,

and we integrate the first term. This gives

δS =
∑

a

paδqa

∣

∣

∣

∣

t1

t0

+

∫ t1

t0

∑

a

[(

dqa − ∂H

∂pa
dt

)

δpa −
(

dpa +
∂H

∂qa
dt

)

δqa

]

,

or

δS =

∫ t1

t0

∑

a

[(

dqa

dt
− ∂H

∂pa

)

δpa −
(

dpa

dt
+

∂H

∂qa

)

δqa

]

dt

by virtue of the boundary conditions on δqa(t). Because the variations δqa and δpa

are arbitrary and independent of each other in the interval t0 < t < t1, we conclude
that

δS = 0 ⇒ q̇a =
∂H

∂pa
, ṗa = −∂H

∂qa
. (3.1.8)

These are, once more, Hamilton’s canonical equations.

3.2 Applications of Hamiltonian mechanics

3.2.1 Canonical equations in Cartesian coordinates

The Lagrangian of a particle moving in a potential V (x, y, z) expressed in Cartesian
coordinates is

L =
1

2
m(ẋ2 + ẏ2 + ẋ2) − V (x, y, z). (3.2.1)

The momenta are

px =
∂L

∂ẋ
= mẋ
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and so on, and the Hamiltonian is H = pxẋ+py ẏ+pz ż−L. Expressing this entirely
in terms of the coordinates and momenta, we obtain

H =
1

2m
(p2

x + p2
y + p2

z) + V (x, y, z). (3.2.2)

At this state the velocities ẋ, ẏ, and ż are no longer part of our description.
The canonical equations are

ẋ =
∂H

∂px
=

px

m

and so on, as well as

ṗx = −∂H

∂x
= −∂V

∂x
and so on. Summarizing these equations in vectorial form, we have

ṙ =
p

m
, ṗ = −∇V. (3.2.3)

Notice that the first equation reproduces the relationship between p and ṙ that was
worked out previously. This first-order system of differential equations is of course
equivalent to the second-order system mr̈ = −∇V , which is just Newton’s old law;
this is obtained by eliminating p from Eqs. (3.2.3).

3.2.2 Canonical equations in cylindrical coordinates

The Lagrangian of a particle moving in a potential V (ρ, φ, z) expressed in cylindrical
coordinates was worked out in Sec. 2.4.1. According to Eq. (2.4.3), it is

L =
1

2
m(ρ̇2 + ρ2φ̇2 + ż2) − V (ρ, φ, z). (3.2.4)

Recall that the cylindrical coordinates are related to the Cartesian coordinates by
x = ρ cos φ, y = ρ sin φ, and z = z.

The momenta are

pρ =
∂L

∂ρ̇
= mρ̇,

pφ =
∂L

∂φ̇
= mρ2φ̇,

pz =
∂L

∂ż
= mż.

The Hamiltonian is H = pρρ̇ + pφφ̇ + pz ż − L. Expressing this entirely in terms of
the coordinates and the momenta, we obtain

H =
1

2m

(

p2
ρ +

p2
φ

ρ2
+ p2

z

)

+ V (ρ, φ, z). (3.2.5)

At this stage the velocities ρ̇, φ̇, and ż are no longer part of our description.

Exercise 3.2. Go through the algebra that leads to Eq. (3.2.5).

The first set of canonical equations are

ρ̇ =
∂H

∂pρ
=

pρ

m
, (3.2.6)

φ̇ =
∂H

∂pφ
=

pφ

mρ2
, (3.2.7)

ż =
∂H

∂pz
=

pz

m
. (3.2.8)
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Notice that these equations reproduce the relationships between the momenta and
velocities that were worked out previously. The second set of canonical equations
are

ṗρ = −∂H

∂ρ
= −∂V

∂ρ
+

p2
φ

mρ3
, (3.2.9)

ṗφ = −∂H

∂φ
= −∂V

∂φ
, (3.2.10)

ṗz = −∂H

∂z
= −∂V

∂z
. (3.2.11)

If we eliminated the momenta from this system of first-order differential equa-
tions we would find that they are equivalent to the second-order equations listed in
Eqs. (2.4.4)–(2.4.6).

Exercise 3.3. Verify this last statement.

3.2.3 Canonical equations in spherical coordinates

The Lagrangian of a particle moving in a potential V (r, θ, φ) expressed in spherical
coordinates was worked out in Sec. 2.4.2. According to Eq. (2.4.9), it is

L =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2) − V (r, θ, φ). (3.2.12)

Recall that the spherical coordinates are related to the Cartesian coordinates by
x = r sin θ cos φ, y = r sin θ sinφ, and z = r cos θ.

The momenta are

pr =
∂L

∂ṙ
= mṙ,

pθ =
∂L

∂θ̇
= mr2θ̇,

pφ =
∂L

∂φ̇
= mr2 sin2 θ φ̇.

The Hamiltonian is H = pr ṙ + pθ θ̇ + pφφ̇ − L. Expressing this entirely in terms of
the coordinates and the momenta, we obtain

H =
1

2m

(

p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)

+ V (r, θ, φ). (3.2.13)

At this stage the velocities ṙ, θ̇, and φ̇ are no longer part of our description.

Exercise 3.4. Go through the algebra that leads to Eq. (3.2.13).

The first set of canonical equations are

ṙ =
∂H

∂pr
=

pr

m
, (3.2.14)

θ̇ =
∂H

∂pθ
=

pθ

mr2
, (3.2.15)

φ̇ =
∂H

∂pφ
=

pφ

mr2 sin2 θ
. (3.2.16)
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Notice that these equations reproduce the relationships between the momenta and
velocities that were worked out previously. The second set of canonical equations
are

ṗr = −∂H

∂r
= −∂V

∂r
+

p2
θ

mr3
+

p2
φ

mr3 sin2 θ
, (3.2.17)

ṗθ = −∂H

∂θ
= −∂V

∂θ
+

p2
φ cos θ

mr2 sin3 θ
, (3.2.18)

ṗφ = −∂H

∂φ
= −∂V

∂φ
. (3.2.19)

If we eliminated the momenta from this system of first-order differential equa-
tions we would find that they are equivalent to the second-order equations listed in
Eqs. (2.4.10)–(2.4.12).

Exercise 3.5. Verify this last statement.

3.2.4 Planar pendulum

For our first real application of the Hamiltonian framework we reintroduce the
planar pendulum of Sec. 1.3.7. The Lagrangian of this mechanical system was first
written down in Sec. 2.1; it is

L = mℓ2
(

1

2
θ̇2 + ω2 cos θ

)

. (3.2.20)

Here m is the mass of the pendulum, ℓ is the length of its rigid rod, θ is the swing
angle, and ω2 = g/ℓ, where g is the acceleration of gravity. This mechanical system
has a single degree of freedom that is represented by the generalized coordinate θ.

The generalized momentum associated with θ is

pθ =
∂L

∂θ̇
= mℓ2θ̇,

and this equation can be inverted to give θ̇ is terms of pθ. The pendulum’s Hamil-
tonian is H = pθ θ̇ − L, or

H =
p2

θ

2mℓ2
− mℓ2ω2 cos θ. (3.2.21)

As usual, we find that at this stage the generalized velocity θ̇ is no longer part of
our description.

Exercise 3.6. Verify Eq. (3.2.21).

The canonical equations for the Hamiltonian of Eq. (3.2.21) are

θ̇ =
∂H

∂pθ
=

pθ

mℓ2
, (3.2.22)

ṗθ = −∂H

∂θ
= −mℓ2ω2 sin θ. (3.2.23)

If we eliminate pθ from this system of equations we eventually obtain the second-
order equation θ̈ + ω2 sin θ = 0, which is the same as Eq. (1.3.24).
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Figure 3.3: Phase trajectories of a planar pendulum. The innermost curves have a
rescaled energy ε smaller than ω2; they represent the bounded oscillations of a pendulum
between the angles ±θ0, where ε = −ω2 cos θ0. The outermost curves have a rescaled
energy larger than ω2; they represent a pendulum undergoing complete revolutions instead
of bounded oscillations. The thin black curve represents the marginal case ε = ω2.

The canonical equations must be integrated numerically if we wish to determine
the functions θ(t) and pθ(t). Because they are already presented as a system of first-
order differential equations for the set (θ, pθ) of dynamical variables, the numerical
techniques introduced in Sec. 1.6 can be applied directly. This is one advantage of
the Hamiltonian formulation of the laws of mechanics: the first-order form of the
equations of motion means that they are directly amenable to numerical integration.

Because the pendulum’s Hamiltonian does not depend explicitly on time, it is
a constant of the motion. The dynamical variables of the mechanical system are
therefore constrained by the equation

p2
θ

2mℓ2
− mℓ2ω2 cos θ = E = constant, (3.2.24)

where E is the pendulum’s total mechanical energy. This equation describes a one-
dimensional curve in the two-dimensional phase space of the mechanical system.
This curve is the trajectory of the pendulum in phase space. A number of such
phase trajectories are shown in Fig. 3.3.

To describe what is going on in Fig. 3.3 it is helpful to introduce the rescaled
momentum p = pθ/(mℓ2) and the rescaled energy ε = E/(mℓ2). In terms of these
variables Eq. (3.2.24) becomes

1

2
p2 − ω2 cos θ = ε,

and the phase trajectories are obtained by solving this for p(θ). There are two
solutions, one for which p is positive, and the other for which p is negative.

When ε < ω2 we find that the momentum vanishes whenever θ = ±θ0; the
amplitude θ0 of the motion is determined by ε = −ω2 cos θ0. The motion is then
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limited to the interval −θ0 ≤ θ ≤ θ0, and we have the usual situation of a pendulum
oscillating back and forth between the limits ±θ0. The phase trajectories represent-
ing this bounded, oscillatory motion are closed curves that pass through p = 0
whenever θ achieves its limiting values ±θ0. The fact that these phase trajectories
are closed reflects the fact that the motion of the pendulum is periodic.

When ε > ω2 we find that turning points can no longer occur: p never changes
sign, and θ(t) increases (or decreases) monotonically. In this case the pendulum
does not oscillate; instead it undergoes complete revolutions. The phase trajectories
representing this unbounded motion are open curves in the two-dimensional phase
space.

The phase trajectory that represents the motion of a pendulum with ε = ω2

separates the closed curves that represent oscillatory motion and the open curves
that represent the complete revolutions. This curve is called a separatrix.

3.2.5 Spherical pendulum

We next turn to the spherical pendulum, a mechanical system with two degrees of
freedom. Its Lagrangian was derived in Sec. 2.2.4; according to Eq. (2.4.19), it is

L = mℓ2
(

1

2
θ̇2 +

1

2
sin2 θ φ̇2 + ω2 cos θ

)

.

Here m is the mass of the pendulum, ℓ is the length of its rigid rod, θ and φ give the
angular position of the pendulum (the angles are defined in Fig. 2.10), and ω2 = g/ℓ.
The factor mℓ2 in L multiplies each term, and its purpose is simply to give an
overall scale to the Lagrangian; the factor accomplishes nothing else, and it would
just come along for the ride in our further developments. To save ourselves some
trouble we will eliminate this factor by rescaling our quantities. Thus we will deal
with the rescaled Lagrangian L = L/(mℓ2), the rescaled momenta pθ = pθ/(mℓ2)
and pφ = pφ/(mℓ2), and the rescaled Hamiltonian H = H/(mℓ2).

The (rescaled) Lagrangian is

L =
1

2
θ̇2 +

1

2
sin2 θ φ̇2 + ω2 cos θ, (3.2.25)

and the (rescaled) momenta are

pθ =
∂L

∂θ̇
= θ̇

pφ =
∂L

∂φ̇
= sin2 θ φ̇.

