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PREFACE

In the twenty years since the appearance of our first edition, the fields of electrochemistry
and electroanalytical chemistry have evolved substantially. An improved understanding
of phenomena, the further development of experimental tools already known in 1980, and
the introduction of new methods have all been important to that evolution. In the preface
to the 1980 edition, we indicated that the focus of electrochemical research seemed likely
to shift from the development of methods toward their application in studies of chemical
behavior. By and large, history has justified that view. There have also been important
changes in practice, and our 1980 survey of methodology has become dated. In this new
edition, we have sought to update the book in a way that will extend its value as a general
introduction to electrochemical methods.

We have maintained the philosophy and approach of the original edition, which is to
provide comprehensive coverage of fundamentals for electrochemical methods now in
widespread use. This volume is intended as a textbook and includes numerous problems
and chemical examples. Illustrations have been employed to clarify presentations, and the
style is pedagogical throughout. The book can be used in formal courses at the senior un-
dergraduate and beginning graduate levels, but we have also tried to write in a way that
enables self-study by interested individuals. A knowledge of basic physical chemistry is
assumed, but the discussions generally begin at an elementary level and develop upward.
We have sought to make the volume self-contained by developing almost all ideas of any
importance to our subject from very basic principles of chemistry and physics. Because
we stress foundations and limits of application, the book continues to emphasize the
mathematical theory underlying methodology; however the key ideas are discussed con-
sistently apart from the mathematical basis. Specialized mathematical background is cov-
ered as needed. The problems following each chapter have been devised as teaching tools.
They often extend concepts introduced in the text or show how experimental data are re-
duced to fundamental results. The cited literature is extensive, but mainly includes only
seminal papers and reviews. It is impossible to cover the huge body of primary literature
in this field, so we have made no attempt in that direction.

Our approach is first to give an overview of electrode processes (Chapter 1), show-
ing the way in which the fundamental components of the subject come together in an
electrochemical experiment. Then there are individual discussions of thermodynamics
and potential, electron-transfer kinetics, and mass transfer (Chapters 2-4). Concepts
from these basic areas are integrated together in treatments of the various methods
(Chapters 5-11). The effects of homogeneous kinetics are treated separately in a way
that provides a comparative view of the responses of different methods (Chapter 12).
Next are discussions of interfacial structure, adsorption, and modified electrodes (Chap-
ters 13 and 14); then there is a taste of electrochemical instrumentation (Chapter 15),
which is followed by an extensive introduction to experiments in which electrochemistry
is coupled with other tools (Chapters 16-18). Appendix A teaches the mathematical
background; Appendix В provides an introduction to digital simulation; and Appendix С
contains tables of useful data.
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This structure is generally that of the 1980 edition, but important additions have been
made to cover new topics or subjects that have evolved extensively. Among them are ap-
plications of ultramicroelectrodes, phenomena at well-defined surfaces, modified elec-
trodes, modern electron-transfer theory, scanning probe methods, LCEC, impedance
spectrometry, modern forms of pulse voltammetry, and various aspects of spectroelectro-
chemistry. Chapter 5 in the first edition ("Controlled Potential Microelectrode Tech-
niques—Potential Step Methods") has been divided into the new Chapter 5 ("Basic
Potential Step Methods") and the new Chapter 7 ("Polarography and Pulse Voltamme-
try"). Chapter 12 in the original edition ("Double Layer Structure and Adsorbed Interme-
diates in Electrode Processes") has become two chapters in the new edition: Chapter 12
("Double-Layer Structure and Adsorption") and Chapter 13 ("Electroactive Layers and
Modified Electrodes"). Whereas the original edition covered in a single chapter experi-
ments in which other characterization methods are coupled to electrochemical systems
(Chapter 14, "Spectrometric and Photochemical Experiments"), this edition features a
wholly new chapter on "Scanning Probe Techniques" (Chapter 16), plus separate chapters
on "Spectroelectrochemistry and Other Coupled Characterization Methods" (Chapter 17)
and "Photoelectrochemistry and Electrogenerated Chemiluminescence" (Chapter 18). The
remaining chapters and appendices of the new edition directly correspond with counter-
parts in the old, although in most there are quite significant revisions.

The mathematical notation is uniform throughout the book and there is minimal du-
plication of symbols. The List of Major Symbols and the List of Abbreviations offer defi-
nitions, units, and section references. Usually we have adhered to the recommendations of
the IUPAC Commission on Electrochemistry [R. Parsons et al., Pure Appl. С hem., 37,
503 (1974)]. Exceptions have been made where customary usage or clarity of notation
seemed compelling.

Of necessity, compromises have been made between depth, breadth of coverage, and
reasonable size. "Classical" topics in electrochemistry, including many aspects of thermo-
dynamics of cells, conductance, and potentiometry are not covered here. Similarly, we
have not been able to accommodate discussions of many techniques that are useful but not
widely practiced. The details of laboratory procedures, such as the design of cells, the
construction of electrodes, and the purification of materials, are beyond our scope. In this
edition, we have deleted some topics and have shortened the treatment of others. Often,
we have achieved these changes by making reference to the corresponding passages in the
first edition, so that interested readers can still gain access to a deleted or attenuated topic.

As with the first edition, we owe thanks to many others who have helped with this
project. We are especially grateful to Rose McCord and Susan Faulkner for their consci-
entious assistance with myriad details of preparation and production. Valuable comments
have been provided by S. Amemiya, F. C. Anson, D. A. Buttry, R. M. Crooks, P. He,
W. R. Heineman, R. A. Marcus, A. C. Michael, R. W. Murray, A. J. Nozik, R. A. Oster-
young, J.-M. Saveant, W. Schmickler, M. P. Soriaga, M. J. Weaver, H. S. White, R. M.
Wightman, and C. G. Zoski. We thank them and our many other colleagues throughout
the electrochemical community, who have taught us patiently over the years. Yet again,
we also thank our families for affording us the time and freedom required to undertake
such a large project.

Allen /. Bard
Larry R. Faulkner
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MAJOR SYMBOLS

Listed below are symbols used in several chapters or in large portions of a chapter. Sym-

bols similar to some of these may have different local meanings. In most cases, the usage

follows the recommendations of the IUPAC Commission on Electrochemistry [R. Par-

sons et al., Pure Appl. Chem., 37, 503 (1974).]; however there are exceptions.

A bar over a concentration or a current [ej*., Co(x, s)] indicates the Laplace trans-

form of the variable. The exception is when / indicates an average current in polaro-

graphy.

STANDARD SUBSCRIPTS

a

с

D

d

anodic

(a) cathodic

(b) charging

disk

diffusion

dl

eq

f

/

double layer

equilibrium

(a) forward

(b) faradaic

limiting

0

P
R

r

pertaining to species 0 in О + ne ±± R

peak

(a) pertaining to species R in О + ne ̂  R

(b) ring

reverse

ROMAN SYMBOLS

Symbol Meaning Usual Units
Section
References

С

CB

cd

c't

(a) area

(b) cross-sectional area of a porous
electrode

(c) frequency factor in a rate expression

(d) open-loop gain of an amplifier

absorbance

(a) internal area of a porous electrode

(b) tip radius in SECM

activity of substance j in a phase a

aFv/RT

capacitance

series equivalent capacitance of a cell

differential capacitance of the double

layer

integral capacitance of the double layer

concentration of species;

bulk concentration of species;

concentration of species; at distance x

cm
cm2

depends on order

none

none

cm2

none

s" 1

mol/cm2

F

F

F, F/cm2

F, F/cm2

M, mol/cm3

M, mol/cm3

M, mol/cm3

1.3.2
11.6.2

3.1.2

15.1.1

17.1.1

11.6.2

16.4.1

2.1.5

6.3.1

13.5.3

1.2.2, 10.1.2

10.4

1.2.2, 13.2.2

13.2.2

1.4.2, 4.4.3

1.4



Major Symbols

Symbol

CjCx = 0)

Cj(x, t)

Cj(O, f)

Cj(y = 0)

Csc

С

Dj(A, E)

D M

£ s

d

*\
E

AE

E

%
%
E

£°

AE°

E°

E0'

EA

Eac

Eb

Edc

Meaning

concentration of species j at the
electrode surface

concentration of species у at distance x
at time t

concentration of species у at the
electrode surface at time t

concentration of species у at distance у
away from rotating electrode

surface concentration of species у at a
rotating electrode

space charge capacitance

pseudocapacity

speed of light in vacuo

diffusion coefficient for electrons within
the film at a modified electrode

diffusion coefficient of species у

concentration density of states for species у

model diffusion coefficient in simulation

diffusion coefficient for the primary
reactant within the film at a modified
electrode

distance of the tip from the substrate in
SECM

density of phase у

(a) potential of an electrode versus a
reference

(b) emf of a reaction

(c) amplitude of an ac voltage

(a) pulse height in DPV

(b) step height in tast or staircase
voltammetry

(c) amplitude (1/2 p-p) of ac excitation
in ac voltammetry

electron energy

electric field strength vector

electric field strength

voltage or potential phasor

(a) standard potential of an electrode or
a couple

(b) standard emf of a half-reaction

difference in standard potentials for
two couples

electron energy corresponding to the
standard potential of a couple

formal potential of an electrode

activation energy of a reaction

ac component of potential

base potential in NPV and RPV

dc component of potential

Usual Units

M, mol/cm3

M, mol/cm3

M, mol/cm3

M, mol/cm3

M, mol/cm3

F/cm

F

cm/s

cm /s

cm2/s

cm 3eV~ !

none

cm2/s

/xm, nm

g/cm3

V

V

V

mV

mV

mV

eV

V/cm

V/cm

V

V

V

V

eV

V

kJ/mol

mV

V

V

Section
References

1.4.2

4.4

4.4.3

9.3.3

9.3.4

18.2.2

10.1.3

17.1.2

14.4.2

1.4.1,4.4

3.6.3

B.1.3.B.1.8
14.4.2

16.4.1

1.1,2.1

2.1

10.1.2

7.3.4

7.3.1

10.5.1

2.2.5, 3.6.3

2.2.1

2.2.1

10.1.2

2.1.4

2.1.4

6.6

3.6.3

2.1.6

3.1.2

10.1.1

7.3.2, 7.3.3

10.1.1



Symbol

Ещ

EF

Em

Eg

E;

Щ
Em

EP

A£P

Ep/2

£pa

£pc

£Z

*л

Еф

E\I2

Ещ
ЕЪ1А

e

e\

e0

ег%)

erfc(x)

F

f

/(E)

fUk)

G

AG

G

G°

Meaning

equilibrium potential of an electrode

Fermi level

flat-band potential

bandgap of a semiconductor

initial potential
junction potential

membrane potential

peak potential

( a ) | £ p a - £ p c | i n C V
(b) pulse height in SWV
potential where / = /p/2 in LSV
anodic peak potential
cathodic peak potential
staircase step height in SWV

potential of zero charge
switching potential for cyclic voltammetry
quarter-wave potential in

chronopotentiometry

(a) measured or expected half-wave
potential in voltammetry

(b) in derivations, the "reversible"
half-wave potential,
Eo> + (RT/nF)\n(DR/D0)

l/2

potential where i/i^ =1/4
potential where ///d = 3/4
(a) electronic charge

(b) voltage in an electric circuit
input voltage
output voltage

voltage across the input terminals of an
amplifier

error function of x

error function complement of x
the Faraday constant; charge on one

mole of electrons
(a) F/RT

(b) frequency of rotation
(c) frequency of a sinusoidal oscillation
(d) SWV frequency

(e) fraction titrated
Fermi function

fractional concentration of species / in
boxy after iteration к in a simulation

Gibbs free energy

Gibbs free energy change in a chemical
process

electrochemical free energy

standard Gibbs free energy

Usual Units

V

eV

V

eV

V

mV

mV

V

V

mV

V

V

V

mV

V

V

V

V

V

V

V

с
V

V

V

/xV

none

none

С

V" 1

r/s

s-1

s-1

none

none

none

kJ, kJ/mol

kJ, kJ/mol

kJ, kJ/mol

kJ, kJ/mol

Major Symbols xi

Section
References

1.3.2,3.4.1

2.2.5, 3.6.3
18.2.2

18.2.2

6.2.1

2.3.4

2.4

6.2.2

6.5

7.3.5

6.2.2

6.5

6.5

7.3.5

13.2.2

6.5

8.3.1

1.4.2,5.4,5.5

5.4

5.4.1

5.4.1

10.1.1,15.1
15.2

15.1.1

15.1.1

A.3

A.3

9.3
10.1.2

7.3.5
11.5.2

3.6.3

B.1.3

2.2.4

2.1.2,2.1.3

2.2.4

3.1.2



xii Major Symbols

Symbol Meaning Usual Units

kJ, kJ/mol

kJ/mol

kJ/mol

cm/s2

J-cm2/mol2

kJ, kJ/mol
s-l/2

kJ, kJ/mol

kJ, kJ/mol

kJ/mol

J-s

cm

A

C/s1/2

A

^A-s1/2/(mg2/3-mM)

Section
References

2.1.2,2.1.3

3.1.2

2.3.6

13.5.2

2.1.2

5.5.1

2.1.2

2.1.2

3.1.2

7.1.4

10.1.2

6.7.1

10.1.2

7.1.3

AG°

дс! j

transfer, j

H

Mi

A#°

/
/(0

/
7

А/

8i

/(0)

*А

Od)max

standard Gibbs free energy change in a
chemical process

standard Gibbs free energy of activation

standard free energy of transfer for
species j from phase a into phase /3

(a) gravitational acceleration

(b) interaction parameter in adsorption

isotherms

(a) enthalpy

enthalpy change in a chemical process

standard enthalpy change in a chemical

process

standard enthalpy of activation

Planck constant

corrected mercury column height at a DME

amplitude of an ac current

convolutive transform of current;

semi-integral of current

current phasor

diffusion current constant for average

current

diffusion current constant for maximum

current

peak value of ac current amplitude

current

difference current in SWV = if — ir

difference current in DPV = /(r) - Z(r')

initial current in bulk electrolysis

characteristic current describing flux of the

primary reactant to a modified RDE

anodic component current

(a) charging current

(b) cathodic component current

(a) current due to diffusive flux

(b) diffusion-limited current

average diffusion-limited current flow

over a drop lifetime at a DME
diffusion-limited current at tm.dX at a

DME (maximum current)
characteristic current describing diffusion

of electrons within the film at a

modified electrode

(a) faradaic current

(b) forward current

kinetically limited current

characteristic current describing
cross-reaction within the film at a
modified electrode

M-s1/2/(mg2/3-mM) 7.1.3

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

10.5.1

1.3.2

7.3.5

7.3.4

11.3.1

14.4.2

3.2

6.2.4

3.2

4.1

5.2.1

7.1.2

7.1.2

14.4.2

5.7

9.3.4

14.4.2



Symbol

Ч

k&
kc

h

>P

'pa

*pc

'r

'S

4s
h
*T,oo

h
*0,t

Im(w)

/jfe t)
j

h
К

к

k°
К

kf

*??

k°

Meaning

limiting current

limiting anodic current

limiting cathodic current

migration current

characteristic current describing
permeation of the primary reactant
into the film at a modified electrode

peak current

anodic peak current

cathodic peak current

current during reversal step

(a) characteristic current describing
diffusion of the primary reactant
through the film at a modified electrode

(b) substrate current in SECM

steady-state current

tip current in SECM

tip current in SECM far from the
substrate

exchange current

true exchange current

imaginary part of complex function w

flux of species j at location x at time t

(a) current density

(b) box index in a simulation

(c)V^I
exchange current density

equilibrium constant

precursor equilibrium constant for
reactant j

(a) rate constant for a homogeneous
reaction

(b) iteration number in a simulation

(c) extinction coefficient

Boltzmann constant

standard heterogeneous rate constant

(a) heterogeneous rate constant for
oxidation

(b) homogeneous rate constant for
"backward" reaction

(a) heterogeneous rate constant for
reduction

(b) homogeneous rate constant for
"forward" reaction

potentiometric selectivity coefficient of
interferenty toward a measurement
of species /

true standard heterogeneous rate
constant

Major

Usual Units

A

A

A

A

A

A

A

A

A

A

A

A

A •

A

A

A

mol cm" 2 s" 1

A/cm2

none

none

A/cm

none

depends on case

depends on order

none

none

J/K

cm/s

cm/s

depends on order

cm/s

depends on order

none

cm/s

Symbols xui

Section
References

1.4.2

1.4.2

1.4.2

4.1

14.4.2

6.2.2

6.5.1

6.5.1

5.7

14.4.2

16.4.4

5.3

16.4.2

16.4.1

3.4.1,3.5.4

13.7.1

A.5

1.4.1,4.1

1.3.2

B.1.2

A.5

3.4.1,3.5.4

3.6.1

B.I

17.1.2

3.3, 3.4

3.2

3.1

3.2

3.1

2.4

13.7.1



xiv Major Symbols

Symbol Meaning Usual Units
Section
References

L length of a porous electrode
L{f(t)} Laplace transform of/(0 = f(s)
L~]{f(s)} inverse Laplace transform of f(s)
I thickness of solution in a thin-layer cell
€ number of iterations corresponding to t^

in a simulation
m mercury flow rate at a DME
m(t) convolutive transform of current;

semi-integral of current
m-} mass-transfer coefficient of species j
N collection efficiency at an RRDE
NA (a) acceptor density

(b) Avogadro's number
ND donor density
iVj total number of moles of species j in

a system
n (a) stoichiometric number of electrons

involved in an electrode reaction
(b) electron density in a semiconductor
(c) refractive index

n complex refractive index
n° number concentration of each ion in a

z: z electrolyte
щ electron density in an intrinsic

semiconductor
щ (a) number of moles of species у in a phase

(b) number concentration of ion у in an
electrolyte

n® number concentration of ion у in the bulk
electrolyte

О oxidized form of the standard system
О + ne ^ R; often used as a subscript
denoting quantities pertaining to
species О

P pressure
p (a) hole density in a semiconductor

(b) mjA/V
P\ hole density in an intrinsic semiconductor
Q charge passed in electrolysis
<2° charge required for complete electrolysis

of a component by Faraday's law
gd chronocoulometric charge from a

diffusing component
Qdi charge devoted to double-layer

capacitance
cf excess charge on phase у
R reduced form of the standard system,

О + ne i=^ R; often used as a subscript
denoting quantities pertaining to
species R

cm
none

mg/s

C/s1 / 2

cm/s

none

c m " 3

т о Г 1

cm" 3

mol

none

cm" 3

none

none

cm" 3

cm" 3

mol
cm" 3

cm
- 3

11.6.2
A.I
A.I
11.7.2
B.1.4

7.1.2

6.7.1

1.4.2

9.4.2

18.2.2

18.2.2

11.3.1

1.3.2

18.2.2

17.1.2

17.1.2

13.3.2

18.2.2

2.2.4, 13.1.1

13.3.2

13.3.2

Pa, atm
cm" 3

s" 1

cm" 3

С

С

с

с

С д С

18.2.2

11.3.1
18.3.2

1.3.2,5.8.1, 11.3.1
11.3.4

5.8.1

5.8

1.2,2.2



Major Symbols xv

Symbol

R

RB

Ret

R{

Rmt

Rs

Ru

Ra
r

rc

fo

r\

Г2

гъ
Re

Re(w)

AS

AS0

AS*

Sr(t)

s

T

t

4

чтшх

'p
Щ

V

V

vh

Vf

V\

Meaning

(a) gas constant

(b) resistance

(c) fraction of substance electrolyzed in
a porous electrode

(d) reflectance

series equivalent resistance of a cell

charge-transfer resistance

feedback resistance

mass-transfer resistance

(a) solution resistance

(b) series resistance in an equivalent
circuit

uncompensated resistance

ohmic solution resistance

radial distance from the center of an
electrode

radius of a capillary

radius of an electrode

radius of the disk in an RDE or RRDE

inner radius of a ring electrode

outer radius of a ring electrode

Reynolds number

real part of complex function w

entropy change in a chemical process

standard entropy change in a chemical

process
standard entropy of activation

unit step function rising at t = т

(a) Laplace plane variable, usually
complementary to t

(b) specific area of a porous electrode

absolute temperature

time

transference number of species у

known characteristic time in a simulation

drop time at a DME

pulse width in SWV

mobility of ion (or charge carrier) j

volume

(a) linear potential scan rate

(b) homogeneous reaction rate

(c) heterogeneous reaction rate

(d) linear velocity of solution flow, usually
a function of position

(a) "backward" homogeneous reaction rate

(b) anodic heterogeneous reaction rate

(a) "forward" homogeneous reaction rate

(b) cathodic heterogeneous reaction rate

component of velocity in the j direction

Usual Units

J m o l ^ K " 1

ft
none

none

ft
ft

a
ft
ft
ft

ft
ft
cm

cm

cm

cm

cm

cm

none

kJ/K.kJmol^K" 1

kJ/K.kJmol^K" 1

k J m o l ^ K " 1

none

cm" 1

К

s

none

s

s

s

cn^V'V1

cm3

V/s

mol cm" 3 s~l

mol cm" 2 s"1

cm/s

mol cm~3 s"1

mol cm" 2 s - 1

mol cm" 3 s"1

mol cm" 2 s~]

cm/s

Section
References

10.1.2

11.6.2

17.1.2

10.4

1.3.3,3.4.3

15.2

1.4.2,3.4.6

1.3.4

1.2.4, 10.1.3

1.3.4, 15.6

10.1.3

5.2.2,5.3,9.3.1

7.1.3

5.2.2, 5.3

9.3.5

9.4.1

9.4.1

9.2.1

A.5

2.1.2

2.1.2

3.1.2

A. 1.7

A.I

11.6.2

2.3.3, 4.2

B.1.4

7.1.2

7.3.5

2.3.3,4.2

6.1

1.3.2,3.1

1.3.2, 3.2

1.4.1,9.2

3.1

3.2

3.1

3.2

9.2.1
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*>mt

Wj(A,E)

w

Wj

*c
x>
X

X\

x2

Y

Y

У

z

z

Z\m

^Re
7

z

Zj

rate of mass transfer to a surface

probability density function for species j

width of a band electrode

work term for reactant j in electron
transfer

capacitive reactance

mole fraction of species j

distance, often from a planar electrode

distance of the IHP from the electrode
surface

distance of the OHP from the electrode
surface

admittance

admittance vector

distance from an RDE or RRDE

(a) impedance

(b) dimensionless current parameter in
simulation

impedance vector

faradaic impedance

imaginary part of impedance

real part of impedance

Warburg impedance

(a) distance normal to the surface of a
disk electrode or along a cylindrical
electrode

(b) charge magnitude of each ion in a
z: z electrolyte

charge on species j in signed units of
electronic charge

mol cm 2 s '

eV"1

cm

eV

n
none

cm

cm

cm

rr1

ft"1

cm

n
none

ft
ft

a
ft
ft
cm

none

none

1.4.1

3.6.3

5.3

3.6.2

10.1.2

13.1.2

1.2.3, 13.3.3

1.2.3, 13.3.3

10.1.2

10.1.2

9.3.1

10.1.2

B.1.6

10.1.2

10.1.3

10.1.2

10.1.2

10.1.3

5.3

13.3.2

2.3
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(a) transfer coefficient

(b) absorption coefficient

(a) distance factor for extended charge

transfer

(b) geometric parameter for an RRDE

(c) 1 - a

(a) дЕ/дС}(0, t)

(b) equilibrium parameter in an adsorption

isotherm for species у

surface excess of species j at equilibrium

relative surface excess of species у with

respect to component r

none
cm" 1

A"1

none

none

V-cm3/mol

none

mol/cm2

mol/cm2

3.3
17.1.2

3.6.4

9.4.1

10.5.2

10.2.2

13.5.2

13.1.2

13.1.2
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П
Д

8

A

A

surface excess of species j at saturation
(a) surface tension

(b) dimensionless parameter used to define
frequency (time) regimes in step
experiments at spherical electrodes

activity coefficient for species у
ellipsometric parameter
r0(s/Do)

l/2, used to define diffusional
regimes at a spherical electrode

"diffusion" layer thickness for species у at
an electrode fed by convective transfer

(a) dielectric constant
(b) optical-frequency dielectric constant
(c) porosity

complex optical-frequency dielectric

constant

molar absorptivity of species у

permittivity of free space

zeta potential

overpotential, E — Eeq

charge-transfer overpotential

viscosity of fluid у

mass-transfer overpotential

fractional coverage of an interface by
species у

(a) conductivity of a solution

(b) transmission coefficient of a reaction

(c) r0kf/Do, used to define kinetic regimes
at a spherical electrode

(d) double-layer thickness parameter

(e) partition coefficient for the primary
reactant in a modified electrode system

electronic transmission coefficient

equivalent conductivity of a solution

(a) reorganization energy for electron
transfer

(b) £fr1/2(l + £0)/£>o2

(c) dimensionless homogeneous kinetic
parameter, specific to a method and
mechanism

(d) switching time in CV
(e) wavelength of light in vacuo

inner component of the reorganization
energy

equivalent ionic conductivity for ion у

equivalent ionic conductivity of ion у
extrapolated to infinite dilution

mol/cm2

dyne/cm

none

none

none

none

none

none

none

none

13.5.2

5.4.2, 5.5.2

2.1.5
17.1.2
5.5.2

1.4.2,9.3.2

13.3.1

17.1.2

11.6.2

17.1.2

M" 1 cm

mV

V

V

gem'

V

none

s1/2

none

" 1 17.1.1
] m " 2 13.3.1

9.8.1
1.3.2,3.4.2
1.3.3, 3.4.6

" V 1 = poise 9.2.2

1.3.3, 3.4.6
5.4.1
5.8.2
13.5.2

= fl" 1 - i

none

none

cm" 1

none

none

c m 2 ! ! " 1

eV

none

none

s

nm

eV

equiv " 1

cm2 II 1 equiv ]

cm2 f l" 1 equiv"1

3.1.3

5.5.2

13.3.2

14.4.2

3.6

2.3.3

3.6

5.5.1
12.3

6.5
17.1.2

3.6.2

2.3.3
2.3.3
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К

p(E)

Ф

Ф

outer component of the reorganization
energy

(a) reaction layer thickness

(b) magnetic permeability

electrochemical potential of electrons in

phase a

electrochemical potential of species j in

phase a

chemical potential of species у in phase a

standard chemical potential of species j in
phase a

(a) kinematic viscosity
(b) frequency of light
stoichiometric coefficient for species у in a

chemical process
nuclear frequency factor
(D0/DR)112

(a) resistivity
(b) roughness factor
electronic density of states
(a) nFv/RT
(b) (1MFAV2)[/3O/£>O

/2 " J3R/£>R2]
excess charge density on phase у
parameter describing potential dependence

of adsorption energy
(a) transition time in chronopotentiometry

(b) sampling time in sampled-current
voltammetry

(c) forward step duration in a double-step
experiment

(d) generally, a characteristic time defined
by the properties of an experiment

(e) in treatments of UMEs, 4Dot/rl
start of potential pulse in pulse voltammetry
longitudinal relaxation time of a solvent
work function of a phase
(a) electrostatic potential
(b) phase angle between two sinusoidal

signals

(c) phase angle between / a c and £ac

(d) film thickness in a modified electrode
(a) electrostatic potential difference

between two points or phases
(b) potential drop in the space charge

region of a semiconductor
absolute electrostatic potential of phase j
junction potential at a liquid-liquid interface

eV

cm
none
kJ/mol

kJ/mol

kJ/mol
kJ/mol

cm2/s

none

s"1

none
fl-cm
none
cm2eV"1

s"1

C/cm2

none

s
s

3.6.2

1.5.2, 12.4.2
17.1.2
2.2.4, 2.2.5

2.2.4

2.2.4
2.2.4

9.2.2

2.1.5

3.6
5.4.1
4.2
5.2.3
3.6.3
6.2.1
10.2.3
1.2,2.2
13.3.4

8.2.2

5.1,7.3

5.7.1

none
s
s
eV
V
degrees,

radians
degrees,

radians
cm
V

5.3
7.3
3.6.2
3.6.4
2.2.1
10.1.2

10.1.2

14.4.2
2.2

V
V

18.2.2

2.2.1
6.8
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Фо

ф2

X

XU)

x(bt)

x(at)

Xf

Ф

standard Galvani potential of ion transfer
for species j from phase a to phase /3

total potential drop across the solution side
of the double layer

potential at the OHP with respect to bulk
solution

(12/7)1/2£fT1/2/Do/2

dimensionless distance of box; in a
simulation

normalized current for a totally irreversible
system in LSV and CV

normalized current for a reversible system in
LSV and CV

rate constant for permeation of the primary
reactant into the film at a modified
electrode

(a) ellipsometric parameter
(b) dimensionless rate parameter in CV
(a) angular frequency of rotation;

2тг X rotation rate
(b) angular frequency of a sinusoidal

oscillation; 2rrf

V

mV

V

none

none

none

none

cm/s

none

none

s" 1

s" 1

6.8

13.3.2

1.2.3, 13.3.3

7.2.2

B.1.5

6.3.1

6.2.1

14.4.2

17.1.2

6.5.2

9.3

10.1.2

Abbreviation

ADC

AES
AFM

ASV

BV
CB

CE

CV
CZE

DAC
DME

DMF

DMSO

DPP

DPV

Meaning

analog-to-digital converter

Auger electron spectrometry

atomic force microscopy

anodic stripping voltammetry

Butler- Volmer

conduction band

homogeneous chemical process preceding heterogeneous
electron transfer1

cyclic voltammetry

capillary zone electrophoresis

digital-to-analog converter

(a) dropping mercury electrode

(b) 1,2-dimethoxyethane

TV, TV-dimethylformamide
Dimethylsulfoxide

differential pulse polarography

differential pulse voltammetry

Section
Reference

15.8

17.3.3

16.3

11.8

3.3
18.2.2

12.1.1

6.1,6.5
11.6.4

15.8

7.1.1

7.3.4

7.3.4

betters may be subscripted i, q, or r to indicate irreversible, quasi-reversible, or reversible reactions.
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Abbreviation Meaning
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EC heterogeneous electron transfer followed by homogeneous 12.1.1
chemical reaction1

EC' catalytic regeneration of the electroactive species in a following 12.1.1
homogeneous reaction1

ECE heterogeneous electron transfer, homogeneous chemical reaction, 12.1.1
and heterogeneous electron transfer, in sequence

ECL electrogenerated chemiluminescence 18.1

ECM electrocapillary maximum 13.2.2

ЕЕ step wise heterogeneous electron transfers to accomplish a 12.1.1

2-electron reduction or oxidation of a species

EIS electrochemical impedance spectroscopy 10.1.1

emf electromotive force 2.1.3

EMIRS electrochemically modulated infrared reflectance spectroscopy 17.2.1

ESR electron spin resonance 17.4.1

ESTM electrochemical scanning tunneling microscopy 16.2

EXAFS extended X-ray absorption fine structure 17.6.1

FFT fast Fourier transform A.6

GCS Gouy-Chapman-Stern 13.3.3

GDP galvanostatic double pulse 8.6

HCP hexagonal close-packed 13.4.2

HMDE hanging mercury drop electrode 5.2.2

HOPG highly oriented pyrolytic graphite 13.4.2

IHP inner Helmholtz plane 1.2.3, 13.3.3

IPE ideal polarized electrode 1.2.1

IRRAS infrared reflection absorption spectroscopy 17.2.1

IR-SEC infrared spectroelectrochemistry 17.2.1

ISE ion-selective electrode 2.4

ITIES interface between two immiscible electrolyte solutions 6.8

ITO indium-tin oxide thin film 18.2.5

LB Langmuir-Blodgett 14.2.1

LCEC liquid chromatography with electrochemical detection 11.6.4

LEED low-energy electron diffraction 17.3.3

LSV linear sweep voltammetry 6.1

MFE mercury film electrode 11.8

NHE normal hydrogen electrode = SHE 1.1.1

NCE normal calomel electrode, Hg/Hg2Cl2/KCl (1.0M)

NPP normal pulse polarography 7.3.2

NPV normal pulse voltammetry 7.3.2

OHP outer Helmholtz plane 1.2.3, 13.3.3

OTE optically transparent electrode 17.1.1

OTTLE optically transparent thin-layer electrode 17.1.1

PAD pulsed amperometric detection 11.6.4

PC propylene carbonate

PDIRS potential difference infrared spectroscopy 17.2.1

PZC potential of zero charge 13.2.2

QCM quartz crystal microbalance 17.5

1 Letters may be subscripted /, q, or r to indicate irreversible, quasi-reversible, or reversible reactions.
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QRE
RDE
RDS
RPP
RPV
RRDE
SAM
SCE
SECM
SERS
SHE
SHG
SMDE
SNIFTIRS

SPE
SPR
SSCE
STM

swv
TBABF4
TBAI
TBAP
TEAP
THF
UHV
UME
UPD
XPS
VB

quasi-reference electrode
rotating disk electrode
rate-determining step
reverse pulse polarography
reverse pulse voltammetry
rotating ring-disk electrode
self-assembled monolayer
saturated calomel electrode
scanning electrochemical microscopy
surface enhanced Raman spectroscopy
standard hydrogen electrode = NHE
second harmonic generation
static mercury drop electrode
subtractively normalized interfacial Fourier transform infrared

spectroscopy
solid polymer electrolyte
surface plasmon resonance
sodium saturated calomel electrode, Hg/Hg2Cl2/NaCl (sat'd)
scanning tunneling microscopy
square wave voltammetry
tetra-/2-butylammonium fluoborate
tetra-ft-butylammonium iodide
tetra-w-butylammoniumperchlorate
tetraethylammonium perchlorate
tetrahydrofuran
ultrahigh vacuum
ultramicroelectrode
underpotential deposition
X-ray photoelectron spectrometry
valence band

2.1.7
9.3
3.5
7.3.4
7.3.4
9.4.2
14.2.2
1.1.1
16.4
17.2.2
1.1.1
17.1.5

7.1.1
17.2.1

14.2.6
17.1.3

16.2
7.3.5

17.3
5.3
11.2.1
17.3.2
18.2.2



CHAPTER

1
INTRODUCTION
AND OVERVIEW
OF ELECTRODE

PROCESSES

1.1 INTRODUCTION

Electrochemistry is the branch of chemistry concerned with the interrelation of electri-
cal and chemical effects. A large part of this field deals with the study of chemical
changes caused by the passage of an electric current and the production of electrical en-
ergy by chemical reactions. In fact, the field of electrochemistry encompasses a huge
array of different phenomena (e.g., electrophoresis and corrosion), devices (elec-
trochromic displays, electro analytical sensors, batteries, and fuel cells), and technolo-
gies (the electroplating of metals and the large-scale production of aluminum and
chlorine). While the basic principles of electrochemistry discussed in this text apply to
all of these, the main emphasis here is on the application of electrochemical methods to
the study of chemical systems.

Scientists make electrochemical measurements on chemical systems for a variety of
reasons. They may be interested in obtaining thermodynamic data about a reaction. They
may want to generate an unstable intermediate such as a radical ion and study its rate of
decay or its spectroscopic properties. They may seek to analyze a solution for trace
amounts of metal ions or organic species. In these examples, electrochemical methods are
employed as tools in the study of chemical systems in just the way that spectroscopic
methods are frequently applied. There are also investigations in which the electrochemi-
cal properties of the systems themselves are of primary interest, for example, in the design
of a new power source or for the electrosynthesis of some product. Many electrochemical
methods have been devised. Their application requires an understanding of the fundamen-
tal principles of electrode reactions and the electrical properties of electrode-solution in-
terfaces.

In this chapter, the terms and concepts employed in describing electrode reactions
are introduced. In addition, before embarking on a detailed consideration of methods
for studying electrode processes and the rigorous solutions of the mathematical equa-
tions that govern them, we will consider approximate treatments of several different
types of electrode reactions to illustrate their main features. The concepts and treat-
ments described here will be considered in a more complete and rigorous way in later
chapters.
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1.1.1 Electrochemical Cells and Reactions

In electrochemical systems, we are concerned with the processes and factors that affect
the transport of charge across the interface between chemical phases, for example, be-
tween an electronic conductor (an electrode) and an ionic conductor (an electrolyte).
Throughout this book, we will be concerned with the electrode/electrolyte interface and
the events that occur there when an electric potential is applied and current passes. Charge
is transported through the electrode by the movement of electrons (and holes). Typical
electrode materials include solid metals (e.g., Pt, Au), liquid metals (Hg, amalgams), car-
bon (graphite), and semiconductors (indium-tin oxide, Si). In the electrolyte phase,
charge is carried by the movement of ions. The most frequently used electrolytes are liq-
uid solutions containing ionic species, such as, H + , Na + , Cl~, in either water or a non-
aqueous solvent. To be useful in an electrochemical cell, the solvent/electrolyte system
must be of sufficiently low resistance (i.e., sufficiently conductive) for the electrochemi-
cal experiment envisioned. Less conventional electrolytes include fused salts (e.g., molten
NaCl-KCl eutectic) and ionically conductive polymers (e.g., Nation, polyethylene
oxide-LiClO4). Solid electrolytes also exist (e.g., sodium j8-alumina, where charge is car-
ried by mobile sodium ions that move between the aluminum oxide sheets).

It is natural to think about events at a single interface, but we will find that one cannot
deal experimentally with such an isolated boundary. Instead, one must study the proper-
ties of collections of interfaces called electrochemical cells. These systems are defined
most generally as two electrodes separated by at least one electrolyte phase.

In general, a difference in electric potential can be measured between the electrodes in
an electrochemical cell. Typically this is done with a high impedance voltmeter. This cell
potential, measured in volts (V), where 1 V = 1 joule/coulomb (J/C), is a measure of the
energy available to drive charge externally between the electrodes. It is a manifestation of
the collected differences in electric potential between all of the various phases in the cell.
We will find in Chapter 2 that the transition in electric potential in crossing from one con-
ducting phase to another usually occurs almost entirely at the interface. The sharpness of
the transition implies that a very high electric field exists at the interface, and one can ex-
pect it to exert effects on the behavior of charge carriers (electrons or ions) in the interfa-
cial region. Also, the magnitude of the potential difference at an interface affects the
relative energies of the carriers in the two phases; hence it controls the direction and
the rate of charge transfer. Thus, the measurement and control of cell potential is one of the
most important aspects of experimental electrochemistry.

Before we consider how these operations are carried out, it is useful to set up a short-
hand notation for expressing the structures of cells. For example, the cell pictured in Fig-
ure 1.1.1a is written compactly as

Zn/Zn2 +, СГ/AgCl/Ag (l.l . l)

In this notation, a slash represents a phase boundary, and a comma separates two compo-
nents in the same phase. A double slash, not yet used here, represents a phase boundary
whose potential is regarded as a negligible component of the overall cell potential. When
a gaseous phase is involved, it is written adjacent to its corresponding conducting ele-
ment. For example, the cell in Figure 1.1.1ft is written schematically as

Pt/H2/H+, СГ/AgCl/Ag (1.1.2)

The overall chemical reaction taking place in a cell is made up of two independent
half-reactions, which describe the real chemical changes at the two electrodes. Each half-
reaction (and, consequently, the chemical composition of the system near the electrodes)
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Figure l . l . l Typical electrochemical cells, (a) Zn metal and Ag wire covered with AgCI immersed
in a ZnCl2 solution, (b) Pt wire in a stream of H2 and Ag wire covered with AgCI in HC1 solution.

responds to the interfacial potential difference at the corresponding electrode. Most of the
time, one is interested in only one of these reactions, and the electrode at which it occurs
is called the working (or indicator) electrode. To focus on it, one standardizes the other
half of the cell by using an electrode (called a reference electrode) made up of phases
having essentially constant composition.