The (rescaled) Hamiltonian is H = pθ θ̇ + pφφ̇ − L, and this becomes

H =
1

2
p2

θ +
p2

φ

2 sin2 θ
− ω2 cos θ (3.2.26)

after expressing the velocities in terms of the momenta.

Exercise 3.7. Verify Eq. (3.2.26).

The canonical equations are

θ̇ =
∂H

∂pθ
= pθ, (3.2.27)
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Figure 3.4: Phase trajectories of a spherical pendulum. The different curves have
different values of ε but they share the same value of h. The fact that all the trajectories
are closed indicates that the motion is always bounded and periodic.

φ̇ =
∂H

∂pφ
=

pφ

sin2 θ
, (3.2.28)

ṗθ = −∂H

∂θ
=

p2
φ cos θ

sin3 θ
− ω2 sin θ, (3.2.29)

ṗφ = −∂H

∂φ
= 0. (3.2.30)

The last equation implies that pφ is a constant of the motion; we shall set pφ = h =
constant, as we have done in Eq. (2.4.21). Equations (3.2.27) and (3.2.29) must be
integrated numerically to determine the functions θ(t) and pθ(t); when these are
known Eq. (3.2.28) can be integrated for φ(t).

Exercise 3.8. Show that Eqs. (3.2.27) and (3.2.29) are equivalent to the second-order
differential equation of Eq. (2.4.20).

The motion of the spherical pendulum in phase space can be described analyti-
cally. Because pφ ≡ h and H ≡ ε are constants of the motion, the phase trajectories
are described by

1

2
p2

θ +
h2

2 sin2 θ
− ω2 cos θ = ε. (3.2.31)

This equation can be solved for pθ, and the resulting curves are displayed in Fig. 3.4.
Here the motion always takes place within the bounded interval θ− < θ < θ+, where
the limits θ± are determined by the values of h and ε (the details are provided in
Sec. 2.4.4). It should be noted that the phase space of the spherical pendulum is,
strictly speaking, four-dimensional, because it is spanned by the coordinates θ, pθ,
φ, and pφ. We have reduced this to an effective two-dimensional phase space by
examining a “surface” pφ = constant = h, and by discarding the φ direction.
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3.2.6 Rotating pendulum

The rotating pendulum was first examined in Sec. 2.4.5. Here we have a planar
pendulum whose pivot point is attached to a centrifuge: it rotates with an angular
velocity Ω on a circle of radius a. The Lagrangian of this mechanical system is
displayed in Eq. (2.4.25):

L =
1

2
m

[

(aΩ)2 + 2aℓΩθ̇ sin(θ − Ωt) + ℓ2θ̇2
]

− mℓω2(a sin Ωt − ℓ cos θ).

Before we proceed we simplify this Lagrangian using the rules derived in Sec. 2.5.3:
We discard the term 1

2m(aΩ)2 because it is merely a constant, and we discard the
term −mℓω2a sin Ωt because it is the time derivative of (mℓω2a/Ω) cos Ωt. The
simplified Lagrangian is

L = mℓ2
[

1

2
θ̇2 +

aΩθ̇

ℓ
sin(θ − Ωt) + ω2 cos θ

]

.

We simplify this further by rescaling away the common factor of mℓ2. Our final
(rescaled) Lagrangian is therefore

L =
1

2
θ̇2 +

aΩθ̇

ℓ
sin(θ − Ωt) + ω2 cos θ. (3.2.32)

It is noteworthy that this Lagrangian depends explicitly on time; this comes as
consequence of the fact that the pendulum is driven at a frequency Ω.

The (rescaled) momentum associated with θ is

p =
∂L

∂θ̇
= θ̇ +

aΩ

ℓ
sin(θ − Ωt).

Notice that this is not simply equal to θ̇; here the momentum differs in an essential
way from the generalized velocity. The (rescaled) Hamiltonian is H = pθ̇− L. After
expressing θ̇ in terms of p, this becomes

H =
1

2

[

p − aΩ

ℓ
sin(θ − Ωt)

]2

− ω2 cos θ. (3.2.33)

Exercise 3.9. Verify Eq. (3.2.33).

The canonical equations are

θ̇ =
∂H

∂p
= p − aΩ

ℓ
sin(θ − Ωt), (3.2.34)

ṗ = −∂H

∂θ
=

aΩ

ℓ
cos(θ − Ωt)

[

p − aΩ

ℓ
sin(θ − Ωt)

]

− ω2 sin θ. (3.2.35)

These equations must be integrated numerically, and the results can be displayed as
curves in the two-dimensional phase space spanned by the generalized coordinate θ
and its (rescaled) momentum p. This is done in Fig. 3.5 for selected values of Ω/ω.

Exercise 3.10. Show that Eqs. (3.2.34) and (3.2.35) are equivalent to Eq. (2.4.26).
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Figure 3.5: Phase trajectories of a rotating pendulum. The upper graph shows the
motion in phase space of a pendulum driven at a frequency Ω = 0.4ω; the motion in
configuration space can be seen in the upper graph of Fig. 2.14. The lower graph has
Ω = 0.9ω instead, and the motion in configuration space can be seen in Fig. 2.15. In both
cases we set (a/ℓ)Ω2 = 0.2 and use the same initial conditions as in Figs. 2.14 and 2.15.
The motion in the upper graph is always confined to the interval −30◦ < θ < 30◦. The
motion in the lower graph is not bounded: After oscillating a few times the pendulum
is driven to go through a number of complete revolutions before going back to a brief
oscillation cycle. In both cases the phase trajectories intersect themselves; this is possible
because the Hamiltonian depends explicitly on time.
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3.2.7 Rolling disk

The rolling disk was first examined in Sec. 2.4.6. Its Lagrangian was obtained in
Eq. (2.4.30) and it is

L =
3

4
mR2θ̇2 − mg(ℓ − Rθ) sinα.

Here m is the mass of the disk, R its radius, ℓ is the total length of the inclined
plane, and α is the inclination angle; the disk’s motion is represented by the angle θ,
and these quantities are all illustrated in Fig. 2.16. We can simplify the Lagrangian
by discarding the constant term −mgℓ sin α; we obtain

L =
3

4
mR2θ̇2 + mgR sin α θ. (3.2.36)

The momentum associated with θ is p ≡ pθ = ∂L/∂θ̇ = 3
2mR2θ̇, and the Hamilto-

nian is H = pθ̇ − L, or

H =
p2

3mR2
− mgR sin α θ (3.2.37)

after expressing θ̇ in terms of p.

Exercise 3.11. Verify Eq. (3.2.37).

The canonical equations are

θ̇ =
∂H

∂p
=

2p

3mR2
, (3.2.38)

ṗ = −∂H

∂θ
= mgR sinα. (3.2.39)

By eliminating p from this system of equations we obtain θ̈ = 2
3g sin α/R, which

is the same as Eq. (2.4.31). A particular solution to this second-order differential
equation was displayed in Eq. (2.4.32). From this solution it is easy to calculate
p(t).

Exercise 3.12. Obtain the solution to the canonical equations which enforces the
initial conditions θ(t = 0) = 0 and p(t = 0) = p0, where p0 is an arbitrary constant. Plot
the motion of the disk in phase space for selected values of p0, and verify that your plots
look similar to those featured in Fig. 3.6. Finally, show that the phase trajectories are
described by the equation

p2 − 3m2gR3 sin α θ = 3mR2E,

where E is the disk’s total mechanical energy; find the relationship between E and p0.

3.2.8 Kepler’s problem

Kepler’s problem was first considered in Sec. 1.5. It was revisited in Sec. 2.4.7, where
the Lagrangian of two bodies subjected to their mutual gravity was decomposed into
a centre-of-mass Lagrangian that governs the overall motion of the centre of mass,
and a relative Lagrangian that governs the relative separation r between the two
bodies. The relative Lagrangian was expressed in polar coordinates in Eq. (2.4.36),
which we copy here:

L =
1

2
µ(ṙ2 + r2φ̇2) +

GµM

r
. (3.2.40)
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Figure 3.6: Phase trajectories of a rolling disk. The curves with p positive represent a
disk rolling down the inclined plane. The curves with p negative represent a disk rolling
up.

The quantity µ = m1m2/(m1 + m2) is the reduced mass of the gravitating system,
and M = m1 + m2 is the total mass. The distance between the two bodies is r,
and φ is the orbital angle. Our effective one-body system possesses two degrees of
freedom.

The momenta associated with r and φ are

pr =
∂L

∂ṙ
= µṙ,

pφ =
∂L

∂φ̇
= µr2φ̇,

and the Hamiltonian is H = pr ṙ + pφφ̇ − L, or

H =
p2

r

2µ
+

p2
φ

2µr2
− GµM

r
(3.2.41)

after eliminating the velocities in favour of the momenta.

Exercise 3.13. Verify Eq. (3.2.41).

The canonical equations are

ṙ =
∂H

∂pr
=

pr

µ
, (3.2.42)

φ̇ =
∂H

∂pφ
=

pφ

µr2
, (3.2.43)

ṗr = −∂H

∂r
=

p2
φ

µr3
− GµM

r2
, (3.2.44)
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Figure 3.7: Phase trajectories of Kepler’s problem, in a two-dimensional subspace of
the complete four-dimensional phase space. The different curves have different values of ε
but they share the same value of h. The fact that all the trajectories are closed indicates
that the motion is bounded and periodic. The curves are most easily produced by using
the results of Sec. 1.5.9: We use the parametric representation r = p/(1 + e cos φ) and
p = ṙ = e

p

GM/p sin φ, where p is the semilatus rectum and e the eccentricity. In terms
of these we have h =

√
GMp and ε = −GM(1−e2)/(2p). The phase trajectories displayed

here have eccentricities of 0.3, 0.4, and 0.5, respectively; they all share the same value of
p.

ṗφ = −∂H

∂φ
= 0. (3.2.45)

The last equation implies that pφ is a constant of the motion; we shall express this
as pφ/µ = h = constant, as we have done in Eq. (2.4.38). Equations (3.2.42) and
(3.2.44) can be shown to be equivalent to Eq. (2.4.37).

Exercise 3.14. Verify this last statement.

The solutions to the equations of motion were studied back in Sec. 1.5. The
motion in phase space is described by the equation H = E = constant, which
expresses the fact that H also is a constant of the motion. Introducing the rescaled
quantities p = pr/µ and ε = E/µ, this equation states that

1

2
p2 +

h2

2r2
− GM

r
= ε.

This equation can be solved for p and the result is displayed in Fig. 3.7.

3.2.9 Charged particle in an electromagnetic field

For our last application we consider a particle of charge q moving in an electric
field E and a magnetic field B. The fields can be expressed as E = −∂A/∂t−∇Φ
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and B = ∇ × A in terms of potentials Φ and A; and as we saw in Sec. 2.6, the
Lagrangian of the particle is

L =
1

2
mv2 − qΦ + qA · v, (3.2.46)

where v2 = v·v = ẋ2+ẏ2+ż2. The momentum vector p associated with the position
vector r was obtained back in Eq. (2.6.5); it is p = mv + qA. The Hamiltonian is
H = p · v − L, or

H =
1

2m
(p − qA) · (p − qA) + qΦ. (3.2.47)

Exercise 3.15. Verify Eq. (3.2.47).

The canonical equations governing the evolution of x and px are

ẋ =
∂H

∂px
=

1

m
(px − qAx), (3.2.48)

ṗx = −∂H

∂x
=

q

m
(p − qA) · ∂A

∂x
− q

∂Φ

∂x
, (3.2.49)

and similar equations can be obtained for the pairs (y, py) and (z, pz). The second-
order differential equation that is obtained by eliminating px from the system of
Eqs. (3.2.48) and (3.2.49) is

mẍ = q(E + v × B)x,

and this is the x component of the Lorentz-force law. The other components are
obtained by similar manipulations.

Exercise 3.16. Go through the algebra that leads to Eqs. (3.2.48) and (3.2.49), and
then repeat these calculations for the other four canonical equations. Finally, show that
these equations are indeed equivalent to the Lorentz-force law, mẍ = q(E + v × B). Be
warned: this last calculation can be a bit tricky!

3.3 Liouville’s theorem

3.3.1 Formulation of the theorem

We wish to examine the motion of a large number N of identical particles in phase
space; each particle has its own position and momentum, but all are subjected to
the same potential V . We may imagine that the N particles co-exist peacefully,
without interacting with one another. Or we may imagine that the N particles are
in fact mental copies of one and the same particle, on which we are carrying out N
separate experiments. In all cases we shall refer to the N particles as an ensemble
of particles, and we wish to follow the motion of this ensemble in phase space.

Supposing (for concreteness) that each particle possesses three degrees of free-
dom, which it would if it were to move in a three-dimensional space, we could form
a 6N -dimensional phase space of all positions and momenta of all the particles, and
we could display the motion of the whole ensemble as a trajectory in this super
phase space. We shall not follow this strategy, although it is a viable one. Instead,
we will simultaneously represent the motion of all N particles in the six-dimensional
phase space of an individual particle (which one we pick does not matter, because
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R

Figure 3.8: The initial state of motion of an ensemble of N identical particles is rep-
resented by N representative points in the phase space of an individual particle. These
points are distributed within a bounded region R of the phase space.

the particles are all identical); this individual phase space is spanned by the three
position variables and the three momentum variables. We will have, therefore, a
collection of N separate trajectories in phase space.

We have seen that a point in phase space — the phase space of an individual
particle — gives a complete representation of the state of motion of that particle at
an instant of time. By identifying the point we automatically know the particle’s
position and momentum, and this is all there is to know about the state of motion
of the particle at that instant of time; the equations of motion then tell us how
the state of motion will change from this time to the next time. As was mentioned
previously, the particle will trace a trajectory in phase space, and each point on this
curve will represent a state of motion corresponding to a given instant of time.

Suppose that we wish to represent, at an initial moment t = 0, the state of
motion of our ensemble of N particles, and that we wish to do so in the phase space
of an individual particle. We will need to identify N points in the phase space,
and each of these points will represent the state of motion of one of the particles.
We will call them representative points. Because we give each particle its own set
of initial conditions, the representative points will be spread out in phase space,
and they will define a region R of phase space. We will assume that this region is
bounded; this is illustrated in Fig. 3.8.

Each particle within the ensemble moves according to Hamilton’s equations,
and each representative point traces a trajectory in phase space. Because the initial
conditions are different for each particle, each trajectory is different. In a time t
the initial region R(0) of phase space will be mapped to a distinct region R(t); this
mapping is illustrated in Fig. 3.9. The shape of R(t) will in general be very different
from the shape of the initial region R(0). But according to Liouville’s theorem:

The “volume” of the region R(t) of phase space,

V =

∫

R(t)

dq1dq2 · · · dp1dp2 · · · ,

is independent of the time t; the volume does not change as the region
R(t) evolves in accordance with the motion of each representative
point in phase space.
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Figure 3.9: An initial region R(0) of phase space containing the N representative points
is mapped by Hamilton’s equations to a new region R(t). The shape of the new region can
be very different from the shape of the initial region. But according to Liouville’s theorem,
their phase-space “volumes” are equal.

So Liouville’s theorem states that while the Hamiltonian evolution of the ensemble
will produce a deformation of the region R(t), the evolution will nevertheless pre-
serve its “volume”, as defined by the integration over R(t) of the “volume element”
dV = dq1dq2 · · · dp1dp2 · · · in phase space.

The proof of this important theorem will be presented below. Illustrations of
the theorem are displayed in Fig. 3.10, which shows how an initial region R(0)
of a two-dimensional phase space evolves over time. It is important to note that
Liouville’s theorem is formulated in phase space, and that its validity is therefore
restricted to phase space. An attempt to formulate such a theorem in configuration
space, or in a position-velocity space, would fail: Volumes in such spaces are not
preserved under the time evolution of the ensemble.

3.3.2 Case study: Linear pendulum

The examples displayed in Fig. 3.10 involved a nonlinear pendulum, and the nonlin-
earities of the dynamics produced interesting distortions of the initial (rectangular)
region R(0) of the system’s phase space. These distortions, however, are difficult
(probably impossible) to describe mathematically, and this means that the validity
of Liouville’s theorem would be difficult to check directly.

To help build confidence in these new ideas we will simplify the problem further
and eliminate the nonlinear aspects of the dynamics. We will therefore examine the
motion of an ensemble of linear pendula. Each pendulum possesses the Hamiltonian

H =
1

2
p2 +

1

2
ω2θ2, (3.3.1)

which can be obtained from Eq. (3.2.21) by (i) invoking the approximation cos θ =
1− 1

2θ2, (ii) discarding an irrelevant constant term, and (iii) rescaling the variables
according to H/(mℓ2) → H and pθ/(mℓ2) → pθ ≡ p.

The canonical equations are

θ̇ = p, ṗ = −ω2θ, (3.3.2)

and they are equivalent to the second-order differential equation θ̈ + ω2θ = 0 that
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Figure 3.10: Evolution of a region R(t) in a two-dimensional phase space; the mechan-
ical system is the planar pendulum of Sec. 3.2.4. For all three plots the initial region R(0)
is the rectangular region near the top of the page, and R(t) is drawn at three successive
times. Each region consists of 400 representative points, drawn as open circles, and the
motion of each point in phase space is determined by numerical integration of Hamilton’s
equations. Two bounding phase trajectories are also shown to guide the eye. In the first
(upper) graph the initial conditions are such that the motion each pendulum is bounded,
limited to an interval −θ0 < θ < θ0. In the second (middle) graph the initial conditions
are such that the motion of each pendulum is not bounded; each goes through complete
revolutions. In the third (lower) graph the initial conditions are such that about half
the pendula undergo bounded motion, while the other half undergo unbounded motion.
All three graphs reveal a significant distortion of the region R(t) as the motion of each
pendulum proceeds; but the area of this region is the same at all times.
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governs simple harmonic motion. The general solution to Eqs. (3.3.2) is

θ(t) = θ(0) cos ωt +
p(0)

ω
sin ωt, (3.3.3)

p(t) = p(0) cos ωt − ωθ(0) sin ωt, (3.3.4)

where θ(0) ≡ θ(t = 0) is the initial position of a pendulum sampled from the
ensemble, and p(0) ≡ p(t = 0) is its initial momentum. The energy of each pendu-
lum is conserved, and the trajectory of each pendulum in phase space is an ellipse
described by

1

2
p2 +

1

2
ω2θ2 = ε =

1

2
p2(0) +

1

2
ω2θ2(0).

By varying the initial conditions among all the pendula within the ensemble, we
trace ellipses of varying shapes and sizes.

Each pendulum within the ensemble has its own set of initial conditions θ(0)
and p(0). The spread of initial conditions in phase space defines the initial region
R(0). Suppose that we choose initial conditions such that the N values for θ(0) are
centered around θ(0) = 0 and are within a deviation σθ away from zero, either in the
negative or positive direction. Suppose also that the N values for p(0) are centered
around p(0) = p0 and are within a deviation σp away from p0. What we have,
then, is a region R(0) in phase space that is centered at (θ, p) = (0, p0) and has a
typical extension of σθ in the position direction, and a typical extension of σp is the
momentum direction. This region will evolve to R(t) in a time t, as each pendulum
within the ensemble moves in phase space. We wish to describe this evolution, and
in particular, we wish to show that the “volume” of R(t) is independent of time.

Concretely we choose the boundary of R(0) to be described by an ellipse of
semiaxes σθ and σp, centered at θ(0) = 0 and p(0) = p0. (It is important to
understand that this ellipse has nothing to do with the elliptical motion of each
pendulum in phase space. We have two unrelated ellipses: one representing the
motion of each pendulum in phase space, the other representing the distribution of
initial conditions.) We describe this boundary by the parametric equations

θ(0;α) = −σθ cos α, p(0;α) = p0 + σp sin α, (3.3.5)

in which the parameter α ranges from 0 to 2π. All the representative points are
initially located within this ellipse, and the region R(0) is therefore a solid ellipse;
this is illustrated in Fig. 3.11. The phase-space “volume” of this region is, in this
two-dimensional context, the surface area of the solid ellipse. This “volume” can
be calculated as

V (0) =

∫

R(0)

dθ(0)dp(0)

=

∫ σθ

−σθ

p+(0) dθ(0) +

∫ −σθ

σθ

p−(0) dθ(0).

The first integral is the area under the upper branch of the ellipse (the one for which
p ≥ p0), and the second integral is (minus) the area under the lower branch (the
one for which p ≤ p0). This can be expressed cleanly as

V (0) =

∫ 2π

0

p(0;α)
dθ(0;α)

dα
dα

=

∫ 2π

0

[

p0 + σp sin α
][

σθ sinα
]

dα,

and integration gives
V (0) = πσθσp, (3.3.6)
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p

q

R(0)

Figure 3.11: The initial region R(0) in phase space has an elliptical boundary. The
ellipse is centered at (θ, p) = (0, p0) and it has semiaxes σθ and σp. An angle α (not shown)
parameterizes the position on the boundary.

the expected result for an ellipse of semiaxes σθ and σ0. This is the phase-space
“volume” of our initial region R(0). We now wish to determine how this region
evolves in time, and how its volume changes.

Exercise 3.17. Verify Eq. (3.3.6).

As time moves forward each point θ(0;α), p(0;α) on the boundary of the region
R(0) is mapped to a corresponding point θ(t;α), p(t;α) on the boundary of the new
region R(t). The coordinates of the new point are given by Eqs. (3.3.3) and (3.3.4),
which we write as

θ(t;α) = θ(0;α) cos ωt +
p(0;α)

ω
sinωt, (3.3.7)

p(t;α) = p(0;α) cos ωt − ωθ(0;α) sin ωt. (3.3.8)

The new regions R(t) are displayed in Fig. 3.12 for selected values of t. Their
“volume” is given by

V (t) =

∫

R(t)

dθ(t)dp(t)

=

∫ 2π

0

p(t;α)
dθ(t;α)

dα
dα.

After involving Eqs. (3.3.7), (3.3.8) and performing the integration, we arrive at

V (t) = πσθσp, (3.3.9)

the same result as in Eq. (3.3.6). The volume of the phase-space region R(t) is
indeed independent of time.

Exercise 3.18. Go through the calculational steps that lead to Eq. (3.3.9).
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Figure 3.12: The initial region R(0) in phase space is mapped to a new region R(t)
after a time t. These regions are shown for ωt = 0 (uppermost ellipse), ωt = π/4, ωt = π/2
(rightmost ellipse), ωt = 3π/4, and so on.

3.3.3 Proof of Liouville’s theorem

There are, in fact, two versions of Liouville’s theorem. The first version is concerned
with a quantity ρ, the density of representative points in phase space, which we shall
introduce below; it states that under a Hamiltonian evolution,

dρ

dt
= 0, (3.3.10)

so that ρ is a constant of the motion. The second version is concerned with the
volume V (t) of a region R(t) of phase space that is defined by an ensemble of
representative points; it states that V (t) is constant under a Hamiltonian evolution.
The second version of the theorem is a corollary of the first. We will prove the first
version first, and then obtain the second version.