The internationally accepted primary reference is the standard hydrogen electrode
(SHE), or normal hydrogen electrode (NHE), which has all components at unit activity:

Pt/H2(a - l)/H+(a = 1, aqueous) (1.1.3)

Potentials are often measured and quoted with respect to reference electrodes other than
the NHE, which is not very convenient from an experimental standpoint. A common ref-
erence is the saturated calomel electrode (SCE), which is

Hg/Hg2Cl2/KCl (saturated in water) (1.1.4)

Its potential is 0.242 V vs. NHE. Another is the silver-silver chloride electrode,

Ag/AgCl/KCl (saturated in water) (1.1.5)

with a potential of 0.197 V vs. NHE. It is common to see potentials identified in the litera-
ture as "vs. Ag/AgQ" when this electrode is used.

Since the reference electrode has a constant makeup, its potential is fixed. Therefore,
any changes in the cell are ascribable to the working electrode. We say that we observe or
control the potential of the working electrode with respect to the reference, and that is
equivalent to observing or controlling the energy of the electrons within the working elec-
trode (1, 2). By driving the electrode to more negative potentials (e.g., by connecting a
battery or power supply to the cell with its negative side attached to the working elec-
trode), the energy of the electrons is raised. They can reach a level high enough to transfer
into vacant electronic states on species in the electrolyte. In that case, a flow of electrons
from electrode to solution (a reduction current) occurs (Figure 1.1.2a). Similarly, the en-
ergy of the electrons can be lowered by imposing a more positive potential, and at some
point electrons on solutes in the electrolyte will find a more favorable energy on the elec-
trode and will transfer there. Their flow, from solution to electrode, is an oxidation cur-
rent (Figure 1.1.2b). The critical potentials at which these processes occur are related to
the standard potentials, E°, for the specific chemical substances in the system.
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Electrode Solution Electrode Solution

0
Potential

0j
Energy level
of electrons

Vacant
MO

Occupied
MO

A + e —> A

(a)

0
Potential

0l

Electrode

Energy level
of electrons

Solution Electrode Solution

Vacant
MO

Occupied
MO

A - e -^ A+

(b)

Figure 1.1.2 Representation of (a) reduction and (b) oxidation process of a species, A, in
solution. The molecular orbitals (MO) of species A shown are the highest occupied MO and the
lowest vacant MO. These correspond in an approximate way to the E°s of the A/A~ and A+/A
couples, respectively. The illustrated system could represent an aromatic hydrocarbon (e.g.,
9,10-diphenylanthracene) in an aprotic solvent (e.g., acetonitrile) at a platinum electrode.

Consider a typical electrochemical experiment where a working electrode and a ref-
erence electrode are immersed in a solution, and the potential difference between the elec-
trodes is varied by means of an external power supply (Figure 1.1.3). This variation in
potential, £, can produce a current flow in the external circuit, because electrons cross the
electrode/solution interfaces as reactions occur. Recall that the number of electrons that
cross an interface is related stoichiometrically to the extent of the chemical reaction (i.e.,
to the amounts of reactant consumed and product generated). The number of electrons is
measured in terms of the total charge, Q, passed in the circuit. Charge is expressed in
units of coulombs (C), where 1 С is equivalent to 6.24 X 1018 electrons. The relationship
between charge and amount of product formed is given by Faraday's law; that is, the pas-
sage of 96,485.4 С causes 1 equivalent of reaction (e.g., consumption of 1 mole of reac-
tant or production of 1 mole of product in a one-electron reaction). The current, /, is the
rate of flow of coulombs (or electrons), where a current of 1 ampere (A) is equivalent to 1
C/s. When one plots the current as a function of the potential, one obtains a current-poten-
tial (i vs. E) curve. Such curves can be quite informative about the nature of the solution
and the electrodes and about the reactions that occur at the interfaces. Much of the re-
mainder of this book deals with how one obtains and interprets such curves.
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Figure 1.1.3 Schematic diagram of the
electrochemical cell Pt/HBr(l M)/AgBr/Ag attached
to power supply and meters for obtaining a current-
potential (i-E) curve.

Let us now consider the particular cell in Figure 1.1.3 and discuss in a qualitative
way the current-potential curve that might be obtained with it. In Section 1.4 and in later
chapters, we will be more quantitative. We first might consider simply the potential we
would measure when a high impedance voltmeter (i.e., a voltmeter whose internal resis-
tance is so high that no appreciable current flows through it during a measurement) is
placed across the cell. This is called the open-circuit potential of the cell.1

For some electrochemical cells, like those in Figure 1.1.1, it is possible to calculate
the open-circuit potential from thermodynamic data, that is, from the standard potentials
of the half-reactions involved at both electrodes via the Nernst equation (see Chapter 2).
The key point is that a true equilibrium is established, because a pair of redox forms
linked by a given half-reaction (i.e., a redox couple) is present at each electrode. In Figure
1.1.1/?, for example, we have H + and H2 at one electrode and Ag and AgCl at the other.2

The cell in Figure 1.1.3 is different, because an overall equilibrium cannot be estab-
lished. At the Ag/AgBr electrode, a couple is present and the half-reaction is

AgBr + e ±± Ag + Br = 0.0713 Vvs. NHE (1.1.6)

Since AgBr and Ag are both solids, their activities are unity. The activity of Br can be
found from the concentration in solution; hence the potential of this electrode (with re-
spect to NHE) could be calculated from the Nernst equation. This electrode is at equilib-
rium. However, we cannot calculate a thermodynamic potential for the Pt/H+,Br~
electrode, because we cannot identify a pair of chemical species coupled by a given half-
reaction. The controlling pair clearly is not the H2,H+ couple, since no H 2 has been intro-
duced into the cell. Similarly, it is not the O2,H2O couple, because by leaving O2 out of
the cell formulation we imply that the solutions in the cell have been deaerated. Thus, the
Pt electrode and the cell as a whole are not at equilibrium, and an equilibrium potential

*In the electrochemical literature, the open-circuit potential is also called the zero-current potential or the rest

potential.
2When a redox couple is present at each electrode and there are no contributions from liquid junctions (yet to be

discussed), the open-circuit potential is also the equilibrium potential. This is the situation for each cell in

Figure 1.1.1.
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does not exist. Even though the open-circuit potential of the cell is not available from
thermodynamic data, we can place it within a potential range, as shown below.

Let us now consider what occurs when a power supply (e.g., a battery) and a mi-
croammeter are connected across the cell, and the potential of the Pt electrode is made
more negative with respect to the Ag/AgBr reference electrode. The first electrode reac-
tion that occurs at the Pt is the reduction of protons,

2H+ + 2 e - * H 2 (1.1.7)

The direction of electron flow is from the electrode to protons in solution, as in Figure
1.12a, so a reduction (cathodic) current flows. In the convention used in this book, ca-
thodic currents are taken as positive, and negative potentials are plotted to the right.3 As
shown in Figure 1.1.4, the onset of current flow occurs when the potential of the Pt elec-
trode is near E° for the H+/H 2 reaction (0 V vs. NHE or -0.07 V vs. the Ag/AgBr elec-
trode). While this is occurring, the reaction at the Ag/AgBr (which we consider the
reference electrode) is the oxidation of Ag in the presence of Br~ in solution to form
AgBr. The concentration of Br~ in the solution near the electrode surface is not changed
appreciably with respect to the original concentration (1 M), therefore the potential of the
Ag/AgBr electrode will be almost the same as at open circuit. The conservation of charge
requires that the rate of oxidation at the Ag electrode be equal to the rate of reduction at
the Pt electrode.

When the potential of the Pt electrode is made sufficiently positive with respect to the
reference electrode, electrons cross from the solution phase into the electrode, and the ox-

Pt/H+,

1

1
1

1.5

ВГ(1 M)/AgBr/Ag

Onset of H+

reduction on Pt.

\
I i

/ \ L

1 \
/ Onset of Br"
/ oxidation on Pt

\y
0

Cathodic

: /

-0.5

Cell Potential Anodic

Figure 1.1.4 Schematic current-potential curve for the cell Pt/H+, Br~(l M)/AgBr/Ag, showing
the limiting proton reduction and bromide oxidation processes. The cell potential is given for the Pt
electrode with respect to the Ag electrode, so it is equivalent to £Pt (V vs. AgBr). Since ^Ag/AgBr =

0.07 V vs. NHE, the potential axis could be converted to EPt (V vs. NHE) by adding 0.07 V to each
value of potential.

3The convention of taking / positive for a cathodic current stems from the early polarograhic studies, where
reduction reactions were usually studied. This convention has continued among many analytical chemists and
electrochemists, even though oxidation reactions are now studied with equal frequency. Other
electrochemists prefer to take an anodic current as positive. When looking over a derivation in the literature
or examining a published i-E curve, it is important to decide, first, which convention is being used (i.e.,
"Which way is up?").
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idation of Br~ to Br2 (and Br̂ ~) occurs. An oxidation current, or anodic current, flows at
potentials near the E° of the half-reaction,

Br2 + 2 e ^ 2 B r ~ (1.1.8)

which is +1.09 V vs. NHE or +1.02 V vs. Ag/AgBr. While this reaction occurs (right-
to-left) at the Pt electrode, AgBr in the reference electrode is reduced to Ag and Br~ is
liberated into solution. Again, because the composition of the Ag/AgBr/Br~ interface
(i.e., the activities of AgBr, Ag, and Br~) is almost unchanged with the passage of modest
currents, the potential of the reference electrode is essentially constant. Indeed, the essen-
tial characteristic of a reference electrode is that its potential remains practically constant
with the passage of small currents. When a potential is applied between Pt and Ag/AgBr,
nearly all of the potential change occurs at the Pt/solution interface.

The background limits are the potentials where the cathodic and anodic currents start
to flow at a working electrode when it is immersed in a solution containing only an elec-
trolyte added to decrease the solution resistance (a supporting electrolyte). Moving the
potential to more extreme values than the background limits (i.e., more negative than the
limit for H2 evolution or more positive than that for Br2 generation in the example above)
simply causes the current to increase sharply with no additional electrode reactions, be-
cause the reactants are present at high concentrations. This discussion implies that one can
often estimate the background limits of a given electrode-solution interface by consider-
ing the thermodynamics of the system (i.e., the standard potentials of the appropriate half-
reactions). This is frequently, but not always, true, as we shall see in the next example.

From Figure 1.1.4, one can see that the open-circuit potential is not well defined in
the system under discussion. One can say only that the open-circuit potential lies some-
where between the background limits. The value found experimentally will depend
upon trace impurities in the solution (e.g., oxygen) and the previous history of the Pt
electrode.

Let us now consider the same cell, but with the Pt replaced with a mercury electrode:

Hg/H+,Br-(l M)/AgBr/Ag (1.1.9)

We still cannot calculate an open-circuit potential for the cell, because we cannot define a
redox couple for the Hg electrode. In examining the behavior of this cell with an applied
external potential, we find that the electrode reactions and the observed current-potential
behavior are very different from the earlier case. When the potential of the Hg is made
negative, there is essentially no current flow in the region where thermodynamics predict
that H2 evolution should occur. Indeed, the potential must be brought to considerably
more negative values, as shown in Figure 1.1.5, before this reaction takes place. The ther-
modynamics have not changed, since the equilibrium potential of half-reaction 1.1.7 is in-
dependent of the metal electrode (see Section 2.2.4). However, when mercury serves as
the locale for the hydrogen evolution reaction, the rate (characterized by a heterogeneous
rate constant) is much lower than at Pt. Under these circumstances, the reaction does not
occur at values one would predict from thermodynamics. Instead considerably higher
electron energies (more negative potentials) must be applied to make the reaction occur at
a measurable rate. The rate constant for a heterogeneous electron-transfer reaction is a
function of applied potential, unlike one for a homogeneous reaction, which is a constant
at a given temperature. The additional potential (beyond the thermodynamic requirement)
needed to drive a reaction at a certain rate is called the overpotential. Thus, it is said that
mercury shows "a high overpotential for the hydrogen evolution reaction."

When the mercury is brought to more positive values, the anodic reaction and the po-
tential for current flow also differ from those observed when Pt is used as the electrode.
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Hg/I-Г, ВГ(1 M)/AgBr/Ag

Cathodic

0.5

Anodic

Onset of H+

reduction ,

-0.5 -1.5
Onset of Hg
oxidation

Potential (V vs. NHE)

Figure 1.1.5 Schematic current-potential curve for the Hg electrode in the cell Hg/H+, Br (1
M)/AgBr/Ag, showing the limiting processes: proton reduction with a large negative overpotential
and mercury oxidation. The potential axis is defined through the process outlined in the caption to
Figure 1.1.4.

With Hg, the anodic background limit occurs when Hg is oxidized to Hg2Br2 at a poten-
tial near 0.14 V vs. NHE (0.07 V vs. Ag/AgBr), characteristic of the half-reaction

2Br" (1.1.10)Hg2Br2 + 2e«±2Hg

In general, the background limits depend upon both the electrode material and the solu-
tion employed in the electrochemical cell.

Finally let us consider the same cell with the addition of a small amount of Cd 2 + to
the solution,

Hg/H+,Br"(l M), Cd2+(10"3M)/AgBr/Ag (1.1.11)

The qualitative current-potential curve for this cell is shown in Figure 1.1.6. Note the
appearance of the reduction wave at about -0.4 V vs. NHE arising from the reduction
reaction

CdBr|~ + 2e S Cd(Hg) + 4Br~ (1.1.12)

where Cd(Hg) denotes cadmium amalgam. The shape and size of such waves will be cov-
ered in Section 1.4.2. If Cd 2 + were added to the cell in Figure 1.1.3 and a current-poten-
tial curve taken, it would resemble that in Figure 1.1.4, found in the absence of Cd 2 + . At a
Pt electrode, proton reduction occurs at less positive potentials than are required for the
reduction of Cd(II), so the cathodic background limit occurs in 1 M HBr before the cad-
mium reduction wave can be seen.

In general, when the potential of an electrode is moved from its open-circuit value to-
ward more negative potentials, the substance that will be reduced first (assuming all possi-
ble electrode reactions are rapid) is the oxidant in the couple with the least negative (or
most positive) E®. For example, for a platinum electrode immersed in an aqueous solution
containing 0.01 M each of Fe 3 + , Sn 4 +, and N i 2 + in 1 M HC1, the first substance reduced
will be Fe 3 + , since the E° of this couple is most positive (Figure 1.1.7a). When the poten-
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Hg/I-Г, ВГ(1 М), Cd2+(1mM)/AgBr/Ag

Cathodic

Anodic l _

Onset of Cd2 '
reduction

Potential (V vs. NHE)

Figure 1.1.6 Schematic current-potential curve for the Hg electrode in the cell Hg/H+,
Br"(l M),Cd 2 +(l(T 3 M)/AgBr/Ag, showing reduction wave for Cd 2 + .

tial of the electrode is moved from its zero-current value toward more positive potentials,
the substance that will be oxidized first is the reductant in the couple of least positive (or
most negative) E°. Thus, for a gold electrode in an aqueous solution containing 0.01 M
each of Sn 2 + and F e 2 + in 1 M HI, the Sn 2 + will be first oxidized, since the E° of this cou-
ple is least positive (Figure 1.1.7b). On the other hand, one must remember that these pre-
dictions are based on thermodynamic considerations (i.e., reaction energetics), and slow
kinetics might prevent a reaction from occurring at a significant rate in a potential region
where the E° would suggest the reaction was possible. Thus, for a mercury electrode im-
mersed in a solution of 0.01 M each of Cr 3 + and Zn 2 + , in 1 M HC1, the first reduction
process predicted is the evolution of H 2 from H + (Figure 1.1.7c). As discussed earlier,
this reaction is very slow on mercury, so the first process actually observed is the reduc-
tion of Cr 3 + .

1.1.2 Faradaic and Nonfaradaic Processes

Two types of processes occur at electrodes. One kind comprises reactions like those just
discussed, in which charges (e.g., electrons) are transferred across the metal-solution in-
terface. Electron transfer causes oxidation or reduction to occur. Since such reactions are
governed by Faraday's law (i.e., the amount of chemical reaction caused by the flow of
current is proportional to the amount of electricity passed), they are called faradaic
processes. Electrodes at which faradaic processes occur are sometimes called charge-
transfer electrodes. Under some conditions, a given electrode-solution interface will
show a range of potentials where no charge-transfer reactions occur because such reac-
tions are thermodynamically or kinetically unfavorable (e.g., the region in Figure 1.1.5
between 0 and —0.8 V vs. NHE). However, processes such as adsorption and desorption
can occur, and the structure of the electrode-solution interface can change with changing
potential or solution composition. These processes are called nonfaradaic processes. Al-
though charge does not cross the interface, external currents can flow (at least transiently)
when the potential, electrode area, or solution composition changes. Both faradaic and
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Figure 1.1.7 (a) Potentials for possible reductions at a platinum electrode, initially at ~ 1 V vs.
NHE in a solution of 0.01 M each of Fe3+, Sn4+, and Ni2+ in 1 M HCL (b) Potentials for possible
oxidation reactions at a gold electrode, initially at ~0.1V vs. NHE in a solution of 0.01 M each of
Sn2+ and Fe2+ in 1 M HI. (c) Potentials for possible reductions at a mercury electrode in 0.01 M
Cr3+ and Zn2+ in 1 M HCL The arrows indicate the directions of potential change discussed in the
text.

nonfaradaic processes occur when electrode reactions take place. Although the faradaic
processes are usually of primary interest in the investigation of an electrode reaction (ex-
cept in studies of the nature of the electrode-solution interface itself), the effects of the
nonfaradaic processes must be taken into account in using electrochemical data to obtain
information about the charge transfer and associated reactions. Consequently, we next
proceed by discussing the simpler case of a system where only nonfaradaic processes
occur.
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1.2 NONFARADAIC PROCESSES AND THE NATURE OF THE
ELECTRODE-SOLUTION INTERFACE

1.2.1 The Ideal Polarized Electrode

An electrode at which no charge transfer can occur across the metal-solution interface, re-
gardless of the potential imposed by an outside source of voltage, is called an ideal polar-
ized (or ideal polarizable) electrode (IPE). While no real electrode can behave as an IPE
over the whole potential range available in a solution, some electrode-solution systems
can approach ideal polarizability over limited potential ranges,. For example, a mercury
electrode in contact with a deaerated potassium chloride solution approaches the behavior
of an IPE over a potential range about 2 V wide. At sufficiently positive potentials, the
mercury can oxidize in a charge-transfer reaction:

Hg + С Г -> |Hg 2Cl 2 + e (at ~ +0.25 V vs. NHE) (1.2.1)

and at very negative potentials K+ can be reduced:
, Hg

K + + e -> K(Hg) (at ~ -2.1 V vs. NHE) (1.2.2)

In the potential range between these processes, charge-transfer reactions are not signifi-
cant. The reduction of water:

H2O + e -> | H 2 + OH" (1.2.3)

is thermodynamically possible, but occurs at a very low rate at a mercury surface unless
quite negative potentials are reached. Thus, the only faradaic current that flows in this re-
gion is due to charge-transfer reactions of trace impurities (e.g., metal ions, oxygen, and
organic species), and this current is quite small in clean systems. Another electrode that
behaves as an IPE is a gold surface hosting an adsorbed self-assembled monolayer of
alkane thiol (see Section 14.5.2).

1.2.2 Capacitance and Charge of an Electrode

Since charge cannot cross the IPE interface when the potential across it is changed, the
behavior of the electrode-solution interface is analogous to that of a capacitor. A capaci-
tor is an electrical circuit element composed of two metal sheets separated by a dielectric
material (Figure 1.2.1a). Its behavior is governed by the equation

| = С (1.2.4)

e
Battery —

©

e ^ -

+ +
_ Capacitor
+ +

e Figure 1.2.1 (a) A capacitor, (b)

(b) Charging a capacitor with a battery.
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Metal Solution Metal Solution

(a) (b)

Figure 1.2.2 The metal-solution
interface as a capacitor with a
charge on the metal, qM, (a)
negative and (b) positive.

where q is the charge stored on the capacitor (in coulombs, С), Е is the potential across the
capacitor (in volts, V), and С is the capacitance (in farads, F). When a potential is applied
across a capacitor, charge will accumulate on its metal plates until q satisfies equation
1.2.4. During this charging process, a current (called the charging current) will flow. The
charge on the capacitor consists of an excess of electrons on one plate and a deficiency of
electrons on the other (Figure 1.2.1b). For example, if a 2-V battery is placed across a 10-
/л¥ capacitor, current will flow until 20 /лС has accumulated on the capacitor plates. The
magnitude of the current depends on the resistance in the circuit (see also Section 1.2.4).

The electrode-solution interface has been shown experimentally to behave like a ca-
pacitor, and a model of the interfacial region somewhat resembling a capacitor can be
given. At a given potential, there will exist a charge on the metal electrode, qM, and a
charge in the solution, qs (Figure 1.2.2). Whether the charge on the metal is negative or
positive with respect to the solution depends on the potential across the interface and the
composition of the solution. At all times, however, qM — -qs. (In an actual experimental
arrangement, two metal electrodes, and thus two interfaces, would have to be considered;
we concentrate our attention here on one of these and ignore what happens at the other.)
The charge on the metal, qM, represents an excess or deficiency of electrons and resides in
a very thin layer (<0.1 A) on the metal surface. The charge in solution, qs, is made up of
an excess of either cations or anions in the vicinity of the electrode surface. The charges
qM and qs are often divided by the electrode area and expressed as charge densities, such
as, ( j M = qM/A, usually given in /лС/ст2. The whole array of charged species and ori-
ented dipoles existing at the metal-solution interface is called the electrical double layer
(although its structure only very loosely resembles two charged layers, as we will see in
Section 1.2.3). At a given potential, the electrode- solution interface is characterized by a
double-layer capacitance, C<j, typically in the range of 10 to 40 /^F/cm2. However, unlike
real capacitors, whose capacitances are independent of the voltage across them, Q is
often a function of potential.4

1.2.3 Brief Description of the Electrical Double Layer

The solution side of the double layer is thought to be made up of several "layers." That
closest to the electrode, the inner layer, contains solvent molecules and sometimes other
species (ions or molecules) that are said to be specifically adsorbed (Figure 1.2.3). This
inner layer is also called the compact, Helmholtz, or Stern layer. The locus of the electri-

4In various equations in the literature and in this book, Cj may express the capacitance per unit area and be

given in fxF/cm2, or it may express the capacitance of a whole interface and be given in JJLF. The usage for a

given situation is always apparent from the context or from a dimensional analysis.
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IHP OHP

ф1 ф2

Diffuse layer

Solvated cation

Metal

Specifically adsorbed anion

= Solvent molecule
Figure 1.2.3 Proposed model of the
double-layer region under conditions
where anions are specifically adsorbed.

cal centers of the specifically adsorbed ions is called the inner Helmholtz plane (IHP),
which is at a distance x\. The total charge density from specifically adsorbed ions in this
inner layer is а1 (/лС/ст2). Solvated ions can approach the metal only to a distance x2; the
locus of centers of these nearest solvated ions is called the outer Helmholtz plane (OHP).
The interaction of the solvated ions with the charged metal involves only long-range elec-
trostatic forces, so that their interaction is essentially independent of the chemical proper-
ties of the ions. These ions are said to be nonspecifically adsorbed. Because of thermal
agitation in the solution, the nonspecifically adsorbed ions are distributed in a three-
dimensional region called the dijfuse layer, which extends from the OHP into the bulk of
the solution. The excess charge density in the diffuse layer is <7d, hence the total excess
charge density on the solution side of the double layer, crs, is given by

= _ом (1.2.5)

The thickness of the diffuse layer depends on the total ionic concentration in the solution;
for concentrations greater than 10~2 M, the thickness is less than ~100 A. The potential
profile across the double-layer region is shown in Figure 1.2.4.

The structure of the double layer can affect the rates of electrode processes. Consider
an electroactive species that is not specifically adsorbed. This species can approach the
electrode only to the OHP, and the total potential it experiences is less than the potential
between the electrode and the solution by an amount ф2 — </>s, which is the potential drop
across the diffuse layer. For example, in 0.1 M NaF, ф2 — <£s is —0.021 V at E = -0.55
V vs. SCE, but it has somewhat larger magnitudes at more negative and more positive po-
tentials. Sometimes one can neglect double-layer effects in considering electrode reaction
kinetics. At other times they must be taken into account. The importance of adsorption
and double-layer structure is considered in greater detail in Chapter 13.

One usually cannot neglect the existence of the double-layer capacitance or the pres-
ence of a charging current in electrochemical experiments. Indeed, during electrode reac-
tions involving very low concentrations of electroactive species, the charging current can
be much larger than the faradaic current for the reduction or oxidation reaction. For this
reason, we will briefly examine the nature of the charging current at an IPE for several
types of electrochemical experiments.
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Figure 1.2.4 Potential profile across the
double-layer region in the absence of specific
adsorption of ions. The variable ф, called the
inner potential, is discussed in detail in
Section 2.2. A more quantitative
representation of this profile is shown in
Figure 12.3.6.

1.2.4 Double-Layer Capacitance and Charging
Current in Electrochemical Measurements

Consider a cell consisting of an IPE and an ideal reversible electrode. We can approxi-

mate such a system with a mercury electrode in a potassium chloride solution that is also

in contact with an SCE. This cell, represented by Hg/K+, CF/SCE, can be approximated

by an electrical circuit with a resistor, Rs, representing the solution resistance and a capac-

itor, C(j, representing the double layer at the Hg/K+,C1~ interface (Figure 1.2.5).5 Since

нд
drop

electrode
HI Wv II

-AM о
SCE

Figure 1.2.5 Left: Two-electrode cell with an ideal polarized mercury drop electrode and an SCE.
Right: Representation of the cell in terms of linear circuit elements.

Actually, the capacitance of the SCE, С$СЕ, should also be included. However, the series capacitance of Cd and
CSCE is CT = CdCSCEJ[Cd + CSCEL and normally C S C E » Q> so that C T « Cd. Thus, C S C E can be neglected
in the circuit.
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Cd is generally a function of potential, the proposed model in terms of circuit elements is
strictly accurate only for experiments where the overall cell potential does not change
very much. Where it does, approximate results can be obtained using an "average" Cd

over the potential range.
Information about an electrochemical system is often gained by applying an electrical

perturbation to the system and observing the resulting changes in the characteristics of the
system. In later sections of this chapter and later chapters of this book, we will encounter
such experiments over and over. It is worthwhile now to consider the response of the IPE
system, represented by the circuit elements Rs and Q in series, to several common electri-
cal perturbations.

(a) Voltage (or Potential) Step
The result of a potential step to the IPE is the familiar RC circuit problem (Figure
1.2.6). The behavior of the current, /, with time, t, when applying a potential step of
magnitude E, is

R
(1.2.6)

This equation is derived from the general equation for the charge, q, on a capacitor as
a function of the voltage across it, EQ\

q = CdEc (1.2.7)

At any time the sum of the voltages, £R and EQ, across the resistor and the capacitor, re-
spectively, must equal the applied voltage; hence

E = Er = iR* + 4-

Noting that / = dq/dt and rearranging yields

dq -q

(1.2.8)

(1.2.9)
dt RsCd Rs

If we assume that the capacitor is initially uncharged (q = 0 at t = 0), then the solution of
(1.2.9) is

(1.2.10)q = ECd[l - e~t/RsCd]

By differentiating (1.2.10), one obtains (1.2.6). Hence, for a potential step input, there is
an exponentially decaying current having a time constant, т = RsCd (Figure 1.2.7). The
current for charging the double-layer capacitance drops to 37% of its initial value at t = т,
and to 5% of its initial value at t = 3r. For example, if Rs = 1 ft and Cd = 20 fxF, then
т = 20 /JLS and double-layer charging is 95% complete in 60 /xs.

Figure 1.2.6
circuit.

Potential step experiment for an RC
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Figure 1.2.7 Current
transient (/ vs. t) resulting from
a potential step experiment.

(b) Current Step
When the RsCd circuit is charged by a constant current (Figure 1.2.8), then equation 1.2.8
again applies. Since q = Jidt, and / is a constant,

E = iRK + 4r\ dt (1.2.11)

or

E = i(Rs + t/Cd) (1.2.12)

Hence, the potential increases linearly with time for a current step (Figure 1.2.9).

(c) Voltage Ramp (or Potential Sweep)
A voltage ramp or linear potential sweep is a potential that increases linearly with time
starting at some initial value (here assumed to be zero) at a sweep rate и (in V s"1) (see
Figure 1.2.10a).

E = vt (1.2.13)

Constant current source

Figure 1.2.8 Current step experiment for an RC
circuit.
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t from a current step experiment.

If such a ramp is applied to the RSC^ circuit, equation 1.2.8 still applies; hence

vt = Rs(dq/dt) + q/Cd (1.2.14)

lfq = OaU = 0,

(1.2.15)

The current rises from zero as the scan starts and attains a steady-state value, vCd (Figure
1.2.10b). This steady-state current can then be used to estimate Cd. If the time constant,

(a)

Applied E(t)

Resultant i

(b)

Figure 1.2.10 Current-time
behavior resulting from a linear
potential sweep applied to an RC
circuit.
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Figure 1.2.11 Current-time and current-potential
plots resulting from a cyclic linear potential sweep (or
triangular wave) applied to an RC circuit.

RsCd, is small compared to v, the instantaneous current can be used to measure C«j as a
function of E.

If one instead applies a triangular wave (i.e., a ramp whose sweep rate switches from
v to —v at some potential, £A), then the steady-state current changes from vC& during the
forward (increasing E) scan to — y Q during the reverse (decreasing E) scan. The result
for a system with constant C& is shown in Figure 1.2.11.

1.3 FARADAIC PROCESSES AND FACTORS AFFECTING
RATES OF ELECTRODE REACTIONS

1.3.1 Electrochemical Cells—Types and Definitions

Electrochemical cells in which faradaic currents are flowing are classified as either gal-
vanic or electrolytic cells. A galvanic cell is one in which reactions occur spontaneously
at the electrodes when they are connected externally by a conductor (Figure 1.3.1a).
These cells are often employed in converting chemical energy into electrical energy. Gal-
vanic cells of commercial importance include primary (nonrechargeable) cells (e.g., the
Leclanche Zn-MnO2 cell), secondary (rechargeable) cells (e.g., a charged Pb-PbO2 stor-
age battery), and fuel cells (e.g., an H2-O2 cell). An electrolytic cell is one in which reac-
tions are effected by the imposition of an external voltage greater than the open-circuit
potential of the cell (Figure 13.1b). These cells are frequently employed to carry out de-
sired chemical reactions by expending electrical energy. Commercial processes involving
electrolytic cells include electrolytic syntheses (e.g., the production of chlorine and alu-
minum), electrorefining (e.g., copper), and electroplating (e.g., silver and gold). The
lead-acid storage cell, when it is being "recharged," is an electrolytic cell.
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Galvanic cell Electrolytic cell

0 Zn/Zn2+//Cu2+/Cu 0
(Anode) (Cathode)

Cu,2+_

Power supply

0 Cu/Cu2+, H2SO4/Pt ( 7 )
(Cathode) (Anode)

Cu Cu 2 + + 2e -» CuZn -> Z n 2 + + 2e

Figure 1.3.1 {a) Galvanic and (b) electrolytic cells.

1.3.2

Although it is often convenient to make a distinction between galvanic and elec-
trolytic cells, we will most often be concerned with reactions occurring at only one of the
electrodes. Treatment is simplified by concentrating our attention on only one-half of the
cell at a time. If necessary, the behavior of a whole cell can be ascertained later by com-
bining the characteristics of the individual half-cells. The behavior of a single electrode
and the fundamental nature of its reactions are independent of whether the electrode is
part of a galvanic or electrolytic cell. For example, consider the cells in Figure 1.3.1. The
nature of the reaction Cu 2 + + 2e —» Cu is the same in both cells. If one desires to plate
copper, one could accomplish this either in a galvanic cell (using a counter half-cell with
a more negative potential than that of Cu/Cu2+) or in an electrolytic cell (using any
counter half-cell and supplying electrons to the copper electrode with an external power
supply). Thus, electrolysis is a term that we define broadly to include chemical changes
accompanying faradaic reactions at electrodes in contact with electrolytes. In discussing
cells, one calls the electrode at which reductions occur the cathode, and the electrode at
which oxidations occur the anode. A current in which electrons cross the interface from
the electrode to a species in solution is a cathodic current, while electron flow from a so-
lution species into the electrode is an anodic current. In an electrolytic cell, the cathode is
negative with respect to the anode; but in a galvanic cell, the cathode is positive with re-
spect to the anode.6

The Electrochemical Experiment
and Variables in Electrochemical Cells

An investigation of electrochemical behavior consists of holding certain variables of an
electrochemical cell constant and observing how other variables (usually current, poten-
tial, or concentration) vary with changes in the controlled variables. The parameters of
importance in electrochemical cells are shown in Figure 1.3.2. For example, in potentio-
metric experiments, / = 0 and E is determined as a function of C. Since no current flows
in this experiment, no net faradaic reaction occurs, and the potential is frequently (but not
always) governed by the thermodynamic properties of the system. Many of the variables
(electrode area, mass transfer, electrode geometry) do not affect the potential directly.

6Because a cathodic current and a cathodic reaction can occur at an electrode that is either positive or negative

with respect to another electrode (e.g., an auxiliary or reference electrode, see Section 1.3.4), it is poor usage to

associate the term "cathodic" or "anodic" with potentials of a particular sign. For example, one should not say,

"The potential shifted in a cathodic direction," when what is meant is, "The potential shifted in a negative

direction." The terms anodic and cathodic refer to electron flow or current direction, not to potential.
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Electrode
variables

Material
Surface area (A)
Geometry
Surface condition

Mass transfer
variables

Mode (diffusion,
convection,...)

Surface concentrations
Adsorption

External variables

Temperature (T)
Pressure {P)
Time (?)

Electrical variables

Potential (£)
Current (i)
Quantity of electricity (Q)

Solution variables

Bulk concentration of electroactive
species (Co, cR)

Concentrations of other species
(electrolyte, pH,...)

Solvent

Figure 1.3.2 Variables affecting the rate of an electrode reaction.

Another way of visualizing an electrochemical experiment is in terms of the way in
which the system responds to a perturbation. The electrochemical cell is considered as a
"black box" to which a certain excitation function (e.g., a potential step) is applied, and a
certain response function (e.g., the resulting variation of current with time) is measured,
with all other system variables held constant (Figure 1.3.3). The aim of the experiment is
to obtain information (thermodynamic, kinetic, analytical, etc.) from observation of the

(a) General concept

Excitation System Response

(b) Spectrophotometric experiment

Lamp-Monochromator
Optical cell
with sample

Phototube

(c) Electrochemical experiment

Figure 1.3.3 (a) General principle of studying a system by application of an excitation (or
perturbation) and observation of response, (b) In a spectrophotometric experiment, the excitation
is light of different wavelengths (A), and the response is the absorbance (si) curve, (c) In an
electrochemical (potential step) experiment, the excitation is the application of a potential step,
and the response is the observed i-t curve.
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10

Figure 1.3.4 Schematic cell connected
to an external power supply. The double
slash indicates that the KC1 solution
contacts the Cd(NO3)2 solution in such a
way that there is no appreciable potential

, difference across the junction between
Q Cu/Cd/Cd(NO3)2 (1M)//KCI(saturated)/Hg2CI2/Hg/Cu/ 0 the two liquids. A "salt bridge" (Section

•ЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛ-

C d 2 + + 2e = Cd E° = -0.403 V vs. NHE
Hg2CI2 + 2e = 2Hg + 2СГ E = 0.242 V vs. NHE

2.3.5) is often used to achieve that
condition.

excitation and response functions and a knowledge of appropriate models for the system.
This same basic idea is used in many other types of investigation, such as circuit testing or
spectrophotometric analysis. In spectrophotometry, the excitation function is light of dif-
ferent wavelengths; the response function is the fraction of light transmitted by the system
at these wavelengths; the system model is Beer's law or a molecular model; and the infor-
mation content includes the concentrations of absorbing species, their absorptivities, or
their transition energies.

Before developing some simple models for electrochemical systems, let us consider
more closely the nature of the current and potential in an electrochemical cell. Consider the
cell in which a cadmium electrode immersed in 1 M Cd(NO3)2 is coupled to an SCE (Figure
1.3.4). The open-circuit potential of the cell is 0.64 V, with the copper wire attached to the
cadmium electrode being negative with respect to that attached to the mercury electrode.7

When the voltage applied by the external power supply, £appi, is 0.64 V, / = 0. When £appl

is made larger (i.e., £appi > 0.64 V, such that the cadmium electrode is made even more
negative with respect to the SCE), the cell behaves as an electrolytic cell and a current
flows. At the cadmium electrode, the reaction Cd2+ + 2e —» Cd occurs, while at the SCE,
mercury is oxidized to Hg2Cl2. A question of interest might be: "If £appl = 0.74 V (i.e., if
the potential of the cadmium electrode is made -0.74 V vs. the SCE), what current will
flow?" Since / represents the number of electrons reacting with Cd2+ per second, or the
number of coulombs of electric charge flowing per second, the question "What is /?" is es-
sentially the same as "What is the rate of the reaction, Cd2+ + 2e —> Cd?" The following re-
lations demonstrate the direct proportionality between faradaic current and electrolysis rate:

dQ
i (amperes) = — (coulombs/s)

Q (coulombs)
nF (coulombs/mol)

= N (mol electrolyzed)

(1.3.1)

(1.3.2)

where n is the stoichiometric number of electrons consumed in the electrode reaction
(e.g., 2 for reduction of Cd1 ).

Rate (mol/s) = Щ- = -±=
dt nF

(1.3.3)

7This value is calculated from the information in Figure 1.3.4. The experimental value would also include the
effects of activity coefficients and the liquid junction potential, which are neglected here. See Chapter 2.
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Interpreting the rate of an electrode reaction is often more complex than doing the same
for a reaction occurring in solution or in the gas phase. The latter is called a homogeneous
reaction, because it occurs everywhere within the medium at a uniform rate. In contrast, an
electrode process is a heterogeneous reaction occurring only at the electrode-electrolyte in-
terface. Its rate depends on mass transfer to the electrode and various surface effects, in ad-
dition to the usual kinetic variables. Since electrode reactions are heterogeneous, their
reaction rates are usually described in units of mol/s per unit area; that is,

(1.3.4)

where у is the current density (A/cm2).
Information about an electrode reaction is often gained by determining current as a

function of potential (by obtaining i-E curves). Certain terms are sometimes associated
with features of the curves.8 If a cell has a defined equilibrium potential (Section 1.1.1),
that potential is an important reference point of the system. The departure of the electrode
potential (or cell potential) from the equilibrium value upon passage of faradaic current is
termed polarization. The extent of polarization is measured by the overpotential, rj,

rj = E - E{eq
(1.3.5)

Current-potential curves, particularly those obtained under steady-state conditions, are
sometimes called polarization curves. We have seen that an ideal polarized electrode
(Section 1.2.1) shows a very large change in potential upon the passage of an infinitesimal
current; thus ideal polarizability is characterized by a horizontal region of an i-E curve
(Figure 1.3.5a). A substance that tends to cause the potential of an electrode to be nearer
to its equilibrium value by virtue of being oxidized or reduced is called a depolarizer? An

{a) Ideal polarizable electrode (b) Ideal nonpolarizable electrode

Figure 1.3.5 Current-potential curves for ideal (a) polarizable and (b) nonpolarizable electrodes.
Dashed lines show behavior of actual electrodes that approach the ideal behavior over limited
ranges of current or potential.

8These terms are carryovers from older electrochemical studies and models and, indeed, do not always represent

the best possible terminology. However, their use is so ingrained in electrochemical jargon that it seems wisest

to keep them and to define them as precisely as possible.
9The term depolarizer is also frequently used to denote a substance that is preferentially oxidized or reduced, to

prevent an undesirable electrode reaction. Sometimes it is simply another name for an electroactive substance.
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ideal nonpolarizable electrode (or ideal depolarized electrode) is thus an electrode whose
potential does not change upon passage of current, that is, an electrode of fixed potential.
Nonpolarizability is characterized by a vertical region on an i-E curve (Figure 1.3.5b). An
SCE constructed with a large-area mercury pool would approach ideal nonpolarizability
at small currents.