We have a region R(t) of phase space that contains a large number N of represen-
tative points; this region has a volume V =

∫

R(t)
dV , where dV = dq1dq2 · · · dp1dp2 · · ·

is the element of phase-space volume. We imagine that N is sufficiently large that
we can introduce a notion of phase-space density ρ of representative points; this,
by definition, is the number dN of representative points contained within a small
region of phase space, divided by its volume dV . We have, therefore, ρ = dN/dV ,
and the density can vary from point to point in phase space: ρ = ρ(qa, pa, t); we
also allow the density to depend explicitly on time.

The phase-space density ρ plays essentially the same role here as the density
of electric charge ρe plays in electromagnetism. If we introduce a velocity field
v = (q̇1, q̇2, · · · , ṗ1, ṗ2, · · ·) in phase space, then the current density j = ρv will play
essentially the same role here as the electric current density je plays in electromag-
netism. It is known that in electromagnetism, the charge and current densities are
related by an equation of continuity,

∂ρe

∂t
+ ∇ · je = 0.
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We will show that a very similar equation of continuity applies to ρ and j in phase
space. In electromagnetism the equation of continuity is a differential statement of
charge conservation; in phase space it will be a differential statement of the fact
that the number of representative points is conserved.

Exercise 3.19. Consult your favorite textbook on electromagnetism and review its
derivation of the equation of continuity for electric charge.

Consider a region V of phase space which is bounded by the “surface” S. This
region is completely arbitrary, but it is assumed to be fixed in time; unlike the
region R(t) considered previously, this one does not move around in phase space.
The representative points contained in R(t) do move, however, and in time they will
move in and out of the region V . The number of representative points contained in
V at any given time t is given by the phase-space integral

∫

V
ρ dV . The number of

representative points that move out of V per unit time is then given by

− d

dt

∫

V

ρ dV.

If the total number of representative points is to be conserved, this number must
be equal to the number of representative points that cross the bounding surface S,
in the outward direction, per unit time. By definition of the current density j, this
is

∮

S

j · da,

where da is an element of “surface area” in phase space; this vector is directed
along the outward normal to the surface, and its magnitude is equal to the area of
an element of surface in phase space. Equating these two expressions gives

−
∫

V

∂ρ

∂t
dV =

∮

S

(ρv) · da.

We next use the phase-space version of Gauss’s theorem to express the right-hand
side as a volume integral,

∫

V

∇ · (ρv) dV,

where ∇ = (∂/∂q1, ∂/∂q2, · · · , ∂/∂p1, ∂/∂p2, · · ·) is the gradient operator in phase
space. We now have

∫

V

[

∂ρ

∂t
+ ∇ · (ρv)

]

dV = 0,

and since this equation must be valid for all regions V of phase space, we conclude
that

∂ρ

∂t
+ ∇ · (ρv) = 0.

This is the phase-space version of the equation of continuity.

A more explicit form of the equation of continuity is

0 =
∂ρ

∂t
+

∂

∂q1

(

ρq̇1

)

+
∂

∂q2

(

ρq̇2

)

+ · · · + ∂

∂p1

(

ρṗ1

)

+
∂

∂p2

(

ρṗ2

)

+ · · · ,

or

0 =
∂ρ

∂t
+

∑

a

[

∂

∂qa

(

ρq̇a

)

+
∂

∂pa

(

ρṗa

)

]

.
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The phase-space coordinates of the representative points change in accordance
with Hamilton’s equations. We may therefore substitute q̇a = ∂H/∂pa and ṗa =
−∂H/∂qa into the preceding equation. We obtain

0 =
∂ρ

∂t
+

∑

a

[

∂

∂qa

(

ρ
∂H

∂pa

)

− ∂

∂pa

(

ρ
∂H

∂qa

)]

=
∂ρ

∂t
+

∑

a

[

∂ρ

∂qa

∂H

∂pa
− ∂ρ

∂pa

∂H

∂qa
+ ρ

(

∂2H

∂qa∂pa
− ∂2H

∂pa∂qa

)]

=
∂ρ

∂t
+

∑

a

[

∂ρ

∂qa

∂H

∂pa
− ∂ρ

∂pa

∂H

∂qa

]

,

or

0 =
∂ρ

∂t
+

∑

a

[

∂ρ

∂qa
q̇a +

∂ρ

∂pa
ṗa

]

after involving Hamilton’s equations one more time.
We have obtained the first version of Liouville’s theorem: If the phase-space

density ρ is a function of qa, pa, and t, then by virtue of the chain rule its total
time derivative is

dρ

dt
=

∑

a

[

∂ρ

∂qa
q̇a +

∂ρ

∂pa
ṗa

]

+
∂ρ

∂t
, (3.3.11)

and according to our previous results, this is zero. We have therefore established
Eq. (3.3.10) on the basis of the equation of continuity in phase space.

To arrive at the second version of Liouville’s theorem, consider the N repre-
sentative points that are contained in the moving region R(t) of phase space. By
definition of the phase-space density, we have

N =

∫

R(t)

ρ dV,

and we know that this number is preserved as we follow the evolution of R(t) over
time. We now also know that the density ρ is a constant of the motion. This
means that if, for example, the density is initially chosen to be uniform over R(0),
then it will stay uniform over R(t) throughout the Hamiltonian evolution. In this
case we may bring ρ outside of the integral, and we obtain the statement that
N/ρ =

∫

R(t)
dV ≡ V (t) is preserved during the evolution. This is the second

version of Liouville’s theorem.

3.3.4 Poisson brackets

The expression of Eq. (3.3.11) for the total time derivative of the phase-space den-
sity,

dρ

dt
=

∂ρ

∂t
+

∑

a

[

∂ρ

∂qa
q̇a +

∂ρ

∂pa
ṗa

]

=
∂ρ

∂t
+

∑

a

[

∂ρ

∂qa

∂H

∂pa
− ∂ρ

∂pa

∂H

∂qa

]

,

is in fact a mathematical identity that holds for any function ρ(qa, pa, t) defined in
phase space. Because this expression is so general, it occurs often, and it has proved
convenient to introduce a notation to recast it in a more compact form.

Let f(qa, pa, t) and g(qa, pa, t) be any two functions on phase space. Their
Poisson bracket is defined by

[f, g] =
∑

a

(

∂f

∂qa

∂g

∂pa
− ∂f

∂pa

∂g

∂qa

)

. (3.3.12)
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The Poisson bracket possesses the following properties: It is antisymmetric,

[g, f ] = −[f, g]; (3.3.13)

it is linear with respect to each of its arguments,

[f1 + f2, g] = [f1, g] + [f2, g], [f, g1 + g2] = [f, g1] + [f, g2]; (3.3.14)

it satisfies the product rule of differential calculus,

[f1f2, g] = f1[f2, g] + [f1, g]f2, [f, g1g2] = g1[f, g2] + [f, g1]g2; (3.3.15)

and finally, it satisfies the Jacobi identity,
[

f, [g, h]
]

+
[

h, [f, g]
]

+
[

g, [h, f ]
]

= 0. (3.3.16)

Exercise 3.20. Show that these are all true properties of the Poisson bracket. Be
warned: To establish the Jacobi identity requires a lengthy calculation.

Particular applications of the Poisson bracket are

[f, qa] = − ∂f

∂pa
, [f, pa] =

∂f

∂qa
. (3.3.17)

Special cases of these identities are

[qa, qb] = 0, [qa, pb] = δab, [pa, pb] = 0. (3.3.18)

Exercise 3.21. Verify Eqs. (3.3.17) and (3.3.18).

In terms of the Poisson bracket, the total derivative with respect to time of a
function f(qa, pa, t) is given by

df

dt
=

∂f

∂t
+ [f,H]. (3.3.19)

If we apply this identity to the Hamiltonian H we obtain dH/dt = ∂H/∂t+[H,H] =
∂H/∂t, by virtue of the antisymmetric property of the Poisson bracket. If the
Hamiltonian does not depend explicitly on time, we obtain the statement dH/dt = 0
and the conclusion that the Hamiltonian is a constant of the motion. This is a well-
known result by now, but notice how quickly the result follows from the Poisson-
bracket formalism.

Exercise 3.22. Verify Eq. (3.3.19). Then show that it leads to the expected answers
for dqa/dt and dpa/dt.

3.4 Canonical transformation

3.4.1 Introduction

A theme that has been central to our development of Lagrangian and Hamiltonian
mechanics is the arbitrariness of the generalized coordinates qa that are adopted to
describe the motion of a mechanical system. The Euler-Lagrange equations

d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0
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and the canonical equations

q̇a =
∂H

∂pa
, ṗa = −∂H

∂qa

are all invariant under a transformation of the generalized coordinates, from the set
qa of old coordinates to any set Qa of new coordinates; these can by any functions
Qa(q1, q2, · · ·) of the old coordinates.

In this section we show that the Hamiltonian formulation of the laws of me-
chanics admits a much wider class of possible transformations. In this context it is
possible to change the phase-space coordinates from an old set (qa, pa) to a new set
(Qa, Pa), with

Qa = Qa(q1, q2, · · · , p1, p2, · · ·), Pa = Pa(q1, q2, · · · , p1, p2, · · ·). (3.4.1)

Notice that the new generalized coordinates Qa are now functions of the old coordi-
nates and the old momenta; the new generalized momenta Pa also are functions of
all the old phase-space coordinates. Under some conditions, which will be specified
below, such a transformation will leave the canonical equations invariant: In the
new system of phase-space coordinates there will exist a transformed Hamiltonian
H ′(Qa, Pa, t) such that

Q̇a =
∂H ′

∂Pa
, Ṗa = − ∂H ′

∂Qa
. (3.4.2)

Under these conditions the transformation is known as a canonical transformation;
transformations of the phase-space coordinates that are not canonical have no value,
and they will not be considered.

Canonical transformations have the interesting and useful property that they
leave the element of phase-space volume invariant. Thus,

dV = dq1dq2 · · · dp1dp2 · · · = dQ1dQ2 · · · dP1dP2 · · · . (3.4.3)

In other words, the Jacobian of the transformation is equal to one. This gives
us a means of checking whether a specified transformation is canonical or not: If
the Jacobian of the transformation is not equal to one, the transformation is not
canonical. This property of canonical transformations is rather deep, and it implies
that the validity of Liouville’s theorem is not restricted to a particular choice of
phase-space coordinates; the volume of a region R(t) of phase space is invariant
under a canonical transformation.

Because a canonical transformation produces new coordinates that are a mix-
ture of old coordinates and old momenta, they can dramatically alter the physical
meaning of the phase-space coordinates. Thus, a given Qa may not necessarily
represent a position variable, and a given Pa may not represent a momentum vari-
able. A trivial example is the canonical transformation Qa = pa, Pa = −qa, which
clearly leaves the canonical equations invariant; here the new coordinates are the
old momenta, the new momenta are the old coordinates, and the new phase-space
coordinates do not retain their traditional physical meaning. Because the new “co-
ordinates” Qa and the new “momenta” Pa may not have straightforward physical
interpretations after a canonical transformation, it is customary to refer to the new
phase-space coordinates simply as conjugate variables.

3.4.2 Case study: Linear pendulum

Before we present the general theory of canonical transformations in the next sub-
section, we shall take the time to get acquainted with some of the fundamental ideas
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by examining a specific example. We return once more to the linear pendulum of
Sec. 3.3.2, with its Hamiltonian

H =
1

2
p2 +

1

2
ω2q2, (3.4.4)

where we have identified the generalized coordinate q with the swing angle θ. The
canonical equations for this mechanical system are

q̇ =
∂H

∂p
= p, ṗ = −∂H

∂q
= −ω2q. (3.4.5)

We intend to show that a canonical transformation can turn this rather simple
mechanical system into a completely trivial one. Solving for the motion of the
trivial system will allow us to find the solution to Eqs. (3.4.5) without having to
solve these equations directly. This, in a nutshell, is the power and purpose of
canonical transformations.

Let us consider the following transformation of the phase-space coordinates:

Q = arctan
(ωq

p

)

, P =
1

2ω

(

p2 + ω2q2
)

. (3.4.6)

The new “momentum” P is proportional to the Hamiltonian; a curve P = constant
is therefore represented as an ellipse in the old phase space. A curve Q = constant,
on the other hand, is represented as a straight line that passes through the origin;
this line has a slope p/q = ω/ tan Q, and Q is an angle relative to the p axis. The
inverse transformation is

q =

√

2P

ω
sin Q, p =

√
2ωP cos Q. (3.4.7)

It is easy to check that the transformation has a unit Jacobian. This is given by

J =

∣

∣

∣

∣

∂q/∂Q ∂q/∂P
∂p/∂Q ∂p/∂P

∣

∣

∣

∣

=

∣

∣

∣

∣

√

2P/ω cos Q sin Q/
√

2ωP

−
√

2ωP sinQ
√

ω/2P cos Q

∣

∣

∣

∣

= cos2 Q + sin2 Q = 1,

and J is indeed equal to one. This gives us a successful partial check on whether
the transformation is properly canonical.

Exercise 3.23. Check that Eq. (3.4.6) is the inverse transformation to Eq. (3.4.7).
Then check all the partial derivatives that have been involved in the computation of the
Jacobian.

The transformation of Eq. (3.4.6) will be canonical if and only if it preserves the
form of the canonical equations. We shall now show that this is indeed the case.
We will find that the evolution equations for Q and P are given by

Q̇ =
∂H

∂P
= ω, Ṗ = −∂H

∂Q
= 0, (3.4.8)

with a Hamiltonian now expressed as

H = ωP, (3.4.9)

which follows by substituting Eq. (3.4.6) for P into Eq. (3.4.4) for H. In this
particular instance of a canonical transformation, the new Hamiltonian H ′ is the
same as the old Hamiltonian H.
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We can verify the results of Eq. (3.4.8) by computing Q̇ and Ṗ directly from
their definitions in Eq. (3.4.6). We begin with the relation tanQ = ωq/p, which we
differentiate with respect to t. We get

(1 + tan2 Q)Q̇ =
ωq̇

p
− ωqṗ

p2
,

and if we now involve Eq. (3.4.5), this becomes

(1 + tan2 Q)Q̇ = ω

(

1 +
ω2q2

p2

)

= ω(1 + tan2 Q).

This gives, finally, Q̇ = ω, as we had stated in Eq. (3.4.8). The right-hand side
of this equation happens to be equal to ∂H/∂P , and we have recovered one of the
two canonical equations. The second equation follows much more easily. Because
P = H/ω it is obvious that its equation of motion is Ṗ = 0, as was stated in
Eq. (3.4.8). The right-hand side of this equation happens to be equal to ∂H/∂Q,
and we have recovered our second canonical equation.

The main purpose of the canonical transformation of Eq. (3.4.6) is to bring the
Hamiltonian to the simple form of Eq. (3.4.9). This Hamiltonian is proportional
to the new momentum P , and it does not depend on the new coordinate Q. As
a result, the equations of motion are exceptionally simple, and they can be solved
easily: The new momentum is a constant of the motion and the new coordinate Q
behaves in time according to Q(t) = ωt + δ, where δ is a constant of integration.
The transformation has therefore turned the original problem into a very simple
one. With the solution to the simple problem in hand, we may return to the
original problem and express its solution as

q(t) =

√

2P

ω
sin(ωt + δ), p(t) =

√
2ωP cos(ωt + δ),

by substituting our solution for Q(t) into Eqs. (3.4.7). Our linear pendulum evi-
dently undergoes simple harmonic motion. The frequency of the motion is ω, and
its amplitude is

√

2P/ω.

3.4.3 General theory of canonical transformations

When is a transformation of the phase-space coordinates,

Qa = Qa(qb, pb, t), Pa = Pa(qb, pb, t),

a canonical transformation? The fundamental criterion is that the transformation
must preserve the form of Hamilton’s canonical equations: The transformation must
produce a new Hamiltonian H ′ such that

Q̇a =
∂H ′

∂Pa
, Ṗa = − ∂H ′

∂Qa
.

The question is: Under what conditions does this occur? We will provide a number
of answers to this question, ranging from the formal to the practical.

Let us recall from Sec. 3.1.4 that Hamilton’s equations for the original set (qa, pa)
of phase-space coordinates can be derived on the basis of Hamilton’s principle of
least action. The principle can be expressed in the form

δ

∫ t1

t0

(

∑

a

pa dqa − H dt

)

= 0;
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the variations δqa(t), δpa(t) are all independent, and they are subjected to the
boundary conditions δqa(t0) = δqa(t1) = 0. If Hamilton’s equations are to hold
also for the new set (Qa, Pa) of phase-space coordinates, they must also follow from
Hamilton’s principle. We must then have, simultaneously,

δ

∫ t1

t0

(

∑

a

Pa dQa − H ′ dt

)

= 0;

here it is the variations δQa(t), δPa(t) that are taken to be independent and sub-
jected to the boundary conditions δQa(t0) = δQa(t1) = 0. The two formulations
of Hamilton’s principle will be compatible with each other if and only if the inte-
grands

∑

a pa dqa − H dt and
∑

a Pa dQa − H ′ dt differ by the total derivative dF1

of a function F1(qa, Qa, t) of the old and new coordinates. For we would have, in
this case, a difference of integrals given by

∫ t1

t0

dF1 = F1

(

qa(t1), Qa(t1), t1
)

− F1

(

qa(t0), Qa(t0), t0
)

,

and δ
∫ t1

t0
dF1 = 0 would follow immediately by virtue of the boundary conditions

on the variations δqa and δQa.
The first answer to our question is therefore this: A transformation of the

phase-space coordinates is a canonical transformation when there exists a function
F1(qa, Qa, t) such that

∑

a

pa dqa − H dt =
∑

a

Pa dQa − H ′ dt + dF1. (3.4.10)

The function F1(qa, Qa, t) is called the generating function of the canonical trans-
formation. This is a formal answer to our question; we will provide more practical
answers at a later stage.

The total derivative of F1 can be expressed as

dF1 =
∑

a

∂F1

∂qa
dqa +

∑

a

∂F1

∂Qa
dQa +

∂F1

∂t
dt.

On the other hand, Eq. (3.4.10) can be rewritten as

dF1 =
∑

a

pa dqa −
∑

a

Pa dQa + (H ′ − H) dt.

Because both equations must be true, we obtain the identifications

pa =
∂F1

∂qa
, Pa = − ∂F1

∂Qa
, H ′ = H +

∂F1

∂t
. (3.4.11)

The first two equations give us the old momenta pa and the new momenta Pa in
terms of the derivatives of the generating function. The last equation gives us the
new Hamiltonian H ′; if the generating function does not depend explicitly on time,
the new Hamiltonian is the same as the old.

As a trivial application of the foregoing, let us consider the generating function
F1 =

∑

b qbQb. The old momenta are pa = ∂F1/∂qa = Qa and the new momenta are
Pa = −∂F1/∂Qa = −qa. This generating function therefore produces the trivial
transformation Qa = pa, Pa = −qa that was encountered previously. This is a
canonical transformation because it is generated by the function F1. Because this
function does not depend explicitly on time, the transformation does not change
the Hamiltonian: H ′ = H. And the transformation, evidently, preserves the form
of the canonical equations.
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A more interesting application involves the function F1 = 1
2ωq2cotanQ, which

generates the transformation of Eqs. (3.4.6) and (3.4.7). We have

p =
∂F1

∂q
= ωq cotanQ =

ωq

tan Q

and

P = −∂F1

∂Q
=

1

2
ωq2(1 + cotan2Q) =

1

2
ωq2

(

1 +
p2

ω2q2

)

=
1

2ω
(p2 + ω2q2),

as was anticipated in Eqs. (3.4.6). Because F1 does not depend explicitly on t, we
have that H ′ = H = ωP , as was stated in Eq. (3.4.9).

3.4.4 Alternative generating functions

It is possible to introduce new generating functions that depend on an alternative
choice of variables. Consider, for example, the new function

F2 = F1 +
∑

a

QaPa.

Its total derivative is

dF2 = dF1 +
∑

a

Pa dQa +
∑

a

Qa dPa

=
∑

a

pa dqa −
∑

a

Pa dQa + (H ′ − H) dt +
∑

a

Pa dQa +
∑

a

Qa dPa

=
∑

a

pa dqa +
∑

a

Qa dPa + (H ′ − H) dt;

in the second line we substituted a previous expression for dF1, and in the last line
we canceled out the terms

∑

a Pa dQa. The fact that dF2 involves the differentials
dqa, dPa, and dt informs us that F2 must be a function of qa, Pa, and t. We have,
therefore,

F2 = F1 +
∑

a

QaPa = F2(qa, Pa, t), (3.4.12)

and this new generating function does indeed depend on a different set of variables.
Our previous calculation allows us to make the identifications

pa =
∂F2

∂qa
, Qa =

∂F2

∂Pa
, H ′ = H +

∂F2

∂t
. (3.4.13)

This freedom to introduce alternative generating functions adds flexibility to the
framework of canonical transformations. We will make use of this in the next
section.

Exercise 3.24. Consider the new generating function F3 = F1 −
P

a qapa. On which
variables does F3 depend? Find expressions for Pa, qa, and H ′ in terms of partial deriva-
tives of F3.

Exercise 3.25. Consider now the new generating function F4 = F1 +
P

a QaPa −
P

a qapa. On which variables does F4 depend? Find expressions for qa, Qa, and H ′ in
terms of partial derivatives of F4.
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3.4.5 Direct conditions

It is rarely convenient to test whether a transformation is canonical by attempting
to find its generating function. More direct tests are available, fortunately, and these
do not require knowledge of the generating function. We shall describe these tests in
this and the following subsection. For simplicity we assume that the transformation
does not depend explicitly on time; this means that H ′ = H.

The transformation Qa = Qa(qb, pb) implies that the time derivative of the new
coordinates can be expressed as

Q̇a =
∑

b

∂Qa

∂qb
q̇b +

∑

b

∂Qa

∂pb
ṗb

=
∑

b

∂Qa

∂qb

∂H

∂pb
−

∑

b

∂Qa

∂pb

∂H

∂qb
.

If the transformation is canonical, this will be equal to ∂H/∂Pa. With H written
as a function of the old phase-space coordinates, this is

∂H

∂Pa
=

∑

b

∂H

∂qb

∂qb

∂Pa
+

∑

b

∂H

∂pb

∂pb

∂Pa
.

Hamilton’s equations therefore imply

0 = Q̇a − ∂H

∂Pa

=
∑

b

(

∂Qa

∂qb
− ∂pb

∂Pa

)

∂H

∂pb
−

∑

b

(

∂Qa

∂pb
+

∂qb

∂Pa

)

∂H

∂qb
.

This equation will be satisfied if and only if

∂

∂qb
Qa(qb, pb) =

∂

∂Pa
pb(Qa, Pa),

∂

∂pb
Qa(qb, pb) = − ∂

∂Pa
qb(Qa, Pa). (3.4.14)

This first set of conditions must therefore be met if the transformation is to be a
canonical transformation.