1.3.3 Factors Affecting Electrode Reaction Rate and Current

Consider an overall electrode reaction, О + ne ^ R, composed of a series of steps that
cause the conversion of the dissolved oxidized species, O, to a reduced form, R, also in
solution (Figure 1.3.6). In general, the current (or electrode reaction rate) is governed by
the rates of processes such as (1, 2):

1. Mass transfer (e.g., of О from the bulk solution to the electrode surface).

2. Electron transfer at the electrode surface.

3. Chemical reactions preceding or following the electron transfer. These might be
homogeneous processes (e.g., protonation or dimerization) or heterogeneous
ones (e.g., catalytic decomposition) on the electrode surface.

4. Other surface reactions, such as adsorption, desorption, or crystallization (elec-
trodeposition).

The rate constants for some of these processes (e.g., electron transfer at the electrode sur-
face or adsorption) depend upon the potential.

The simplest reactions involve only mass transfer of a reactant to the electrode, het-
erogeneous electron transfer involving nonadsorbed species, and mass transfer of the
product to the bulk solution. A representative reaction of this sort is the reduction of the
aromatic hydrocarbon 9,10-diphenylanthracene (DPA) to the radical anion ( D P A T ) in an
aprotic solvent (e.g., N Д-dimethylformamide). More complex reaction sequences involv-
ing a series of electron transfers and protonations, branching mechanisms, parallel paths,
or modifications of the electrode surface are quite common. When a steady-state current is
obtained, the rates of all reaction steps in a series are the same. The magnitude of this cur-
rent is often limited by the inherent sluggishness of one or more reactions called rate-
determining steps. The more facile reactions are held back from their maximum rates by

Electrode surface region Bulk solution

Electrode

Figure 1.3.6 Pathway of a
general electrode reaction.
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rlmt 'Hct rlrxn

Figure 1.3.7 Processes in an
electrode reaction represented as
resistances.

the slowness with which a rate-determining step disposes of their products or creates their
reactants.

Each value of current density, j , is driven by a certain overpotential, 77. This overpo-
tential can be considered as a sum of terms associated with the different reaction steps: Tjmt

(the mass-transfer overpotential), r)ct (the charge-transfer overpotential), r]rxn (the overpo-
tential associated with a preceding reaction), etc. The electrode reaction can then be repre-
sented by a resistance, R, composed of a series of resistances (or more exactly,
impedances) representing the various steps: Rm, Rct, etc. (Figure 1.3.7). A fast reaction
step is characterized by a small resistance (or impedance), while a slow step is represented
by a high resistance. However, except for very small current or potential perturbations,
these impedances are functions of E (or /), unlike the analogous actual electrical elements.

1.3.4 Electrochemical Cells and Cell Resistance

Consider a cell composed of two ideal nonpolarizable electrodes, for example, two SCEs
immersed in a potassium chloride solution: SCE/KC1/SCE. The i-E characteristic of this
cell would look like that of a pure resistance (Figure 1.3.8), because the only limitation on
current flow is imposed by the resistance of the solution. In fact, these conditions (i.e.,
paired, nonpolarizable electrodes) are exactly those sought in measurements of solution
conductivity. For any real electrodes (e.g., actual SCEs), mass-transfer and charge-trans-
fer overpotentials would also become important at high enough current densities.

When the potential of an electrode is measured against a nonpolarizable reference
electrode during the passage of current, a voltage drop equal to iRs is always included in
the measured value. Here, Rs is the solution resistance between the electrodes, which, un-
like the impedances describing the mass transfer and activation steps in the electrode re-
action, actually behaves as a true resistance over a wide range of conditions. For example,
consider once again the cell in Figure 1.3.4. At open circuit (/ = 0), the potential of the
cadmium electrode is the equilibrium value, £eq,cd (about —0.64 V vs. SCE). We saw ear-

fcappl

1 Ideal electrodes
• Real electrodes

Hg/Hg2CI2/K
+, CI7Hg2CI2/Hg

© 0

Figure 1.3.8 Current-potential curve for a cell composed of two electrodes approaching ideal
nonpolarizability.
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Her that with £appi = —0.64 V (Cd vs. SCE), no current would flow through the ammeter.
If £appl is increased in magnitude to -0.80 V (Cd vs. SCE), current flows. The extra ap-
plied voltage is distributed in two parts. First, to deliver the current, the potential of the
Cd electrode, Ecd, must shift to a new value, perhaps -0.70 V vs. SCE. The remainder of
the applied voltage (-0.10 V in this example) represents the ohmic drop caused by cur-
rent flow in solution. We assume that the SCE is essentially nonpolarizable at the extant
current level and does not change its potential. In general,

£appl (vs. SCE) = ECd(vs. SCE) - iRs = £eq,Cd(™. SCE) + V - iRs (1.3.6)

The last two terms of this equation are related to current flow. When there is a cathodic
current at the cadmium electrode, both are negative. Conversely, both are positive for an
anodic current. In the cathodic case, £appl must manifest the (negative) overpotential
(£Cd - £eq,cd) needed to support the electrochemical reaction rate corresponding to the cur-
rent. (In the example above, r\ = -0.06 V.) In addition £appl must encompass the ohmic
drop, iRs, required to drive the ionic current in solution (which corresponds to the passage of
negative charge from the cadmium electrode to the SCE).10 The ohmic potential drop in the
solution should not be regarded as a form of overpotential, because it is characteristic of the
bulk solution and not of the electrode reaction. Its contribution to the measured electrode
potential can be minimized by proper cell design and instrumentation.

Most of the time, one is interested in reactions that occur at only one electrode. An
experimental cell could be composed of the electrode system of interest, called the
working (or indicator) electrode, coupled with an electrode of known potential that ap-
proaches ideal nonpolarizability (such as an SCE with a large-area mercury pool),
called the reference electrode. If the passage of current does not affect the potential of
the reference electrode, the E of the working electrode is given by equation 1.3.6.
Under conditions when iRs is small (say less than 1-2 mV), this two-electrode cell (Fig-
ure 1.3.9) can be used to determine the i-E curve, with E either taken as equal to £appi or
corrected for the small iRs drop. For example, in classic polarographic experiments in
aqueous solutions, two-electrode cells were often used. In these systems, it is often true
that / < 10 /x,A and Rs < 100 П, so that iRs < (10~5 A)(100 ft) or iRs < 1 mV, which is
negligible for most purposes. With more highly resistive solutions, such as those based
on many nonaqueous solvents, a very small electrode (an ultramicr о electrode, Section
5.3) must be used if a two-electrode cell is to be employed without serious complica-

Working
electrode

Power
supply

^appl

Reference
electrode

Figure 1.3.9 Two-electrode cell.

10The sign preceding the ohmic drop in (1.3.6) is negative as a consequence of the sign convention adopted here

for currents (cathodic currents taken as positive).
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т
Working or
indicator

Reference
Auxiliary or
counter
electrodes

Figure 1.3.10 Three-electrode cell and
notation for the different electrodes.

tions from the ohmic drop in solution. With such electrodes, currents of the order of 1

nA are typical; hence Rs values even in the Mft range can be acceptable.

In experiments where iRs may be high (e.g., in large-scale electrolytic or galvanic

cells or in experiments involving nonaqueous solutions with low conductivities), a

three-electrode cell (Figure 1.3.10) is preferable. In this arrangement, the current is

passed between the working electrode and a counter (or auxiliary) electrode. The auxil-

iary electrode can be any convenient one, because its electrochemical properties do not

Vacuum

Capillary

N2 or H2 inlet

Hg

Saturated KCI

Hg2CI2 + KCI

Hg

Medium-porosity
sintered-Pyrex

disc

4% agar /saturated
potassium chloride

29/26

Auxilliary
electrode

14 cm

Coarse-porosity,
sintered-Pyrex
gas-dispersion
cylinder

Reference
electrode

Solution
level

Medium frit

Stirring bar

Figure 1.3.11 Typical two- and three-electrode cells used in electrochemical experiments, (a) Two-
electrode cell for polarography. The working electrode is a dropping mercury electrode (capillary) and the N2
inlet tube is for deaeration of the solution. [From L. Meites, Polarographic Techniques, 2nd ed., Wiley-
Interscience, New York, 1965, with permission.] (b) Three-electrode cell designed for studies with
nonaqueous solutions at a platinum-disk working electrode, with provision for attachment to a vacuum line.
[Reprinted with permission from A. Demortier and A. J. Bard, /. Am. С hem. Soc, 95, 3495 (1973). Copyright
1973, American Chemical Society.] Three-electrode cells for bulk electrolysis are shown in Figure 11.2.2.
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affect the behavior of the electrode of interest. It is usually chosen to be an electrode
that does not produce substances by electrolysis that will reach the working electrode
surface and cause interfering reactions there. Frequently, it is placed in a compartment
separated from the working electrode by a sintered-glass disk or other separator. The
potential of the working electrode is monitored relative to a separate reference elec-
trode, positioned with its tip nearby. The device used to measure the potential differ-
ence between the working electrode and the reference electrode has a high input
impedance, so that a negligible current is drawn through the reference electrode. Conse-
quently, its potential will remain constant and equal to its open-circuit value. This
three-electrode arrangement is used in most electrochemical experiments; several prac-
tical cells are shown in Figure 1.3.11.

Even in this arrangement, not all of the iRs term is removed from the reading made
by the potential-measuring device. Consider the potential profile in solution between
the working and auxiliary electrodes, shown schematically in Figure 1.3.12. (The po-
tential profile in an actual cell depends on the electrode shapes, geometry, solution
conductance, etc.) The solution between the electrodes can be regarded as a poten-
tiometer (but not necessarily a linear one). If the reference electrode is placed any-
where but exactly at the electrode surface, some fraction of iRs, (called iRu, where Ru

is the uncompensated resistance) will be included in the measured potential. Even
when the tip of the reference electrode is designed for very close placement to the
working electrode by use of a fine tip called a Luggin-Haber capillary, some uncom-
pensated resistance usually remains. This uncompensated potential drop can some-
times be removed later, for example, from steady-state measurements by measurement
of Ru and point-by-point correction of each measured potential. Modern electrochemi-
cal instrumentation frequently includes circuitry for electronic compensation of the iRu

term (see Chapter 15).
If the reference capillary has a tip diameter d, it can be placed as close as 2d from the

working electrode surface without causing appreciable shielding error. Shielding denotes
a blockage of part of the solution current path at the working electrode surface, which
causes nonuniform current densities to arise at the electrode surface. For a planar elec-
trode with uniform current density across its surface,

Ru = X/KA (1.3.7)

Working
electrode

fl)

Auxiliary electrode

soln

Wk • Л Л Л Л М Л Л Л Л Л Л Л Л Л Л Л ^ ^

Ref

(b)

Figure 1.3.12 (a) Potential
drop between working and
auxiliary electrodes in
solution and iRu measured
at the reference electrode.
(b) Representation of the cell
as a potentiometer.
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where x is the distance of the capillary tip from the electrode, A is the electrode area, and
к is the solution conductivity. The effect of iRu can be particularly serious for spherical
microelectrodes, such as the hanging mercury drop electrode or the dropping mercury
electrode (DME). For a spherical electrode of radius r0,

In this case, most of the resistive drop occurs close to the electrode. For a reference elec-
trode tip placed just one electrode radius away (x = r0), Ru *s already half of the value for
the tip placed infinitely far away. Any resistances in the working electrode itself (e.g., in
thin wires used to make ultramicroelectrodes, in semiconductor electrodes, or in resistive
films on the electrode surface) will also appear in Ru.

1.4 INTRODUCTION TO MASS-TRANSFER-CONTROLLED
REACTIONS

1.4.1 Modes of Mass Transfer

Let us now be more quantitative about the size and shape of current-potential curves.
As shown in equation 1.3.4, if we are to understand /, we must be able to describe the
rate of the reaction, v, at the electrode surface. The simplest electrode reactions are
those in which the rates of all associated chemical reactions are very rapid compared to
those of the mass-transfer processes. Under these conditions, the chemical reactions can
usually be treated in a particularly simple way. If, for example, an electrode process in-
volves only fast heterogeneous charge-transfer kinetics and mobile, reversible homoge-
neous reactions, we will find below that (a) the homogeneous reactions can be regarded
as being at equilibrium and (b) the surface concentrations of species involved in the
faradaic process are related to the electrode potential by an equation of the Nernst form.
The net rate of the electrode reaction, i;rxn, is then governed totally by the rate at which
the electroactive species is brought to the surface by mass transfer, vmt. Hence, from
equation 1.3.4,

^rxn = vmi = i/nFA (1.4.1)

Such electrode reactions are often called reversible or nernstian, because the principal
species obey thermodynamic relationships at the electrode surface. Since mass transfer
plays a big role in electrochemical dynamics, we review here its three modes and begin a
consideration of mathematical methods for treating them.

Mass transfer, that is, the movement of material from one location in solution
to another, arises either from differences in electrical or chemical potential at the two
locations or from movement of a volume element of solution. The modes of mass
transfer are:

1. Migration. Movement of a charged body under the influence of an electric field
(a gradient of electrical potential).

2. Diffusion. Movement of a species under the influence of a gradient of chemical
potential (i.e., a concentration gradient).

3. Convection. Stirring or hydrodynamic transport. Generally fluid flow occurs be-
cause of natural convection (convection caused by density gradients) and forced
convection, and may be characterized by stagnant regions, laminar flow, and tur-
bulent flow.
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Mass transfer to an electrode is governed by the Nernst-Planck equation, written for
one-dimensional mass transfer along the x-axis as

(1.4.2)

where Jx(x) is the flux of species / (mol s xcm 2) at distance x from the surface, D\ is
the diffusion coefficient (cm2/s), dC\(x)ldx is the concentration gradient at distance x,
дф(х)/дх is the potential gradient, z\ and C\ are the charge (dimensionless) and concen-
tration (mol cm~3) of species /, respectively, and v(x) is the velocity (cm/s) with which
a volume element in solution moves along the axis. This equation is derived and dis-
cussed in more detail in Chapter 4. The three terms on the right-hand side represent the
contributions of diffusion, migration, and convection, respectively, to the flux.

While we will be concerned with particular solutions of this equation in later chap-
ters, a rigorous solution is generally not very easy when all three forms of mass transfer
are in effect; hence electrochemical systems are frequently designed so that one or more
of the contributions to mass transfer are negligible. For example, the migrational com-
ponent can be reduced to negligible levels by addition of an inert electrolyte (a support-
ing electrolyte) at a concentration much larger than that of the electroactive species (see
Section 4.3.2). Convection can be avoided by preventing stirring and vibrations in the
electrochemical cell. In this chapter, we present an approximate treatment of steady-
state mass transfer, which will provide a useful guide for these processes in later chap-
ters and will give insight into electrochemical reactions without encumbrance by
mathematical details.

1.4.2 Semiempirical Treatment of Steady-State Mass Transfer

Consider the reduction of a species О at a cathode: О + ne *± R. In an actual case, the ox-
idized form, O, might be Fe(CN)£~ and R might be Fe(CN)6~, with only Fe(CN)^" ini-
tially present at the millimolar level in a solution of 0.1 M K2SO4. We envision a
three-electrode cell having a platinum cathode, platinum anode, and SCE reference elec-
trode. In addition, we furnish provision for agitation of the solution, such as by a stirrer. A
particularly reproducible way to realize these conditions is to make the cathode in the
form of a disk embedded in an insulator and to rotate the assembly at a known rate; this is
called the rotating disk electrode (RDE) and is discussed in Section 9.3.

Once electrolysis of species О begins, its concentration at the electrode surface,
CQ(X = 0) becomes smaller than the value, CQ, in the bulk solution (far from the elec-
trode). We assume here that stirring is ineffective at the electrode surface, so the solution
velocity term need not be considered at x = 0. This simplified treatment is based on the
idea that a stagnant layer of thickness 8O exists at the electrode surface (Nernst diffusion
layer), with stirring maintaining the concentration of О at CQ beyond x = 8O (Figure
1.4.1). Since we also assume that there is an excess of supporting electrolyte, migration is
not important, and the rate of mass transfer is proportional to the concentration gradient at
the electrode surface, as given by the first (diffusive) term in equation 1.4.2:

vmt <* (dCo/dx)x=0 = Do(dCo/dx)x=0 (1.4.3)

If one further assumes a linear concentration gradient within the diffusion layer, then,
from equation 1.4.3

*>mt = ^otCcS - Co(x = 0)]/8o (1.4.4)
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Co(x =

Figure 1.4.1 Concentration profiles (solid lines) and diffusion layer approximation (dashed
lines), x = 0 corresponds to the electrode surface and 80 is the diffusion layer thickness.
Concentration profiles are shown at two different electrode potentials: (7) where C0(x = 0)
is about CQ/2, (2) where C0(x = 0) « 0 and i = ih

Since 8Q is often unknown, it is convenient to combine it with the diffusion coefficient to
produce a single constant, YHQ — DQ/8Q, and to write equation 1.4.4 as

~ Co(x = 0)] (1.4.5)

The proportionality constant, m o , called the mass-transfer coefficient, has units of
cm/s (which are those of a rate constant of a first-order heterogeneous reaction; see
Chapter 3). These units follow from those of v and CQ, but can also be thought of as
volume flow/s per unit area (cm3 s" 1 cm" 2 ) . 1 1 Thus, from equations 1.4.1 and 1.4.5
and taking a reduction current as positive [i.e., / is positive when CQ > CQ(X = 0)], we
obtain

nFA
= mo[C% - Co(x = 0)] (1.4.6)

Under the conditions of a net cathodic reaction, R is produced at the electrode surface, so
that CR(x = 0) > CR (where CR is the bulk concentration of R). Therefore,

= mR[CR(x = 0) - C*] (1A7)

1 1 While m0 is treated here as a phenomenological parameter, in more exact treatments the value of m0 can
sometimes be specified in terms of measurable quantities. For example, for the rotating disk electrode,
m 0 = 0.62Do

/3(ol/2v~l/e, where со is the angular velocity of the disk (i.e., 2тг/, with/as the frequency in
revolutions per second) and v is the kinematic viscosity (i.e., viscosity/density, with units of cm2/s) (see
Section 9.3.2). Steady-state currents can also be obtained with a very small electrode (such as a Pt disk
with a radius, r0, in the \xva range), called an ultramicroelectrode (UME, Section 5.3). At a disk UME,
m0 = 4Do/7rr0.
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or for the particular case when CR = 0 (no R in the bulk solution),

= 0) (1.4.8)

The values of Co(x = 0) and CR(x = 0) are functions of electrode potential, E. The
largest rate of mass transfer of О occurs when CQ(X — 0) = 0 (or more precisely, when
C o (x = 0) < < Co, so that CQ - Co(x = 0) « CQ). The value of the current under these
conditions is called the limiting current, //, where

(1.4.9)

When the limiting current flows, the electrode process is occurring at the maximum
rate possible for a given set of mass-transfer conditions, because О is being reduced as
fast as it can be brought to the electrode surface. Equations 1.4.6 and 1.4.9 can be used to
obtain expressions for Co(x = 0):

(1.4.10)

(1.4.11)Co(x = 0) =
nFAmo

Thus, the concentration of species О at the electrode surface is linearly related to the cur-
rent and varies from CQ, when / = 0, to a negligible value, when / = //.

If the kinetics of electron transfer are rapid, the concentrations of О and R at the elec-
trode surface can be assumed to be at equilibrium with the electrode potential, as gov-
erned by the Nernst equation for the half-reaction

(1.4.12)

12

= 0)

Such a process is called a nernstian reaction. We can derive the steady-state i-E curves
for nernstian reactions under several different conditions.

(a) R Initially Absent

When C | = 0, CR(x = 0) can be obtained from (1.4.8):

CR(x = 0) = i/nFAmR

Then, combining equations 1.4.11 to 1.4.13, we obtain

nF

An i-E plot is shown in Figure 1 A.2a. Note that when / = ///2,

nF

(1.4.13)

(1.4.14)

(1.4.15)

12Equation 1.4.12 is written in terms of E° , called the formal potential, rather than the standard potential E°.
The formal potential is an adjusted form of the standard potential, manifesting activity coefficients and some
chemical effects of the medium. In Section 2.1.6, it will be introduced in more detail. For the present it is not
necessary to distinguish between E° and E°.
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Cathodic

Anodic

( - ) • H-

Figure 1.4.2 (a) Current-potential curve for a nernstian reaction involving two soluble species
with only oxidant present initially, (b) log[(// - /)//] vs. E for this system.

where Ещ is independent of the substrate concentration and is therefore characteristic of
the O/R system. Thus,

(1.4.16)

When a system conforms to this equation, a plot of E vs. log[(// — /)//] is a straight line
with a slope of 23RT/nF (or 59.1/л mV at 25°C). Alternatively (Figure 1.4.2b), log[(// -
i)li\ vs. E is linear with a slope of nF/23RT (or л/59.1 mV" 1 at 25°C) and has an ̂ -inter-
cept of Ещ. When mo and mR have similar values, Ещ ~ E°'.

(b) Both О and R Initially Present
When both members of the redox couple exist in the bulk, we must distinguish between a
cathodic limiting current, //c, when CQ(X = 0) ~ 0, and an anodic limiting current, z/a,
when CR(x = 0) « 0. We still have CQ(X = 0) given by (1.4.11), but with // now specified
as // c. The limiting anodic current naturally reflects the maximum rate at which R can be
brought to the electrode surface for conversion to O. It is obtained from (1.4.7):

(1.4.17)

(The negative sign arises because of our convention that cathodic currents are taken as
positive and anodic ones as negative.) Thus CR(X = 0) is given by

The i-E curve is then

0

CR(x =

CR(x =

CR

> RT,
~n~Fln

0) =

0)_

Щ

nFAmR

- 1 — l

+ fjln(1 - W

(1.4.18)

(1.4.19)

(1.4.20)

A plot of this equation is shown in Figure 1.4.3. When / = 0, E = Eeq and the system is at
equilibrium. Surface concentrations are then equal to the bulk values. When current flows,
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Figure 1.4.3 Current-potential curve for a nernstian system
involving two soluble species with both forms initially
present.

the potential deviates from £eq, and the extent of this deviation is the concentration over-
potential. (An equilibrium potential cannot be defined when CR = 0, of course.)

(c) R Insoluble
Suppose species R is a metal and can be considered to be at essentially unit activity as the
electrode reaction takes place on bulk R.13 When aR = 1, the Nernst equation is

(1.4.21)

or, using the value of CQ(X = 0) from equation 1.4.11,

(1.4.22)
III 111 \ 11 I

When i = О, Е = Ещ = Е0' + (RT/nF) In CQ (Figure 1.4.4). If we define the concentra-
tion overpotential, rjconc (or the mass-transfer overpotential, 7]mt), as

n = F — F (\ 41\\
'/cone ^ ^eq yLs-r.^o)

then

(1.4.24)

When / = //, i7conc —> oo. Since 17 is a measure of polarization, this condition is sometimes
called complete concentration polarization.

^ Figure 1.4.4 Current-potential curve for a nernstian system
E where the reduced form is insoluble.

13This will not be the case for R plated onto an inert substrate in amounts less than a monolayer (e.g., the
substrate electrode being Pt and R being Cu). Under those conditions, aR may be considerably less than unity
(see Section 11.2.1).
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Equation 1.4.24 can be written in exponential form:

(1.4.25)

The exponential can be expanded as a power series, and the higher-order terms can be
dropped if the argument is kept small; that is,

e * = l + j t + y - ! + . * (when* is small) (1.4.26)

Thus, under conditions of small deviations of potential from Eeq, the /-т?Сопс characteristic
is linear:

-RTi (1.4.27)

Since -r]/i has dimensions of resistance (ohms), we can define a "small signal" mass-
transfer resistance, Rmb as

i? =
m t

RT

nF\it\
(1.4.28)

Here we see that the mass-transfer-limited electrode reaction resembles an actual resis-
tance element only at small overpotentials.

1.4.3 Semiempirical Treatment of the Transient Response

The treatment in Section 1.4.2 can also be employed in an approximate way to time-
dependent (transient) phenomena, for example, the buildup of the diffusion layer, either in
a stirred solution (before steady state is attained) or in an unstirred solution where the dif-
fusion layer continues to grow with time. Equation 1.4.4 still applies, but in this case we
consider the diffusion layer thickness to be a time-dependent quantity, so that

UnFA = vmt = D o [ Cg - Co(x = 0)]/8o(0 (1.4.29)

Consider what happens when a potential step of magnitude E is applied to an electrode
immersed in a solution containing a species O. If the reaction is nernstian, the concen-
trations of О and R at x = 0 instantaneously adjust to the values governed by the
Nernst equation, (1.4.12). The thickness of the approximately linear diffusion layer,

> grows with time (Figure 1.4.5). At any time, the volume of the diffusion layer is

Co(x =

I I
5(r2) 8(/3)

Figure 1.4.5 Growth of the
diffusion-layer thickness with time.
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No convection

t

Figure 1.4.6 Current-time transient for a potential step to
a stationary electrode (no convection) and to an electrode in
stirred solution (with convection) where a steady-state current is
attained.

A8o(t). The current flow causes a depletion of O, where the amount of О electrolyzed
is given by

Moles of О electrolyzed
in diffusion layer

f'idtГ ( mi ^ ( Q fidt (Л л ~ m

By differentiation of (1.4.30) and use of (1.4.29),

[Cg - Co(x = 0)] A d8(t) = |

2 dt nF

or

d8(t) = 2DO

flfr 5(0

Since 5(0 = 0 at Г = 0, the solution of (1.4.32) is

8(t) = 2VD~t

and

= 0)] (1.4.31)

(1.4.32)

(1.4.33)

(1.4.34)

This approximate treatment predicts a diffusion layer that grows with tl/2 and a current
that decays with t~l/2. In the absence of convection, the current continues to decay, but
in a convective system, it ultimately approaches the steady-state value characterized by
S(0 ~ ^o (Figure 1.4.6). Even this simplified approach approximates reality quite
closely; equation 1.4.34 differs only by a factor of 2/тг1^2 from the rigorous description
of current arising from a nernstian system during a potential step (see Section 5.2.1).

1.5 SEMIEMPIRICAL TREATMENT OF NERNSTIAN
REACTIONS WITH COUPLED CHEMICAL REACTIONS

The current-potential curves discussed so far can be used to measure concentrations,
mass-transfer coefficients, and standard potentials. Under conditions where the electron-
transfer rate at the interface is rate-determining, they can be employed to measure hetero-
geneous kinetic parameters as well (see Chapters 3 and 9). Often, however, one is
interested in using electrochemical methods to find equilibrium constants and rate con-
stants of homogeneous reactions that are coupled to the electron-transfer step. This sec-
tion provides a brief introduction to these applications.
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1,5.1 Coupled Reversible Reactions

If a homogeneous process, fast enough to be considered always in thermodynamic equilib-
rium (a reversible process), is coupled to a nernstian electron-transfer reaction, then one can
use a simple extension of the steady-state treatment to derive the i-E curve. Consider, for ex-
ample, a species О involved in an equilibrium that precedes the electron-transfer reaction14

A «± О + qY

О + ne «± R

(1.5.1)

(1.5.2)

For example, A could be a metal complex, MYq+; О could be the free metal ion, M n + ;
and Y could be the free, neutral ligand (see Section 5.4.4). For reaction 1.5.2, the Nernst
equation still applies at the electrode surface,

(1.5.3)

(1.5.4)

(1.5.5)

and (1.5.1) is assumed to be at equilibrium everywhere:

C A

Hence

KCA(x = 0)

nF

Assuming (1) that at t = 0, C A = C*> CY = C*, and C R = 0 (for all JC); (2) that C* is so
large compared to C* that CY(x = 0) = C* at all times; and (3) that К « 1; then at
steady state

nFA

Then, as previously,

С Ax = 0) =
(// ~ 0
nFAmk

- CA(x = 0)]

= 0)

CR(x = 0) =

E = El/2 + (0.059/л) log -4— (T = 25°)

(1.5.6)

(1.5.7)

(1.5.8)

(1.5.9)

(1.5.10)

(1.5.11)

where

14To simplify notation, charges on all species are omitted.
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Thus, the i-E curve, (1.5.11), has the usual nernstian shape, but Ещ is shifted in a nega-
tive direction (since К « 1) from the position that would be found for process 1.5.2 un-
perturbed by the homogeneous equilibrium. From the shift of Ещ with log Cy, both
q [= —(n/0.059)(dEi/2/d log CY] and К can be determined. Although these thermody-
namic and stoichiometric quantities are available, no kinetic or mechanistic information
can be obtained when both reactions are reversible.

Coupled Irreversible Chemical Reactions

When an irreversible chemical reaction is coupled to a nernstian electron transfer, the i-E
curves can be used to provide kinetic information about the reaction in solution. Consider
a nernstian charge-transfer reaction with a following first-order reaction:

О + ne ^± R

k

R - > T

(1.5.13)

(1.5.14)

where к is the rate constant (in s l) for the decomposition of R. (Note that к could be a
pseudo-first-order constant, such as when R reacts with protons in a buffered solution and
к = к'Сц+.) As an example of this sequence, consider the oxidation of p-aminophenol in
acid solution.

2H+ + 2e (1.5.15)

+ NH3 (1.5.16)

Reaction 1.5.16 does not affect the mass transfer and reduction of O, so (1.4.6) and
(1.4.9) still apply (assuming CQ = CQ and CR = 0 at all x at t = 0). However, the reaction
causes R to disappear from the electrode surface at a higher rate, and this difference af-
fects the i-E curve.

In the absence of the following reaction, we think of the concentration profile for R as
decreasing linearly from a value CR(x = 0) at the surface to the point where CR = 0 at 8,
the outer boundary of the Nernst diffusion layer. The coupled reaction adds a channel for
disappearance of R, so the R profile in the presence of the reaction does not extend as far
into the solution US 8. Thus, the added reaction steepens the profile and augments mass
transfer away from the electrode surface. For steady-state behavior, such as at a rotating
disk, we assume the rate at which R disappears from the surface to be the rate of diffusion
in the absence of the reaction [(mRCR(;t = 0); see (1.4.8)] plus an increment proportional
to the rate of reaction [/X£CR(JC = 0)]. Since the rate of formation of R, given by (1.4.6),
equals its total rate of disappearance, we have

nFA
= mo\C% - Co(x = 0)] - mRCR(x = 0) + fxkCR(x = 0) (1.5.17)
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where /UL is a proportionality constant having units of cm, so that the product \xk has di-
mensions of cm/s as required. In the literature (3), \x is called the reaction layer thick-
ness. For our purpose, it is best just to think of /UL as an adjustable parameter. From
(1.5.17),

Substituting these values into the Nernst equation for (1.5.13) yields

(1.5.20)

or

E = E[/2 + ° ^ i O g f c ^ (at25°C) (1.5.21)

where

•Ч^Ц )̂ (1.5.22)

or

^ [ ^ ) (1.5.23)

where Ещ is the half-wave potential for the kinetically unperturbed reaction.
Two limiting cases can be defined: (a) When fik/m^ « 1, that is /лк « mR, the ef-

fect of the following reaction, (1.5.14), is negligible, and the unperturbed i-E curve re-
sults, (b) When fxk/mR » 1, the following reaction dominates the behavior and

т т ^ (1.5.24)

The effect is to shift the reduction wave in & positive direction without a change in shape.
For the rotating disk electrode, where mR = 0.62DR

/3<<>1/2^~1/6, (1.5.24) becomes [assum-
ing^ Ф/(со)]

г , г ^0 .059, M 0.0591 /1*1*4
ЕШ = El/2 + - a - log 0 6 2 D 2 ^ - 1 / 6 --2Г bg со (1.5.25)

An increase of rotation rate, со, will cause the wave to shift in a negative direction (toward
the unperturbed wave; see Figure 1.5.1). A tenfold change in со causes a shift of 0.03/n V.

A similar treatment can be given for other chemical reactions coupled to the charge-
transfer reaction (4). This approach is often useful in formulating a qualitative or semi-
quantitative interpretation of i-E curves. Notice, however, that unless explicit expressions
for mR and [i can be given in a particular case, the exact values of к cannot be determined.
The rigorous treatment of electrode reactions with coupled homogeneous chemical reac-
tions is discussed in Chapter 12.
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Figure 1.5.1 Effect of an irreversible
following homogeneous chemical reaction
on nernstian i-E curves at a rotating disk
electrode. (7) Unperturbed curve. (2) and (3)
Curves with following reaction at two rotation
rates, where the rotation rate for
(3) is greater than for (2).

1.6 THE LITERATURE OF ELECTROCHEMISTRY

We now embark on more detailed and rigorous considerations of the fundamental

principles of electrode reactions and the methods used to study them. At the outset,

we list the general monographs and review series in which many of these topics are

treated in much greater depth. This listing is not at all comprehensive, but does rep-

resent the recent English-language sources on general electrochemical subjects. Ref-

erences to the older literature can be found in these and in the first edition.

Monographs and reviews on particular subjects are listed in the appropriate chapter.

We also list the journals in which papers relating to electrochemical methods are

published regularly.

1.6.1 Books and Monographs

(a) General Electrochemistry
Albery, W. J., "Electrode Kinetics," Clarendon, Oxford, 1975.

Bockris, J. O'M., and A. K. N. Reddy, "Modern Electrochemistry," Plenum, New York, 1970
(2 volumes); 2nd ed., (Vol. 1) 1998.

Christensen, P. A., and A. Hamnett, "Techniques and Mechanisms in Electrochemistry,"
Blackie Academic and Professional, New York, 1994.

Conway, В. Е., "Theory and Principles of Electrode Processes," Ronald, New York, 1965.

Gileadi, E., "Electrode Kinetics for Chemists, Chemical Engineers, and Materials Scientists,"
VCH, New York, 1993.

Goodisman, J., "Electrochemistry: Theoretical Foundations, Quantum and Statistical Mechan-
ics, Thermodynamics, the Solid State," Wiley, New York, 1987.

Hamann, C. H., A. Hamnett, and W. Vielstich, "Electrochemistry," Wiley-VCH, Weinheim,
Germany, 1997.

Koryta, J., J., Dvorak, and L. Kavan, "Principles of Electrochemistry," 2nd ed, Wiley, New
York, 1993.

Maclnnes, D. A., "The Principles of Electrochemistry," Dover, New York, 1961 (Corrected
version of 1947 edition).

Newman, J. S., "Electrochemical Systems," 2nd ed., Prentice-Hall, Englewood Cliffs, NJ,
1991.

Oldham, К. В., and J. C. Myland, "Fundamentals of Electrochemical Science," Academic,
New York, 1994.

Rieger, P. H., "Electrochemistry," 2nd ed., Chapman and Hall, New York, 1994.
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Rubinstein, I., Ed., "Physical Electrochemistry: Principles, Methods, and Applications," Mar-
cel Dekker, New York, 1995.

Schmickler, W., "Interfacial Electrochemistry," Oxford University Press, New York, 1996.

(b) Electrochemical Methodology
Adams, R. N., "Electrochemistry at Solid Electrodes," Marcel Dekker, New York, 1969.

Delahay, P., "New Instrumental Methods in Electrochemistry," Interscience, New York,
1954.

Galus, Z., "Fundamentals of Electrochemical Analysis," 2nd ed, Wiley, New York, 1994.

Gileadi, E., E. Kirowa-Eisner, and J. Penciner, "Interfacial Electrochemistry—An Experimen-
tal Approach," Addison-Wesley, Reading, MA, 1975.

Kissinger, P. Т., and W. R. Heineman, Eds., "Laboratory Techniques in Electroanalytical
Chemistry," 2nd ed., Marcel Dekker, New York, 1996.

Lingane, J. J., "Electroanalytical Chemistry," 2nd ed., Interscience, New York, 1958.

Macdonald, D. D., "Transient Techniques in Electrochemistry," Plenum, New York, 1977.

Sawyer, D. Т., A. Sobkowiak, and J. L. Roberts, Jr., "Electrochemistry for Chemists," 2nd ed.,
Wiley, New York, 1995.

Southampton Electrochemistry Group, "Instrumental Methods in Electrochemistry," Ellis Hor-
wood, Chichester, UK, 1985.

Vany sek, P., Ed., "Modern Techniques in Electroanalysis," Wiley, New York, 1996.

(c) Descriptive Electrochemistry
Bard, A. J., and H. Lund, Eds., "Encyclopedia of the Electrochemistry of the Elements," Mar-

cel Dekker, New York, 1973-1986, (16 volumes).

Lund, H., and M. M. Baizer, "Organic Electrochemistry: an Introduction and Guide," 3rd ed.,
Marcel Dekker, New York, 1991.

Mann, С. К., and К. К. Barnes, "Electrochemical Reactions in Nonaqueous Systems," Marcel
Dekker, New York, 1970.

(d) Compilations of Electrochemical Data
Bard, A. J., R. Parsons, and J. Jordan, Eds., "Standard Potentials in Aqueous Solutions," Mar-

cel Dekker, New York, 1985.

Conway, В. Е., "Electrochemical Data," Elsevier, Amsterdam, 1952.

Horvath, A. L., "Handbook of Aqueous Electrolyte Solutions: Physical Properties, Estimation,
and Correlation Methods," Ellis Horwood, Chichester, UK, 1985.

Janz, G. J., and R. P. T. Tomkins, "Nonaqueous Electrolytes Handbook," Academic, New
York, 1972 (2 volumes).

Meites, L., and P. Zuman, "Electrochemical Data," Wiley, New York, 1974.

Meites, L., and P. Zuman et al., "CRC Handbook Series in Organic Electrochemistry," (6 vol-
umes) CRC, Boca Raton, FL, 1977-1983.

Meites, L., and P. Zuman et al., "CRC Handbook Series in Inorganic Electrochemistry," (8
volumes), CRC, Boca Raton, FL, 1980-1988.

Parsons, R., "Handbook of Electrochemical Data," Butterworths, London, 1959.

Zemaitis, J. F., D. M. Clark, M. Rafal, and N. C. Scrivner, "Handbook of Aqueous Electrolyte
Thermodynamics: Theory and Applications," Design Institute for Physical Property Data (for the
American Institute of Chemical Engineers), New York, 1986.
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1.6.2 Review Series

A number of review series dealing with electrochemistry and related areas exist. Volumes are pub-
lished every year or few years and contain chapters written by authorities in particular subject
areas.15

Bard, A. J., Ed., (from Vol. 19 with I. Rubinstein), "Electroanalytical Chemistry," Marcel
Dekker, New York, 1966-1998, (20 volumes).

Bockris, J. O'M., and В. Е. Conway, et al., Eds., "Modern Aspects of Electrochemistry,"
Plenum, New York, 1954-1997, (31 volumes).

Delahay, P., and С W. Tobias (from Vol. 10, H. Gerischer and C. W. Tobias), Eds., "Ad-
vances in Electrochemistry and Electrochemical Engineering," Wiley, New York, 1961-1984, (13
volumes).

Gerischer, H., C.W. Tobias, et al., Eds., "Advances in Electrochemical Science and Engineer-
ing," Wiley-VCH, Weinheim, Germany, 1990-1997, (5 volumes).

Specialist Periodical Reports, "Electrochemistry," G. J. Hills (Vols. 1-3), H. R. Thirsk (Vols.
4-7), and D. Pletcher (Vols. 8-10) Senior Reporters, The Chemical Society, London, 1971-1985,
(10 volumes).

Steckhan, E., Ed., "Electrochemistry (Topics in Current Chemistry)," Springer, New York,
1987-1997, (6 volumes).

Yeager, E., J. O'M. Bockris, B. E. Conway, et al., Eds., "Comprehensive Treatise of Electro-
chemistry," Plenum, New York, 1984, (10 volumes).