The second set of conditions is obtained by starting instead with the transfor-
mation Pa = Pa(qb, pb). This time we have

Ṗa =
∑

b

∂Pa

∂qb
q̇b +

∑

b

∂Pa

∂pb
ṗb

=
∑

b

∂Pa

∂qb

∂H

∂pb
−

∑

b

∂Pa

∂pb

∂H

∂qb
.

If the transformation is canonical, this will be equal to −∂H/∂Qa. With H written
as a function of the old phase-space coordinates, this is

∂H

∂Qa
=

∑

b

∂H

∂qb

∂qb

∂Qa
+

∑

b

∂H

∂pb

∂pb

∂Qa
.

Hamilton’s equations therefore imply

0 = Ṗa +
∂H

∂Qa

=
∑

b

(

∂Pa

∂qb
+

∂pb

∂Qa

)

∂H

∂pb
−

∑

b

(

∂Pa

∂pb
− ∂qb

∂Qa

)

∂H

∂qb
.
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This equation will be satisfied if and only if

∂

∂qb
Pa(qb, pb) = − ∂

∂Qa
pb(Qa, Pa),

∂

∂pb
Pa(qb, pb) =

∂

∂Qa
qb(Qa, Pa). (3.4.15)

This is the second set of conditions that must be met if the transformation is to be
a canonical transformation.

Equations (3.4.14) and (3.4.15) are called the direct conditions for a canonical
transformation: all these conditions will be satisfied if the transformation Qa(qa, pa)
and Pa(qa, pa) is a canonical transformation. For a mechanical system with n de-
grees of freedom we have a total of 4n2 conditions. As we shall see, these are not all
independent. In the next subsection we will identify a smaller, and more convenient,
set of necessary and sufficient conditions.

3.4.6 Canonical invariants

As was stated in Sec. 3.4.1, a canonical transformation has the property of leaving
the element of phase-space volume invariant:

dV = dq1dq2 · · · dp1dp2 · · · = dQ1dQ2 · · · dP1dP2 · · · . (3.4.16)

A canonical transformation of the phase-space coordinates therefore has a unit
Jacobian, J = 1. This statement can be shown to be a consequence of the direct
conditions, Eqs. (3.4.14) and (3.4.15).

Another consequence of the direct conditions is the fact that canonical transfor-
mations leave all Poisson brackets invariant. Thus, if

[f, g]q,p =
∑

a

(

∂f

∂qa

∂g

∂pa
− ∂f

∂pa

∂g

∂qa

)

is the Poisson bracket in the old phase-space coordinates, and if

[f, g]Q,P =
∑

a

(

∂f

∂Qa

∂g

∂Pa
− ∂f

∂Pa

∂g

∂Qa

)

is the Poisson bracket in the new coordinates, then

[f, g]q,p = [f, g]Q,P (3.4.17)

if the transformation is canonical.
It is this statement which provides us with an efficient method to test whether

a transformation Qa = Qa(qb, pb, t), Pa = Pa(qb, pb, t) is canonical: By virtue of the
automatic relations (refer back to Sec. 3.3.4)

[Qa, Qb]Q,P = 0, [Qa, Pb]Q,P = δab, [Pa, Pb]Q,P = 0

and the invariance of the Poisson bracket, we must have that the relations

[Qa, Qb]q,p = 0, [Qa, Pb]q,p = δab, [Pa, Pb]q,p = 0 (3.4.18)

hold if the transformation is canonical. Similarly, a transformation qa = qa(Qb, Pb, t),
pa = pa(Qb, Pb, t) is canonical if the Poisson-bracket relations

[qa, qb]Q,P = 0, [qa, pb]Q,P = δab, [pa, pb]Q,P = 0 (3.4.19)

are satisfied. The conditions of Eqs. (3.4.18) or (3.4.19) can be shown to be sufficient
and necessary. For a mechanical system with n degrees of freedom, we have a total
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of (2n − 1)n conditions to satisfy; when n = 1 there is only one relevant condition,
[Q,P ]q,p = 1 or [q, p]Q,P = 1.

Exercise 3.26. Verify that [Q, P ]q,p = 1 in the case of the canonical transformation
presented in Sec. 3.4.2.

We will not present a general proof of the statements that the phase-space
volume element and the Poisson bracket are canonical invariants. We will, instead,
present a proof that is restricted to a two-dimensional phase space. The restricted
proof is easy to produce; the general proof would be much more difficult.

We consider a canonical transformation of the form Q = Q(q, p), P = P (q, p).
The direct conditions for this transformation are

∂Q

∂q
=

∂p

∂P
,

∂Q

∂p
= − ∂q

∂P
,

∂P

∂q
= − ∂p

∂Q
,

∂P

∂p
=

∂q

∂Q
.

The volume elements are related by

dqdp = |J | dQdP, dQdP = |J |−1 dqdp,

in which J is the Jacobian of the transformation, and J−1 its inverse. The Jacobian
is

J =

∣

∣

∣

∣

∂q/∂Q ∂q/∂P
∂p/∂Q ∂p/∂P

∣

∣

∣

∣

=
∂q

∂Q

∂p

∂P
− ∂q

∂P

∂p

∂Q
.

Its inverse is

J−1 =

∣

∣

∣

∣

∂Q/∂q ∂Q/∂p
∂P/∂q ∂P/∂p

∣

∣

∣

∣

=
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
.

By involving the direct conditions we may write this as

J−1 =
∂p

∂P

∂q

∂Q
− ∂q

∂P

∂p

∂Q
,

and this is equal to J . We therefore have J−1 = J , or J2 = 1, and we conclude that
|J | = 1. This proves that the volume element is indeed preserved under a canonical
transformation.

The Poisson bracket in the new phase-space coordinates is

[f, g]Q,P =
∂f

∂Q

∂g

∂P
− ∂f

∂P

∂g

∂Q
.

If we consider f and g to be functions of q and p, we may use the chain rule and
express this as

[f, g]Q,P =

(

∂f

∂q

∂q

∂Q
+

∂f

∂p

∂p

∂Q

)(

∂g

∂q

∂q

∂P
+

∂g

∂p

∂p

∂P

)

−
(

∂f

∂q

∂q

∂P
+

∂f

∂p

∂p

∂P

)(

∂g

∂q

∂q

∂Q
+

∂g

∂p

∂p

∂Q

)

=
∂f

∂q

∂g

∂q

(

∂q

∂Q

∂q

∂P
− ∂q

∂P

∂q

∂Q

)

+
∂f

∂q

∂g

∂p

(

∂q

∂Q

∂p

∂P
− ∂q

∂P

∂p

∂Q

)

+
∂f

∂p

∂g

∂q

(

∂p

∂Q

∂q

∂P
− ∂p

∂P

∂q

∂Q

)

+
∂f

∂p

∂g

∂p

(

∂p

∂Q

∂p

∂P
− ∂p

∂P

∂p

∂Q

)

=

(

∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q

)(

∂q

∂Q

∂p

∂P
− ∂q

∂P

∂p

∂Q

)

= J [f, g]q,p.
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We have learned that |J | = 1, and in practice we may always design the canonical
transformation so that its Jacobian is in fact J = +1. This gives us, then, the
statement that [f, g]Q,P = [f, g]q,p, and the Poisson bracket is indeed invariant
under a canonical transformation.

3.5 Hamilton-Jacobi equation

3.5.1 Action as a function of the coordinates and time

The action functional of a mechanical system is

S =

∫ t1

t0

Ldt,

where L(qa, q̇a, t) is the system’s Lagrangian. We first encountered the action in the
context of Hamilton’s principle of least action, in which one compares the value of S
for different trial paths qtrial

a (t) and attempts to find the paths q̄a(t) that minimize
this value. In the course of these investigations, back in Secs. 2.2 and 2.3, we derived
the result

δS =
∑

a

∂L

∂q̇a
δqa

∣

∣

∣

∣

t1

t0

+
∑

a

∫ t1

t0

(

∂L

∂qa
− d

dt

∂L

∂q̇a

)

δqa dt

for the variation of the action about reference paths q̄a(t). We obtained the Euler-
Lagrange equations by demanding that δS = 0 for variations δqa(t) that respect
the boundary conditions δqa(t0) = δqa(t1) = 0.

We now intend to examine this result from a different perspective. Suppose that
we compute S for actual paths q̄a(t) that satisfy the Euler-Lagrange equations; we
assume that our actual paths leave the positions qbegin

a at t = t0 and arrive at the
positions qend

a at t = t1. The result would be the number S̄, and this number would
depend on the choices made for qbegin

a , qend
a , t0, and t1.

We now ask the question: Suppose that we next evaluate S on displaced paths
qa(t) = q̄a(t) + δqa(t) that all leave qbegin

a at t = t0 but arrive at the different
positions qend

a +δqend
a at the time t = t1; how will this value of S differ from S̄? The

answer is this: Because the reference paths all satisfy the Euler-Lagrange equations,
and because the variations δqa all vanish at t = t0, the change in the action has to
be

δS =
∑

a

∂L

∂q̇a

∣

∣

∣

∣

t=t1

δqend
a .

Writing ∂L/∂q̇a = pa and δqend
a = δqa(t1), this is

δS =
∑

a

pa(t1) δqa(t1). (3.5.1)

This result indicates that the action S is a function of the variables qa(t1) ≡ qend
a ,

S = S(qa(t1)), and that

pa(t1) =
∂S

∂qa(t1)
. (3.5.2)

It is understood that here, the partial derivative is evaluated while holding t1 fixed.

Let us now consider a different variation of the action. This time we choose
displaced paths qa(t) = q̄a(t) + δqa(t) that still all leave qbegin

a at t = t0, but that
now arrive at the same positions qend

a at a different time t = t1 + δt1; we wish to
calculate by how much S differs from S̄ under this change of paths.
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To figure this out it is helpful to recall that the total derivative of the action
with respect to t1 is given by

dS

dt1
= L(t1),

in which the Lagrangian function is evaluated at t = t1. We already know that
the action depends on t1 through its dependence on qend

a = qa(t1). We should
also expect that the action contains an explicit dependence on t1. Its total time
derivative must therefore be expressed as

dS

dt1
=

∂S

∂t1
+

∑

a

∂S

∂qa(t1)
q̇a(t1).

In view of Eq. (3.5.2), this is

dS

dt1
=

∂S

∂t1
+

∑

a

pa(t1)q̇a(t1).

From all this we obtain

∂S

∂t1
= L(t1) −

∑

a

pa(t1)q̇a(t1).

The right-hand side is (minus) the Hamiltonian function evaluated at t = t1, and
our final result is

∂S

∂t1
= −H(t1). (3.5.3)

It is understood that here, the partial derivative is evaluated while holding the
final positions qa(t1) fixed. This gives us the answer to our question: The variation
considered here has fixed final positions and a varying time; the change in the action
S(qa(t1), t1) is δS = (∂S/∂t1) δt1, or

δS = −H(t1) δt1. (3.5.4)

The complete variation of the action, if we allow all of qend
a and t1 to be varied, is

given by the sum of the partial deviations computed above. The general statement
is

dS =
∑

a

pa(t1) dqa(t1) − H(t1) dt1.

Because this statement is true at any time t1, we may express it as

dS =
∑

a

pa dqa − H dt, (3.5.5)

where the momenta and the Hamiltonian are now evaluated at the arbitrary time
t. This relation informs us that when the action is evaluated on the actual paths
q̄a(t), it can be viewed as a function of the coordinates qa(t) and of time t:

S = S(qa, t). (3.5.6)

Its partial derivatives are then given by

∂S

∂qa
= pa,

∂S

∂t
= −H. (3.5.7)

As a concrete illustration of these notions, let us evaluate S(q, t) in the case of
the linear pendulum of Sec. 3.4.2. The pendulum’s Lagrangian is

L =
1

2
q̇2 − 1

2
ω2q2, (3.5.8)



148 Hamiltonian mechanics

and the Euler-Lagrange equation for q(t) is q̈+ω2q = 0. The actual path is therefore
given by

q(t) = q0 cos ωt +
q̇0

ω
sinωt, (3.5.9)

where q0 ≡ q(t = 0) and q̇0 ≡ q̇(t = 0) are the initial conditions. We substitute this
inside Eq. (3.5.8) and obtain

L =
1

2
(q̇2

0 − ω2q2
0) cos 2ωt − ωq0q̇0 sin 2ωt

after some simplification. Setting t0 = 0 and t1 = t, the action is S =
∫ t

0
Ldt, and

this evaluates to

S =
1

2ω
(q̇2

0 − ω2q2
0) sin ωt cos ωt − q0q̇0 sin2 ωt.

This does not yet have the expected form S(q, t) with q ≡ q(t). To put the action
in this form we solve Eq. (3.5.9) for q̇0 and substitute this into our expression for
S. After some simple algebra, we obtain our final answer,

S(q, t) =
ω

2 sin ωt

[

(q2 + q2
0) cos ωt − 2q0q

]

, (3.5.10)

in which q stands for q(t), the changing position of the pendulum. It is easy to
check that ∂S/∂q = q̇0 cos ωt−ωq0 sin ωt = q̇ = p and −∂S/∂t = 1

2 q̇2
0 + 1

2ω2q2
0 = H,

in agreement with Eqs. (3.5.7).

Exercise 3.27. Go through all the algebra that leads to Eq. (3.5.10), starting from
Eqs. (3.5.8) and (3.5.9). Then check that Eqs. (3.5.7) do indeed follow for this action.

3.5.2 Hamilton-Jacobi equation

We have seen that the partial derivative with respect to time of the action is related
to the Hamiltonian by

H +
∂S

∂t
= 0.

The Hamiltonian is a function of the coordinates qa and the momenta pa, so that
H = H(q1, q2, · · · ; p1, p2, · · · ; t). But we have also seen that the momenta are related
to the action by pa = ∂S/∂qa. Putting this all together, we arrive at the equation

H

(

q1, q2, · · · ;
∂S

∂q1
,

∂S

∂q2
, · · · ; t

)

+
∂S

∂t
= 0. (3.5.11)

This is a partial differential equation for the function S(q1, q2, · · · ; t), and this equa-
tion is known as the Hamilton-Jacobi equation. As we shall now explain, solving the
Hamilton-Jacobi equation for S provides a round-about way of obtaining a com-
plete solution to the original mechanical problem, which is to calculate how the
coordinates qa behave as a function of time. This technique is intricate, but it can
be very powerful.

Suppose that we can find a solution to the Hamilton-Jacobi equation, and sup-
pose that it has the general form

S = S(q1, q2, · · · , qn;α1, α2, · · · , αn; t), (3.5.12)

where n is the number of degrees of freedom, and where the αa’s are n indepen-
dent constants of integration. Such a solution is called a complete solution to the
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Hamilton-Jacobi equation, because it possesses a number of integration constants
that corresponds to the number of independent variables qa. We assume that a
complete solution exists and can be obtained; we do not assume that this solution
is unique — indeed it is not — nor that it is the most general solution to the
Hamilton-Jacobi equation — which it is not.

To establish a connection between S(qa, αa, t) and the original mechanical prob-
lem we identify it with F2(qa, Pa, t), the generating function of a canonical transfor-
mation. Here the new momenta Pa are identified with the constants αa, and we will
see in a moment that the dynamics generated by the new Hamiltonian H ′ is indeed
such that Ṗa = 0. The general theory of canonical transformations developed in
Secs. 3.4.3 and 3.4.4 implies that the old momenta pa are given by

pa =
∂F2

∂qa
=

∂S

∂qa
,

and this statement is certainly compatible with our derivation of the Hamilton-
Jacobi equation. The general theory also implies that the new coordinates Qa are
given by

Qa =
∂F2

∂Pa
=

∂S

∂αa
.

The evolution of the new phase-space variables is governed by the new Hamiltonian
H ′, which is

H ′ = H +
∂F2

∂t
= H +

∂S

∂t
= 0.

The new Hamiltonian vanishes by virtue of the Hamilton-Jacobi equation! There
is no dynamics in the new variables, because Q̇a = ∂H ′/∂Pa = 0 and Ṗa =
−∂H ′/∂Qa = 0. We have already anticipated the fact that the new momenta
Pa ≡ αa are constants of the motion; we now have learned that the new coordinates
Qa ≡ βa are constants also.

The entire content of the Hamilton-Jacobi framework boils down to this: Once a
complete solution S(qa, αa, t) to the Hamilton-Jacobi equation has been identified,
the coordinates qa(t) of the mechanical system are obtained by unwrapping the
equations

βa =
∂

∂αa
S(qb, αb, t), (3.5.13)

where the n quantities βa, like the n quantities αa, are constants. Solving these
equations will return equations of the from qa = qa(αb, βb, t), and the coordinates
will be seen to depend on time as well as a number 2n of constants; this is as it
should be, because we have n variables qa and they each satisfy a second-order
differential equation. The momenta can then be computed as

pa =
∂

∂qa
S(qb, αb, t), (3.5.14)

and these will also be of the form pa = pa(αb, βb, t). The motion in phase space
is thus completely determined, and the constants αa and βa can be related to the
initial conditions qa(t = 0) and pa(t = 0).

3.5.3 Case study: Linear pendulum

To see how this all works, let us return once more to the linear pendulum and its
Hamiltonian

H =
1

2
p2 +

1

2
ω2q2. (3.5.15)



150 Hamiltonian mechanics

The Hamilton-Jacobi equation for this Hamiltonian is

1

2

(

∂S

∂q

)2

+
1

2
ω2q2 +

∂S

∂t
= 0. (3.5.16)

Because the mechanical system has a single degree of freedom, we wish to find
a complete solution of the form S(q, α), with α playing the role of a constant of
integration.

We can separate the variables by adopting

S = W (q) − αt (3.5.17)

as a form of solution; this already involves the constant α. Substituting Eq. (3.5.17)
into Eq. (3.5.16) produces an ordinary differential equation for W :

1

2
(W ′)2 +

1

2
ω2q2 − α = 0.

This can easily be solved for W ′,

W ′ =
√

2α

√

1 − ω2

2α
q2,

and integration yields

W =
√

2α

∫

√

1 − ω2

2α
q2 dq.

To evaluate the integral we introduce a new variable of integration Φ, which is
defined by

sinΦ =
ω√
2α

q. (3.5.18)

Substituting this, along with dq = (
√

2α/ω) cos Φ dΦ into the integral for W pro-
duces

W =
2α

ω

∫

cos2 Φ dΦ.

The integral works out to be 1
2 (Φ + sinΦ cos Φ), and we arrive at

W =
α

ω
(Φ + sin Φ cos Φ). (3.5.19)

This could be expressed directly in terms of q by involving Eq. (3.5.18), but it is
more convenient in practice to leave W (q) in this implicit form.

Our final result for the action is

S(q, α, t) =
α

ω
(Φ + sinΦ cos Φ) − αt, q =

√
2α

ω
sinΦ. (3.5.20)

Let us now use this information to determine the motion of the pendulum. Accord-
ing to Eq. (3.5.13) we must first calculate ∂S/∂α and set the result equal to a new
constant β. The dependence of S on α is both explicit — S is proportional to α —
and implicit, because S depends also on Φ which itself depends on α. We therefore
write

∂S

∂α
=

1

ω
(Φ + sin Φ cos Φ) − t +

α

ω
(1 + cos2 Φ − sin2 Φ)

∂Φ

∂α

=
1

ω
(Φ + sin Φ cos Φ) +

2α

ω
cos2 Φ

∂Φ

∂α
− t,



3.5 Hamilton-Jacobi equation 151

and we evaluate the remaining partial derivative using Eq. (3.5.18) as a starting
point. Here we treat q as a constant and differentiate the two sides of the equation
with respect to α; this gives

cos Φ
∂Φ

∂α
= − ωq

2
√

2α3/2
= − 1

2α
sin Φ,

after reinvolving Eq. (3.5.18) in the last step. We have obtained

∂S

∂α
=

1

ω
(Φ + sin Φ cos Φ) − 1

ω
cos2 Φ

sin Φ

cos Φ
− t

=
1

ω
Φ − t

= β,

or
Φ = ω(t + β). (3.5.21)

The motion of the pendulum is finally determined by substituting Eq. (3.5.21)
into Eq. (3.5.20); our final result is

q(t, α, β) =

√
2α

ω
sinω(t + β). (3.5.22)

This evidently describes simple harmonic motion of amplitude
√

2α/ω at a frequency
ω; this well-known result has been obtained in a very novel way, by solving the
Hamilton-Jacobi equation. While the use of this fancy technique hardly seems
justified for such a simple problem (the phrase cracking a nut with a sledgehammer
comes to mind), the Hamilton-Jacobi framework has been shown to be very powerful
in other, more complicated, situations.

We can easily relate the constants α and β to the initial conditions of the motion.
Evaluating Eq. (3.5.22) at t = 0 gives

q0 ≡ q(t = 0) =

√
2α

ω
sin ωβ,

while differentiating Eq. (3.5.22) with respect to time and then evaluating at t = 0
gives

q̇0 ≡ q̇(t = 0) =
√

2α cos ωβ.

These relations can easily be solved for α and β. The constant β has a direct
physical meaning: it determines the initial phase of the pendulum. The constant α
also has a clear physical meaning: Solving for α yields

α =
1

2
q̇2
0 +

1

2
ω2q2

0 , (3.5.23)

and this is the pendulum’s total mechanical energy.

Exercise 3.28. Calculate the momentum p of the pendulum starting from Eq. (3.5.14);
show that p(t, α, β) = q̇(t, α, β).

Exercise 3.29. You may have noticed that the action of Eq. (3.5.20) is very different
from the action of Eq. (3.5.10), which we rewrite as

S(q, α′, t) =
ω

2 sin ωt

»

(q2 + α′2) cos ωt − 2α′q

–

,
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with α′ ≡ q0. Despite the functional differences, these are two different representations of
the same physical quantity, expressed in terms of two different constants, α and α′. Show
that the action given here is also a solution to the Hamilton-Jacobi equation. Determine
the motion of the pendulum by setting ∂S/∂α′ equal to a new constant β′; what is the
physical meaning of β′?

3.6 Problems

1. A bead of mass m slides on a frictionless wire that is shaped in the form of a
cycloid. This is described by the parametric equations

x = a(θ − sin θ), y = a(1 + cos θ),

where a is a constant and the parameter θ ranges through the interval 0 ≤
θ ≤ 2π. The bead is subjected to gravity, and it oscillates back and forth on
the wire. (See problem #3 from Chapter 2.)

(a) Using θ as a generalized coordinate, calculate the bead’s Hamiltonian.

(b) Obtain Hamilton’s canonical equations of motion for the bead.

2. A particle of mass m moves on a paraboloid of revolution described by the
equation

z =
1

a

(

x2 + y2
)

,

where a is a constant. (See the figure for problem #4 from Chapter 2.) The
particle is subjected to gravity, so that its potential energy is V = mgz.
Using the cylindrical coordinates ρ and φ as generalized coordinates, find
the Hamiltonian of the particle. [The cylindrical coordinates are defined by
x = ρ cos φ, y = ρ sin φ.]