Yeager, E., and A. J. Salkind, Eds., "Techniques of Electrochemistry," Wiley-Interscience,
New York, 1972-1978, (3 volumes).

Reviews on electrochemical topics also appear from time to time in the following:

Accounts of Chemical Research, The American Chemical Society, Washington.

Analytical Chemistry (Annual Reviews), The American Chemical Society, Washington.

Annual Reviews of Physical Chemistry, Annual Reviews, Inc., Palo Alto, CA, from 1950.

Chemical Reviews, The American Chemical Society, Washington.

1.6.3 Journals

The following journals are primarily devoted to electrochemistry:

Electroanalysis (1989-).

Electrochimica Acta (1959-).

Electrochemical and Solid State Letters (1998-)

Electrochemistry Communications (1999-)

Journal of Applied Electrochemistry (1971-).

Journal of Electroanalytical Chemistry (1959-).

Journal of the Electrochemical Society (1902-).

Journal of Solid State Electrochemistry (1997-).

15Articles in the first three series listed below are cited in this book, and often elsewhere in the literature, in
journal reference format with the abbreviations Electroanal. С hem., Mod. Asp. Electrochem., and Adv.
Electrochem. Electrochem. Engr., repectively. Note that the first should not be confused with /. Electroanal
Chem.
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1.6.4 World Wide Web

A number of web pages contain bibliographies of books and chapters on electrochemical topics,
simulation programs, information about societies, and meetings in the area of electrochemistry.
Links to these pages, and other information of interest to readers of this book will be maintained at
http://www.wiley.com/college/bard.
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1.8 PROBLEMS

1.1 Consider each of the following electrode-solution interfaces, and write the equation for the elec-
trode reaction that occurs first when the potential is moved in (1) a negative direction and (2) a posi-
tive direction from the open-circuit potential. Next to each reaction write the approximate potential
for the reaction in V vs. SCE (assuming the reaction is reversible).

(a) Pt/Cu2+(0.01 M), Cd2+(0.01 M), H2SO4(1 M)

(b) Pt/Sn2+(0.01 M), Sn4+(0.01 M), HC1(1 M)

(c) Hg/Cd2+(0.01 M), Zn2+(0.01 M), HC1(1 M)

1.2 For a rotating disk electrode, the treatment of steady-state, mass-transfer-controlled electrode reac-

tions applies, where the mass-transfer coefficient is mo = 0.62DQ O)XI2 J>~1 / 6. Here, Do is the dif-

fusion coefficient (cm2/s), со is the angular velocity of the disk (s" 1) (a) = 2irf, where/is the

frequency of rotation in revolutions per second), and v is the kinematic viscosity (v = r]/d, r\ = vis-

cosity, and d = density; for aqueous solutions v ~ 0.010 cm2/s). A rotating disk electrode of area

0.30 cm2 is used for the reduction of 0.010 M F e 3 + to F e 2 + in 1 M H2SO4. Given Do for F e 3 + at 5.2

X 10~6 cm2/s, calculate the limiting current for the reduction for a disk rotation rate of 10 r/s. In-

clude units on variables during calculation and give units of current in the answer.

1.3 A solution of volume 50 cm3 contains 2.0 X 10~3 M F e 3 + and 1.0 X 10" 3 M Sn 4 + in 1 M HC1.
This solution is examined by voltammetry at a rotating platinum disk electrode of area 0.30 cm2. At
the rotation rate employed, both F e 3 + and Sn 4 + have mass-transfer coefficients, m, of 10~2 cm/s.
(a) Calculate the limiting current for the reduction of F e 3 + under these conditions, (b) A current-
potential scan is taken from +1.3 to -0.40 V vs. NHE. Make a labeled, quantitatively correct,
sketch of the i-E curve that would be obtained. Assume that no changes in the bulk concentrations
of Fe 3 + and Sn 4 + occur during this scan and that all electrode reactions are nernstian.

1.4 The conductivity of a 0.1 M KC1 solution is 0.013 fl~lcm~l at 25°C. (a) Calculate the solution re-
sistance between two parallel planar platinum electrodes of 0.1 cm2 area placed 3 cm apart in this
solution, (b) A reference electrode with a Luggin capillary is placed the following distances from a
planar platinum working electrode (A = 0.1 cm2) in 0.1 M KC1: 0.05, 0.1, 0.5, 1.0 cm. What is Ru in
each case? (c) Repeat the calculations in part (b) for a spherical working electrode of the same area.
[In parts (b) and (c) it is assumed that a large counter electrode is employed.]

1.5 A 0.1 cm2 electrode with Сд = 20 /xF/cm2 is subjected to a potential step under conditions where Rs

is 1, 10, or 100 ft. In each case, what is the time constant, and what is the time required for the dou-
ble-layer charging to be 95% complete?
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1.6 For the electrode in Problem 1.5, what nonfaradaic current will flow (neglecting any transients)
when the electrode is subjected to linear sweeps at 0.02, 1, 20 V/s?

1.7 Consider the nernstian half-reaction:

A3+ + 2e «± A+ £°A3+ /A+ = -0.500 V vs. NHE

The i-E curve for a solution at 25°C containing 2.00 mM A3+ and 1.00 mM A+ in excess electrolyte
shows //>c = 4.00 fJiA and //>a = -2.40 fiA. (a) What is El/2 (V vs. NHE)? (b) Sketch the expected
i-E curve for this system, (c) Sketch the "log plot" (see Figure 1.4.2b) for the system.

1.8 Consider the system in Problem 1.7 under the conditions that a complexing agent, L~, which reacts
with A3+ according to the reaction

A3+ + 4L~ <± AL^ К = 1016

is added to the system. For a solution at 25°C containing only 2.0 mM A 3 + and 0 .1ML" in excess
inert electrolyte, answer parts (a), (b), and (c) in Problem 1.7. (Assume m0 is the same for A 3 + and
AL4.)

1.9 Derive the current-potential relationship under the conditions of Section 1.4.2 for a system where R
is initially present at a concentration C R and C o = 0. Consider both О and R soluble. Sketch the
expected i-E curve.

1.10 Suppose a mercury pool of 1 cm2 area is immersed in a 0.1 M sodium perchlorate solution. How
much charge (order of magnitude) would be required to change its potential by 1 mV? How would
this be affected by a change in the electrolyte concentration to 10 M? Why?

1.11 Rearrangement of equation 1.4.16 yields the following expression for / as a function of E, which is
convenient for calculating i—E curves for nernstian reactions:

ilii = {1 + exp[(nF/RT)(E - El/2)]}-1

(a) Derive this expression, (b) Consider the half-reaction Ru(NH3)£
+ + e *± Ru(NH3)^+. The E°

for this reaction is given in Appendix C. A steady-state i-E curve is obtained with a solution con-
taining 10 mM Ru(NH3)6

+ and 1 M KC1 (as supporting electrolyte). The working electrode is a Pt
disk of area 0.10 cm2 operating under conditions where m = 10~3 cm/s

for both Ru species. Use a spreadsheet program to calculate and plot the expected i-E curve.

1.12 (a) Derive an expression for / as a function of E, analogous to that in Problem 1.11, from equation
1.4.20, using (1.4.15) as the definition of Ец2, for use in solutions that contain both components
of a redox couple, (b) Consider the same system as in Problem 1.11, but for a solution containing
10 mM Ru(NH3)^+ and 5.0 mM Ru(NH3)^+ in 1M KC1. Use a spreadsheet program to calculate
the i-E curve and plot the results, (c) What is 77conc at a cathodic current density of 0.48 mA/cm2?
(d) Estimate Rmt.



CHAPTER

2
POTENTIALS

AND THERMODYNAMICS
OF CELLS

In Chapter 1, we sought to obtain a working feeling for potential as an electrochemical
variable. Here we will explore the physical meaning of that variable in more detail. Our
goal is to understand how potential differences are established and what kinds of chemical
information can be obtained from them. At first, these questions will be approached
through thermodynamics. We will find that potential differences are related to free energy
changes in an electrochemical system, and this discovery will open the way to the experi-
mental determination of all sorts of chemical information through electrochemical mea-
surements. Later in this chapter, we will explore the mechanisms by which potential
differences are established. Those considerations will provide insights that will prove es-
pecially useful when we start to examine experiments involving the active control of po-
tential in an electrochemical system.

• 2.1 BASIC ELECTROCHEMICAL THERMODYNAMICS

2.1.1 Reversibility

Since thermodynamics can strictly encompass only systems at equilibrium, the concept of
reversibility is important in treating real processes thermodynamically. After all, the con-
cept of equilibrium involves the idea that a process can move in either of two opposite di-
rections from the equilibrium position. Thus, the adjective reversible is an essential one.
Unfortunately, it takes on several different, but related, meanings in the electrochemical
literature, and we need to distinguish three of them now.

(a) Chemical Reversibility
Consider the electrochemical cell shown in Figure l.l.lfe:

Pt/H2/H+, СГ/AgCl/Ag (2.1.1)

Experimentally, one finds that the difference in potential between the silver wire and the
platinum wire is 0.222 V when all substances are in their standard states. Furthermore, the
platinum wire is the negative electrode, and when the two electrodes are shorted together,
the following reaction takes place:

H 2 + 2AgCl -> 2Ag + 2H+ + 2СГ (2.1.2)
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If one overcomes the cell voltage by opposing it with the output of a battery or other di-
rect current (dc) source, the current flow through the cell will reverse, and the new cell re-
action is

2Ag + 2H+ + 2СГ -> H 2 + 2AgCl (2.1.3)

Reversing the cell current merely reverses the cell reaction. No new reactions appear, thus
the cell is termed chemically reversible.

On the other hand, the system

Zn/H+, SO|~/Pt (2.1.4)

is not chemically reversible. The zinc electrode is negative with respect to platinum, and
discharging the cell causes the reaction

Z n - ^ Z n 2 + + 2e (2.1.5)

to occur there. At the platinum electrode, hydrogen evolves:

2 H + + 2 e ^ H 2 (2.1.6)

Thus the net cell reaction is1

Zn + 2H+ -> H 2 + Zn 2 + (2.1.7)

By applying an opposing voltage larger than the cell voltage, the current flow reverses,
but the reactions observed are

2Н
2Н

т + 2е

2 О - * (

2Н2О

^ н 2}2 + 4Н +

^ 2 Н 2 +

+ 4е

о 2

(Zn electrode)

(Pt electrode)

(Net)

(2.1.8)

(2.1.9)

(2.1.10)

One has different electrode reactions as well as a different net process upon current rever-
sal; hence this cell is said to be chemically irreversible.

One can similarly characterize half-reactions by their chemical reversibility. The re-
duction of nitrobenzene in oxygen-free, dry acetonitrile produces a stable radical anion in
a chemically reversible, one-electron process:

PhNO2 + e<=±PhNO2T (2.1.11)

The reduction of an aromatic halide, ArX, under similar conditions will often be chemi-
cally irreversible, since the radical anion product of the electron-transfer reaction rapidly
decomposes:

ArX + e->Ar+X~"- (2.1.12)

Whether or not a half-reaction exhibits chemical reversibility depends upon solution con-
ditions and the time scale of the experiment. For example, if the nitrobenzene reaction is
carried out in an acidic acetonitrile solution, the reaction will become chemically irre-
versible, because PhNO2~ reacts with protons under these conditions. Alternatively, if the
reduction of ArX is studied by a technique that takes only a very short time, then the reac-
tion can be chemically reversible in that time regime:

(2.1.13)

lrThe net reaction will also occur without a flow of electrons in the external circuit, because H + in solution will
attack the zinc. This "side reaction," which happens to be identical with the electrochemical process, is slow if
dilute acid is involved.
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(b) Thermodynamic Reversibility
A process is thermodynamically reversible when an infinitesimal reversal in a driving
force causes it to reverse direction. Obviously this cannot happen unless the system feels
only an infinitesimal driving force at any time; hence it must essentially be always at equi-
librium. A reversible path between two states of the system is therefore one that connects
a continuous series of equilibrium states. Traversing it would require an infinite length of
time.

A cell that is chemically irreversible cannot behave reversibly in a thermodynamic
sense. A chemically reversible cell may or may not operate in a manner approaching ther-
modynamic reversibility.

(c) Practical Reversibility
Since all actual processes occur at finite rates, they cannot proceed with strict thermody-
namic reversibility. However, a process may in practice be carried out in such a manner
that thermodynamic equations apply to a desired accuracy. Under these circumstances,
one might term the process reversible. Practical reversibility is not an absolute term; it in-
cludes certain attitudes and expectations an observer has toward the process.

A useful analogy involves the removal of a large weight from a spring balance. Car-
rying out this process strictly reversibly requires continuous equilibrium; the "thermody-
namic" equation that always applies is

kx = mg (2.1.14)

where k is the force constant, x is the distance the spring is stretched when mass m is
added, and g is the earth's gravitational acceleration. In the reversible process, the spring
is never prone to contract more than an infinitesimal distance, because the large weight is
removed progressively in infinitesimal portions.

Now if the same final state is reached by simply removing the weight all at once,
equation 2.1.14 applies at no time during the process, which is characterized by severe
disequilibrium and is grossly irreversible.

On the other hand, one could remove the weight as pieces, and if there were enough
pieces, the thermodynamic relation, (2.1.14), would begin to apply a very large fraction of
the time. In fact, one might not be able to distinguish the real (but slightly irreversible)
process from the strictly reversible path. One could then legitimately label the real trans-
formation as "practically reversible."

In electrochemistry, one frequently relies on the Nernst equation:

Е = Е°' + Щ;]п^ (2.1.15)

to provide a linkage between electrode potential E and the concentrations of participants
in the electrode process:

O + m><=±R (2.1.16)

If a system follows the Nernst equation or an equation derived from it, the electrode
reaction is often said to be thermodynamically or electrochemically reversible (or
nernstian).

Whether a process appears reversible or not depends on one's ability to detect the
signs of disequilibrium. In turn, that ability depends on the time domain of the possible
measurements, the rate of change of the force driving the observed process, and the speed
with which the system can reestablish equilibrium. If the perturbation applied to the sys-
tem is small enough, or if the system can attain equilibrium rapidly enough compared to
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the measuring time, thermodynamic relations will apply. A given system may behave re-
versibly in one experiment and irreversibly in another, even of the same genre, if the ex-
perimental conditions have a wide latitude. This theme will be met again and again
throughout this book.

2.1.2 Reversibility and Gibbs Free Energy

Consider three different methods (1) of carrying out the reaction Zn + 2AgCl —> Zn 2 +

+ 2Ag + 2СГ:

(a) Suppose zinc and silver chloride are mixed directly in a calorimeter at
constant, atmospheric pressure and at 25°C. Assume also that the extent of
reaction is so small that the activities of all species remain unchanged during
the experiment. It is found that the amount of heat liberated when all sub-
stances are in their standard states is 233 kJ/mol of Zn reacted. Thus,
AH0 = -233 kJ.2

(b) Suppose we now construct the cell of Figure 1.1.1a, that is,

Zn/Zn2+(a = 1), CT(a = l)/AgCl/Ag (2.1.17)

and discharge it through a resistance R. Again assume that the extent of reaction
is small enough to keep the activities essentially unchanged. During the dis-
charge, heat will evolve from the resistor and from the cell, and we could mea-
sure the total heat change by placing the entire apparatus inside a calorimeter.
We would find that the heat evolved is 233 kJ/mol of Zn, independent of R. That
is, A#° = —233 kJ, regardless of the rate of cell discharge.

(c) Let us now repeat the experiment with the cell and the resistor in separate
calorimeters. Assume that the wires connecting them have no resistance and do
not conduct any heat between the calorimeters. If we take Qc as the heat change
in the cell and QR as that in the resistor, we find that Qc + QR = -233 kJ/mol
of Zn reacted, independent ofR. However, the balance between these quantities
does depend on the rate of discharge. As R increases, \QC\ decreases and |QR | in-
creases. In the limit of infinite R, QQ approaches —43 kJ (per mole of zinc) and
QR tends toward -190 kJ.

In this example, the energy QR was dissipated as heat, but it was obtained as electri-
cal energy, and it might have been converted to light or mechanical work. In contrast, Qc

is an energy change that is inevitably thermal. Since discharge through R —» °° corre-
sponds to a thermodynamically reversible process, the energy that must appear as heat in
traversing a reversible path, <2rev, is identified as lim Qc. The entropy change, AS, is de-
fined as Qrev /T (2), therefore for our example, where all species are in their standard states,

TAS° = lim Qc = -43 kJ (2.1.18)

Because AG° = AH0 - TAS°,

AG° = -190kJ = lim QR (2.1.19)

Note that we have now identified — AG with the maximum net work obtainable from
the cell, where net work is defined as work other than PV work (2). For any finite R, \QR\

2We adopt the thermodynamic convention in which absorbed quantities are positive.
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(and the net work) is less than the limiting value. Note also that the cell may absorb or
evolve heat as it discharges. In the former case, |AG°| > |A#° .

2.1.3 Free Energy and Cell emf

We found just above that if we discharged the electrochemical cell (2.1.17) through an in-
finite load resistance, the discharge would be reversible. The potential difference is there-
fore always the equilibrium (open-circuit) value. Since the extent of reaction is supposed
to be small enough that all activities remain constant, the potential also remains constant.
Then, the energy dissipated in R is given by

| AG\ = charge passed X reversible potential difference (2.1.20)

(2.L21)

where n is the number of electrons passed per atom of zinc reacted (or the number of
moles of electrons per mole of Zn reacted), and F is the charge on a mole of electrons,
which is about 96,500 C. However, we also recognize that the free energy change has a
sign associated with the direction of the net cell reaction. We can reverse the sign by re-
versing the direction. On the other hand, only an infinitesimal change in the overall cell
potential is required to reverse the direction of the reaction; hence E is essentially constant
and independent of the direction of a (reversible) transformation. We have a quandary.
We want to relate a direction-sensitive quantity (AG) to a direction-insensitive observable
(E). This desire is the origin of almost all of the confusion that exists over electrochemical
sign conventions. Moreover the actual meaning of the signs — and + is different for free
energy and potential. For free energy, — and + signify energy lost or gained from the sys-
tem, a convention that traces back to the early days of thermodynamics. For potential, —
and + signify the excess or deficiency of electronic charge, an electrostatic convention
proposed by Benjamin Franklin even before the discovery of the electron. In most scien-
tific discussions, this difference in meaning is not important, since the context, thermody-
namic vs. electrostatic, is clear. But when one considers electrochemical cells, where both
thermodynamic and electrostatic concepts are needed, it is necessary to distinguish clearly
between these two conventions.

When we are interested in thermodynamic aspects of electrochemical systems, we ra-
tionalize this difficulty by inventing a thermodynamic construct called the emf of the cell
reaction. This quantity is assigned to the reaction (not to the physical cell); hence it has a
directional aspect. In a formal way, we also associate a given chemical reaction with each
cell schematic. For the one in (2.1.17), the reaction is

Zn + 2AgCl -> Zn 2 + + 2Ag + 2СГ (2.1.22)

The right electrode corresponds to reduction in the implied cell reaction, and the left elec-
trode is identified with oxidation. Thus, the reverse of (2.1.22) would be associated with
the opposite schematic:

Ag/AgCl/Cl"(a = 1), Zn 2 +(« = 1)/Zn (2.1.23)

The cell reaction emf, £rxn, is then defined as the electrostatic potential of the electrode
written on the right in the cell schematic with respect to that on the left.

For example, in the cell of (2.1.17), the measured potential difference is 0.985 V and
the zinc electrode is negative; thus the emf of reaction 2.1.22, the spontaneous direction,
is +0.985 V. Likewise, the emf corresponding to (2.1.23) and the reverse of (2.1.22) is
—0.985 V. By adopting this convention, we have managed to rationalize an (observable)
electrostatic quantity (the cell potential difference), which is not sensitive to the direction
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of the cell's operation, with a (defined) thermodynamic quantity (the Gibbs free energy),
which is sensitive to that direction. One can avoid completely the common confusion
about sign conventions of cell potentials if one understands this formal relationship be-
tween electrostatic measurements and thermodynamic concepts (3,4).

Because our convention implies a positive emf when a reaction is spontaneous,

AG = -nFEr,

or as above, when all substances are at unit activity,

AG° = -

(2.1.24)

(2.1.25)

where E®xn is called the standard emf of the cell reaction.
Other thermodynamic quantities can be derived from electrochemical measurements

now that we have linked the potential difference across the cell to the free energy. For
example, the entropy change in the cell reaction is given by the temperature dependence
of AG:

дс -
P

hence

and

AH = AG + TAS = nF\ T

The equilibrium constant of the reaction is given by

RT\nKrxn=-AG° =

(2.1.26)

(2.1.27)

(2.1.28)

(2.1.29)

Note that these relations are also useful for predicting electrochemical properties from
thermochemical data. Several problems following this chapter illustrate the usefulness of
that approach. Large tabulations of thermodynamic quantities exist (5-8).

2.1.4 Half-Reactions and Reduction Potentials

Just as the overall cell reaction comprises two independent half-reactions, one might think
it reasonable that the cell potential could be broken into two individual electrode poten-
tials. This view has experimental support, in that a self-consistent set of half-reaction
emfs and half-cell potentials has been devised.

To establish the absolute potential of any conducting phase according to defini-
tion, one must evaluate the work required to bring a unit positive charge, without asso-
ciated matter, from the point at infinity to the interior of the phase. Although this
quantity is not measurable by thermodynamically rigorous means, it can sometimes be
estimated from a series of nonelectrochemical measurements and theoretical calcula-
tions, if the demand for thermodynamic rigor is relaxed. Even if we could determine
these absolute phase potentials, they would have limited utility because they would
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depend on magnitudes of the adventitious fields in which the phase is immersed (see
Section 2.2). Much more meaningful is the difference in absolute phase potentials be-
tween an electrode and its electrolyte, for this difference is the chief factor determin-
ing the state of an electrochemical equilibrium. Unfortunately, we will find that it also
is not rigorously measurable. Experimentally, we can find only the absolute potential
difference between two electronic conductors. Still, a useful scale results when one
refers electrode potentials and half-reaction emfs to a standard reference electrode fea-
turing a standard half-reaction.

The primary reference, chosen by convention, is the normal hydrogen electrode
(NHE), also called the standard hydrogen electrode (SHE):

Pt/H2(a = 1)/Н+(я - 1) (2.1.30)

Its potential (the electrostatic standard) is taken as zero at all temperatures. Similarly, the
standard emfs of the half-reactions:

2H+ + 2 e * ± H 2 (2.1.31)

have also been assigned values of zero at all temperatures (the thermodynamic standard).
We can record half-cell potentials by measuring them in whole cells against the

NHE.3 For example, in the system

Pt/H2(a = l)/H+(a = l)//Ag+(a = 1)/Ag (2.1.32)

the cell potential is 0.799 V and silver is positive. Thus, we say that the standard potential
of the Ag+IAg couple is +0.799 V vs. NHE. Moreover, the standard emf of the Ag+ re-
duction is also +0.799 V vs. NHE, but that of the Ag oxidation is -0.799 V vs. NHE. An-
other valid expression is that the standard electrode potential ofAg+/Ag is +0.799 V vs.
NHE. To sum all of this up, we write:4

Ag+ + e <=t Ag E°Ag+/Ag = +0.799 V vs. NHE (2.1.33)

For the general system, (2.1.16), the electrostatic potential of the R/O electrode (with
respect to NHE) and the emf for the reduction of О always coincide. Therefore, one can
condense the electrostatic and thermodynamic information into one list by tabulating elec-
trode potentials and writing the half-reactions as reductions. Appendix С provides some
frequently encountered potentials. Reference (5) is an authoritative general source for
aqueous systems.

Tables of this sort are extremely useful, because they feature much chemical and
electrical information condensed into quite a small space. A few electrode potentials can
characterize quite a number of cells and reactions. Since the potentials are really indices
of free energies, they are also ready means for evaluating equilibrium constants, complex-
ation constants, and solubility products. Also, they can be taken in linear combinations to
supply electrochemical information about additional half-reactions. One can tell from a
glance at an ordered list of potentials whether or not a given redox process will proceed
spontaneously.

3Note that an NHE is an ideal device and cannot be constructed. However, real hydrogen electrodes can
approximate it, and its properties can be defined by extrapolation.
4In some of the older literature, the standard emfs of reduction and oxidation are, respectively, called the
"reduction potential" and the "oxidation potential." These terms are intrinsically confusing and should be
avoided altogether, because they conflate the chemical concept of reaction direction with the physical concept
of electrical potential.
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It is important to recognize that it is the electrostatic potential (not the emf) that is ex-
perimentally controlled and measured. When a half-reaction is chemically reversible, the
potential of its electrode will usually have the same sign, whether the reaction proceeds as
an oxidation or a reduction. [See also reference (9), and Sections 1.3.4, and 1 A2(Z?).]

The standard potential of a cell or half-reaction is obtained under conditions where
all species are in their standard states (10). For solids, like Ag in cell 2.1.32 or reaction
2.1.33, the standard state is the pure crystalline (bulk) metal. It is interesting to consider
how many atoms or what particle size is needed to produce "bulk metal" and whether
the standard potential is a function of particle size when one deals with metal clusters.
These questions have been addressed (11-13); and for clusters containing n atoms
(where n < 20), E® indeed turns out to be very different from the value for the bulk
metal (n » 20). Consider, for example, silver clusters, Agn. For a silver atom (n = 1),
the value of E® can be related to E° for the bulk metal through a thermodynamic cycle
involving the ionization potential of Ag and the hydration energy of Ag and Ag+ . This
process yields

Ag+(aq) + e «± Agt(aq) £? = -1.8 V vs. NHE (2.1.34)

which is 2.6 V more negative than for bulk Ag. This result implies that it is much easier
energetically to remove an electron from a single isolated Ag atom than to remove an
electron from Ag atoms within a lattice of other Ag atoms. Experimental work carried out
with larger silver clusters shows that as the cluster size increases, E® moves toward the
value for the bulk metal. For example, for n = 2

Ag+(aq) + Ag! (aq) + e ?± Ag2 (aq) £ 2 ° - 0 V vs. NHE (2.1.35)

These differences in standard potential can be explained by the greater surface en-
ergy of small clusters compared to bulk metal and is consistent with the tendency of small
particles to grow into larger ones (e.g., the dimerization of 2Agj into Ag2 or the Ostwald
ripening of colloidal particles to form precipitates). Surface atoms are bonded to fewer
neighbors than atoms within a crystal; thus an extra surface free energy is required to cre-
ate additional surface area by subdivision of a metal. Conversely, the total energy of a
system can be minimized by decreasing the surface area, such as by taking on a spherical
shape or by fusing small particles into larger ones. If one adopts a microscopic viewpoint,
one can see that the tendency for surfaces to reconstruct (see Section 13.4.2) and for dif-
ferent sites on surfaces to etch at different rates implies that even the standard potential
for reduction to the "bulk metal" is actually an average of E° values for reduction at the
different sites (14).

2.1.5 emf and Concentration

Consider a general cell in which the half-reaction at the right-hand electrode is

z/oO + ne±±vRR (2.1.36)

where the v's are stoichiometric coefficients. The cell reaction is then

vH2 + ^oO -> ^RR + vH+ (2.1.37)

and its free energy is given from basic thermodynamics (2) by

AG = &G° + RT\n * " (2.1.38)
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where щ is the activity of species i.5 Since AG = —nFE and AG° = -nFE0,

but since aH+ = ащ = 1,

J?T ar?
(2.1.40)

This relation, the Nemst equation, furnishes the potential of the O/R electrode vs. NHE as
a function of the activities of О and R. In addition, it defines the activity dependence of
the emf for reaction 2.1.36.

It is now clear that the emf of any cell reaction, in terms of the electrode potentials of
the two half-reactions, is

(2.1.41)

where £right and £left refer to the cell schematic and are given by the appropriate Nernst
equation. The cell potential is the magnitude of this value.

2.1.6 Formal Potentials

It is usually inconvenient to deal with activities in evaluations of half-cell potentials, be-
cause activity coefficients are almost always unknown. A device for avoiding them is the
formal potential, E°'. This quantity is the measured potential of the half-cell (vs. NHE)
when (a) the species О and R are present at concentrations such that the ratio C^/C^ is
unity and (b) other specified substances, for example, miscellaneous components of the
medium, are present at designated concentrations. At the least, the formal potential
incorporates the standard potential and some activity coefficients, у±. For example, consider

F e 3 + + e ^ ± F e 2 + (2.1.42)

Its Nernst relation is simply

E = E + —=; In e

2 + = E + —— In — — (2.1.43)

which is

£ = £Q' + ^ | ln e - J (2.1.44)
nF [ F e 2 + ]

where

£u =£" + '-£ in _£> (2.1.45)

5For a solute i, the activity is ax = yx (Cj/C°), where C\ is the concentration of the solute, C° is the standard
concentration (usually 1 M), and y; is the activity coefficient, which is unitless. For a gas, av = y{ (PJP0), where
P[ is the partial pressure of /, P° is the standard pressure, and yx is the activity coefficient, which is again
unitless. For most of the published literature, including all before the late 1980s, the standard pressure was 1
atm (101,325 Pa). The new standard pressure adopted by the International Union of Pure and Applied
Chemistry is 105 Pa. A consequence of this change is that the potential of the NHE now differs from that used
historically. The "new NHE" is +0.169 mV vs. the "old NHE" (based on a standard state of 1 atm). This
difference is rarely significant, and is never so in this book. Most tabulated standard potentials, including those
in Table C.I are referred to the old NHE See reference 15.
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Because the ionic strength affects the activity coefficients, E0' will vary from medium
to medium. Table C.2 contains values for this couple in 1 M HC1, 10 M HC1, 1 M
HC1O4, 1 M H2SO4, and 2 M H3PO4. The values of standard potentials for half-reac-
tions and cells are actually determined by measuring formal potentials values at differ-
ent ionic strengths and extrapolating to zero ionic strength, where the activity
coefficients approach unity.

Often E° also contains factors related to complexation and ion pairing; as it does
in fact for the Fe(III)/Fe(II) couple in HC1, H2SO4, and H3PO4 solutions. Both iron
species are complexed in these media; hence (2.1.42) does not accurately describe the
half-cell reaction. However, one can sidestep a full description of the complex compet-
itive equilibria by using the empirical formal potentials. In such cases, E° contains
terms involving equilibrium constants and concentrations of some species involved in
the equilibria.

2.1.7 Reference Electrodes

Many reference electrodes other than the NHE and the SCE have been devised for elec-
trochemical studies in aqueous and nonaqueous solvents. Several authors have provided
discussions on the subject (16-18).

Usually there are experimental reasons for the choice of a reference electrode. For
example, the system

Ag/AgCl/KCl (saturated, aqueous) (2.1.46)

has a smaller temperature coefficient of potential than an SCE and can be built more com-
pactly. When chloride is not acceptable, the mercurous sulfate electrode may be used:

Hg/Hg2SO4/K2SO4 (saturated, aqueous) (2.1.47)

With a nonaqueous solvent, one may be concerned with the leakage of water from an
aqueous reference electrode; hence a system like

Ag/Ag+ (0.01 M in CH3CN) (2.1.48)

might be preferred.
Because of the difficulty in finding a reference electrode for a nonaqueous solvent that

does not contaminate the test solution with undesirable species, a quasireference electrode
(QRE)6 is often employed. This is usually just a metal wire, Ag or Pt, used with the expec-
tation that in experiments where there is essentially no change in the bulk solution, the po-
tential of this wire, although unknown, will not change during a series of measurements.
The actual potential of the quasireference electrode vs. a true reference electrode must be
calibrated before reporting potentials with reference to the QRE. Typically the calibration
is achieved simply by measuring (e.g., by voltammetry) the standard or formal potential vs.
the QRE of a couple whose standard or formal potential is already known vs. a true refer-
ence under the same conditions. The ferrocene/ferrocenium (Fc/Fc+) couple is recom-
mended as a calibrating redox couple, since both forms are soluble and stable in many
solvents, and since the couple usually shows nernstian behavior (19). Voltammograms for
ferrocene oxidation might be recorded to establish the value of £pc/Fc+ vs-tne QRE, so that
the potentials of other reactions can be reported against £pc/Fc+- ^ *s unacceptable to report
potentials vs. an uncalibrated quasireference electrode. Moreover a QRE is not suitable in
experiments, such as bulk electrolysis, where changes in the composition of the bulk solu-

6Quasi implies that it is "almost" or "essentially" a reference electrode. Sometimes such electrodes are also
called pseudoreference electrodes (pseudo, meaning false); this terminology seems less appropriate.
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Figure 2.1.1 Relationship between potentials on the NHE, SCE, and "absolute" scales. The
potential on the absolute scale is the electrical work required to bring a unit positive test charge into
the conducting phase of the electrode from a point in vacuo just outside the system (see Section
2.2.5). At right is the Fermi energy corresponding to each of the indicated potentials. The Fermi
energy is the electrochemical potential of electrons on the electrode (see Section 2.2.4).

tion can cause concomitant variations in the potential of the QRE. A proposed alternative
approach (20) is to employ a reference electrode in which Fc and Fc+ are immobilized at a
known concentration ratio in a polymer layer on the electrode surface (see Chapter 14).

Since the potential of a reference electrode vs. NHE or SCE is typically specified in
experimental papers, interconversion of scales can be accomplished easily. Figure 2.1.1
is a schematic representation of the relationship between the SCE and NHE scales. The
inside back cover contains a tabulation of the potentials of the most common reference
electrodes.

2.2 A MORE DETAILED VIEW OF INTERFACIAL POTENTIAL
DIFFERENCES

2.2.1 The Physics of Phase Potentials

In the thermodynamic considerations of the previous section, we were not required to ad-
vance a mechanistic basis for the observable differences in potentials across certain
phase boundaries. However, it is difficult to think chemically without a mechanistic
model, and we now find it helpful to consider the kinds of interactions between phases
that could create these interfacial differences. First, let us consider two prior questions:
(1) Can we expect the potential within a phase to be uniform? (2) If so, what governs its
value?

One certainly can speak of the potential at any particular point within a phase. That
quantity, ф(х, у, z), is defined as the work required to bring a unit positive charge, without
material interactions, from an infinite distance to point (x, y, z). From electrostatics, we
have assurance that ф(х, у, z) is independent of the path of the test charge (21). The work
is done against a coulombic field; hence we can express the potential generally as

Ф(х, у, x)
rx,y,z

J oo

% -d\ (2.2.1)
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where % is the electric field strength vector (i.e., the force exerted on a unit charge at any
point), and d\ is an infinitesimal tangent to the path in the direction of movement. The in-
tegral is carried out over any path to (x, y, z). The difference in potential between points
(У, / , z') and (x, y, z) is then

ф(х\ /, z') - ф(х, v, z) = fX 'У 'Z - d 1 (2.2.2)

In general, the electric field strength is not zero everywhere between two points and the
integral does not vanish; hence some potential difference usually exists.

Conducting phases have some special properties of great importance. Such a phase is
one with mobile charge carriers, such as a metal, a semiconductor, or an electrolyte solu-
tion. When no current passes through a conducting phase, there is no net movement of
charge carriers, so the electric field at all interior points must be zero. If it were not, the
carriers would move in response to it to eliminate the field. From equation 2.2.2, one can
see that the difference in potential between any two points in the interior of the phase
must also be zero under these conditions; thus the entire phase is an equipotential volume.
We designate its potential as ф, which is known as the inner potential (or Galvani poten-
tial) of the phase.

Why does the inner potential have the value that it does? A very important factor is
any excess charge that might exist on the phase itself, because a test charge would have to
work against the coulombic field arising from that charge. Other components of the poten-
tial can arise from miscellaneous fields resulting from charged bodies outside the sample.
As long as the charge distribution throughout the system is constant, the phase potential
will remain constant, but alterations in charge distributions inside or outside the phase
will change the phase potential. Thus, we have our first indication that differences in po-
tential arising from chemical interactions between phases have some sort of charge sepa-
ration as their basis.

An interesting question concerns the location of any excess charge on a conducting
phase. The Gauss law from elementary electrostatics is extremely helpful here (22). It
states that if we enclose a volume with an imaginary surface (a Gaussian surface), we will
find that the net charge q inside the surface is given by an integral of the electric field over
the surface:

q = s 0 <J> % • dS (2.2.3)

where e 0 *s a proportionality constant,7 and dS is an infinitesimal vector normal outward
from the surface. Now consider a Gaussian surface located within a conductor that is uni-
form in its interior (i.e., without voids or interior phases). If no current flows, % is zero at
all points on the Gaussian surface, hence the net charge within the boundary is zero. The
situation is depicted in Figure 2.2.1. This conclusion applies to any Gaussian surface,
even one situated just inside the phase boundary; thus we must infer that the excess
charge actually resides on the surface of the conducting phase.8

7The parameter s0 is called the permittivity of free space or the electric constant and has the value 8.85419 X
10~12 C2 N " 1 ггГ1. See the footnote in Section 13.3.1 for a fuller explanation of electrostatic conventions
followed in this book.
8There can be a finite thickness to this surface layer. The critical aspect is the size of the excess charge with
respect to the bulk carrier concentration in the phase. If the charge is established by drawing carriers from a
significant volume, thermal processes will impede the compact accumulation of the excess strictly on the
surface. Then, the charged zone is called a space charge region, because it has three-dimensional character. Its
thickness can range from a few angstroms to several thousand angstroms in electrolytes and semiconductiors. In
metals, it is negligibly thick. See Chapters 13 and 18 for more detailed discussion
along this line.
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Interior Gaussian
surface

Charged conducting
phase

Zero included charge

Figure 2.2.1 Cross-section
of a three-dimensional
conducting phase containing a
Gaussian enclosure.
Illustration that the excess
charge resides on the surface
of the phase.

A view of the way in which phase potentials are established is now beginning to
emerge:

1. Changes in the potential of a conducting phase can be effected by altering the
charge distributions on or around the phase.

2. If the phase undergoes a change in its excess charge, its charge carriers will ad-
just such that the excess becomes wholly distributed over an entire boundary of
the phase.

3. The surface distribution is such that the electric field strength within the phase is
zero under null-current conditions.

4. The interior of the phase features a constant potential, ф.

The excess charge needed to change the potential of a conductor by electrochemically sig-
nificant amounts is often not very large. Consider, for example, a spherical mercury drop
of 0.5 mm radius. Changing its potential requires only about 5 X 10~14 C/V (about
300,000 electrons/V), if it is suspended in air or in a vacuum (21).

2.2.2 Interactions Between Conducting Phases

When two conductors, for example, a metal and an electrolyte, are placed in contact, the
situation becomes more complicated because of the coulombic interaction between the
phases. Charging one phase to change its potential tends to alter the potential of the neigh-
boring phase as well. This point is illustrated in the idealization of Figure 2.2.2, which
portrays a situation where there is a charged metal sphere of macroscopic size, perhaps a
mercury droplet 1 mm in diameter, surrounded by a layer of uncharged electrolyte a few
millimeters in thickness. This assembly is suspended in a vacuum. We know that the

Surrounding vacuum

Metal with
charge qu

Electrolyte layer
with no net charge

Gaussian surface

Figure 2.2.2 Cross-sectional view of the
interacti56on between a metal sphere and
a surrounding electrolyte layer. The
Gaussian enclosure is a sphere containing
the metal phase and part of the electrolyte.
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charge on the metal, qM, resides on its surface. This unbalanced charge (negative in the
diagram) creates an excess cation concentration near the electrode in the solution. What
can we say about the magnitudes and distributions of the obvious charge imbalances in
solution?