3. A straight frictionless wire is attached at a height h to the z axis, and it makes
an angle α relative to the z axis. The wire rotates around the z axis with
a constant angular velocity Ω. A bead of mass m slides on the wire and is
subjected to gravity; it is at a distance r from the point at which the wire is
attached to the z axis. (See the figure for problem #5 from Chapter 2.)

(a) Using r as a generalized coordinate, calculate the bead’s Hamiltonian.

(b) Obtain Hamilton’s canonical equations of motion for the bead.

4. A particle of mass m is constrained to move on the surface of a cylinder. The
cylinder is described in cylindrical coordinates by the equation ρ = R, where
ρ is the distance from the z axis and R is the cylinder’s radius. The particle is
subjected to a force directed toward the origin of the coordinate system and
proportional to the distance between the particle and the origin; this force is
described by F = −kr, where k is a constant and r is the particle’s position
vector. (See problem #8 from Chapter 2.)

(a) Using the cylindrical coordinates z and φ as generalized coordinates, find
the particle’s Hamiltonian.

(b) Obtain Hamilton’s canonical equations of motion for the particle. Show
in particular that pφ is a constant of the motion.

(c) Draw the particle’s motion in the reduced phase space spanned by z and
pz.
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5. A pendulum of mass m2 and length ℓ2 is attached to another pendulum of
mass m1 and length ℓ1 (see diagram). The first pendulum is at an angle θ1(t)
relative to the vertical, while the second pendulum is at an angle θ2(t). We
wish to determine the motion of this double pendulum.

θ

z

x

l

l

θ

m
m

1
1

1

2

2

2

(a) Show that the Lagrangian of the double pendulum is given by

L =
1

2
(m1+m2)ℓ

2
1θ̇

2
1+

1

2
m2ℓ

2
2θ̇

2
2+m2ℓ1ℓ2θ̇1θ̇2 cos(θ1−θ2)+(m1+m2)gℓ1 cos θ1+m2gℓ2 cos θ2.

(b) Calculate the generalized momenta p1 and p2 and express θ̇1 and θ̇2 in
terms of them.

(c) Find the Hamiltonian of the double pendulum.

(d) Show that Hamilton’s equations are

θ̇1 =
ℓ2p1 − ℓ1p2 cos(θ1 − θ2)

ℓ21ℓ2
[

m1 + m2 sin2(θ1 − θ2)
] ,

θ̇1 =
(m1 + m2)ℓ1p2 − m2ℓ2p1 cos(θ1 − θ2)

ℓ1ℓ22
[

m1 + m2 sin2(θ1 − θ2)
] ,

ṗ1 = −A + B − (m1 + m2)gℓ1 sin θ1,

ṗ2 = A − B − m2gℓ2 sin θ2,

where

A =
p1p2 sin(θ1 − θ2)

ℓ1ℓ2
[

m1 + m2 sin2(θ1 − θ2)
]

and

B =
m2ℓ

2
2p

2
1 + (m1 + m2)ℓ

2
1p

2
2 − 2m2ℓ1ℓ2p1p2 cos(θ1 − θ2)

ℓ21ℓ
2
2

[

m1 + m2 sin2(θ1 − θ2)
]2 sin(θ1−θ2) cos(θ1−θ2).
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Appendix A

Term project: Motion

around a black hole

This term project is to be handed in on the last day of classes. While working on this
project you are permitted to have discussions with your colleagues on any aspect
of the project. However, and this is important, you are not allowed to directly
collaborate when carrying out the tasks listed below. You must work through these
by yourself, independently of anyone else. Cheating will not be tolerated.

In this term project you will examine the motion of a particle in the strong
gravitational field of a (nonrotating) black hole. The equations of motion for the
particle are derived from Einstein’s general relativity, according to which the particle
must follow a geodesic — the straightest possible path — in the curved spacetime
of the black hole. The motion of the particle is represented in polar coordinates by
its radial position r(t) and its angular position φ(t). Because the gravitational field
of the black hole is spherically symmetric, the motion takes place within a plane
(just as in Newtonian theory).

A.1 Equations of motion

The general relativistic equations of motion are

φ̇ =
h

r2
(A.1.1)

for the angular position, where h is a constant (related to the particle’s angular
momentum), and

r̈ +
GM

r2
− h2

r3

(

1 − 3R

2r

)

= 0 (A.1.2)

for the radial position. Here an overdot indicates differentiation with respect to t,
and

R =
2GM

c2
(A.1.3)

is the Schwarzschild radius of the black hole. Notice that Eq. (A.1.1) is identical
to its Newtonian analogue, and that Eq. (A.1.2) is very similar to it. In fact, the
equations of motion reduce to their Newtonian expressions when R/r ≪ 1, that is,
when the particle is very far from the black hole so that the hole’s gravitational
field is very weak.

Task 1. Calculate R for a black hole whose mass is equal to the Sun’s. Then
calculate R/R⊙, the ratio of the Sun’s Schwarzschild radius R to its actual radius
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R⊙. This number characterizes the size of general relativistic effects in the solar
system. These effects are small, but they have been measured.

Task 2. Integrate Eq. (A.1.2) and express your result in the usual form

1

2
ṙ2 + ν(r) = ε, (A.1.4)

in which ν(r) is the reduced effective potential and ε the reduced total mechanical
energy (which is constant).

Task 3. Sketch the form of the effective potential ν(r) and give a complete
qualitative description of the possible motions. Be careful: there is a wider range
of possibilities than in Newtonian theory. When you plot the potential be sure to
choose values of h that are both above and below the critical value

hc =
√

6GMR. (A.1.5)

Explain what happens to ν(r) when h decreases below hc.

A.2 Circular orbits

The equations of motion admit solutions in which r(t) stays constant, r(t) = r0 =
constant; these solutions represent circular orbits around the black hole.

Task 4. For a circular orbit of radius r0, calculate its angular momentum h, its
energy ε, and its angular velocity φ̇. Show that your relativistic results reduce to
the Newtonian expressions when R/r0 is very small.

A.3 Eccentric orbits

Eccentric motion is possible when ε < 0; there are solutions to the equations of
motion which describe a particle that moves between two turning points at r = r−
and r = r+, where r− < r+. It is convenient to introduce the same parameterization
as in Newtonian theory, and to set

r− =
p

1 + e
= pericentre, r+ =

p

1 − e
= apocentre, (A.3.1)

where p is an average radius and e an eccentricity. When e = 0 we have that
r− = r+ = p ≡ r0, and the orbit is circular.

The results of Task 3 above will have revealed that unlike in Newtonian theory,
where there are only two turning points, there exists in the relativistic situation
a third turning point at r = r<. (For this to be true we need ε < 0, which was
already assumed, and h > hc, which is understood.) We have r< < r−, and for our
purposes this third turning point plays a mathematical role, but has no physical
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significance. The three turning points are located by setting ṙ = 0 in Eq. (A.1.4),
which implies ν(r) − ε = 0.

Task 5. Show that ν(r) − ε has the structure of a cubic polynomial in 1/r. This
can therefore be presented in the factorized form

ν(r) − ε = k

(

1

r
− 1

r<

)(

1

r
− 1

r−

)(

1

r
− 1

r+

)

, (A.3.2)

in which k is a constant of proportionality. As required, ν(r)− ε vanishes whenever
r becomes equal to either one of r<, r−, or r+. Use this observation to:

1. Calculate k.

2. Express r< in terms of r−, r+, and R.

3. Express h2 in terms of r−, r+, R, and GM .

4. Express ε in terms of r−, r+, R, and GM .

Finally, clean up these results by substituting Eq. (A.3.1). Show that

h2 =
GMp

1 − 1
2 (3 + e2)R/p

(A.3.3)

and

ε = −GM

2p
(1 − e2)

1 − 2R/p

1 − 1
2 (3 + e2)R/p

. (A.3.4)

Notice that Eqs. (A.3.3) and (A.3.4) reduce to the Newtonian expressions when
R/p ≪ 1, as should be expected.

Task 6. Prove that the condition r< < r− implies

p > (3 + e)R. (A.3.5)

This means that the particle must be at a safe distance away from the black hole
to be able to keep an eccentric orbit. If this condition is not met the particle will
be forced to plunge into the hole.

A.4 Numerical integration of the equations of

motion

A viable strategy to integrate the equations of motion would be to recast Eqs. (A.1.1)
and (A.1.2) as a system of first-order equations, such as ṙ = v, v̇ = −GM/r2 +
h2(1 − 3R/2r)/r3, and φ̇ = h/r2. One would then select values for e and p, evalu-
ate h from Eq. (A.3.3), and integrate the equations starting from the initial values
r(0) = r− = p/(1 + e), v(0) = 0, and φ(0) = 0. From the numerical information
thus obtained one could then reconstruct the shape of each selected orbit.

We shall adopt instead an alternative, simpler strategy that will allow us to
obtain the orbit more directly, at the price of eliminating t from the system of
equations. We will thus obtain complete shape information, but give up on any
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temporal information. To formulate this strategy we need to pursue the analytical
work a bit more.

It is convenient to introduce an angular parameter χ and to mathematically
represent the radial part of the motion as

r(χ) =
p

1 + e cos χ
. (A.4.1)

We see that as χ proceeds from 0 to π and then to 2π, the orbital radius proceeds
from r− = p/(1 + e) to r+ = p/(1 − e) and then back to r−; as χ ranges through
the interval 0 < χ < 2π the particle undergoes what we shall call a complete radial
orbit.

Task 7. Combine Eqs. (A.1.4), (A.3.2), and (A.4.1) and derive an expression for
χ̇. The right-hand side should involve GM , R, p, e, and cosχ only. Try to simplify
this expression as much as possible.

Task 8. Combine the result of Task 7 with Eqs. (A.1.1) and (A.3.3) and derive
the equation

dφ

dχ
=

1
√

1 − (3 + e cos χ)R/p
. (A.4.2)

This equation shows that χ becomes equal to φ in the nonrelativistic limit R/p ≪ 1.

Equation (A.4.2) can be numerically integrated for φ(χ). This, together with
Eq. (A.4.1), give the exact shape of the relativistic orbit around the black hole.

Task 9. Using whatever method at your disposal, integrate Eq. (A.4.2) numerically
and obtain the orbit of the particle. Do this for the following values of p and e:

orbit 1: p/R = 5.5, e = 0.60377;

orbit 2: p/R = 4.2, e = 0.66155;

orbit 3: p/R = 3.7, e = 0.42387;

orbit 4: p/R = 3.7, e = 0.61976;

orbit 5: your own selected values;

orbit 6: your own selected values (different from above).

In the numerical work it is a good idea to measure p (and r) in units of R; this
eliminates R from all equations. For each case listed above, plot the shape of the
orbit in the x-y plane. For each case let the parameter χ range through the interval
0 < χ < 4π, to make sure that the particle undergoes two complete radial orbits.

Task 10. Provide a summary of your numerical results by listing the following
quantities in a table: p/R, e, r−/R, r+/R, and ∆φ/(2π). The last quantity,

∆φ

2π
=

φ(χ = 2π) − φ(χ = 0)

2π
, (A.4.3)
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is the total change in φ during one complete radial orbit, divided by 2π; this is
the number of revolutions that the particle completes during one radial orbit. In
Newtonian theory this number would always be equal to unity, and the orbit would
close on itself. In general relativity this number is generally larger than unity, and
the orbit typically does no close. (For carefully selected sets of orbital parameters,
the orbit may close after the particle completes a certain number of radial orbits.)