Consider the integral of equation 2.2.3 over the Gaussian surface shown in Figure
2.2.2. Since this surface is in a conducting phase where current is not flowing, % at every
point is zero and the net enclosed charge is also zero. We could place the Gaussian sur-
face just outside the surface region bounding the metal and solution, and we would reach
the same conclusion. Thus, we know now that the excess positive charge in the solution,
qs, resides at the metal-solution interface and exactly compensates the excess metal
charge. That is,

«7 S = " < (2.2.4)

This fact is very useful in the treatment of interfacial charge arrays, which we have al-
ready seen as electrical double layers (see Chapters 1 and 13).9

Alternatively, we might move the Gaussian surface to a location just inside the outer
boundary of the electrolyte. The enclosed charge must still be zero, yet we know that the
net charge on the whole system is 0м. A negative charge equal to 0м must therefore reside
at the outer surface of the electrolyte.

Figure 2.2.3 is a display of potential vs. distance from the center of this assembly,
that is, the work done to bring a unit positive test charge from infinitely far away to a
given distance from the center. As the test charge is brought from the right side of the di-
agram, it is attracted by the charge on the outer surface of the electrolyte; thus negative
work is required to traverse any distance toward the electrolyte surface in the surround-
ing vacuum, and the potential steadily drops in that direction. Within the electrolyte, % is
zero everywhere, so there is no work in moving the test charge, and the potential is con-
stant at </>s. At the metal-solution interface, there is a strong field because of the double
layer there, and it is oriented such that negative work is done in taking the positive test
charge through the interface. Thus there is a sharp change in potential from ф^ to фм

over the distance scale of the double layer.10 Since the metal is a field-free volume, the

Distance

Vacuum
Figure 2.2.3 Potential profile through
the system shown in Figure 2.2.2.
Distance is measured radially from the
center of the metallic sphere.

9Here we are considering the problem on a macroscopic distance scale, and it is accurate to think of qs as

residing strictly at the metal—solution interface. On a scale of 1 fxva or finer, the picture is more detailed. One

finds that g s is still near the metal-solution interface, but is distributed in one or more zones that can be as thick

as 1000 A (Section 13.3).
10The diagram is drawn on a macroscopic scale, so the transition from фБ to фм appears vertical. The theory of

the double layer (Section 13.3) indicates that most of the change occurs over a distance equivalent to one to

several solvent monolayers, with a smaller portion being manifested over the diffuse layer in solution.
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potential is constant in its interior. If we were to increase the negative charge on the
metal, we would naturally lower ф м , but we would also lower <£s, because the excess
negative charge on the outer boundary of the solution would increase, and the test charge
would be attracted more strongly to the electrolyte layer at every point on the path
through the vacuum.

The difference фм — (/>s, called the interfacial potential difference, depends on the
charge imbalance at the interface and the physical size of the interface. That is, it depends
on the charge density (C/cm2) at the interface. Making a change in this interfacial poten-
tial difference requires sizable alterations in charge density. For the spherical mercury
drop considered above (A = 0.03 cm2), now surrounded by 0.1 M strong electrolyte, one
would need about 10~6 С (or 6 X 1012 electrons) for a 1-V change. These numbers are
more than 107 larger than for the case where the electrolyte is absent. The difference ap-
pears because the coulombic field of any surface charge is counterbalanced to a very large
degree by polarization in the adjacent electrolyte.

In practical electrochemistry, metallic electrodes are partially exposed to an elec-
trolyte and partially insulated. For example, one might use a 0.1 cm2 platinum disk elec-
trode attached to a platinum lead that is almost fully sealed in glass. It is interesting to
consider the location of excess charge used in altering the potential of such a phase. Of
course, the charge must be distributed over the entire surface, including both the insulated
and the electrochemically active area. However, we have seen that the coulombic interac-
tion with the electrolyte is so strong that essentially all of the charge at any potential will
lie adjacent to the solution, unless the percentage of the phase area in contact with elec-
trolyte is really minuscule.11

What real mechanisms are there for charging a phase at all? An important one is sim-
ply to pump electrons into or out of a metal or semiconductor with a power supply of
some sort. In fact, we will make great use of this approach as the basis for control over the
kinetics of electrode processes. In addition, there are chemical mechanisms. For example,
we know from experience that a platinum wire dipped into a solution containing ferri-
cyanide and ferrocyanide will have its potential shift toward a predictable equilibrium
value given by the Nernst equation. This process occurs because the electron affinities of
the two phases initially differ; hence there is a transfer of electrons from the metal to the
solution or vice versa. Ferricyanide is reduced or ferrocyanide is oxidized. The transfer of
charge continues until the resulting change in potential reaches the equilibrium point,
where the electron affinities of the solution and the metal are equal. Compared to the total
charge that could be transferred to or from ferri- and ferrocyanide in a typical system,
only a tiny charge is needed to establish the equilibrium at Pt; consequently, the net chem-
ical effects on the solution are unnoticeable. By this mechanism, the metal adapts to the
solution and reflects its composition.

Electrochemistry is full of situations like this one, in which charged species (elec-
trons or ions) cross interfacial boundaries. These processes generally create a net transfer
of charge that sets up the equilibrium or steady-state potential differences that we observe.
Considering them in more detail must, however, await the development of additional con-
cepts (see Section 2.3 and Chapter 3).

Actually, interfacial potential differences can develop without an excess charge on ei-
ther phase. Consider an aqueous electrolyte in contact with an electrode. Since the elec-
trolyte interacts with the metal surface (e.g., wetting it), the water dipoles in contact with
the metal generally have some preferential orientation. From a coulombic standpoint, this
situation is equivalent to charge separation across the interface, because the dipoles are

1 ] As it can be with an ultramicroelectrode. See Section 5.3.
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not randomized with time. Since moving a test charge through the interface requires
work, the interfacial potential difference is not zero (23-26).12

2.2.3 Measurement of Potential Differences

We have already noted that the difference in the inner potentials, Аф, of two phases in
contact is a factor of primary importance to electrochemical processes occurring at the in-
terface between them. Part of its influence comes from the local electric fields reflecting
the large changes in potential in the boundary region. These fields can reach values as
high as 107 V/cm. They are large enough to distort electroreactants so as to alter reactiv-
ity, and they can affect the kinetics of charge transport across the interface. Another as-
pect of Аф is its direct influence over the relative energies of charged species on either
side of the interface. In this way, Аф controls the relative electron affinities of the two
phases; hence it controls the direction of reaction.

Unfortunately, Аф cannot be measured for a single interface, because one cannot
sample the electrical properties of the solution without introducing at least one more in-
terface. It is characteristic of devices for measuring potential differences (e.g., poten-
tiometers, voltmeters, or electrometers) that they can be calibrated only to register
potential differences between two phases of the same composition, such as the two
metal contacts available at most instruments. Consider Аф at the interface Zn/Zn 2 +,
Cl~. Shown in Figure 2.2.4a is the simplest approach one could make to Аф using a po-
tentiometric instrument with copper contacts. The measurable potential difference be-
tween the copper phases clearly includes interfacial potential differences at the Zn/Cu
interface and the Cu/electrolyte interface in addition to Аф. We might simplify matters
by constructing a voltmeter wholly from zinc but, as shown in Figure 2.2.4b, the mea-
surable voltage would still contain contributions from two separate interfacial potential
differences.

By now we realize that a measured cell potential is a sum of several interfacial differ-
ences, none of which we can evaluate independently. For example, one could sketch the
potential profile through the cell

Cu/Zn/Zn2+,Cr/AgCl/Ag/Cu; (2.2.5)

according to Vetter's representation (24) in the manner of Figure 2.2.5.13

Even with these complications, it is still possible to focus on a single interfacial po-
tential difference, such as that between zinc and the electrolyte in (2.2.5). If we can main-
tain constant interfacial potentials at all of the other junctions in the cell, then any change
in E must be wholly attributed to a change in Аф at the zinc/electrolyte boundary. Keep-
ing the other junctions at a constant potential difference is not so difficult, for the metal-

Zn f^\ Zn
Figure 2.2.4 Two devices for measuring
the potential of a cell containing the Zn/Zn2

interface.

12Sometimes it is useful to break the inner potential into two components called the outer (or Volta) potential,

ф, and the surface potential, x- Thus, ф = ф + х- There is a large, detailed literature on the establishment, the

meaning, and the measurement of interfacial potential differences and their components. See references 23—26.
13Although silver chloride is a separate phase, it does not contribute to the cell potential, because it does not

physically separate silver from the electrolyte. In fact, it need not even be present; one merely requires a

solution saturated in silver chloride to measure the same cell potential.
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metal junctions always remain constant (at constant temperature) without attention, and
the silver/electrolyte junction can be fixed if the activities of the participants in its half-re-
action remain fixed. When this idea is realized, the whole rationale behind half-cell poten-
tials and the choice of reference electrodes becomes much clearer.

2.2.4 Electrochemical Potentials

Let us consider again the interface Zn/Zn2+, Cl~ (aqueous) and focus on zinc ions in
metallic zinc and in solution. In the metal, Zn2+ is fixed in a lattice of positive zinc ions,
with free electrons permeating the structure. In solution, zinc ion is hydrated and may in-
teract with Cl~. The energy state of Zn2+ in any location clearly depends on the chemi-
cal environment, which manifests itself through short-range forces that are mostly
electrical in nature. In addition, there is the energy required simply to bring the +2
charge, disregarding the chemical effects, to the location in question. This second energy
is clearly proportional to the potential ф at the location; hence it depends on the electri-
cal properties of an environment very much larger than the ion itself. Although one can-
not experimentally separate these two components for a single species, the differences in
the scales of the two environments responsible for them makes it plausible to separate
them mathematically (23-26). Butler (27) and Guggenheim (28) developed the concep-
tual separation and introduced the electrochemical potential, Jlf, for species / with
charge zx in phase a:

z? = tf +
The term fxf is the familiar chemical potential

(2.2.6)

(2.2.7)

where щ is the number of moles of / in phase a. Thus, the electrochemical potential would
be

я = (ж) ( 2 - 2 * 8 )

where the electrochemical free energy, G, differs from the chemical free energy, G, by the
inclusion of effects from the large-scale electrical environment.
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(a) Properties of the Electrochemical Potential

1. For an uncharged species: Jif = fjbf.

2. For any substance: [xf = ix®a + RT In af, where /if" is the standard chemical
potential, and a? is the activity of species / in phase a.

3. For a pure phase at unit activity (e.g., solid Zn, AgCl, Ag, or H 2 at unit fugacity):

Hf = rfa-
4. For electrons in a metal (z = — 1): ~jx% = /л®а - ¥фа. Activity effects can be dis-

regarded because the electron concentration never changes appreciably.
5. For equilibrium of species / between phases a and /3: JLf = jitf.

(b) Reactions in a Single Phase
Within a single conducting phase, ф is constant everywhere and exerts no effect on a
chemical equilibrium. The ф terms drop out of relations involving electrochemical po-
tentials, and only chemical potentials will remain. Consider, for example, the acid-base
equilibrium:

HO Ac <=± H + + OAc~ (2.2.9)

This requires that

Дн+ + Доле- (2.2.10)

Мн+ + рФ + Доле- - РФ (2.2.11)

А*Н+ + МОАс- (2.2.12)

(c) Reactions Involving Two Phases Without Charge Transfer
Let us now examine the solubility equilibrium

AgCl (crystal, c) +± Ag+ + С Г (solution, 5), (2.2.13)

which can be treated in two ways. First, one can consider separate equilibria involving
Ag+ and Cl~ in solution and in the solid. Thus

1 g (2-2.14)

^cr C 1 = Ma- (2-2-1 5)

Recognizing that

^ f (2-2.16)

one has from the sum of (2.2.14) and (2.2.15),

MAgl?' = M V + ^ r (2-2.17)

Expanding, we obtain

A^cf1 = MAg+ + RT l n a A g

+ + F<£s + M c r + RT l n acr ~ рФ8 (2.2.18)

and rearrangement gives

Й (2.2.19)

where ^ s p is the solubility product. A quicker route to this well-known result is to write
down (2.2.17) directly from the chemical equation, (2.2.13).

Note that the </>s terms canceled in (2.2.18), and that an implicit cancellation of </>AgC1

terms occurred in (2.2.16). Since the final result depends only on chemical potentials, the
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equilibrium is unaffected by the potential difference across the interface. This is a general
feature of interphase reactions without transfer of charge (either ionic or electronic).
When charge transfer does occur, the ф terms will not cancel and the interfacial potential
difference strongly affects the chemical process. We can use that potential difference ei-
ther to probe or to alter the equilibrium position.

(d) Formulation of a Cell Potential

Consider now the cell (2.2.5), for which the cell reaction can be written

Zn + 2AgCl + 2e(Cu') <=* Zn 2 + + 2Ag + 2СГ + 2e(Cu) (2.2.20)

At equilibrium,

M + 2/#fg + 2ДСи' = Jfo* + 2j#§ + 2м& + 2ДСи (2.2.21)

But,

2(Де

Си' - /Ze

Cu) = - 2F(^ C u ' - фСа) = - 2FE (2.2.23)

Expanding (2.2.22), we have

-2FE = /4n2+ + RT l n «zn2+ + 2рФ* + 2^Kg + 2Мсг (2.2.24)

-2FE = AG° + ЯГ In a|n2+ (as

a-)2 (2.2.25)

where
д y--tO Os _|_ ^ Os I о OAg O Z n ^ O A g C l ^тгтг® (^ о О/%\
ZAw" LH,r7~/lJt ~\ ZjjJLr^"\~ \ Ai LJL A * r^Txx r^ A2CI yjL.Z*,Z*K))

Thus, we arrive at

E = £ ° -Щ; ln(as

Zn2+)(as

cr)
2, (2.2.27)

which is the Nernst equation for the cell. This corroboration of an earlier result displays
the general utility of electrochemical potentials for treating interfacial reactions with
charge transfer. They are powerful tools. For example, they are easily used to consider
whether the two cells

Cu/Pt/Fe2+, Fe 3 + , СГ/AgCl/Ag/Cu' (2.2.28)

Cu/Au/Fe2+, Fe 3 + , СГ/AgCl/Ag/Cu' (2.2.29)

would have the same cell potential. This point is left to the reader as Problem 2.8.

2.2.5 Fermi Level and Absolute Potential

The electrochemical potential of electrons in a phase a, JIQ , is called the Fermi level or
Fermi energy and corresponds to an electron energy (not an electrical potential) Ep. The
Fermi level represents the average energy of available electrons in phase a and is related
to the chemical potential of electrons in that phase, /x£, and the inner potential of a.14 The
Fermi level of a metal or semiconductor depends on the work function of the material (see
Section 18.2.2). For a solution phase, it is a function of the electrochemical potentials of

14More exactly, it is the energy where the occupation probability is 0.5 in the distribution of electrons among the
various energy levels (the Fermi—Dirac distribution). See Sections 3.6.3 and 18.2.2 for more discussion of Ep.
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the dissolved oxidized and reduced species. For example, for a solution containing F e 3 +

and F e 2 +

Де = Й е 2 + - Й е 3 + (2.2.30)

For an inert metal in contact with a solution, the condition for electrical (or elec-
tronic) equilibrium is that the Fermi levels of the two phases be equal, that is,

E | = E ^ (2.2.31)

This condition is equivalent to saying that the electrochemical potentials of electrons in
both phases are equal, or that the average energies of available (i.e., transferable) elec-
trons are the same in both phases. When an initially uncharged metal is brought into con-
tact with an initially uncharged solution, the Fermi levels will not usually be equal. As
discussed in Section 2.2.2, equality is attained by the transfer of electrons between the
phases, with electrons flowing from the phase with the higher Fermi level (higher /Ze or
more energetic electrons) to the phase with the lower Fermi level. This electron flow
causes the potential difference between the phases (the electrode potential) to shift.

For most purposes in electrochemistry, it is sufficient to reference the potentials of
electrodes (and half-cell emfs) arbitrarily to the NHE, but it is sometimes of interest to
have an estimate of the absolute or single electrode potential (i.e., vs. the potential of a
free electron in vacuum). This interest arises, for example, if one would like to estimate
relative potentials of metals or semiconductors based on their work functions. The ab-
solute potential of the NHE can be estimated as 4.5 ± 0.1 V, based on certain extrather-
modynamic assumptions, such as about the energy involved in moving a proton from the
gas phase into an aqueous solution (10, 29). Thus, the amount of energy needed to remove
an electron from Pt/H2/H+(a = 1) to vacuum is about 4.5 eV or 434 kJ.15 With this value,
the standard potentials of other couples and reference electrodes can be expressed on the
absolute scale (Figure 2.1.1).

2.3 LIQUID JUNCTION POTENTIALS

2.3.1 Potential Differences at an Electrolyte-Electrolyte Boundary

To this point, we have examined only systems at equilibrium, and we have learned that
the potential differences in equilibrium electrochemical systems can be treated exactly by
thermodynamics. However, many real cells are never at equilibrium, because they feature
different electrolytes around the two electrodes. There is somewhere an interface between
the two solutions, and at that point, mass transport processes work to mix the solutes. Un-
less the solutions are the same initially, the liquid junction will not be at equilibrium, be-
cause net flows of mass occur continuously across it.

Such a cell is

Cu/Zn/Zn2+/Cu2+/Cu' (2.3.1)

a /3

for which we can depict the equilibrium processes as in Figure 2.3.1. The overall cell po-
tential at null current is then

E = (фСи' -фР)~ (фСи - фа) + (фР - фа) (2.3.2)

15The potential and the Fermi energy of an electrode have different signs, because the potential is based on
energy changes involving a positive test charge, while the Fermi energy refers to a negative electron.
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Figure 2.3.1 Schematic view of the phases in cell (2.3.1). Equilibrium is established for certain
charge carriers as shown, but at the liquid junction between the two electrolyte phases a and /3,
equilibrium is not reached.

Obviously, the first two components of E are the expected interfacial potential differences
at the copper and zinc electrodes. The third term shows that the measured cell potential
depends also on the potential difference between the electrolytes, that is, on the liquid
junction potential. This discovery is a real threat to our system of electrode potentials, be-
cause it is based on the idea that all contributions to E can be assigned unambiguously to
one electrode or to the other. How could the junction potential possibly be assigned prop-
erly? We must evaluate the importance of these phenomena.

2.3.2 Types of Liquid Junctions

The reality of junction potentials is easily understood by considering the boundary shown
in Figure 23.2a. At the junction, there is a steep concentration gradient in H + and Cl~;
hence both ions tend to diffuse from right to left. Since the hydrogen ion has a much
larger mobility than Cl~, it initially penetrates the dilute phase at a higher rate. This
process gives a positive charge to the dilute phase and a negative charge to the concen-
trated one, with the result that a boundary potential difference develops. The correspond-
ing electric field then retards the movement of H + and speeds up the passage of Cl~ until
the two cross the boundary at equal rates. Thus, there is a detectable steady-state poten-
tial, which is not due to an equilibrium process (3, 24, 30, 31). From its origin, this inter-
facial potential is sometimes called a diffusion potential.

Lingane (3) classified liquid junctions into three types:

1. Two solutions of the same electrolyte at different concentrations, as in Figure
2.3.2a.

2. Two solutions at the same concentration with different electrolytes having an ion
in common, as in Figure 2.3.2b.

3. Two solutions not satisfying conditions 1 or 2, as in Figure 2.3.2c.

We will find this classification useful in the treatments of junction potentials that follow.

Typei

0.01 M
HCI

0.1 M
HCI

• H +

•cr

©0

Type 2

0.1 M
HCI

0.1 M
KCI

00

ТуреЗ

0.05 M
KNO;

(a) (b) (c)

Figure 2.3.2 Types of liquid junctions. Arrows show the direction of net transfer for each ion,
and their lengths indicate relative mobilities. The polarity of the junction potential is indicated in
each case by the circled signs. [Adapted from J. J. Lingane, "Electroanalytical Chemistry," 2nd ed.,
Wiley-Interscience, New York, 1958, p. 60, with permission.]
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Even though the boundary region cannot be at equilibrium, it has a composition that
is effectively constant over long time periods, and the reversible transfer of electricity
through the region can be considered.

Conductance, Transference Numbers, and Mobility

When an electric current flows in an electrochemical cell, the current is carried in solution
by the movement of ions. For example, take the cell:

0Pt/H 2 (l atm)/H+, СГ/Н + , СГ/Н2(1 atm)/Pt'© K }

(«i) (*2)

where a2 > a^ 1 6 When the cell operates galvanically, an oxidation occurs at the left elec-
trode,

H 2 -> 2H+(a) + 2e(Pt) (2.3.4)

and a reduction happens on the right,

2H+(j3) + 2e(Pt') -> H 2 (2.3.5)

Therefore, there is a tendency to build up a positive charge in the a phase and a negative
charge in p. This tendency is overcome by the movement of ions: H + to the right and Cl~
to the left. For each mole of electrons passed, 1 mole of H + is produced in a, and 1 mole
of H + is consumed in /3. The total amount of H + and Cl~ migrating across the boundary
between a and /3 must equal 1 mole.

The fractions of the current carried by H + and Cl~ are called their transference num-
bers (or transport numbers). If we let t+ be the transference number for H + and t- be that
for Cl~, then clearly,

t+ + t- = 1 (2.3.6)

In general, for an electrolyte containing many ions, /,

(2.3.7)

Schematically, the process can be represented as shown in Figure 2.3.3. The cell initially
features a higher activity of hydrochloric acid (+ as H + , — as Cl~) on the right (Figure

(«) и/н2/! 1 / t i l l 1 _/H2/R

(с)

/ ! +_ ! ! !/H2/PI

Figure 2.3.3 Schematic diagram showing the redistribution of charge during electrolysis of a
system featuring a high concentration of HCl on the right and a low concentration on the left.

16A cell like (2.3.3), having electrodes of the same type on both sides, but with differing activities of one or
both of the redox forms, is called a concentration cell.
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2.3.3a); hence discharging it spontaneously produces H + on the left and consumes it on
the right. Assume that five units of H + are reacted as shown in Figure 233b. For hy-
drochloric acid, t+ ~ 0.8 and t- ~ 0.2; therefore, four units of H + must migrate to the
right and one unit of Cl~ to the left to maintain electroneutrality. This process is depicted
in Figure 2.3.3c, and the final state of the solution is represented in Figure 2.3.3d.

A charge imbalance like that suggested in Figure 233b could not actually occur, be-
cause a very large electric field would be established, and it would work to erase the im-
balance. On a macroscopic scale, electroneutrality is always maintained throughout the
solution. The migration represented in Figure 2.3.3c occurs simultaneously with the elec-
tron-transfer reactions.

Transference numbers are determined by the details of ionic conduction, which are
understood mainly through measurements of either the resistance to current flow in solu-
tion or its reciprocal, the conductance, L (31, 32). The value of L for a segment of solution
immersed in an electric field is directly proportional to the cross-sectional area perpendic-
ular to the field vector and is inversely proportional to the length of the segment along the
field. The proportionality constant is the conductivity, к, which is an intrinsic property of
the solution:

L = KA/1 (2.3.8)

The conductance, L, is given in units of Siemens (S = fl" 1), and к is expressed in S cm" 1

or ft"1 cm" 1 .
Since the passage of current through the solution is accomplished by the independent

movement of different species, к is the sum of contributions from all ionic species, /. It is
intuitive that each component of к is proportional to the concentration of the ion, the mag-
nitude of its charge |ZJ|, and some index of its migration velocity.

That index is the mobility, щ, which is the limiting velocity of the ion in an electric
field of unit strength. Mobility usually carries dimensions of cm2 V" 1 s" 1 (i.e., cm/s per
V/cm). When a field of strength % is applied to an ion, it will accelerate under the force
imposed by the field until the frictional drag exactly counterbalances the electric force.
Then, the ion continues its motion at that terminal velocity. This balance is represented in
Figure 2.3.4.

The magnitude of the force exerted by the field is \z-\ e%, where e is the electronic
charge. The frictional drag can be approximated from the Stokes law as 6ттг]ги, where rj
is the viscosity of the medium, r is the radius of the ion, and v is the velocity. When the
terminal velocity is reached, we have by equation and rearrangement,

The proportionality factor relating an individual ionic conductivity to charge, mobility,
and concentration turns out to be the Faraday constant; thus

(2.3.10)

Direction of movement

Figure 2.3.4 Forces on a charged
particle moving in solution under the
influence of an electric field. The forces

Drag force ч — У Electric force balance at the terminal velocity.
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The transference number for species / is merely the contribution to conductivity made by
that species divided by the total conductivity:

(2.3.11)

For solutions of simple, pure electrolytes (i.e., one positive and one negative ionic
species), such as KC1, CaCl2, and HNO3, conductance is often quantified in terms of the
equivalent conductivity, Л, which is defined by

(2.3.12)

where C e q is the concentration of positive (or negative) charges. Thus, Л expresses the
conductivity per unit concentration of charge. Since C\z\ = C e q for either ionic species in
these systems, one finds from (2.3.10) and (2.3.12) that

Л = F(u+ + u-) (2.3.13)

where u+ refers to the cation and u- to the anion. This relation suggests that Л could be
regarded as the sum of individual equivalent ionic conductivities,

Л = Л+ + A_

hence we find

Ai = Fu{

In these simple solutions, then, the transference number tx is given by

л
or, alternatively,

(2.3.14)

(2.3.15)

(2.3.16)

(2.3.17)

Transference numbers can be measured by several approaches (31, 32), and numerous
data for pure solutions appear in the literature. Frequently, transference numbers are mea-
sured by noting concentration changes caused by electrolysis, as in the experiment shown
in Figure 2.3.3 (see Problem 2.11). Table 2.3.1 displays a few values for aqueous solutions
at 25°C. From results of this sort, one can evaluate the individual ionic conductivities, Aj.
Both Aj and t-x depend on the concentration of the pure electrolyte, because interactions be-
tween ions tend to alter the mobilities (31-33). Lists of A values, like Table 2.3.2, usually
give figures for AOi, which are obtained by extrapolation to infinite dilution. In the absence
of measured transference numbers, it is convenient to use these to estimate t\ for pure solu-
tions by (2.3.16), or for mixed electrolytes by the following equivalent to (2.3.11),

(2.3.18)

In addition to the liquid electrolytes that we have been considering, solid electro-
lytes, such as sodium /3-alumina, the silver halides, and polymers like polyethylene
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TABLE 2.3.1 Cation Transference Numbers
for Aqueous Solutions at 25°Ca

Electrolyte

HC1

NaCl

KC1

NH4C1

KNO3

Na2SO4

K2SO4

0.01

0.8251

0.3918

0.4902

0.4907

0.5084

0.3848

0.4829

Concentration, Ceq

b

0.05

0.8292

0.3876

0.4899

0.4905

0.5093

0.3829

0.4870

0.1

0.8314

0.3854

0.4898

0.4907

0.5103

0.3828

0.4890

0.2

0.8337

0.3821

0.4894

0.4911

0.5120

0.3828

0.4910

aFrom D. A. Maclnnes, "The Principles of Electro-
chemistry," Dover, New York, 1961, p. 85 and references
cited therein.
^Moles of positive (or negative) charge per liter.

oxide/LiClO4 (34, 35), are sometimes used in electrochemical cells. In these materials,

ions move under the influence of an electric field, even in the absence of solvent. For ex-

ample, the conductivity of a single crystal of sodium /3-alumina at room temperature is

0.035 S/cm, a value similar to that of aqueous solutions. Solid electrolytes are technologi-

cally important in the fabrication of batteries and electrochemical devices. In some of

these materials (e.g., a-Ag2S and AgBr), and unlike essentially all liquid electrolytes,

TABLE 2.3.2 Ionic Properties at Infinite
Dilution in Aqueous Solutions at 25°C

Ion

H +

K +

Na+

Li+

NH^

ka2 +

OH~

С Г

Br"

I"

NO3-

OAc"

СЮ4

kstit
HCO3-

|Fe(CN)^

|Fe(CN)^

A 0 , c m 2 n " 1 e q u i v " l f l

349.82

73.52

50.11

38.69

73.4

59.50

198

76.34

78.4

76.85

71.44

40.9

68.0

79.8

44.48

101.0

110.5

и, cm2 sec"1 V"1*

3.625 X 10" 3

7.619 X 10" 4

5.193 X 10" 4

4.010 X 10" 4

7.61 X 10~4

6.166 X 10~4

2.05 X 10" 3

7.912 X 10~4

8.13 X 10" 4

7.96 X 10" 4

7.404 X 10" 4

4.24 X 10" 4

7.05 X 10" 4

8.27 X 10" 4

4.610 X 10" 4

1.047 X 10~3

1.145 X 10" 3

aFrom D. A. Maclnnes, "The Principles of Electrochemistry,"
Dover, New York, 1961, p. 342
^Calculated from AQ.
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Figure 2.3.5 Experimental system for
demonstrating reversible flow of charge through a
cell with a liquid junction.

there is electronic conductivity as well as ionic conductivity. The relative contribution of
electronic conduction through the solid electrolyte can be found by applying a potential to
a cell that is too small to drive electrochemical reactions and noting the magnitude of the
(nonfaradaic) current. Alternatively, an electrolysis can be carried out and the faradaic
contribution determined separately (see Problem 2.12).

2.3.4 Calculation of Liquid Junction Potentials

Imagine the concentration cell (2.3.3) connected to a power supply as shown in Figure
2.3.5. The voltage from the supply opposes that from the cell, and one finds experimen-
tally that it is possible to oppose the cell voltage exactly, so that no current flows through
the galvanometer, G. If the magnitude of the opposing voltage is reduced very slightly,
the cell operates spontaneously as described above, and electrons flow from Pt to Pt' in
the external circuit. The process occurring at the liquid junction is the passage of an
equivalent negative charge from right to left. If the opposing voltage is increased from the
null point, the entire process reverses, including charge transfer through the interface be-
tween the electrolytes. The fact that an infinitesimal change in the driving force can re-
verse the direction of charge passage implies that the electrochemical free energy change
for the whole process is zero.

These events can be divided into those involving the chemical transformations at the
metal-solution interfaces:

(2.3.19)

Н + (/3) + e(Pt') ̂ ± ̂ Н2 (2.3.20)

and that effecting charge transport at the liquid junction depicted in Figure 2.3.6:

t+H+(a) + Г-СГ08) ^± t+ H + 08) + /- С Г (a) (2.3.21)

Note that (2.3.19) and (2.3.20) are at strict equilibrium under the null-current condition;
hence the electrochemical free energy change for each of them individually is zero. Of
course, this is also true for their sum:

H + 08) + e(Pt') H + (a) (2.3.22)

(a2)

LCI-
Figure 2.3.6
Figure 2.3.5.

Reversible charge transfer through the liquid junction in
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which describes the chemical change in the system. The sum of this equation and the
charge transport relation, (2.3.21), describes the overall cell operation. However, since we
have just learned that the electrochemical free energy changes for both the overall process
and (2.3.22) are zero, we must conclude that the electrochemical free energy change for
(2.3.21) is also zero. In other words, charge transport across the junction occurs in such a
way that the electrochemical free energy change vanishes, even though it cannot be con-
sidered as a process at equilibrium. This important conclusion permits an approach to the
calculation of junction potentials.

Let us focus first on the net chemical reaction, (2.3.22). Since the electrochemical
free energy change is zero,

^H+ + Jg = /Zg+ + jS* (2.3.23)

FE = F(0Pt ' - <£pt) = £&+ - ДЙ+ (2.3.24)

Е = ^1п^ + (фР-фа) (2.3.25)

The first component of E in (2.3.25) is merely the Nernst relation for the reversible chem-
ical change, and ф@ — фа is the liquid junction potential. In general, for a chemically re-
versible system under null current conditions,

^cell = ^Nernst + Щ (2.3.26)

hence the junction potential is always an additive perturbation onto the nernstian re-
sponse.

To evaluate E}, we consider (2.3.21), for which

t+JL^ + t_ J&- = t+^H+ + t_ /Zg r (2.3.27)

Thus,

- - lib-) = 0 (2.3.28)

1 P -фа)\ = 0 (2.3.29)
JLft c\- J

Activity coefficients for single ions cannot be measured with thermodynamic rigor (30,
36, 37-38); hence they are usually equated to a measurable mean ionic activity coefficient.
Under this procedure, ag+ = ogj- = ax and a^+ = a^x- = a2. Since t+ + t- = 1, we
have

- фа) = (t+ - t_) Щ- In ^ (2.3.30)

for a type 1 junction involving 1:1 electrolytes.
Consider, for example, HC1 solutions with ax = 0.01 and a2 = 0.1. We can see from

Table 2.3.1 that t+ = 0.83 and t- = 0.17; hence at 25°C

( \
^ y ) - -39.1 mV (2.3.31)

/
For the total cell,

E = 59.1 log ^ + £j = 59.1 - 39.1 = 20.0 mV (2.3.32)

thus, the junction potential is a substantial component of the measured cell potential.
In the derivation above, we made the implicit assumption that the transference num-

bers were constant throughout the system. This is a very good approximation for junctions
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of type 1; hence (2.3.30) is not seriously compromised. For type 2 and type 3 systems, it
clearly cannot be true. To consider these cases, one must imagine the junction region to be
sectioned into an infinite number of volume elements having compositions that range
smoothly from the pure a-phase composition to that of pure /3. Transporting charge across
one of these elements involves every ionic species in the element, and ttl\z^ moles of
species / must move for each mole of charge passed. Thus, the passage of positive charge
from a toward /3 might be depicted as in Figure 2.3.7. One can see that the change in elec-
trochemical free energy upon moving any species is {tJz^cfjjL^ (recall that zj is a signed
quantity); therefore, the differential in free energy is

p

dG = 2 j : dJLx (2.3.33)

(2.3.34)

Integrating from the a phase to the /3 phase, we have
r P С fi t-

Ja i ^a *

If jitf for the a phase is the same as that for the /3 phase (e.g., if both are aqueous solu-
tions),

2 j-RTd\na{ + n>i \F \

Since 2^ = 1,

(2.3.35)

(2.3.36)

which is the general expression for the junction potential.
It is easy to see now that (2.3.30) is a special case for type 1 junctions between 1:1

electrolytes having constant tv Note that £j is a strong function of t+ and t-, and that it ac-
tually vanishes if t+ = t~. The value of Щ as a function of t+ for a 1:1 electrolyte with
ai/a2 = 10 is

Ei = 59.1 - 1) mV

at 25°C. For example, the cell

Ag/AgCl/KCl (0.1 M)/KC1 (0.01 M)/AgCl/Ag

(2.3.37)

(2.3.38)

has t+ = 0.49; hence E-} = -1.2 mV.
While type 1 junctions can be treated with some rigor and are independent of the

method of forming the junction, type 2 and type 3 junctions have potentials that depend
on the technique of junction formation (e.g., static or flowing) and can be treated only in
an approximate manner. Different approaches to junction formation apparently lead to

-fj/z, mole of-
each anion

Location

Electrochemical
potential

- f/zj mole of
each cation

x + dx

Figure 2.3.7 Transfer of net positive
charge from left to right through an
infinitesimal segment of a junction region.
Each species must contribute ty moles of
charge per mole of overall charge
transported; hence t-\z-\ moles of that
species must migrate.
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different profiles of tx through the junction, which in turn lead to different integrals for
(2.3.36). Approximate values for E-} can be obtained by assuming (a) that concentrations
of ions everywhere in the junction are equivalent to activities and (b) that the concentra-
tion of each ion follows a linear transition between the two phases. Then, (2.3.36) can be
integrated to give the Henderson equation (24, 30):

F *

i

— [COS) - C;(a)] У. \z{1 RT, i
F v i

i

«AW

MiCiO3)
(2.3.39)

where щ is the mobility of species /, and C\ is its molar concentration. For type 2 junctions
between 1:1 electrolytes, this equation collapses to the Lewis-Sargent relation'.

(2.3.40)

where the positive sign corresponds to a junction with a common cation in the two phases,
and the negative sign applies to the case with a common anion. As an example, consider
the cell

Ag/AgCl/HCl (0.1M)/KCl (0.1 M)/AgCl/Ag (2.3.41)

for which Есец is essentially E-y The measured value at 25°C is 28 ± 1 mV, depending on
the technique of junction formation (30), while the estimated value from (2.3.40) and the
data of Table 2.3.2 is 26.8 mV.

2.3.5 Minimizing Liquid Junction Potentials

In most electrochemical experiments, the junction potential is an additional troublesome
factor, so attempts are often made to minimize it. Alternatively, one hopes that it is small
or that it at least remains constant. A familiar method for minimizing £j is to replace the
junction, for example,

HC1 (Ci)/NaCl (C2) (2.3.42)

with a system featuring a concentrated solution in an intermediate salt bridge, where the
solution in the bridge has ions of nearly equal mobility. Such a system is

HC1 (Ci)/KCl (C)/NaCl (C2)

Table 2.3.3 lists some measured junction potentials for the cell,

Hg/Hg2Cl2/HCl (0.1 M)/KC1 (С)/Ка (0

(2.3.43)

(2.3.44)

As С increases, £j falls markedly, because ionic transport at the two junctions is dominated
more and more extensively by the massive amounts of KC1. The series junctions become
more similar in magnitude and have opposite polarities; hence they tend to cancel. Solu-
tions used in aqueous salt bridges usually contain KC1 (t+ = 0.49, t- = 0.51) or, where
Cl" is deleterious, KNO3 (t+ = 0.51, t- = 0.49). Other concentrated solutions with equi-
transferent ions that have been suggested (39) for salt bridges include CsCl (f+ = 0.5025),
RbBr (t+ = 0.4958), and NH4I (t+ = 0.4906). In many measurements, such as the deter-
mination of pH, it is sufficient if the junction potential remains constant between calibra-
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TABLE 2.3.3 Effect of a Salt Bridge on Measured
Junction Potentials"

Concentration of KC1, C(M) £j,mV

0.1 27

0.2 20

0.5 13

1.0 8.4

2.5 3.4

3.5 1.1

4.2 (saturated) < 1

aSee J. J. Lingane, "Electroanalytical Chemistry," Wiley-
Interscience, New York, 1958, p. 65. Original data from H. A.
Fales and W. C. Vosburgh, / . Am. Chem. Soc. 40, 1291 (1918);
E. A. Guggenheim, ibid., 52, 1315 (1930); and A. L. Ferguson,
K. Van Lente, and R. Hitchens, ibid., 54,1285 (1932).

tion (e.g., with a standard buffer or solution) and measurement. However, variations in Ej
of 1-2 mV can be expected, and should be considered in any interpretations made from
potentiometric data.

2.3.6 Junctions of Two Immiscible Liquids

Another junction of interest is that between two immiscible electrolyte solutions (40^-4).
A typical junction of this type would be

К + С Г (H2O)/TBA+C1O4 (nitrobenzene) (2.3.45)
phase a phase /3

where TBA+C1O^ is tetra-n-butylammonium perchlorate. Of interest in connection with
ion-selective electrodes (Section 2.4.3) and as models for biological membranes are re-
lated cells with immiscible liquids between two aqueous phases, such as

Ag/AgCl/ KC1 (aq) /TBA+CIO^ (nitrobenzene) / KC1 (aq) /AgCl/Ag (2.3.46)

where the intermediate liquid layer behaves as a membrane. The treatment of the poten-
tials across junctions like (2.3.45) is similar to that given earlier in this section, except that
the standard free energies of a species / in the two phases, fifa and /if̂ , are now different.
The junction potential then becomes (40, 41)

+RT ln ( f )
where A^"nsr?r j *s * п е standard free energy required to transfer species / with charge i\
between the two phases and is defined as

* & & i = № ~ da (2-3-48)

This quantity can be estimated, for example, from solubility data, but only with an
extrathermodynamic assumption of some kind. For example, for the salt tetraphenylarso-
nium tetraphenylborate (TPAs+TPB~), it is widely assumed that the free energy of sol-
vation (AGJ?olvn) of TPAs+ is equal to that of TPB~, since both are large ions with most
of the charge buried deep inside the surrounding phenyl rings (45). Consequently, the in-
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dividual ion solvation energies are taken as one-half of the solvation energy of the salt,
which is measurable from the solubility product in a given solvent. That is,

AG°olvn (TPAs+) = AG°olvn(TPB") = ±AG°olvn (TPAs+ТРЩ (2.3.49)

r, TPAS+ = AG»olvn(TPAs+, J8) - AG°olvn (TPAs+, a) (2.3.50)

The free energy of transfer can also be obtained from the partitioning of the salt between
the phases a and /3. For each ion, the value determined in this way should be the same as
that calculated in (2.3.50), if the intersolubility of a and /3 is very small.

The rate of transfer of ions across interfaces between immiscible liquids is also of in-
terest and can be obtained from electrochemical measurements (Section 6.8).

2.4 SELECTIVE ELECTRODES (46-55)

2.4.1 Selective Interfaces

Suppose one could create an interface between two electrolyte phases across which only a
single ion could penetrate. A selectively permeable membrane might be used as a separa-
tor to accomplish this end. Equation 2.3.34 would still apply; but it could be simplified by
recognizing that the transference number for the permeating ion is unity, while that for
every other ion is zero. If both electrolytes are in a common solvent, one obtains by inte-
gration

^ ^ <П = 0 (2.4.1)

where ion i is the permeating species. Rearrangement gives

£
т = - 5 1 П <

If the activity of species / is held constant in one phase, the potential difference between
the two phases (often called the membrane potential, Em) responds in a Nernst-like fash-
ion to the ion's activity in the other phase.

This idea is the essence of ion-selective electrodes. Measurements with these devices
are essentially determinations of membrane potentials, which themselves comprise junc-
tion potentials between electrolyte phases. The performance of any single system is deter-
mined largely by the degree to which the species of interest can be made to dominate
charge transport in part of the membrane. We will see below that real devices are fairly
complicated, and that selectivity in charge transport throughout the membrane is both
rarely achieved and actually unnecessary.

Many ion-selective interfaces have been studied, and several different types of elec-
trodes have been marketed commercially. We will examine the basic strategies for intro-
ducing selectivity by considering a few of them here. The glass membrane is our starting
point because it offers a fairly complete view of the fundamentals as well as the usual
complications found in practical devices.

2.4.2 Glass Electrodes

The ion-selective properties of glass/electrolyte interfaces were recognized early in the
20th century, and glass electrodes have been used since then for measurements of pH and
the activities of alkali ions (24, 37, 46-55). Figure 2.4.1 depicts the construction of a typi-
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Internal
filling solution -

(0.1 MHCI)

Ag wire

Excess AgCI

Thin glass
membrane

Figure 2.4.1 A typical glass electrode.

cal device. To make measurements, the thin membrane is fully immersed in the test solu-
tion, and the potential of the electrode is registered with respect to a reference electrode
such as an SCE. Thus, the cell becomes,

.1 M)/AgCl/Ag (2.4.3)

Glass electrode's
internal reference

SCE Glass electrode

The properties of the test solution influence the overall potential difference of the cell at
two points. One of them is the liquid junction between the SCE and the test solution.
From the considerations of Section 2.3.5, we can hope that the potential difference there
is small and constant. The remaining contribution from the test solution comes from its
effect on the potential difference across the glass membrane. Since all of the other inter-
faces in the cell feature phases of constant composition, changes in the cell potential can
be wholly ascribed to the junction between the glass membrane and the test solution. If
that interface is selective toward a single species /, the cell potential is

RT,
E = constant + ^p In a\„soln (2.4.4)

where the constant term is the sum of potential differences at all of the other interfaces.17

The constant term is evaluated by "standardizing" the electrode, that is, by measuring E
for a cell in which the test solution is replaced by a standard solution having a known ac-
tivity for species /,18

Actually, the operation of the glass phase is rather complicated (24, 37, 46^48, 51).
The bulk of the membrane, which might be about 50 jiim thick, is dry glass through which
charge transport occurs exclusively by the mobile cations present in the glass. Usually,
these are alkali ions, such as Na + or Li+. Hydrogen ion from solution does not contribute
to conduction in this region. The faces of the membrane in contact with solution differ
from the bulk, in that the silicate structure of the glass is hydrated. As shown in Figure
2.4.2, the hydrated layers are thin. Interactions between the glass and the adjacent solu-
tion, which occur exclusively in the hydrated zone, are facilitated kinetically by the
swelling that accompanies the hydration.

17Equation 2.4.4 is derived from (2.4.2) by recognizing the test solution as phase a and the internal filling
solution of the electrode as phase /3. See also Figures 2.3.5 and 2.3.6.
18By the phrase "activity for species Г we mean the concentration of / multiplied by the mean ionic activity

coefficient. See Section 2.3.4 for a commentary and references related to the concept of single-ion activities.
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Hydrated layer Hydrated layer

Test solution Dry glass

• 5 0 (im M-

Internal filling solution

15-100 nm

Figure 2.4.2 Schematic profile through a glass membrane.

The membrane potentials appear because the silicate network has an affinity for
certain cations, which are adsorbed (probably at fixed anionic sites) within the struc-
ture. This action creates a charge separation that alters the interfacial potential dif-
ference. That potential difference, in turn, alters the rates of adsorption and
desorption. Thus, the rates are gradually brought into balance by a mechanism re-
sembling the one responsible for the establishment of junction potentials, as dis-
cussed above.

Obviously, the glass membrane does not adhere to the simplified idea of a selec-
tively permeable membrane. In fact, it may not be at all permeable to some of the ions of
greatest interest, such as H + . Thus, the transference number of such an ion can-
not be unity throughout the membrane, and it may actually be zero in certain zones. Can
we still understand the observed selective response? The answer is yes, provided that the
ion of interest dominates charge transport in the interfacial regions of the membrane.

Let us consider a model for the glass membrane like that shown in Figure 2.4.3.
The glass will be considered as comprising three regions. In the interfacial zones, m!
and m", there is rapid attainment of equilibrium with constituents in solution, so that
each adsorbing cation has an activity reflecting its corresponding activity in the adja-
cent solution. The bulk of the glass is denoted by m, and we presume that conduction
there takes place by a single species, which is taken as Na + for the sake of this argu-
ment. The whole system therefore comprises five phases, and the overall difference in
potential across the membrane is the sum of four contributions from the junctions be-
tween the various zones:

~ Фт") + (фт" ~ Фт) + (Фт - Фт) + (Фт' ~ Фа) (2.4.5)

Test solution

Equilibrium
adsorption

Internal filling solution

Equilibrium
adsorption

Figure 2.4.3 Model for treating the membrane potential across a glass barrier.
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The first and last terms are interfacial potential differences arising from an equilib-
rium balance of selective charge exchange across an interface. This condition is known as
Donnan equilibrium (24, 51). The magnitude of the resulting potential difference can be
evaluated from electrochemical potentials. Suppose we have Na + and H + as interfacially
active ions. Then at the a/m' interface,

МЙ+ = MH+ (2-4.6)

M + = MNa+ (2-4.7)

Expanding (2.4.6), we have

/!$*+ + RT In я£+ 4- ¥фа = ySfii + ЯГ In ajgV + F<£m' (2.4.8)

and rearrangement gives
Oa Om' a

(фт' -ф<*) = ^и+ ^ H + + ^ i n ^ l (2.4.9)

An equivalent treatment of the interface between (3 and m" gives
Om" _ 0/3 m "

(фР - фт") = ^ Н +

 р

 М н + + £ 1 in ̂ | ± (2.4.10)

Note that Дна+ = A%+, because both a and /3 are aqueous solutions. Similarly,
Мн+ = Мн+- w h e n w e a d d (2.4.9) and (2.4.10) later in this development, these equiva-
lencies will cause the terms involving fi° to disappear.

The second and third components in (2.4.5) are junction potentials within the glass
membrane. In the specialized literature, they are called diffusion potentials, because they
arise from differential ionic diffusion in the manner discussed in Section 2.3.2. The sys-
tems correspond to type 3 junctions as defined there.

We can treat them through a variant of the Henderson equation, (2.3.39), which was
introduced earlier in Section 2.3.4. The usual form of this equation is derived from
(2.3.36) by neglecting activity effects and assuming linear concentration profiles through
the junction. Here, we are interested only in univalent positive charge carriers; hence we
can specialize (2.3.39) for the interface between m and m! as

(фт-фт) = ^ \

where the concentrations have been replaced by activities. Also, for the interface between
m and m",

m

(фт" - фт) = Qjf- In ^ a + N a + — — (2.4.12)
W J J + # н + ~r ^Na~*~ ^Na~^

Now let us add the component potential differences, (2.4.9)-(2.4.12), as dictated by
(2.4.5), to obtain the whole potential difference across the membrane:19

RT, О н + Д н + m т ч

— —pr 1П _ , (Donnan Term)

+—рг Ш ; ~ (Diffusion term) (2.4.13)

F (MNa+/«H+)«Sa+ + «H+

19Note that the diffusion term here is the same as that which would be predicted by the Henderson equation
from the compositions of m' and m" without considering m as a separate phase. Many treatments of this
problem follow such an approach. We have added the phase m because the three-phase model for the membrane
is more realistic with regard to the assumptions underlying the Henderson equation.
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Some important simplifications can be made in this result. First, we combine the two
terms in (2.4.13) and rearrange the parameters to give

F _RT
F

Now consider (2.4.6) and (2.4.7), which apply simultaneously. Their sum must also be true:

Й а + + Й?+ = М§+ + Й?а+ (2.4.15)

This equation is a free energy balance for the ion-exchange reaction:

Na + (a) + H + (m') ^± H + (a) + Na + (mr) (2.4.16)

Since it does not involve net charge transfer, it is not sensitive to the interfacial potential
difference [see Section 2.2.4(c)], and it has an equilibrium constant given by

An equivalent expression, involving the same numeric value of К#+ N a + , would apply to
the interface between phases /3 and m'. These relations can be substituted into (2.4.14) to
give

RT, (%a+/H+)H+,Na+Na+ H+
— — m — (Z.4.16)

* ( / Ж 6 +
Since ^H+,Na+ a n c^ wNa+/wH+ a r e constants of the experiment, it is convenient to define
their product as the potentiometric selectivity coefficient, k^+ N a + :

RT* H H+,NaNa+ /0Q1Q4

-У]п и , ipot У (23.19)

If the /3 phase is the internal filling solution (of constant composition) and the a
phase is the test solution, then the overall potential of the cell is

RT
E = constant + ^ r In

г
(2.4.20)

This expression tells us that the cell potential is responsive to the activities of both
Na+ and H + in the test solution, and that the degree of selectivity between these species is
defined АЦ+ N a + . If the product A^+>Na+ #Na+ *s m u c n less than яg+, then the membrane
responds essentially exclusively to H + . When that condition applies, charge exchange be-
tween the phases a and m! is dominated by H + .

We have formulated this problem in a manner that considers only Na + and H + as ac-
tive species. Glass membranes also respond to other ions, such as Li+, K+, Ag+, and
NH4". The relative responses can be expressed through the corresponding potentiometric
selectivity coefficients (see Problem 2.16 for some typical numbers), which are influenced
to a great extent by the composition of the glass. Different types of electrodes, based on
different types of glass, are marketed. They are broadly classified as (a) pH electrodes
with a selectivity order H + > > > Na + > K+, Rb+, Cs + > > Ca 2 + , (b) sodium-sensitive
electrodes with the order Ag+ > H + > Na + > > K+, Li + > > Ca 2 + , and (c) a more
general cation-sensitive electrode with a narrower range of selectivities in the order
H + > K + > Na + > N H | , Li + » Ca 2 + .

There is a large literature on the design, performance, and theory of glass electrodes
(37, 46-55). The interested reader is referred to it for more advanced discussions.
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Other Ion-Selective Electrodes

The principles that we have just reviewed also apply to other types of selective mem-
branes (48, 50-59). They fall generally into two categories.

(a) Solid-State Membranes
Like the glass membrane, which is a member of this group, the remaining common solid-
state membranes are electrolytes having tendencies toward the preferential adsorption of
certain ions on their surfaces.

Consider, for example, the single-crystal LaF3 membrane, which is doped with EuF2

to create fluoride vacancies that allow ionic conduction by fluoride. Its surface selectively
accommodates F~ to the virtual exclusion of other species except OH~.

Other devices are made from precipitates of insoluble salts, such as AgCl, AgBr, Agl,
Ag2S, CuS, CdS, and PbS. The precipitates are usually pressed into pellets or are sus-
pended in polymer matrices. The silver salts conduct by mobile Ag+ ions, but the heavy
metal sulfides are usually mixed with Ag2S, since they are not very conductive. The sur-
faces of these membranes are generally sensitive to the ions comprising the salts, as well
as to other species that tend to form very insoluble precipitates with a constituent ion. For
example, the Ag2S membrane responds to Ag+, S2~~, and Hg2+. Likewise, the AgCl
membrane is sensitive to Ag+, Cl~, Br~, I~, CN~, and OH~.

(b) Liquid and Polymer Membranes
An alternative structure utilizes a hydrophobic liquid membrane as the sensing element.
The liquid is stabilized physically between an aqueous internal filling solution and an
aqueous test solution by allowing it to permeate a porous, lipophilic diaphragm. A reser-
voir contacting the outer edges of the diaphragm contains this liquid. Chelating agents
with selectivity toward ions of interest are dissolved in it, and they provide the mecha-
nism for selective charge transport across the boundaries of the membrane.

A device based on these principles is a calcium-selective electrode. The hydrophobic
solvent might be dioctylphenylphosphonate, and the chelating agent might be the sodium
salt of an alkyl phosphate ester, (RO)2 PO^Na+, where R is an aliphatic chain having 8-18
carbons. The membrane is sensitive to Ca2+, Zn2+, Fe2+, Pb2+, Cu2+, tetra-alkylammo-
nium ions, and still other species to lesser degrees. "Water hardness" electrodes are based
on similar agents, but are designed to show virtually equal responses to Ca2+ and Mg2+.

Other systems featuring liquid ion-exchangers are available for anions, such as NO^~,
ClO^, and Cl~. Nitrate and perchlorate are sensed by membranes including alkylated
1,10-phenanthroline complexes of Ni2+ and Fe2+, respectively. All three ions are active
at other membranes based on quaternary ammonium salts.

In commercial electrodes, the liquid ion-exchanger is in a form in which the chelating
agent is immobilized in a hydrophobic polymer membrane like poly(vinylchloride) (Fig-
ure 2.4.4). Electrodes based on this design (called polymer or plastic membrane ISEs) are
more rugged and generally offer superior performance.

Liquid ion-exchangers all feature charged chelating agents, and various ion-exchange
equilibria play a role in their operation. A related type of device, also featuring a stabi-
lized liquid membrane, involves uncharged chelating agents that enable the transport of
charge by selectively complexing certain ions. These agents are sometimes called neutral
carriers. Systems based on them typically also involve the presence of some anionic sites
in the membrane, either naturally occurring or added in the form of hydrophobic ions, and
these anionic sites contribute to the ion-exchange process (56-58). It has also been pro-
posed that electrodes based on neutral carriers operate by a phase-boundary (i.e., adsorp-
tion), rather than a carrier mechanism (59).
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Electrical contact
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Figure 2.4.4 A typical plastic membrane ISE. [Courtesy of
Orion Research, Inc.]

For example, potassium-selective electrodes can be constructed with the natural
macrocycle valinomycin as a neutral carrier in diphenyl ether. This membrane has a much
higher sensitivity to K + than to Na+, Li+, Mg 2 +, Ca 2 + , or H + ; but Rb + and Cs + are
sensed to much the same degree as K+. The selectivity seems to rest mostly on the molec-
ular recognition of the target ion by the complexing site of the carrier.

(c) Commercial Devices
Table 2.4.1 is a listing of typical commercial ion-selective electrodes, the pH and concen-
tration ranges over which they operate, and typical interferences. Selectivity coefficients
for many of these electrodes are available (55, 57).

TABLE 2.4.1 Typical Commercially Available Ion-Selective Electrodes

Species

Ammonium (NH4")
Barium (Ba2 +)
Bromide (Br~)
Cadmium (Cd2 +)
Calcium (Ca2 +)
Chloride (СГ)
Copper (Cu2 +)
Cyanide (CN")
Fluoride (F~)
Iodide (Г)
Lead (Pb2 +)
Nitrate (NO3")
Nitrite (NO2)
Potassium (K+)
Silver (Ag+)
Sodium (Na+)
Sulfide (S2~)

Type*

L
L
S
S
L
S

s
s
s
s
s
L
L
L
S
G
S

Concentration
Range(M)

КГЧоКГ6

КГЧоКГ5

1 to 10~5

10"1 to 10~7

1 to 10~7

1 to 5 X 10~5

К Г Ч о К Г 7

10"2 to 10"6

1 to 10"7

1 to 10~7

1(ГЧо1(Г6

1 to 5 X 10~6

1 to 10~6

1 to 10"6

1 to 10~7

Sat'd to 10~6

1 to 10~7

рн
Range

5-8
5-9
2-12
3-7
4-9
2-11
0-7

10-14
5-8
3-12
0-9
3-10
3-10
4-9
2-9
9-12

12-14

Interferences

K+,Na+,Mg 2 +

K+,Na+,Ca 2 +

I", S2", CN"
Ag+,Hg2 +,Cu2 +,Pb2 +,Fe3 +

Ba 2 +,Mg 2 +,Na+,Pb 2 +

I", S2~, CN~, Br"
Ag+,Hg2+,S2~,CT,Br~
S2~
OH"
S 2 "
Ag+,Hg 2 +,S 2-,Cd 2 +,Cu 2 +,Fe 3 +

Cl",Br",NO2,F",SO5~
Cl",Br"",NOJ,F",SO5~
Na+, Ca 2 + , Mg 2 +

S 2 " , H g 2 +

Li+, K+, NH^
Ag + ,Hg 2 +

aG = glass; L = liquid membrane; S = solid-state. Typical temperature ranges are 0-50°C for liquid-

membrane and 0-80°C for solid-state electrodes.
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(d) Detection Limits
As shown in Table 2.4.1, the lower limit for detection of an ion with an ISE is generally
10~6to 10~7M. This limit is largely governed by the leaching of ions from the internal
electrolyte into the sample solution (60). The leakage can be prevented by using a lower
concentration of the ion of interest in the internal electrolyte, so that the concentration
gradient established in the membrane causes an ion flux from the sample to the inner elec-
trolyte. This low concentration can be maintained with an ion buffer, that is, a mixture of
the metal ion with an excess of a strong complexing agent. In addition, a high concentra-
tion of a second potential-determining ion is added to the internal solution. Under these
conditions, the lower detection limit can be considerably improved. For example, for
a conventional liquid-membrane Pb2+ electrode with an internal filling solution of
5 X 10 4 M Pb z + and 5 X 10 l M M g z \ the detection limit for Pb:

was 4 X 10~6 M. When the internal solution was changed to 10~3 M Pb2+ and
5 X 10~z M Na2EDTA (yielding a free [Pbz+] = 10" i 2 M), the detection limit decreased
to 5 X 10~12 M (61). In the internal solution, the dominant potential-determining ion
isNa+at0.1M.

2.4.4 Gas-Sensing Electrodes

Figure 2.4.5 depicts the structure of a typical potentiometric gas-sensing electrode (62). In
general, such a device involves a glass pH electrode that is protected from the test solu-
tion by a polymer diaphragm. Between the glass membrane and the diaphragm is a small
volume of electrolyte. Small molecules, such as SO2, NH3, and CO2, can penetrate the
membrane and interact with the trapped electrolyte by reactions that produce changes in
pH. The glass electrode responds to the alterations in acidity.

Electrochemical cells that use a solid electrolyte composed of zirconium dioxide con-
taining Y2O3 (yttria-stabilized zirconia) are available to measure the oxygen content of
gases at high temperature. In fact, sensors of this type are widely used to monitor the ex-
haust gas from the internal combustion engines of motor vehicles, so that the air-
to-fuel mixture can be controlled to minimize the emission of pollutants such as CO and
NOX. This solid electrolyte shows good conductivity only at high temperatures
(500-1,000°C), where the conduction process is the migration of oxide ions. A typical
sensor is composed of a tube of zirconia with Pt electrodes deposited on the inside and
outside of the tube. The outside electrode contacts air with a known partial pressure of

Outer body

Inner body

Spacer

Sensing element

O-ring

— Bottom cap

Membrane

Figure 2.4.5 Structure of a gas-sensing
electrode. [Courtesy of Orion Research, Inc/
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oxygen, p a , and serves as the reference electrode. The inside of the tube is exposed to the
hot exhaust gas with a lower oxygen partial pressure, p e g . The cell configuration can thus
be written

Pt/O2 (exhaust gas, peg)/Zr02 + Y2O3/O2 (air,/?a)/Pt (2.4.21)

and the potential of this oxygen concentration cell can be used to measure pQg (Problem
2.19).

We note here that the widely employed Clark oxygen electrode differs fundamentally
from these devices (18, 63). The Clark device is similar in construction to the apparatus of
Figure 2.4.5, in that a polymer membrane traps an electrolyte against a sensing surface.
However, the sensor is a platinum electrode, and the analytical signal is the steady-state
current flow due to the faradaic reduction of molecular oxygen.

2.4.5 Enzyme-Coupled Devices

The natural specificity of enzyme-catalyzed reactions can be used as the basis for selec-
tive detection of analytes (49, 64-68). One fruitful approach has featured potentiometric
sensors with a structure similar to that of Figure 2.4.5, with the difference that the gap be-
tween the ion-selective electrode and the polymer diaphragm is filled with a matrix in
which an enzyme is immobilized.

For example, urease, together with a buffered electrolyte, might be held in a cross-
linked polyacrylamide gel. When the electrode is immersed in a test solution, there will be
a selective response toward urea, which diffuses through the diaphragm into the gel. The
response comes about because the urease catalyzes the process:

О

N H 2 — С—NH 2 + H + + 2H2O
Urease

нсо; (2.4.22)

The resulting ammonium ions can be detected with a cation-sensitive glass membrane.
Alternatively, one could use a gas-sensing electrode for ammonia in place of the glass
electrode, so that interferences from H + , Na+, and K + are reduced.

The research literature features many examples of this basic strategy. Different en-
zymes allow selective determinations of single species, such as glucose (with glucose oxi-
dase), or groups of substances such as the L-amino acids (with L-amino acid oxidase).
Recent reviews should be consulted for a more complete view of the field (66-68).

Amperometric enzyme electrodes are discussed in Sections 14.2.5 and 14.4.2(c).
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2.6 PROBLEMS

2.1 Devise electrochemical cells in which the following reactions could be made to occur. If liquid
junctions are necessary, note them in the cell schematic appropriately, but neglect their effects.

(a) H2O ^± H + + OH~

(b) 2H2 + O2 ^± H2O

(c) 2PbSO4 + 2H2O ±± PbO2 + Pb + 4H + + 2SOf

(d) AnT 4- TMPD^ ±± An + TMPD (in acetonitrile, where An and AnT are anthracene and its
anion radical, and TMPD and TMPD^ are AW^'^-tetramethyl-p-phenylenediamine and its
cation radical. Use anthracene potentials for DMF solutions given in Appendix C.3).

(e) 2Ce3 + + 2H+ + BQ ^± 2Ce 4 + + H2Q (aqueous, where BQ is p-benzoquinone and H2Q is p-
hydroquinone)

(f) Ag+ + I~ <± Agl (aqueous)

(g) Fe 3 + + Fe(CN)£~ <=» Fe2+ + Fe(CN)3," (aqueous)

(h) Cu2+ + Pb «± Pb2+ + Cu (aqueous)

(i) AnT + BQ <=̂  BOT. + An (in А^Д-dimethylformamide, where BQ, An, and AnT are defined
above and BO~ is the anion radical of p-benzoquinone. Use BQ potentials in acetonitrile given
in Appendix C.3).

What half-reactions take place at the electrodes in each cell? What is the standard cell potential in each
case? Which electrode is negative? Would the cell operate electrolytically or galvanically in carrying
out a net reaction from left to right? Be sure your decisions accord with chemical intuition.

2.2 Several hydrocarbons and carbon monoxide have been studied as possible fuels for use in fuel
cells. From thermodynamic data in references 5-8 and 16, derive E°s for the following reactions at
25°C:
(a) CO(g) + H2O(/) -> CO2(g) + 2H+ + 2e
(b) CH4(#)+ 2H2O(/) -* CO2(g) + 8H+ + 8e
(c) C2H6(g) + 4H2O(/) -* 2CO2(#) + 14H+ + Ue

(d) C2H2(g) + 4H2O(/) -> 2CO2(#) + 10H+ + 10*

Even though a reversible emf could not be established (Why not?), which half-cell would ideally
yield the highest cell voltage when coupled with the standard oxygen half-cell in acid solution?
Which of the fuels above could yield the highest net work per mole of fuel oxidized? Which would
give the most net work per gram?
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2.3 Devise a cell in which the following reaction is the overall cell process (T = 298 K):

2Na+ + 2СГ -> 2Na(Hg) + Cl2 (aqueous)

where Na(Hg) symbolizes the amalgam. Is the reaction spontaneous or not? What is the standard
free energy change? Take the standard free energy of formation of Na(Hg) as —85 kJ/mol. From a
thermodynamic standpoint, another reaction should occur more readily at the cathode of your cell.
What is it? It is observed that the reaction written above takes place with good current efficiency.
Why? Could your cell have a commercial value?

2.4 What are the cell reactions and their emfs in the following systems? Are the reactions spontaneous?
Assume that all systems are aqueous.
(a) Ag/AgCl/K+, СГ (1 M)/Hg2Cl2/Hg
(b) Pt/Fe3+ (0.01 M), F e 2 + (0.1 M), HC1 (1 M)//Cu2+ (0.1 M), HC1 (1 M)/Cu
(c) Pt/H2 (1 atm)/H\ С Г (0.1 M)//H+, С Г (0.1 M)/O2 (0.2 atm)/Pt
(d) Pt/H2 (1 atm)/Na+, OH~ (0.1 M)//Na+, OH" (0.1 M)/O2 (0.2 atm)/Pt

(e) Ag/AgCl/K+, С Г (1 M)//K\ С Г (0.1 M)/AgCl/Ag

(f) Pt/Ce3+ (0.01 M), Ce 4 + (0.1 M), H2SO4 (1 M)//Fe2+ (0.01 M), F e 3 + (0.1 M), HC1 (1 M)/Pt

2.5 Consider the cell in part (f) of Problem 2.4. What would the composition of the system be at the end
of a galvanic discharge to an equilibrium condition? What would the cell potential be? What would
the potential of each electrode be vs. NHE? Vs. SCE? Take equal volumes on both sides.

2.6 Devise a cell for evaluating the solubility product of PbSO4. Calculate the solubility product from
the appropriate E° values (T = 298 K).

2.7 Obtain the dissociation constant of water from the parameters of the cell constructed for reaction (a)
in Problem 2.1 (T = 298 K).

2.8 Consider the cell:

Cu/M/Fe2+, Fe 3 + , H+//Cr/AgCl/Ag/Cu'

Would the cell potential be independent of the identity of M (e.g., graphite, gold, platinum) as long
as M is chemically inert? Use electrochemical potentials to prove your point.

2.9 Given the half-cell of the standard hydrogen electrode,

Pt/H2 (a = 1)/H+ (a = 1) (soln)

H 2 <=± 2H+(soln) + 2e(Pt)

Show that although the emf of the cell half-reaction is taken as zero, the potential difference be-
tween the platinum and the solution, that is, фР 1 — 0 s, is not zero.

2.10 Devise a thermodynamically sound basis for obtaining the standard potentials for new half-reac-
tions by taking linear combinations of other half-reactions (T = 298 K). As two examples, calculate
£"° values for
(a) Cul + e ^ Cu + I"
(b) O2 + 2H+ + 2e ±± H2O2

given the following half-reactions and values for £° (V vs. NHE):

Cu2+ + 2e *± Cu 0.340

Cu2+ + I" + e <=> Cul 0.86

O2 + 4H+ + 4e ?± 2H2O 1.229

H2O2+ 2H+ + 2e ?± 2H2O 1.763

2.11 Transference numbers are often measured by the Hittorf method as illustrated in this problem. Con-
sider the three-compartment cell:

L С R

©Ag/AgNO3(0.100 M)//AgNO3(0.100 M)//AgNO3(0.100 M)/Ag ©
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where the double slashes (//) signify sintered glass disks that divide the compartments and prevent
mixing, but not ionic movement. The volume of AgNO3 solution in each compartment (L, C, R) is
25.00 mL. An external power supply is connected to the cell with the polarity shown, and current is
applied until 96.5 С have passed, causing Ag to deposit on the left Ag electrode and Ag to dissolve
from the right Ag electrode.
(a) How many grams of Ag have deposited on the left electrode? How many mmol of Ag have de-

posited?
(b) If the transference number for Ag+ were 1.00 (i.e., tAg+ = 1.00, J N O - = 0.00), what would the

concentrations of Ag+ be in the three compartments after electrolysis?

(c) Suppose the transference number for Ag+ were 0.00 (i.e., tAg+ = 0.00, ^NO 3 - = 1-00), what
would the concentrations of Ag+ be in the three compartments after elec-
trolysis?

(d) In an actual experiment like this, it is found experimentally that the concentration of Ag+ in the
anode compartment R has increased to 0.121 M. Calculate tAg+ and t^oj>

2.12 Suppose one wants to determine the contribution of electronic (as opposed to ionic) conduction
through doped AgBr, a solid electrolyte. A cell is prepared with a film of AgBr between two Ag
electrodes, each of mass 1.00 g, that is, ©Ag/AgBr/Ag©. After passage of 200 mA through the cell
for 10.0 min, the cell was disassembled and the cathode was found to have a mass of 1.12 g. If Ag
deposition is the only faradaic process that occurs at the cathode, what fraction of the current
through the cell represents electronic conduction in AgBr?

2.13 Calculate the individual junction potentials at T = 298 К on either side of the salt bridge in (2.3.44)
for the first two concentrations in Table 2.3.3. What is the sum of the two potentials in each case?
How does it compare with the corresponding entry in the table?

2.14 Estimate the junction potentials for the following situations (T = 298 K):

(a) HCl(0.1M)/NaCl(0.1M)

(b) HC1 (0.1 M)/NaCl (0.01 M)

(c) KNO3 (0.01 M)/NaOH (0.1 M)

(d) NaNO3 (0.1 M)/NaOH (0.1 M)

2.15 One often finds pH meters with direct readout to 0.001 pH unit. Comment on the accuracy of these
readings in making comparisons of pH from test solution to test solution. Comment on their mean-
ing in measurements of small changes in pH in a single solution (e.g., during a titration).

2.16 The following values of Щ[+^ are typical for interferents / at a sodium-selective glass electrode:
K+, 0.001; NH4", 10~5; Ag+, 300; H + , 100. Calculate the activities of each interferent that would
cause a 10% error when the activity of Na + is estimated to be 10~3 M from a potentiometric mea-
surement.

2.17 Would Na2H2EDTA be a good ion-exchanger for a liquid membrane electrode? How about
Na2H2EDTA-R, where R designates a C2Q alkyl substituent? Why or why not?

2.18 Comment on the feasibility of developing selective electrodes for the direct potentiometric determi-
nation of uncharged substances.

2.19 Consider the exhaust gas analyzer based on the oxygen concentration cell, (2.4.21). The electrode
reaction that occurs at high temperature at both of the Pt/ZrO2 + Y2O3 interfaces is

O 2 + 4e «± 2O2~

Write the equation that governs the potential of this cell as a function of the pressures, p e g and p a .
What would the cell voltage be when the partial pressure of oxygen in the exhaust gas is 0.01 atm
(1,013 Pa)?



3
KINETICS OF ELECTRODE

REACTIONS

In Chapter 1, we established a proportionality between the current and the net rate of an
electrode reaction, v. Specifically, v = i/nFA. We also know that for a given electrode
process, current does not flow in some potential regions, yet it flows to a variable degree
in others. The reaction rate is a strong function of potential; thus, we require potential-
dependent rate constants for an accurate description of interfacial charge-transfer dynam-
ics.

In this chapter, our goal is to devise a theory that can quantitatively rationalize the
observed behavior of electrode kinetics with respect to potential and concentration. Once
constructed, the theory will serve often as an aid for understanding kinetic effects in new
situations. We begin with a brief review of certain aspects of homogeneous kinetics, be-
cause they provide both a familiar starting ground and a basis for the construction,
through analogy, of an electrochemical kinetic theory.

3.1 REVIEW OF HOMOGENEOUS KINETICS

3.1.1 Dynamic Equilibrium

Consider two substances, A and B, that are linked by simple unimolecular elementary re-
actions.1

A^B (3.1.1)

4
Both elementary reactions are active at all times, and the rate of the forward process,
Vf (M/s), is

(3.1.2)

whereas the rate of the reverse reaction is

"b = hCB (3.1.3)

The rate constants, kf and k\>, have dimensions of s~\ and one can easily show that they
are the reciprocals of the mean lifetimes of A and B, respectively (Problem 3.8). The net
conversion rate of A to В is

vnet = kfCA-kbCB (3.1.4)

*An elementary reaction describes an actual, discrete chemical event. Many chemical reactions, as written, are
not elementary, because the transformation of products to reactants involves several distinct steps. These steps
are the elementary reactions that comprise the mechanism for the overall process.

Я7
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At equilibrium, the net conversion rate is zero; hence

£ = * = §* (3.1.5)
^b CA

The kinetic theory therefore predicts a constant concentration ratio at equilibrium, just as
thermodynamics does.

Such agreement is required of any kinetic theory. In the limit of equilibrium, the ki-
netic equations must collapse to relations of the thermodynamic form; otherwise the ki-
netic picture cannot be accurate. Kinetics describe the evolution of mass flow throughout
the system, including both the approach to equilibrium and the dynamic maintenance of
that state. Thermodynamics describe only equilibrium. Understanding of a system is not
even at a crude level unless the kinetic view and the thermodynamic one agree on the
properties of the equilibrium state.

On the other hand, thermodynamics provide no information about the mechanism
required to maintain equilibrium, whereas kinetics can be used to describe the intricate
balance quantitatively. In the example above, equilibrium features nonzero rates of con-
version of A to В (and vice versa), but those rates are equal. Sometimes they are called
the exchange velocity of the reaction, u 0

:

We will see below that the idea of exchange velocity plays an important role in treatments
of electrode kinetics.

3.1.2 The Arrhenius Equation and Potential Energy Surfaces (1,2)

It is an experimental fact that most rate constants of solution-phase reactions vary with
temperature in a common fashion: nearly always, In к is linear with 1/Г. Arrhenius was
first to recognize the generality of this behavior, and he proposed that rate constants be
expressed in the form:

(3.1.7)

where £д has units of energy. Since the exponential factor is reminiscent of the probabil-
ity of using thermal energy to surmount an energy barrier of height E&, that parameter has
been known as the activation energy. If the exponential expresses the probability of sur-
mounting the barrier, then A must be related to the frequency of attempts on it; thus A is
known generally as the frequency factor. As usual, these ideas turn out to be oversimplifi-
cations, but they carry an essence of truth and are useful for casting a mental image of the
ways in which reactions proceed.

The idea of activation energy has led to pictures of reaction paths in terms of poten-
tial energy along a reaction coordinate. An example is shown in Figure 3.1.1. In a simple
unimolecular process, such as, the cis-trans isomerization of stilbene, the reaction coordi-
nate might be an easily recognized molecular parameter, such as the twist angle about the
central double bond in stilbene. In general, the reaction coordinate expresses progress
along a favored path on the multidimensional surface describing potential energy as a
function of all independent position coordinates in the system. One zone of this surface
corresponds to the configuration we call "reactant," and another corresponds to the struc-
ture of the "product." Both must occupy minima on the energy surface, because they are
the only arrangements possessing a significant lifetime. Even though other configurations
are possible, they must lie at higher energies and lack the energy minimum required for



3.1 Review of Homogeneous Kinetics 89

Reactants

Products

Figure 3.1.1 Simple representation
of potential energy changes during a

Reaction coordinate reaction.

stability. As the reaction takes place, the coordinates are changed from those of the reac-
tant to those of the product. Since the path along the reaction coordinate connects two
minima, it must rise, pass over a maximum, then fall into the product zone. Very often,
the height of the maximum above a valley is identified with the activation energy, either
£ A f or EA>b, for the forward or backward reaction, respectively.

In another notation, we can understand E& as the change in standard internal energy
in going from one of the minima to the maximum, which is called the transition state or
activated complex. We might designate it as the standard internal energy of activation,
AE*. The standard enthalpy of activation, A//*, would then be Д£* + A(PV)*, but A(PV)
is usually negligible in a condensed-phase reaction, so that ДЯ* « Д£*. Thus, the Arrhe-
nius equation could be recast as

( 3 1 8 )

We are free also to factor the coefficient A into the product А' cxp(AS*/R), because
the exponential involving the standard entropy of activation, Д£*, is a dimensionless con-
stant. Then

( 3 1 9 )

or

where AG* is the standard free energy of activation.2 This relation, like (3.1.8), is really
an equivalent statement of the Arrhenius equation, (3.1.7), which itself is an empirical
generalization of reality. Equations 3.1.8 and 3.1.10 are derived from (3.1.7), but only by
the interpretation we apply to the phenomenological constant E&. Nothing we have writ-
ten so far depends on a specific theory of kinetics.

2We are using standard thermodynamic quantities here, because the free energy and the entropy of a species are
concentration-dependent. The rate constant is not concentration-dependent in dilute systems; thus the argument
that leads to (3.1.10) needs to be developed in the context of a standard state of concentration. The choice of
standard state is not critical to the discussion. It simply affects the way in which constants are apportioned in
rate expressions. To simplify notation, we omit the superscript "0" from A£*, Д//*, AS*, and AGT, but
understand them throughout this book to be referred to the standard state of concentration.
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3.1.3 Transition State Theory (1-4)

Many theories of kinetics have been constructed to illuminate the factors controlling reac-
tion rates, and a prime goal of these theories is to predict the values of A and EA for spe-
cific chemical systems in terms of quantitative molecular properties. An important general
theory that has been adapted for electrode kinetics is the transition state theory, which is
also known as the absolute rate theory or the activated complex theory.

Central to this approach is the idea that reactions proceed through a fairly well-
defined transition state or activated complex, as shown in Figure 3.1.2. The standard free
energy change in going from the reactants to the complex is AG*, whereas the complex is
elevated above the products by AG\.

Let us consider the system of (3.1.1), in which two substances A and В are linked by
unimolecular reactions. First we focus on the special condition in which the entire sys-
tem—A, B, and all other configurations—is at thermal equilibrium. For this situation, the
concentration of complexes can be calculated from the standard free energies of activation
according to either of two equilibrium constants:

[Complex] _УА'С\^У±ехр(_Афт)

[Complex]
[B]

(3.1.11)

(3.1.12)

where C° is the concentration of the standard state (see Section 2.1.5), and yA, yB, and y$
are dimensionless activity coefficients. Normally, we assume that the system is ideal, so
that the activity coefficients approach unity and divide out of (3.1.11) and (3.1.12).

The activated complexes decay into either A or В according to a combined rate con-
stant, k', and they can be divided into four fractions: (a) those created from A and revert-
ing back to A,/A A, (b) those arising from A and decaying to B,/A B, (c) those created from
В and decaying to A,/B A, and (d) those arising from В and reverting back to B,/B B. Thus
the rate of transforming A into В is

kf[A]=fABk
f [Complex]

and the rate of transforming В into A is

* Ъ [ В ] = / В А * ' [Complex]

(3.1.13)

(3.1.14)

Since we require kf [A] = k\j[B] at equilibrium, / A B and / B A must be the same. In the
simplest version of the theory, both are taken as V2- This assumption implies that

Activated complex

Reactant

Product

Reaction coordinate

Figure 3.1.2 Free energy changes
during a reaction. The activated
complex (or transition state) is the
configuration of maximum free
energy.
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/AA = /вв ~ 0 » t n u s complexes are not considered as reverting to the source state. Instead,
any system reaching the activated configuration is transmitted with unit efficiency into the
product opposite the source. In a more flexible version, the fractions /дв and / B A are
equated to к/2, where к, the transmission coefficient, can take a value from zero to unity.

Substitution for the concentration of the complex from (3.1.11) and (3.1.12) into
(3.1.13) and (3.1.14), respectively, leads to the rate constants:

Statistical mechanics can be used to predict кк'/2. In general, that quantity depends on the
shape of the energy surface in the region of the complex, but for simple cases k' can be
shown to be 26T/h, where, 4 and h are the Boltzmann and Planck constants. Thus the rate
constants (equations 3.1.15 and 3.1.16) might both be expressed in the form:

(3.1.17)

which is the equation most frequently seen for calculating rate constants by the transition
state theory.

To reach (3.1.17), we considered only a system at equilibrium. It is important to note
now that the rate constant for an elementary process is fixed for a given temperature and
pressure and does not depend on the reactant and product concentrations. Equation 3.1.17
is therefore a general expression. If it holds at equilibrium, it will hold away from equilib-
rium. The assumption of equilibrium, though useful in the derivation, does not constrain
the equation's range of validity.3

3.2 ESSENTIALS OF ELECTRODE REACTIONS (6-14)

We noted above that an accurate kinetic picture of any dynamic process must yield an
equation of the thermodynamic form in the limit of equilibrium. For an electrode reaction,
equilibrium is characterized by the Nernst equation, which links the electrode potential to
the bulk concentrations of the participants. In the general case:

O + ne^R (3.2.1)

this equation is

(3.2.2)

where CQ and CR are the bulk concentrations, and E° is the formal potential. Any valid
theory of electrode kinetics must predict this result for corresponding conditions.

3Note that 4T/h has units of s"1 and that the exponential is dimensionless. Thus, the expression in (3.1.17) is
dimensionally correct for a first-order rate constant. For a second-order reaction, the equilibrium corresponding to
(3.1.11) would have the concentrations of two reactants in the denominator on the left side and the activity
coefficient for each of those species divided by the standard-state concentration, C°, in the numerator on the right.
Thus, C° no longer divides out altogether and is carried to the first power into the denominator of the final
expression. Since it normally has a unit value (usually 1 M~l), its presence has no effect numerically, but it does
dimensionally. The overall result is to create a prefactor having a numeric value equal to 6T/h but having units of
M~l s"1, as required. This point is often omitted in applications of transition state theory to processes more
complicated than unimolecular decay. See Section 2.1.5 and reference 5.
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We also require that the theory explain the observed dependence of current on poten-
tial under various circumstances. In Chapter 1, we saw that current is often limited wholly
or partially by the rate at which the electroreactants are transported to the electrode sur-
face. This kind of limitation does not concern a theory of interfacial kinetics. More to the
point is the case of low current and efficient stirring, in which mass transport is not a fac-
tor determining the current. Instead, it is controlled by interfacial dynamics. Early studies
of such systems showed that the current is often related exponentially to the overpotential
г]. That is,

i - а' еф' (3.2.3)

or, as given by Tafel in 1905,

' ' (3.2.4)г] = a + b log /

A successful model of electrode kinetics must explain the frequent validity of (3.2.4),
which is known as the Tafel equation.

Let us begin by considering that reaction (3.2.1) has forward and backward paths as
shown. The forward component proceeds at a rate, Vf, that must be proportional to the sur-
face concentration of O. We express the concentration at distance x from the surface and
at time t as Co(x, t)\ hence the surface concentration is CQ(0, i). The constant of propor-
tionality linking the forward reaction rate to CQ(0, i) is the rate constant kf.

vf = kfCo(0, t) = - ^ (3.2.5)

Since the forward reaction is a reduction, there is a cathodic current, /c, proportional to
Likewise, we have for the backward reaction

(3-2.6)

where /a is the anodic component to the total current. Thus the net reaction rate is

"net = vf-vb = kfCo(0, t) - kbCR(0, t)=-^ (3.2.7)

and we have overall

i = ic - ia = nFA[k{ C o (0, t) - kbCR(0, t)] (3.2.8)

Note that heterogeneous reactions are described differently than homogeneous ones.
For example, reaction velocities in heterogeneous systems refer to unit interfacial area;
hence they have units of mol s"1 cm~2. Thus heterogeneous rate constants must carry
units of cm/s, if the concentrations on which they operate are expressed in mol/cm3. Since
the interface can respond only to its immediate surroundings, the concentrations entering
rate expressions are always surface concentrations, which may differ from those of the
bulk solution.

3.3 BUTLER-VOLMER MODEL OF ELECTRODE KINETICS
(9,11,12,15,16)

Experience demonstrates that the potential of an electrode strongly affects the kinetics of
reactions occurring on its surface. Hydrogen evolves rapidly at some potentials, but not at
others. Copper dissolves from a metallic sample in a clearly defined potential range; yet
the metal is stable outside that range. And so it is for all faradaic processes. Because the
interfacial potential difference can be used to control reactivity, we want to be able to pre-
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diet the precise way in which k{ and kb depend on potential. In this section, we will de-
velop a predictive model based purely on classical concepts. Even though it has signifi-
cant limitations, it is very widely used in the electrochemical literature and must be
understood by any student of the field. Section 3.6 will yield more modern models based
on a microscopic view of electron transfer.

3.3.1 Effects of Potential on Energy Barriers

We saw in Section 3.1 that reactions can be visualized in terms of progress along a reac-
tion coordinate connecting a reactant configuration to a product configuration on an en-
ergy surface. This idea applies to electrode reactions too, but the shape of the surface
turns out to be a function of electrode potential.

One can see the effect easily by considering the reaction

Na+ + e^Na(Hg) (3.3.1)

where Na+ is dissolved in acetonitrile or dimethyIformamide. We can take the reac-
tion coordinate as the distance of the sodium nucleus from the interface; then the
free energy profile along the reaction coordinate would resemble Figure 3.3.1a. To

P

Reduction -
-^~ Oxidation

Na(Hg)

(a)

Oxidation

(b)

Na(Hg)

Reduction -«s-

(c)

I

Amalgam Solution •

Reaction coordinate

Figure 3.3.1 Simple
representation of standard free
energy changes during a
faradaic process, (a) At a
potential corresponding to
equilibrium, (b) At a more
positive potential than the
equilibrium value, (c) At a
more negative potential than
the equilibrium value.
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the right, we identify Na + + e. This configuration has an energy that depends little
on the nuclear position in solution, unless the electrode is approached so closely that
the ion must be partially or wholly desolvated. To the left, the configuration corre-
sponds to a sodium atom dissolved in mercury. Within the mercury phase, the energy
depends only slightly on position, but if the atom leaves the interior, its energy rises
as the favorable mercury-sodium interaction is lost. The curves corresponding to
these reactant and product configurations intersect at the transition state, and the
heights of the barriers to oxidation and reduction determine their relative rates.
When the rates are equal, as in Figure 3.3.1a, the system is at equilibrium, and the
potential is Eeq.

Now suppose the potential is changed to a more positive value. The main effect is to
lower the energy of the "reactant" electron; hence the curve corresponding to Na + + e
drops with respect to that corresponding to Na(Hg), and the situation resembles that of
Figure 3.3.Ib. Since the barrier for reduction is raised and that for oxidation is lowered,
the net transformation is conversion of Na(Hg) to Na + + e. Setting the potential to a
value more negative than Eeq, raises the energy of the electron and shifts the curve for
Na + + e to higher energies, as shown in Figure 3.3.1c. Since the reduction barrier drops
and the oxidation barrier rises, relative to the condition at E e q, a net cathodic current
flows. These arguments show qualitatively the way in which the potential affects the net
rates and directions of electrode reactions. By considering the model more closely, we can
establish a quantitative relationship.

3.3.2 One-Step, One-Electron Process

Let us now consider the simplest possible electrode process, wherein species О and R en-
gage in a one-electron transfer at the interface without being involved in any other chemi-
cal step,

O + e * ± R (3.3.2)
К

Suppose also that the standard free energy profiles along the reaction coordinate have the
parabolic shapes shown in Figure 3.3.2. The upper frame of that figure depicts the full
path from reactants to products, while the lower frame is an enlargement of the region
near the transition state. It is not important for this discussion that we know the shapes of
these profiles in detail.

In developing a theory of electrode kinetics, it is convenient to express potential
against a point of significance to the chemistry of the system, rather than against an ar-
bitrary external reference, such as an SCE. There are two natural reference points, viz.
the equilibrium potential of the system and the standard (or formal) potential of the
couple under consideration. We actually used the equilibrium potential as a reference
point in the discussion of the preceding section, and we will use it again in this section.
However, it is possible to do so only when both members of the couple are present, so
that an equilibrium is defined. The more general reference point is E° . Suppose the
upper curve on the О + е side of Figure 3.3.2 applies when the electrode potential is
equal to E°'. The cathodic and anodic activation energies are then AG$C and AGj$a

respectively.
If the potential is changed by AE to a new value, E, the relative energy of the electron

resident on the electrode changes by -FkE = —F(E — E°); hence the О + е curve
moves up or down by that amount. The lower curve on the left side of Figure 3.3.2 shows
this effect for a positive A£. It is readily apparent that the barrier for oxidation, AG*, has
become less than AG^a by a fraction of the total energy change. Let us call that fraction
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Reaction coordinate

Reaction coordinate

Figure 3.3.2 Effects of a potential
change on the standard free energies of
activation for oxidation and reduction.
The lower frame is a magnified picture of
the boxed area in the upper frame.

I — a, where a, the transfer coefficient, can range from zero to unity, depending on the
shape of the intersection region. Thus,

AG\ = - (1 - a)F(E (3.3.3)

A brief study of the figure also reveals that at potential E the cathodic barrier, AGf, is
higher than AGlc by aF(E - £ ° ) ; therefore,

aF(E - (3.3.4)

Now let us assume that the rate constants kf and kb have an Arrhenius form that can
be expressed as

k{ = Af exp (-AGl/RT) (3.3.5)

| (3.3.6)

(3.3.7)

(3.3.8)

where/= F/RT. The first two factors in each of these expressions form a product that is
independent of potential and equal to the rate constant at E = E°'.4

Now consider the special case in which the interface is at equilibrium with a solution
in which CQ = Cf. In this situation, E = E0' and kfC% = kbC^, so that k{ = kb. Thus, E0'
is the potential where the forward and reverse rate constants have the same value. That

Inserting the activation energies, (3.3.3) and (3.3.4), gives

kf = Afexp (-AGyRT)exp[-af(E - E0)]
kb = Abexp (-AG^a//?Dexp[(l - a)f(E - E0)]

4In other electrochemical literature, kf and k^ are designated as kc and k.d or as kox and kxt&. Sometimes kinetic
equations are written in terms of a complementary transfer coefficient, /3 = 1 —a.
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value is called the standard rate constant, k0.5 The rate constants at other potentials can
then be expressed simply in terms of k°:

(3.3.9)

(3.3.10)

Insertion of these relations into (3.2.8) yields the complete current-potential characteristic:

(3.3.11)

This relation is very important. It, or a variation derived from it, is used in the treat-
ment of almost every problem requiring an account of heterogeneous kinetics. Section 3.4
will cover some of its ramifications. These results and the inferences derived from them
are known broadly as the Butler-Volmer formulation of electrode kinetics, in honor of the
pioneers in this area (17, 18).

One can derive the Butler-Volmer kinetic expressions by an alternative method
based on electrochemical potentials (8, 10, 12, 19-21). Such an approach can be more
convenient for more complicated cases, such as requiring the inclusion of double-layer
effects or sequences of reactions in a mechanism. The first edition develops it in detail.6

3.3.3 The Standard Rate Constant

The physical interpretation of k° is straightforward. It simply is a measure of the kinetic
facility of a redox couple. A system with a large k° will achieve equilibrium on a short
time scale, but a system with small k° will be sluggish. The largest measured standard rate
constants are in the range of 1 to 10 cm/s and are associated with particularly simple elec-
tron-transfer processes. For example, the standard rate constants for the reductions and
oxidations of many aromatic hydrocarbons (such as substituted anthracenes, pyrene, and
perylene) to the corresponding anion and cation radicals fall in this range (22-24). These
processes involve only electron transfer and resolvation. There are no significant alter-
ations in the molecular forms. Similarly, some electrode processes involving the forma-
tion of amalgams [e.g., the couples Na+/Na(Hg), Cd2+/Cd(Hg), and Hg2

2+/Hg] are rather
facile (25, 26). More complicated reactions involving significant molecular rearrangement
upon electron transfer, such as the reduction of molecular oxygen to hydrogen peroxide or
water, or the reduction of protons to molecular hydrogen, can be very sluggish (25-27).
Many of these systems involve multistep mechanisms and are discussed more fully in
Section 3.5. Values of k° significantly lower than 10~9 cm/s have been reported (28-31);
therefore, electrochemistry deals with a range of more than 10 orders of magnitude in
kinetic reactivity.

Note that kf and kb can be made quite large, even if k® is small, by using a sufficiently
extreme potential relative to E°'. In effect, one drives the reaction by supplying the activa-
tion energy electrically. This idea is explored more fully in Section 3.4.

5The standard rate constant is also designated by £sh or ks in the electrochemical literature. Sometimes it is also
called the intrinsic rate constant.
6First edition, Section 3.4.
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Figure 3.3.3 Relationship of
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3.3.4 The Transfer Coefficient

The transfer coefficient, a, is a measure of the symmetry of the energy barrier. This
idea can be amplified by considering a in terms of the geometry of the intersection re-
gion, as shown in Figure 3.3.3. If the curves are locally linear, then the angles в and ф
are defined by

t<m6 = aFE/x (3.3.12)

Хшф = (1 -a)FE/x (3.3.13)

hence

tan в
a = гшф+гтв ( З З Л 4 )

If the intersection is symmetrical, ф = в, and a = x/2. Otherwise 0 ^ a < У2

 o r

V2 < a < 1, as shown in Figure 3.3.4. In most systems a turns out to lie between
0.3 and 0.7, and it can usually be approximated by 0.5 in the absence of actual
measurements.

The free energy profiles are not likely to be linear over large ranges of the reaction
coordinate; thus the angles в and ф can be expected to change as the intersection between
reactant and product curves shifts with potential. Consequently, a should generally be a

o + o +

Reaction coordinate

Figure 3.3.4 The transfer coefficient as an indicator of the symmetry of the barrier to reaction.
The dashed lines show the shift in the curve for О + е as the potential is made more positive.
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potential-dependent factor (see Section 6.7.3). However, in the great majority of experi-
ments, a appears to be constant, if only because the potential range over which kinetic
data can be collected is fairly narrow. In a typical chemical system, the free energies of
activation are in the range of a few electron volts, but the full range of measurable kinetics
usually corresponds to a change in activation energy of only 50-200 meV, or a few per-
cent of the total. Thus, the intersection point varies only over a small domain, such as, the
boxed region in Figure 3.3.2, where the curvature in the profiles can hardly be seen. The
kinetically operable potential range is narrow in most systems, because the rate constant
for electron transfer rises exponentially with potential. Not far beyond the potential where
a process first produces a detectable current, mass transfer becomes rate-limiting and the
electron-transfer kinetics no longer control the experiment. These points are discussed in
much detail throughout the remainder of this book. In a few systems, mass transfer is not
an issue and kinetics can be measured over very wide ranges of potential. Figure 14.5.8
provides an example showing large variations of a with potential in a case involving a
surface-bound electroactive species.

3.4 IMPLICATIONS OF THE BUTLER-VOLMER MODEL
FOR THE ONE-STEP, ONE-ELECTRON PROCESS

In this section, we will develop a number of operational relationships that will prove valu-
able in the interpretation of electrochemical experiments. Each is derived under the as-
sumption that the electrode reaction is the one-step, one-electron process for which the
primary relations were derived above. The validity of the conclusions for a multistep
process will be considered separately in Section 3.5.

3.4.1 Equilibrium Conditions. The Exchange Current (8-14)

At equilibrium, the net current is zero, and the electrode is known to adopt a potential
based on the bulk concentrations of О and R as dictated by the Nernst equation. Let us see
now if the kinetic model yields that thermodynamic relation as a special case. From equa-
tion 3.3.11 we have, at zero current,

FAk°Co(0, O e - ^ e q - * * ) = FAk°CR(0, t)ea-^)f(EQq-EQl) ( 3 A 1 )

Since equilibrium applies, the bulk concentrations of О and R are found also at the sur-
face; hence

ef(Eeq-E°') = £R ( 3 A 2 )

R

which is simply an exponential form of the Nernst relation:

(3.4.3)

Thus, the theory has passed its first test of compatibility with reality.
Even though the net current is zero at equilibrium, we still envision balanced faradaic

activity that can be expressed in terms of the exchange current, /0, which is equal in mag-
nitude to either component current, ic or /a. That is,

OI) (3.4.4)
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If both sides of (3.4.2) are raised to the -a power, we obtain

e-af(Eeq-E0') = ( ^

R

Substitution of (3.4.5) into (3.4.4) gives7

; _
i0 -

R

(3.4.5)

(3.4.6)

The exchange current is therefore proportional to k° and can often be substituted for k° in
kinetic equations. For the particular case where CQ = CR = C,

/0 = FAk°C (3.4.7)

Often the exchange current is normalized to unit area to provide the exchange current
density, jo =

3.4.2 The Current-Overpotential Equation

An advantage of working with /Q rather than k° is that the current can be described in
terms of the deviation from the equilibrium potential, that is, the overpotential, 77, rather
than the formal potential, E0'. Dividing (3.3.11) by (3.4.6), we obtain

Co(0, CR(0,

or

«0

(3.4.8)

(3.4.9)

The ratios (CQ/C^T and (Со/С|)~ ( 1 ~ а ) are easily evaluated from equations 3.4.2 and
3.4.5, and by substitution we obtain

(3.4.10)

where rj = E - £eq. This equation, known as the current-overpotential equation, will be
used frequently in later discussions. Note that the first term describes the cathodic compo-
nent current at any potential, and the second gives the anodic contribution.8

The behavior predicted by (3.4.10) is depicted in Figure 3.4.1. The solid curve
shows the actual total current, which is the sum of the components ic and /a, shown as
dashed traces. For large negative overpotentials, the anodic component is negligible;
hence the total current curve merges with that for /c. At large positive overpotentials, the
cathodic component is negligible, and the total current is essentially the same as /a. In
going either direction from £eq, the magnitude of the current rises rapidly, because the
exponential factors dominate behavior, but at extreme 17, the current levels off. In these

7The same equation for the exchange current can be derived from the anodic component current i,d at E = Ещ.
8Since double-layer effects have not been included in this treatment, k° and i0 are, in Delahay's nomenclature
(8), apparent constants of the system. Both depend on double-layer structure to some extent and are functions
of the potential at the outer Helmholtz plane, Ф2, relative to the solution bulk. This point will be discussed in
more detail in Section 13.7.
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Figure 3.4.1 Current-overpotential curves for the system О + e <=± R with a = 0.5, T = 298 K,
//c = -//a = // and /0/// = 0.2. The dashed lines show the component currents ic and /a.

level regions, the current is limited by mass transfer rather than heterogeneous kinet-
ics. The exponential factors in (3.4.10) are then moderated by the factors CQ(0, 0/Q)*
and CR(0, t)IC^, which manifest the reactant supply.

3.4.3 Approximate Forms of the I-IJ Equation

(a) No Mass-Transfer Effects
If the solution is well stirred, or currents are kept so low that the surface concentrations do
not differ appreciably from the bulk values, then (3.4.10) becomes

(3.4.11)

which is historically known as the Butler-Volmer equation. It is a good approximation of
(3.4.10) when / is less than about 10% of the smaller limiting current, //c or //a. Equa-
tions 1.4.10 and 1.4.19 show that Co(0, i)IC% and CR(0, 0/CR will then be between 0.9
and 1.1.

The curves in Figure 3.4.2 show the behavior of (3.4.11) for different exchange cur-
rent densities. In each case a = 0.5. Figure 3.4.3 shows the effect of a in a similar man-
ner. There the exchange current density is 10~6 A/cm2 for each curve. A notable feature
of Figure 3.4.2 is the degree to which the inflection at Ещ depends on the exchange cur-
rent density.

Since mass-transfer effects are not included here, the overpotential associated with
any given current serves solely to provide the activation energy required to drive the het-
erogeneous process at the rate reflected by the current. The lower the exchange current,
the more sluggish the kinetics; hence the larger this activation overpotential must be for
any particular net current.
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Figure 3.4.2 Effect of exchange current density on the activation overpotential required to deliver
net current densities. (a)jo = 1 0 A/cm (curve is indistinguishable from the current axis),
(b)j0 = 10 6 A/cm2, (c)j0 = 10 9 A/cm2. For all cases the reaction is О + e :
and Г = 298 К.

*- R with a = 0.5

If the exchange current is very large, as for case (a) in Figure 3.4.2, then the system
can supply large currents, even the mass-transfer-limited current, with insignificant acti-
vation overpotential. In that case, any observed overpotential is associated with changing
surface concentrations of species О and R. It is called a concentration overpotential and
can be viewed as an activation energy required to drive mass transfer at the rate needed to
support the current. If the concentrations of О and R are comparable, then Eeq will be near
E® , and the limiting currents for both the anodic and cathodic segments will be reached
within a few tens of millivolts of E° .

On the other hand, one might deal with a system with an exceedingly small exchange
current because k° is very low, as for case (c) in Figure 3.4.2. In that circumstance, no sig-
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Figure 3.4.3 Effect of the transfer coefficient on the symmetry of the current-overpotential curves
for О + e ?± R with T = 298 К andy0 = Ю" 6 A/cm2.
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nificant current flows unless a large activation overpotential is applied. At a sufficiently
extreme potential, the heterogeneous process can be driven fast enough that mass transfer
controls the current, and a limiting plateau is reached. When mass-transfer effects start to
manifest themselves, then a concentration overpotential will also contribute, but the bulk
of the overpotential is for activation of charge transfer. In this kind of system, the reduc-
tion wave occurs at much more negative potentials than E° , and the oxidation wave lies
at much more positive values.

The exchange current can be viewed as a kind of "idle current" for charge exchange
across the interface. If we want to draw a net current that is only a small fraction of this
bidirectional idle current, then only a tiny overpotential will be required to extract it. Even
at equilibrium, the system is delivering charge across the interface at rates much greater
than we require. The role of the slight overpotential is to unbalance the rates in the two di-
rections to a small degree so that one of them predominates. On the other hand, if we ask
for a net current that exceeds the exchange current, the job is much harder. We have to
drive the system to deliver charge at the required rate, and we can only do that by apply-
ing a significant overpotential. From this perspective, we see that the exchange current is
a measure of any system's ability to deliver a net current without a significant energy loss
due to activation.

Exchange current densities in real systems reflect the wide range in k°. They may ex-
ceed 10 A/cm2 or be less than pA/cm2 (8-14, 28-31).

(b) Linear Characteristic at Small rj
For small values of x, the exponential ex can be approximated as 1 + JC; hence for suffi-
ciently small 77, equation 3.4.11 can be reexpressed as

(3.4.12)

which shows that the net current is linearly related to overpotential in a narrow potential
range near Eeq. The ratio — r]/i has units of resistance and is often called the charge-trans-
fer resistance, Rct:

(3.4.13)

This parameter is the negative reciprocal slope of the /-77 curve where that curve passes
through the origin (77 = 0, / = 0). It can be evaluated directly in some experiments, and it
serves as a convenient index of kinetic facility. For very large &°, it approaches zero (see
Figure 3.4.2).

(c) Tafel Behavior at Large 77
For large values of 77 (either negative or positive), one of the bracketed terms in (3.4.11)
becomes negligible. For example, at large negative overpotentials, exp(-a /n) > > exp[(l
- a)/n] and (3.4.11) becomes

(3.4.14)
or

RT, (3.4.15)
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Thus, we find that the kinetic treatment outlined above does yield a relation of the Tafel
form, as required by observation, for the appropriate conditions. The empirical Tafel con-
stants (see equation 3.2.4) can now be identified from theory as9

-23RT
aF

(3.4.16)

The Tafel form can be expected to hold whenever the back reaction (i.e., the anodic
process, when a net reduction is considered, and vice versa) contributes less than 1% of
the current, or

ea-<*)fv
< 0.01, (3.4.17)

which implies that |TJ| > 118 mV at 25°C. If the electrode kinetics are fairly facile, the
system will approach the mass-transfer-limited current by the time such an extreme over-
potential is established. Tafel relationships cannot be observed for such cases, because
they require the absence of mass-transfer effects on the current. When electrode kinetics
are sluggish and significant activation overpotentials are required, good Tafel relation-
ships can be seen. This point underscores the fact that Tafel behavior is an indicator of to-
tally irreversible kinetics. Systems in that category allow no significant current flow
except at high overpotentials, where the faradaic process is effectively unidirectional and,
therefore, chemically irreversible.

(d) Tafel Plots (8-11,32)
A plot of log / vs. 7], known as a Tafel plot, is a useful device for evaluating kinetic para-
meters. In general, there is an anodic branch with slope (1 — a)F/23RT and a cathodic
branch with slope —aF/23RT. As shown in Figure 3.4.4, both linear segments extrapo-
late to an intercept of log i0. The plots deviate sharply from linear behavior as 77 ap-
proaches zero, because the back reactions can no longer be regarded as negligible. The

log I i I

-3.5

-4.5

-5.5

Slope = -aF

_l_ I _l_ I
200 150 100 50 -50 -100 -150 -200

Л, mV

Figure 3.4.4 Tafel plots for anodic and cathodic branches of the current-overpotential curve for
О + e *± R with a = 0.5, T = 298 K, andy0 = Ю" 6 A/cm2.

9Note that for a = 0.5, b = 0.118 V, a value that is sometimes quoted as a "typical" Tafel slope.
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-2

E, V vs. NHE

Figure 3.4.5 Tafel plots for the reduction of Mn(IV) to Mn(III) at Pt in 7.5 M H2SO4 at 298 K. The
dashed line corresponds to a = 0.24. [From K. J. Vetter and G. Manecke, Z. Physik. Chem.
(Leipzig), 195, 337 (1950), with permission.]

transfer coefficient, a, and the exchange current, /0, are obviously readily accessible from
this kind of presentation, when it can be applied.

Some real Tafel plots are shown in Figure 3.4.5 for the Mn(IV)/Mn(III) system in
concentrated acid (33). The negative deviations from linearity at very large overpotentials
come from limitations imposed by mass transfer. The region of very low overpotentials
shows sharp falloffs for the reasons outlined just above.

Allen and Hickling (34) suggested an alternative method allowing the use of data ob-
tained at low overpotentials. Equation 3.4.11 can be rewritten as

i - ioe-°fn (1 - ef7))

or

log
1 -

= l°g *0 ~ 23RT

(3.4.18)

(3.4.19)

so that a plot of log [//(1 - eft)] vs. rj yields an intercept of log /0 and a slope of
-aF/23RT. This approach has the advantage of being applicable to electrode reactions
that are not totally irreversible, that is, those in which both anodic and cathodic processes
contribute significantly to the currents measured in the overpotential range where mass-
transfer effects are not important. Such systems are often termed quasireversible, because
the opposing charge-transfer reactions must both be considered, yet a noticeable activa-
tion overpotential is required to drive a given net current through the interface.
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3.4.4 Exchange Current Plots (8-14)

From equation 3.4.4, we recognize that the exchange current can be restated as

log i0 = log FAk° + log Cg + j^fE0' - 2 ~ £ e q (3.4.20)

Therefore, a plot of log /0 vs. Ещ at constant CQ should be linear with a slope of
-aF/23RT. The equilibrium potential Eeq can be varied experimentally by changing the
bulk concentration of species R, while that of species О is held constant. This kind of plot
is useful for obtaining a from experiments in which /0 is measured essentially directly
(e.g., see Chapters 8 and 10).

Another means for determining a is suggested by rewriting (3.4.6) as

log i0 = log FAk° + (1 - a) log Cg + a log C$ (3.4.21)

Thus

д log L \ Id log io ,
6 0 1 = l - a and ^ - = a (3.4.22)log C5M \d log Ci)c

An alternative equation, which does not require holding either C% or Cf constant, is

(3.4.23)
d log (CR/CQ)

The last relation is easily derived from (3.4.6).

3.4.5 Very Facile Kinetics and Reversible Behavior

To this point, we have discussed in detail only those systems for which appreciable
activation overpotential is observed. Another very important limit is the case in
which the electrode kinetics require a negligible driving force. As we noted above,
that case corresponds to a very large exchange current, which in turn reflects a big
standard rate constant k°. Let us rewrite the current-overpotential equation (3.4.10)
as follows:

[~a)fri (3.4.24)
lo Co CR

and consider its behavior when /0 becomes very large compared to any current of interest.
The ratio ///Q then approaches zero, and we can rearrange the limiting form of equation
3.4.24 to

efipjp-'-* ,3.4.25,

and, by substitution from the Nernst equation in form (3.4.2), we obtain

C o ( Q ' ° = ef(EQq-E°') ef(E-Eeq) (3 4 26)
C R ( 0 , 0 K ' - }

or

Г " т - ') = ef(E-E«) ( 3 A 2 7 )
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This equation can be rearranged to the very important result:

(3.4.28)

Thus we see that the electrode potential and the surface concentrations of О and R are
linked by an equation of the Nernst form, regardless of the current flow.

No kinetic parameters are present because the kinetics are so facile that no experi-
mental manifestations can be seen. In effect, the potential and the surface concentrations
are always kept in equilibrium with each other by the fast charge-transfer processes, and
the thermodynamic equation, (3.4.28), characteristic of equilibrium, always holds. Net
current flows because the surface concentrations are not at equilibrium with the bulk, and
mass transfer continuously moves material to the surface, where it must be reconciled to
the potential by electrochemical change.

We have already seen that a system that is always at equilibrium is termed a re-
versible system; thus it is logical that an electrochemical system in which the charge-
transfer interface is always at equilibrium be called a reversible (or, alternatively, a
nernstian) system. These terms simply refer to cases in which the interfacial redox kinet-
ics are so fast that activation effects cannot be seen. Many such systems exist in electro-
chemistry, and we will consider this case frequently under different sets of experimental
circumstances. We will also see that any given system may appear reversible, quasire-
versible, or totally irreversible, depending on the demands we make on the charge-transfer
kinetics.

3.4.6 Effects of Mass Transfer

A more complete i-j] relation can be obtained from (3.4.10) by substituting for
Co(0, 0/CQ a n d CR(0, 0/CR according to (1.4.10) and (1.4.19):

JL = i - ±)е-Ф - i - ± (3.4.29)

This equation can be rearranged easily to give / as an explicit function of rj over the
whole range of 77. In Figure 3.4.6, one can see i-r\ curves for several ratios of 1ф\, where

For small overpotentials, a linearized relation can be used. The complete Taylor ex-
pansion (Section A.2) of (3.4.24) gives, for a/77 < < 1>

(3.4.30)

(3.4.31)

/ _ CQ(0, t) CR(0, t) FT)

which can be substituted as above and rearranged to give

V l F v'o kc W
In terms of the charge- and mass-transfer pseudoresistances defined in equations 1.4.28
and 3.4.13, this equation is

(3.4.32)

Here we see very clearly that when /0 is much greater than the limiting currents,
Rct « RmtiC + i?mt,a

 a n d the overpotential, even near £eq , is a concentration over-
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Figure 3.4.6 Relationship between the activation overpotential and net current demand
relative to the exchange current. The reaction is О + e ^ R with a = 0.5, T = 298 K, and
// c = -// a = //. Numbers by curves show /0///.

potential. On the other hand, if IQ is much less than the limiting currents, then /?mt,c +
^mt,a < < ĉt» a n c * the overpotential near Ещ is due to activation of charge transfer. This
argument is simply another way of looking at the points made earlier in Section 3.4.3(a).

In the Tafel regions, other useful forms of (3.4.29) can be obtained. For the cathodic
branch at high r\ values, the anodic contribution is insignificant, and (3.4.29) becomes

= h-JL

or
RT, *o , RT,

7] = —~ In — + —~ In
at iic aF

(*'/,c ~ 0

(3.4.33)

(3.4.34)

This equation can be useful for obtaining kinetic parameters for systems in which the nor-
mal Tafel plots are complicated by mass-transfer effects.

3.5 MULTISTEP MECHANISMS (11, 13, 14, 25, 26, 35)

The foregoing sections have concentrated on the potential dependences of the forward and
reverse rate constants governing the simple one-step, one-electron electrode reaction. By
restricting our view in this way, we have achieved a qualitative and quantitative under-
standing of the major features of electrode kinetics. Also, we have developed a set of rela-
tions that we can expect to fit a number of real chemical systems, for example,

Fe(CN)^" + e Fe(CN)^~ (3.5.1)

(3.5.2)

Anthracene + e ^ Anthracene" (3.5.3)
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But we must now recognize that most electrode processes are mechanisms of several
steps. For example, the important reaction

2H+ + 2е±±Щ (3.5.4)

clearly must involve several elementary reactions. The hydrogen nuclei are separated in
the oxidized form, but are combined by reduction. Somehow, during reduction, there
must be a pair of charge transfers and some chemical means for linking the two nuclei.
Consider also the reduction

Sn 4 + + 2e *± Sn 2 + (3.5.5)

Is it realistic to regard two electrons as tunneling simultaneously through the interface? Or
must we consider the reduction and oxidation sequences as two one-electron processes
proceeding through the ephemeral intermediate Sn 3 +? Another case that looks simple at
first glance is the deposition of silver from aqueous potassium nitrate:

Ag+ + e ^ A g (3.5.6)

However, there is evidence that this reduction involves at least a charge-transfer step, cre-
ating an adsorbed silver atom (adatom), and a crystallization step, in which the adatom
migrates across the surface until it finds a vacant lattice site. Electrode processes may also
involve adsorption and desorption kinetics of primary reactants, intermediates, and prod-
ucts.

Thus, electrode reactions generally can be expected to show complex behavior, and
for each mechanistic sequence, one would obtain a distinct theoretical linkage between
current and potential. That relation would have to take into account the potential depen-
dences of all steps and the surface concentrations of all intermediates, in addition to the
concentrations of the primary reactants and products.

A great deal of effort has been spent in studying the mechanisms of complex elec-
trode reactions. One general approach is based on steady-state current-potential curves.
Theoretical responses are derived on the basis of mechanistic alternatives, then one com-
pares predicted behavior, such as the variation of exchange current with reactant concen-
tration, with the behavior found experimentally. A number of excellent expositions of this
approach are available in the literature (8-14, 25, 26, 35). We will not delve into specific
cases in this chapter, except in Problems 3.7 and 3.10. More commonly, complex behav-
ior is elucidated by studies of transient responses, such as cyclic voltammetry at different
scan rates. The experimental study of multistep reactions by such techniques is covered in
Chapter 12.

3.5.1 Rate-Determining Electron Transfer

In the study of chemical kinetics, one can often simplify the prediction and analysis of be-
havior by recognizing that a single step of a mechanism is much more sluggish than all
the others, so that it controls the rate of the overall reaction. If the mechanism is an elec-
trode process, this rate-determining step (RDS) can be a heterogeneous electron-transfer
reaction.

A widely held concept in electrochemistry is that truly elementary electron-transfer
reactions always involve the exchange of one electron, so that an overall process involv-
ing a change of n electrons must involve n distinct electron-transfer steps. Of course, it
may also involve other elementary reactions, such as adsorption, desorption, or various
chemical reactions away from the interface. Within this view, a rate-determining electron-
transfer is always a one-electron-process, and the results that we derived above for the
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one-step, one-electron process can be used to describe the RDS, although the concentra-
tions must often be understood as applying to intermediates, rather than to starting species
or final products.

For example, consider an overall process in which О and R are coupled in an overall
multielectron process

О + ne *± R (3.5.7)

by a mechanism having the following general character:

О + n'e +± O' (net result of steps preceding RDS) (3.5.8)

O'+e^R' (RDS) (3.5.9)
К

R' + ri'e <± R (net result of steps following RDS) (3.5.10)

Obviously л' +n" + 1 = л. 1 0

The current-potential characteristic can be written as

[CO '(0, t)e-af(E-E^ - CR/(0, г ) ^ ( 1 " а У ( Е " ^ ) ] (3.5.11)

where £°ds> a> ш& Е%& a P P l v t 0 t h e R D S - T h i s relation is (3.3.11) written for the RDS and
multiplied by n, because each net conversion of O' to R' results in the flow of n electrons,
not just one electron, across the interface. The concentrations CQ>(0, t) and CR'(0, i) are
controlled not only by the interplay between mass transfer and the kinetics of heteroge-
neous electron transfer, as we found in Section 3.4, but also by the properties of the pre-
ceding and following reactions. The situation can become quite complicated, so we will
make no attempt to discuss the general problem. However, a few important simple cases
exist, and we will develop them briefly now.11

3.5.2 Multistep Processes at Equilibrium

If a true equilibrium exists for the overall process, all steps in the mechanism are individ-
ually at equilibrium. Thus, the surface concentrations of O' and R' are the values in equi-
librium with the bulk concentrations of О and R, respectively. We designate them as
(C(y)eq and (CR ')e q- Recognizing that / = 0, we can proceed through the treatment leading
to (3.4.2) to obtain the analogous relation

?ds) = < £ ф (3.5.12)

For the mechanism in (3.5.8)-(3.5.10), nernstian relationships define the equilibria for the
pre- and postreactions, and they can be written in the following forms:

C* (C )
еп'/(Ещ-Е°рТ&) _ Q ^Y(£eq-- is post) _ ^ R;^eq ^ ^ ^ ч

10The discussions that follow hold if either or both of n' or n" are zero.
1 ̂ n the first edition and in much of the literature, one finds n.d used as the n value of the rate-determining step.
As a consequnce n.d appears in many kinetic expressions. Since n.d is probably always 1, it is a redundant symbol
and has been dropped in this edition. The current-potential characteristic for a multistep process has often been
expressed as

i = nFAk0 [Co(0, ^-«"аЯЯ-я 0 ') _ C R ( 0 ? ^(i-«)«a/(£-£0 ')]

This is rarely, if ever, an accurate form of the i-E characteristic for multistep mechanisms.



110 Chapter 3. Kinetics of Electrode Reactions

where E^Q and £p0St apply to (3.5.8) and (3.5.10), respectively. Substitution for the equi-
librium concentrations of O' and R' in (3.5.12) gives

CR

Recognizing that n = n' + n" + 1 and that Eo> for the overall process is (see Problem
2.10)

.(v _ ^rds + "'£pre + ""^post

we can distill (3.5.14) into

^/(£eq-£°') = _2. (3.5.16)
CR

which is the exponential form of the Nernst equation for the overall reaction,

(3.5.17)

Of course, this is a required result if the kinetic model has any pretense to validity, and it
is important that the В V model attains it for the limit of / = 0, not only for the simple one-
step, one-electron process, but also in the context of an arbitrary multistep mechanism.
The derivation here was carried out for a mechanism in which the prereactions and postre-
actions involve net charge transfer; however the same outcome can be obtained by a simi-
lar method for any reaction sequence, as long as it is chemically reversible and a true
equilibrium can be established.

3.5.3 Nernstian Multistep Processes

If all steps in the mechanism are facile, so that the exchange velocities of all steps are
large compared to the net reaction rate, the concentrations of all species participating in
them are always essentially at equilibrium in a local context, even though a net current
flows. The result for the RDS in this nernstian (reversible) limit has already been obtained
as (3.4.27), which we now rewrite in exponential form:

°' ' 1 = ef{E~E^ (3.5.18)

Equilibrium expressions for the pre- and post-reactions link the surface concentrations of
O' and R' to the surface concentrations of О and R. If these processes involve interfacial
charge transfer, as in the mechanism of (3.5.8)—(3.5.10), the expressions are of the Nernst
form:

en'f(E-E%e) =

 CO(°> 0 en"f(E-E%st) =

Q ( 0 0 CR(0,0

By steps analogous to those leading from (3.5.12) to (3.5.16), one finds that for the re-
versible system

( 3 5 2 0 )

С RVU, t)
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which can be rearranged to

J?T Cr\(0. t)
(3.5.21)

This relationship is a very important general rinding. It says that, for a kinetically
facile system, the electrode potential and the surface concentrations of the initial reactant
and the final product are in local nernstian balance at all times, regardless of the details of
the mechanism linking these species and regardless of current flow. Like (3.5.17),
(3.5.21) was derived for pre- and postreactions that involve net charge transfer, but one
can easily generalize the derivation to include other patterns. The essential requirement is
that all steps be chemically reversible and possess facile kinetics.12

A great many real systems satisfy these conditions, and electrochemical examination
of them can yield a rich variety of chemical information (see Section 5.4.4). A good ex-
ample is the reduction of the ethylenediamine (en) complex of Cd(II) at a mercury elec-
trode:

Cd(en)^+ + 2e ^ Cd(Hg) + 3en (3.5.22)

3*5.4 Quasireversible and Irreversible Multistep Processes

If a multistep process is neither nernstian nor at equilibrium, the details of the kinetics in-
fluence its behavior in electrochemical experiments, and one can use the results to diag-
nose the mechanism and to quantify kinetic parameters. As in the study of homogenous
kinetics, one proceeds by devising a hypothesis about the mechanism, predicting experi-
mental behavior on the basis of the hypothesis, and comparing the predictions against re-
sults. In the electrochemical sphere, an important part of predicting behavior is
developing the current-potential characteristic in terms of controllable parameters, such as
the concentrations of participating species.

If the RDS is a heterogeneous electron-transfer step, then the current-potential charac-
teristic has the form of (3.5.11). For most mechanisms, this equation is of limited direct util-
ity, because O' and R' are intermediates, whose concentration cannot be controlled directly.
Still, (3.5.11) can serve as the basis for a more practical current-potential relationship, be-
cause one can use the presumed mechanism to reexpress Qy(0, i) and CR/(Q, t) in terms of
the concentrations of more controllable species, such as О and R (36).

Unfortunately, the results can easily become too complex for practical application. For
example, consider the simple mechanism in (3.5.8)—(3.5.10), where the pre- and postreac-
tions are assumed to be kinetically facile enough to remain in local equilibrium. The over-
all nernstian relationships, (3.5.19), connect the surface concentrations of О and R to those
of O' and R'. Thus, the current-potential characteristic, (3.5.11), can be expressed in terms
of the surface concentrations of the initial reactant, O, and the final product, R.

i = nFAk°rdsCo(0, t)e-n'f{E-EQv^e-af{E-E^ (3.5.23)

This relationship can be rewritten as

i = nFA[kfCo(0, t) - kbCR(0, t)] (3.5.24)

12In the reversible limit, it is no longer appropriate to speak of an RDS, because the kinetics are not rate-
controlling. We retain the nomenclature, because we are considering how a mechanism that does have an RDS
begins to behave as the kinetics become more facile.
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where

kf = кО^е

The point of these results is to illustrate some of the difficulties in dealing with a mul-
tistep mechanism involving an embedded RDS. No longer is the potential dependence of
the rate constant expressible in two parameters, one of which is interpretable as a measure
of intrinsic kinetic facility. Instead, k° becomes obscured by the first exponential factors
in (3.5.25) and (3.5.26), which express thermodynamic relationships in the mechanism.
One must have ways to find out the individual values of n\ n", £pre, E®osV and E®ds before
one can evaluate the kinetics of the RDS in a fully quantitative way. This is normally a
difficult requirement.

More readily usable results arise from some simpler situations:

(a) One-Electron Process Coupled Only to Chemical Equilibria
Many of the complications in the foregoing case arise from the fact that the pre- and
postreactions involve heterogeneous electron transfer, so that their equilibria depend on E.
Consider instead a mechanism that involves only chemical equilibria aside from the rate-
determining interfacial electron transfer:

0 +

0 '

I' <3

Y;

•f e

-R

X >
kuD

+ z

(net result of steps preceding

(RDS)

(net result of steps following

gRDS)

RDS)

(3

(3

(3

.5.27)

.5.28)

.5.29)

where Y and Z are other species (e.g., protons or ligands). If (3.5.27) and (3.5.29) are so
facile that they are always at equilibrium, then CQ'(0, 0 and CR'(0, 0 in (3.5.11) are calcu-
lable from the corresponding equilibrium constants, which may be available from sepa-
rate experiments.

(b) Totally Irreversible Initial Step
Suppose the RDS is the first step in the mechanism and is also a totally irreversible het-
erogeneous electron transfer:

O + A R ' (RDS) (3.5.30)

R' + ri'e -+ R (net result of steps following RDS) (3.5.31)

The chemistry following (3.5.30) has no effect on the electrochemical response, except to
add n" electrons per molecule of О that reacts. Thus, the current is n = 1 + n" times big-
ger than the current arising from step (3.5.30) alone. The overall result is given by the first
term of (3.3.11) with CO'(0, 0 = Co(0, t),

i = nFAk°Co(0, t)e~af(E~E°"ds) (3.5.32)

Many examples of this kind of behavior exist in the literature; one is the polarographic re-
duction of chromate in 0.1 M NaOH:

+ 4H2O + 3e -> Cr(OH)4 + 4OH" (3.5.33)

Despite the obvious mechanistic complexity of this system, it behaves as though it has an
irreversible electron transfer as the first step.

(c) Rate-Controlling Homogeneous Chemistry
A complete electrode reaction may involve homogeneous chemistry, one step of which
could be the RDS. Although the rate constants of homogeneous reactions are not depen-
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dent on potential, they affect the overall current-potential characteristic by their impact on
the surface concentrations of species that are active at the interface. Some of the most in-
teresting applications of electroanalytical techniques have been aimed at unraveling the
homogeneous chemistry following the electrochemical production of reactive species,
such as free radicals. Chapter 12 is devoted to these issues.

(d) Chemically Reversible Processes Near Equilibrium
A number of experimental methods, such as impedance spectroscopy (Chapter 10), are
based on the application of small perturbations to a system otherwise at equilibrium.
These methods often provide the exchange current in a relatively direct manner, as long
as the system is chemically reversible. It is worthwhile for us to consider the exchange
properties of a multistep process at equilibrium. The example that we will take is the
overall process О + ne ̂  R, effected by the general mechanism in (3.5.8)-(3.5.10) and
having a standard potential E® .

At equilibrium, all of the steps in the mechanism are individually at equilibrium, and
each has an exchange velocity. The electron-transfer reactions have exchange velocities
that can be expressed as exchange currents in the manner that we have already seen.
There is also an exchange velocity for the overall process that can be expressed as an ex-
change current. In a serial mechanism with a single RDS, such as we are now considering,
the overall exchange velocity is limited by the exchange velocity through the RDS. From
(3.4.4), we can write the exchange current for the RDS as

/O r d s = FAk^s(Co,)eqe-af^-E0^ (3.5.34)

The overall exchange current is и-fold larger, because the pre- and postreactions con-
tribute n' + n" additional electrons per electron exchanged in the RDS. Thus,

i0 = nFA^ s(Co0eqe-a / (£eq-£° rds ) (3.5.35)

We can use the fact that the prereactions are at equilibrium to express (CoOeq m terms of
CQ By substitution from (3.5.13),

i0 = nFAk°Tds C*e-"'/№eq-£Opre)e-a/№eq-SW ( 3 . 5 . 3 6 )

Let us multiply by unity in the form e(n' + a^(E ~ E * and rearrange to obtain

/0 = nFAk%, г«'/(£Орге-£О')еа/(£&-£О')С *e-(«'+«)/№eq-£0'> (3.5.37)

Because equilibrium is established, the Nernst equation for the overall process is
applicable. Taking it in the form of (3.5.16) and raising both sides to the power
— (nr + a)/n, we have

I0 = r^AI^^'^U-^'^^Tds-E^c* [!-(„'+*)/,,] c * [<л'+«)/л] ( 3 e 5 e 3 8 )

Note that the two exponentials are constants of the system at a given temperature and
pressure. It is convenient to combine them into an apparent standard rate constant for the
overall process, k®pp, by defining

С = k°rdse
n^E^-E\^E°^ -*°') (3.5.39)

so that the final result is reached:

*о = (3.5.40)

This relationship applies generally to mechanisms fitting the pattern of
(3.5.8)—(3.5.10), but not to others, such as those involving purely homogeneous pre- or
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postreactions or those involving different rate-determining steps in the forward and re-
verse directions. Even so, the principles that we have used here can be employed to de-
rive an expression like (3.5.40) for any other pattern, provided that the steps are
chemically reversible and equilibrium applies. It will be generally possible to express
the overall exchange current in terms of an apparent standard rate constant and the bulk
concentrations of the various participants. If the exchange current can be measured
validly for a given process, the derived relationship can provide insight into details of
the mechanism.

For example, the variation of exchange current with the concentrations of О and R
can provide (ri + a)/n for the sequential mechanism of (3.5.8)-(3.5.10). By an approach
similar to that in Section 3.4.4, one obtains the following from (3.5.40):

dlog CZ/ct

*o \ ri + a (3.5.42)
\d log i

Since n is often independently available from coulometry or from chemical knowledge of
the reactants and products, one can frequently calculate ri + a. From its magnitude, it
may be possible to estimate separate values for ri and a, which in turn may afford chemi-
cal insight into the participants in the RDS. Practice in this direction is available in Prob-
lems 3.7 and 3.10.

As we have seen here, the apparent standard rate constant, k®w, is usually not a sim-
ple kinetic parameter for a multistep process. Interpreting it may require detailed under-
standing of the mechanism, including knowledge of standard potentials or equilibrium
constants for various elementary steps.

We can usefully take this discussion a little further by developing a current-over-
potential relationship for a quasireversible mechanism having the pattern of
(3.5.8)-(3.5.10). Beginning with (3.5.24)-(3.5.26), we multiply the first term by unity
in the form of exp [—(ri + a)f(Eeq — Eeq)] and the second by unity in the form of
exp [(n" + 1 - a)f(Eeq - £eq)]. The result is

""' ~ ~ ' (3.5.43)

,(n"+1 -a)fEeq f[n"E°post+(l-a)E%fe] {n"+\-a)f(E-Een)R(0, t)e{n"+1 -«)/£eqg/№post+(l -a)E°rds\ein"+1 -a)f(E-Eeq

Multiplication of the first term by unity in the form of exp [—(ri + a)f(E0' - E0)] and
the second by unity in the form of exp [(n" + 1 - a)f(E0' - E0)] gives

- nFAk®dsCR(0, i)e{n"+1

(3.5.44)

where E — EQq has been recognized as 17. The first exponential in each of the two terms
can be rewritten as a function of bulk concentrations by raising (3.5.16) to the appropriate
power and substituting. The result is

^ atfn

(3.5.45)
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Division by the exchange current, as given by (3.5.40), and consolidation of the bulk con-
centrations provides

1 = Ads. CO(°> 0 еПп'Е%ге+о£%Ь-{п'+а)Е0']е-{п'+<ф,
u Kapp C O

* app ^ R

where we have recognized that n' + л" + 1 = л. Substitution for ,
consolidation of the exponentials leads to the final result,

-a)fV (3.5.46)

from (3.5.39) and

(3.5.47)

which is directly analogous to (3.4.10).
When the current is small or mass transfer is efficient, the surface concentrations do

not differ from those of the bulk, and one has

(3.5.48)

which is analogous to (3.4.11). At small overpotentials, this relationship can be linearized
i . • Y -t •

via the approximation ex ~ 1 + x to give

(3.5.49)

which is the сои^ефай of (3.4.12). The charge-transfer resistance for this multistep sys-
tem is then

RT
nFi,

(3.5.50)

which is a generalization of (3.4.13).
The arguments leading to (3.5.47)-(3.5.50) are particular to the assumed mechanistic

pattern of (3.5.8)-(3.5.10), but similar results can be obtained by the same techniques for
any quasireversible mechanism. In fact, (3.4.49) and (3.4.50) are general for quasire-
versible multistep processes, and they underlie the experimental determination of in via
methods, such as impedance spectroscopy, based on small perturbations of systems at
equilibrium.

3.6 MICROSCOPIC THEORIES OF CHARGE TRANSFER

The previous sections dealt with a generalized theory of heterogeneous electron-transfer
kinetics based on macroscopic concepts, in which the rate of the reaction was expressed
in terms of the phenomenological parameters, lc° and a. While useful in helping to orga-
nize the results of experimental studies and in providing information about reaction mech-
anisms, such an approach cannot be employed to predict how the kinetics are affected by
such factors as the nature and structure of the reacting species, the solvent, the electrode
material, and adsorbed layers on the electrode. To obtain such information, one needs a
microscopic theory that describes how molecular structure and environment affect the
electron-transfer process.

A great deal of work has gone into the development of microscopic theories over the
past 45 years. The goal is to make predictions that can be tested by experiments, so that
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one can understand the fundamental structural and environmental factors causing reac-
tions to be kinetically facile or sluggish. With that understanding, there would be a firmer
basis for designing superior new systems for many scientific and technological applica-
tions. Major contributions in this area have been made by Marcus (37, 38), Hush (39, 40),
Levich (41), Dogonadze (42), and many others. Comprehensive reviews are available
(43-50), as are extensive treatments of the broader related field of electron-transfer reac-
tions in homogeneous solution and in biological systems (51-53). The approach taken in
this section is largely based on the Marcus model, which has been widely applied in elec-
trochemical studies and has demonstrated the ability to make useful predictions about
structural effects on kinetics with minimal computation. Marcus was recognized with the
Nobel Prize in Chemistry for his contributions.

At the outset, it is useful to distinguish between inner-sphere and outer-sphere elec-
tron-transfer reactions at electrodes (Figure 3.6.1). This terminology was adopted from
that used to describe electron-transfer reactions of coordination compounds (54). The
term "outer-sphere" denotes a reaction between two species in which the original coordi-
nation spheres are maintained in the activated complex ["electron transfer from one pri-
mary bond system to another" (54)]. In contrast, "inner-sphere" reactions occur in an
activated complex where the ions share a ligand ["electron transfer within a primary bond
system" (54)].

Likewise, in an outer-sphere electrode reaction, the reactant and product do not in-
teract strongly with the electrode surface, and they are generally at a distance of at least a
solvent layer from the electrode. A typical example is the heterogeneous reduction of
Ru(NH3)6+, where the reactant at the electrode surface is essentially the same as in the
bulk. In an inner-sphere electrode reaction, there is a strong interaction of the reactant,
intermediates, or products with the electrode; that is, such reactions involve specific ad-
sorption of species involved in the electrode reaction. The reduction of oxygen in water
and the oxidation of hydrogen at Pt are inner-sphere reactions. Another type of inner-
sphere reaction features a specifically adsorbed anion that serves as a ligand bridge to a
metal ion (55). Obviously outer-sphere reactions are less dependent on electrode material
than inner-sphere ones.13

Homogenous Electron Transfer

Outer-sphere
3 + Cr(bpy) 3

2 + ->Co(NH 3 ) 2 + -. Cr(bpy)3

3+

Inner-sphere
Co(NH3)5CI2 + > (NH3)5Co Cl Cr(H2O)*

Homogenous Electron Transfer

Outer-sphere Inner-sphere

Solvent

Figure 3.6.1 Outer-sphere and inner-sphere
reactions. The inner sphere homogeneous reaction
produces, with loss of H2O, a ligand-bridged
complex (shown above), which decomposes to
CrCl(H2O)^+ and Co(NH3)5(H2O)2+. In the
heterogeneous reactions, the diagram shows a metal
ion (M) surrounded by ligands. In the inner sphere
reaction, a ligand that adsorbs on the electrode and
bridges to the metal is indicated
in a darker color. An example of the latter is the
oxidation of Сг(Н2О)з+ at a mercury electrode
in the presence of Cl~ or Br~.

13Even if there is not a strong interaction with the electrode, an outer-sphere reaction can depend on the

electrode material, because of (a) double-layer effects (Section 13.7), (b) the effect of the metal on the structure

of the Helmholtz layer, or (c) the effect of the energy and distribution of electronic states in the electrode.
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Outer-sphere electron transfers can be treated in a more general way than inner-
sphere processes, where specific chemistry and interactions are important. For this reason,
the theory of outer-sphere electron transfer is much more highly developed, and the dis-
cussion that follows pertains to these kinds of reactions. However, in practical applica-
tions, such as in fuel cells and batteries, the more complicated inner-sphere reactions are
important. A theory of these requires consideration of specific adsorption effects, as de-
scribed in Chapter 13, as well as many of the factors important in heterogeneous catalytic
reactions (56).

3.6.1 The Marcus Microscopic Model

Consider an outer-sphere, single electron transfer from an electrode to species O, to form
the product R. This heterogeneous process is closely related to the homogeneous reduc-
tion of О to R by reaction with a suitable reductant, R\

0 + R ' ^ R + O' (3.6.1)

We will find it convenient to consider the two situations in the same theoretical context.
Electron-transfer reactions, whether homogeneous or heterogeneous, are radiationless
electronic rearrangements of reacting species. Accordingly, there are many common ele-
ments between theories of electron transfer and treatments of radiationless deactivation in
excited molecules (57). Since the transfer is radiationless, the electron must move from an
initial state (on the electrode or in the reductant, R') to a receiving state (in species О or
on the electrode) of the same energy. This demand for isoenergetic electron transfer is a
fundamental aspect with extensive consequences.

A second important aspect of most microscopic theories of electron transfer is the as-
sumption that the reactants and products do not change their configurations during the ac-
tual act of transfer. This idea is based essentially on the Franck-Condon principle, which
says, in part, that nuclear momenta and positions do not change on the time scale of elec-
tronic transitions. Thus, the reactant and product, О and R, share a common nuclear con-
figuration at the moment of transfer.

Let us consider again a plot of the standard free energy14 of species О and R as a
function of reaction coordinate (see Figure 3.3.2), but we now give more careful consider-
ation to the nature of the reaction coordinate and the computation of the standard free en-
ergy. Our goal is to obtain an expression for the standard free energy of activation, AG \̂
as a function of structural parameters of the reactant, so that equation 3.1.17 (or a closely
related form) can be used to calculate the rate constant. In earlier theoretical work, the
pre-exponential factor for the rate constant was written in terms of a collision number (37,
38, 58, 59), but the formalism now used leads to expressions like:

kf = K?,ovnKelexp(-AG}/RT) (3.6.2)

where AGjf is the activation energy for reduction of О; К? о is a precursor equilibrium
constant, representing the ratio of the reactant concentration in the reactive position at
the electrode (the precursor state) to the concentration in bulk solution; vn is the nu-
clear frequency factor (s" 1), which represents the frequency of attempts on the energy
barrier (generally associated with bond vibrations and solvent motion); and ке 1 is the
electronic transmission coefficient (related to the probability of electron tunneling; see
Section 3.6.4). Often, #cel is taken as unity for a reaction where the reactant is close to
the electrode, so that there is strong coupling between the reactant and the electrode

14See the footnote relating to the use of standard thermodynamic quantities in Section 3.1.2.
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(see Section 3.6.4).15 Methods for estimating the various factors are available (48), but
there is considerable uncertainty in their values.

Actually, equation 3.6.2 can be used for either a heterogeneous reduction at an elec-
trode or a homogeneous electron transfer in which О is reduced to R by another reactant
in solution. For a heterogeneous electron transfer, the precursor state can be considered to
be a reactant molecule situated near the electrode at a distance where electron transfer is
possible. Thus KFO = Co,Surf/Co> where C0,SUrfis a surface concentration having units of
mol/cm2. Consequently Kp o has units of cm, and kf has units of cm/s, as required. For a
homogeneous electron transfer between О and R\ one can think of the precursor state as a
reactive unit, OR', where the two species are close enough to allow transfer of an elec-
tron. Then KpO = [OR']/[O][R'], which has units of M~x if the concentrations are ex-
pressed conventionally. This result gives a rate constant, kf, in units of M ^ s " 1 , again as
required.

In either case, we consider the reaction as occurring on a multidimensional surface
defining the standard free energy of the system in terms of the nuclear coordinates (i.e.,
the relative positions of the atoms) of the reactant, product, and solvent. Changes in nu-
clear coordinates come about from vibrational and rotational motion in О and R, and from
fluctuations in the position and orientation of the solvent molecules. As usual, we focus
on the energetically favored path between reactants and products, and we measure
progress in terms of a reaction coordinate, q. Two general assumptions are (a) that the re-
actant, O, is centered at some fixed position with respect to the electrode (or in a bimolec-
ular homogeneous reaction, that the reactants are at a fixed distance from each other) and
(b) that the standard free energies of О and R, GQ and GR, depend quadratically on the re-
action coordinate, q (49):

G°0(q) = (k/2)(q - q0)
2 (3.6.3)

& = (k/2)(q - qR)2 + AG° (3.6.4)

where qo and qR are the values of the coordinate for the equilibrium atomic configura-
tions in О and R, and к is a proportionality constant (e.g., a force constant for a change in
bond length). Depending on the case under consideration, AG° is either the free energy of
reaction for a homogeneous electron transfer or F(E - E°) for an electrode reaction.

Let us consider a particularly simple case to give a physical picture of what is implied
here. Suppose the reactant is A-B, a diatomic molecule, and the product is A-B~. To a
first approximation the nuclear coordinate could be the bond length in A-B (qo) and A-B~
(gR), and the equations for the free energy could represent the energy for lengthening or
contraction of the bond within the usual harmonic oscillator approximation. This picture
is oversimplified in that the solvent molecules would also make a contribution to the free
energy of activation (sometimes the dominant one). In the discussion that follows, they
are assumed to contribute in a quadratic relationship involving coordinates of the solvent
dipole.

Figure 3.6.2 shows a typical free energy plot based on (3.6.3) and (3.6.4). The mole-
cules shown at the top of the figure are meant to represent the stable configurations of the
reactants, for example, Ru(NH3)6+ and Ru(NH3)6+ as О and R, as well as to provide a
view of the change in nuclear configuration upon reduction. The transition state is the
position where О and R have the same configuration, denoted by the reaction coordinate

15The pre-exponential term sometimes also includes a nuclear tunneling factor, Гп. This arises from a quantum
mechanical treatment that accounts for electron transfer for nuclear configurations with energies below the
transition state (48, 60).
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0(3+)

Figure 3.6.2 Standard free energy, G , as a function of reaction coordinate, q, for an electron
transfer reaction, such as Ru(NH3)6 + e —>• RU(NH 3 )J5 + . This diagram applies either to a
heterogeneous reaction in which О and R react at an electrode or a homogeneous reaction in which О
and R react with members of another redox couple as shown in (3.6.1). For the heterogeneous case,
the curve for О is actually the sum of energies for species О and for an electron on the electrode at the
Fermi level corresponding to potential E. Then, AG = F(E — E°). For the homogeneous case, the
curve for О is the sum of energies for О and its reactant partner, R', while the curve for R is a sum for
R and O'. Then, AG° is the standard free energy change for the reaction. The picture at the top is a
general representation of structural changes that might accompany electron transfer. The changes in
spacing of the six surrounding dots could represent, for example, changes in bond lengths within the
electroactive species or the restructuring of the surrounding solvent shell.

qx. In keeping with the Franck-Condon principle, electron transfer only occurs at this

position.

The free energies at the transition state are thus given by

- qof (3.6.5)

- qR)2 + AG° (3.6.6)

Since G%(qx) = GR(qx), (3.6.5) and (3.6.6) can be solved for qx with the result,

AG°
2 ' k(qR - qo)

The free energy of activation for reduction of О is given by

(3.6.7)

(3.6.8)
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where we have noted that G%(q0) = 0, as defined in (3.6.3). Substitution for cf from
(3.6.7) into (3.6.5) then yields

:0 12

(3.6.9)
2AG°

Defining A = (k/2)(qR — q0)
2, we have

or, for an electrode reaction

(3.6.10a)

(3.6.10b)

There can be free energy contributions beyond those considered in the derivation
just described. In general, they are energy changes involved in bringing the reactants
and products from the average environment in the medium to the special environment
where electron transfer occurs. Among them are the energy of ion pairing and the elec-
trostatic work needed to reach the reactive position (e.g., to bring a positively charged
reactant to a position near a positively charged electrode). Such effects are usually
treated by the inclusion of work terms, WQ and WR, which are adjustments to AG° or
F(E — E ). For simplicity, they were omitted above. The complete equations, including
the work terms, are1 6

\G\- 4A

A/
4\

f

1 Л
\

AG°-

FiE-E

-WQ

A

° )"
A

+ w R y
/

WQ + V

)

(3.6.11a)

(3.6.11b)

The critical parameter is Л, the reorganization energy, which represents the energy
necessary to transform the nuclear configurations in the reactant and the solvent to those
of the product state. It is usually separated into inner, Aj, and outer, Ao, components:

A = Ai + Ao (3.6.12)

where Aj represents the contribution from reorganization of species O, and Ao that from
reorganization of the solvent.17

16The convention is to define vv0 and wR as the work required to establish the reactive position from the average
environment of reactants and products in the medium. The signs in (3.6.1 la,b) follow from this. In many
circumstances, the work terms are also the free energy changes for the precursor equilibria. When that is true,
w0 = -RT In Kpt0 and wR = -RT In KPR.
17One should not confuse the inner and outer components of Л with the concept of inner- and outer-sphere
reaction. In the treatment under consideration, we are dealing with an outer-sphere reaction, and Aj and Ao

simply apportion the energy to terms applying to changes in bond lengths (e.g., of a metal-ligand bond) and
changes in solvation, respectively.
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To the extent that the normal modes of the reactant remain harmonic over the range
of distortion needed, one can, in principle, calculate Aj by summing over the normal vibra-
tional modes of the reactant, that is,

Ai - E (3.6.13)

where the k's are force constants, and the g's are displacements in the normal mode
coordinates.

Typically, Ao is computed by assuming that the solvent is a dielectric continuum, and
the reactant is a sphere of radius ao. For an electrode reaction,

(3.6.14a)л — -л о
е1

( 1 Л (1
\£оР

1)

where e o p and e s are the optical and static dielectric constants, respectively, and R is taken
as twice the distance from the center of the molecule to the electrode (i.e., 2JC0, which is
the distance between the reactant and its image charge in the electrode).18 For a homoge-
neous electron-transfer reaction:

(3.6.14b)

where a\ and #2 are the radii of the reactants (O and R' in equation 3.6.1) and d = a\ + #2-
Typical values of A are in the range of 0.5 to 1 eV.

Predictions from Marcus Theory

While it is possible, in principle, to estimate the rate constant for an electrode reaction
by computation of the pre-exponential terms and the A values, this is rarely done in
practice. The theory's greater value is the chemical and physical insight that it affords,
which arises from its capacity for prediction and generalization about electron-transfer
reactions.

For example, one can obtain the predicted a-value from (3.6.10b):

1 <̂ f I , F(£ -
tt=Fffi=2+ 2A

or with the inclusion of work terms:

F(E- E°) - (wo - wR)

2A

(3.6.15a)

(3.6.15b)

Thus, the theory predicts not only that a ~ 0.5, but also that it depends on potential in a
particular way. As mentioned in Section 3.3.4, the Butler-Volmer (BV) theory can ac-
commodate a potential dependence of a, but in its classic version, the BV theory handles
a as a constant. Moreover, there is no basis in the В V theory for predicting the form of the
potential dependence. On the other hand, the potential-dependent term in (3.6.15a,b),

1 8In some treatments of electron transfer, the assumption is made that the reactant charge is largely shielded by
counter ions in solution, so that an image charge does not form in the electrode. In this case, R is the distance
between the center of the reactant molecule and the electrode (24, 39).
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which depends on the size of A, is usually not very large, so a clear potential dependency
of a has been difficult to observe experimentally. The effect is more obvious in reactions
involving electroactive centers bound to electrodes (see Section 14.5.2.).

The Marcus theory also makes predictions about the relation between the rate con-
stants for homogeneous and heterogeneous reactions of the same reactant. Consider the
rate constant for the self-exchange reaction,

O + R ^ X R + O (3.6.16)

in comparison with k° for the related electrode reaction, О + e —> R. One can determine
kex by labeling О isotopically and measuring the rate at which the isotope appears in R, or
sometimes by other methods like ESR or NMR. A comparison of (3.6.14a) and (3.6.14b),
where a0 = a\ = a2 = a and R = d = 2a, yields

Aei = Aex/2 (3.6.17)

where Ael and Aex are the values of Ao for the electrode reaction and the self-exchange
reaction, respectively. For the self-exchange reaction, AG° = 0, so (3.6.10a) gives
AGf = Aex/4, as long as Ao dominates Aj in the reorganization energy. For the electrode
reaction, k° corresponds to E = E°, so (3.6.10b) gives AG* = Aei/4, again with the condi-
tion that Aj is negligible. From (3.6.17), one can express AGf for the homogeneous and
heterogeneous reactions in common terms, and one finds that kex is related to k° by the
expression

(£exMex)1/2 = *°/A,l (3-6.18)

where Aex and AQ\ are the pre-exponential factors for self-exchange and the electrode reac-
tion. (Roughly, Ad is Ю4 to 105 cm/s and Aex is 1011 to 1012 Af"1 s" 1 .) 1 9

The theory also leads to useful qualitative predictions about reaction kinetics. For ex-
ample, equation 3.6.10b gives AG^ ~ X/4 at E°, where kf = k^ = £°. Thus, k° will be
larger when the internal reorganization is smaller, that is, in reactions where О and R have
similar structures. Electron transfers involving large structural alterations (such as sizable
changes in bond lengths or bond angles) tend to be slower. Solvation also has an impact
through its contribution to A. Large molecules (large ao) tend to show lower solvation en-
ergies, and smaller changes in solvation upon reaction, by comparison with smaller
species. On this basis, one would expect electron transfers to small molecules, such as, the
reduction of O 2 to O2~ in 2~aprotic media, to be slower than the reduction of Ar to Агт,
where Ar is a large aromatic molecule like anthracene.

The effect of solvent in an electron transfer is larger than simply through its energetic
contribution to Ao. There is evidence that the dynamics of solvent reorganization, often
represented in terms of a solvent longitudinal relaxation time, TL, contribute to the pre-
exponential factor in (3.6.2) (47, 62-65), e.g., vn °c T~

l. Since r L is roughly proportional
to the viscosity, an inverse proportionality of this kind implies that the heterogeneous rate
constant would decrease as the solution viscosity increases (i.e., as the diffusion coeffi-
cient of the reactant decreases). This behavior is actually seen in the decrease of k° for
electrode reactions in water upon adding sucrose to increase the viscosity (presumably
without changing Ao in a significant way) (66, 67). This effect was especially pronounced
in other studies involving Co(IIIAI)tris(bipyridine) complexes modified by the addition of

19This equation also applies when the X{ terms are included (but work terms are neglected). This is the case
because the total contribution to Л j is summed over two reactants in the homogeneous self-exchange reaction,
but only over one in the electrode reaction (61).
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long polyethylene or polypropylene oxide chains to the ligands, which cause large
changes in diffusion coefficient in undiluted, highly viscous, ionic melts (68).

A particularly interesting prediction from this theory is the existence of an "inverted
region" for homogeneous electron-transfer reactions. Figure 3.6.3 shows how equation
3.6.10a predicts AGjf to vary with the thermodynamic driving force for the electron trans-
fer, AG°. Curves are shown for several different values of A, but the basic pattern of be-
havior is the same for all, in that there is a predicted minimum in the standard free energy
of activation. On the right-hand side of the minimum, there is a normal region, where
AGjf decreases, hence the rate constant increases, as AG° gets larger in magnitude (i.e.,
becomes more negative). When AG° = -A, AGf is zero, and the rate constant is predicted
to be at a maximum. At more negative AG° values, that is for very strongly driven reac-
tions, the activation energy becomes larger, and the rate constant smaller. This is the in-
verted region, where an increase in the thermodynamic driving force leads to a decrease
in the rate of electron transfer. There are two physical reasons for this effect. First, a large
negative free energy of reaction implies that the products are required to accept the liber-
ated energy very quickly in vibrational modes, and the probability for doing so declines as
- AG° exceeds A (see Chapter 18). Second, one can develop a situation in the inverted re-
gion where the energy surfaces no longer allow for adiabatic electron transfer (see Section
3.6.4). The existence of the inverted region accounts for the phenomenon of electrogener-
ated chemiluminescence (Chapter 18) and has also been seen by other means for several
electron-transfer reactions in solution.

Even though (3.6.10b) also has a minimum, an inverted-region effect should not
occur for an electrode reaction at a metal electrode. The reason is that (3.6.10b) was de-
rived with the implicit idea that electrons always react from a narrow range of states on
the electrode corresponding to the Fermi energy (see the caption to Figure 3.6.2). Even
though the reaction rate at this energy is predicted to show inversion at very negative
overpotentials, there are always occupied states in the metal below the Fermi energy, and
they can transfer an electron to О without inversion. Any low-level vacancy created in the
metal by heterogeneous reaction is filled ultimately with an electron from the Fermi en-
ergy, with dissipation of the difference in energy as heat; thus the overall energy change is
as expected from thermodynamics. A similar argument holds for oxidations at metals,
where unoccupied states are always available. The ideas behind this discussion are devel-
oped much more fully in the next section.
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An inverted region should be seen for interfacial electron transfer at the interface
between immiscible electrolyte solutions, with an oxidant, O, in one phase, and a reduc-
tant, R', in the other (69). Experimental studies bearing on this issue have just been re-
ported (70).

3.6.3 A Model Based on Distributions of Energy States

An alternative theoretical approach to heterogeneous kinetics is based on the overlap be-
tween electronic states of the electrode and those of the reactants in solution (41, 42, 46,
47, 71, 72). The concept is presented graphically in Figure 3.6.4, which will be discussed
extensively in this section. This model is rooted in contributions from Gerischer (71, 72)
and is particularly useful for treating electron transfer at semiconductor electrodes (Sec-
tion 18.2.3), where the electronic structure of the electrode is important. The main idea is
that an electron transfer can take place from any occupied energy state that is matched in
energy, E, with an unoccupied receiving state. If the process is a reduction, the occupied
state is on the electrode and the receiving state is on an electroreactant, O. For an oxida-
tion, the occupied state is on species R in solution, and the receiving state is on the elec-
trode. In general, the eligible states extend over a range of energies, and the total rate is an
integral of the rates at each energy.

-2

I
ш

ш —4

Unoccupied
States (2)UT)V2 DO(\,E)

1

Electrode States Reactant States

Figure 3.6.4 Relationships among electronic states at an interface between a metal electrode and
a solution containing species О and R at equal concentrations. The vertical axis is electron energy,
E, on the absolute scale. Indicated on the electrode side is a zone A4T wide centered on the Fermi
level, Ep, where/(E) makes the transition from a value of nearly 1 below the zone to a value of
virtually zero above. See the graph of/(E) in the area of solid shading on the left. On the solution
side, the state density distributions are shown for О and R. These are gaussians having the same
shapes as the probability density functions, W0(X, E) and WR(\, E). The electron energy
corresponding to the standard potential, E°, is -3.8 eV, and Л = 0.3 eV. The Fermi energy
corresponds here to an electrode potential of -250 mV vs. E°. Filled states are denoted on both
sides of the interface by dark shading. Since filled electrode states overlap with (empty) О states,
reduction can proceed. Since the (filled) R states overlap only with filled electrode states, oxidation
is blocked.
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On the electrode, the number of electronic states in the energy range between E
and E 4- dE is given by Ap(E)dE, where A is the area exposed to the solution, and p(E) is
the density of states [having units of (area-energy)"1, such as с т ~ 2 е У - 1 ] . The total
number of states in a broad energy range is, of course, the integral of Ap(E) over the
range. If the electrode is a metal, the density of states is large and continuous, but if it
is a semiconductor, there is a sizable energy range, called the band gap, where the den-
sity of states is very small. (See Section 18.2 for a fuller discussion of the electronic
properties of materials.)

Electrons fill states on the electrode from lower energies to higher ones until all elec-
trons are accommodated. Any material has more states than are required for the electrons,
so there are always empty states above the filled ones. If the material were at absolute
zero in temperature, the highest filled state would correspond to the Fermi level (or the
Fermi energy), Ep, and all states above the Fermi level would be empty. At any higher
temperature, thermal energy elevates some of the electrons into states above Ep and cre-
ates vacancies below. The filling of the states at thermal equilibrium is described by the
Fermi function, /(E),

/(E) = {1 + exp[(E - EF)/47]}" l (3.6.19)

which is the probability that a state of energy E is occupied by an electron. It is easy to
see that for energies much lower than the Fermi level, the occupancy is virtually unity,
and for energies much higher than the Fermi level, the occupancy is practically zero (see
Figure 3.6.4). States within a few 4T of Ep have intermediate occupancy, graded from
unity to zero as the energy rises through Ep, where the occupancy is 0.5. This intermedi-
ate zone is shown in Figure 3.6.4 as a band 44T wide (about 100 meV at 25°C).

The number of electrons in the energy range between E and E + dE is the number of
occupied states, A/V0CC(E)dE, where Afocc(E) is the density function

AW(E)=/(E)p(E) (3.6.20)

Like p(E), 7V0CC(E) has units of (area-energy)"1, typically cm" 2 eV~\ while/(E) is di-
mensionless. In a similar manner, we can define the density of unoccupied states as

AU>cc(E) = [1 ~/(E)]p(E) (3.6.21)

As the potential is changed, the Fermi level moves, with the change being toward
higher energies at more negative potentials and vice versa. On a metal electrode, these
changes occur not by the filling or emptying of many additional states, but mostly by
charging the metal, so that all states are shifted by the effect of potential (Section 2.2).
While charging does involve a change in the total electron population on the metal, the
change is a tiny fraction of the total (Section 2.2.2). Consequently, the same set of states
exists near the Fermi level at all potentials. For this reason, it is more appropriate to think
of p(E) as a consistent function of E — Ep, nearly independent of the value of Ep. Since
/(E) behaves in the same way, so do N0CC(E) and Nunocc(E). The picture is more compli-
cated at a semiconductor, as discussed in Section 18.2.

States in solution are described by similar concepts, except that filled and empty
states correspond to different chemical species, namely the two components of a redox
couple, R and O, respectively. These states differ from those of the metal in being local-
ized. The R and О species cannot communicate with the electrode without first approach-
ing it closely. Since R and О can exist in the solution inhomogeneously and our concern is
with the mix of states near the electrode surface, it is better to express the density of states
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in terms of concentration, rather than total number. At any moment, the removable elec-
trons on R species in solution in the vicinity of the electrode20 are distributed over an en-
ergy range according to a concentration density function, £>R(A, E), having units of
(volume-energy)"1, such as cm"3 eV"1 . Thus, the number concentration of R species
near the electrode in the range between E and E + dE is £>R(A, E)dE. Because this small
element of the R population should be proportional to the overall surface concentration of
R, CR(0, t), we can factor Z)R(A, E) in the following way:

DR(A, E) = WACR(0, t)WR(\, E) (3.6.22)

where NA is Avogadro's number, and WR(A, E) is a probability density function with units
of (energy)"1. Since the integral of DR(A, E) over all energies must yield the total number
concentration of all states, which is iVACR(0, t), we see that VFR(A, E) is a normalized
function

WR(\,E)dE = 1 (3.6.23)
0

Similarly, the distribution of vacant states represented by О species is given by

£>o(A, E) = NACo(0, t)Wo(\, E) (3.6.24)

where W0(X, E) is normalized, as indicated for its counterpart in (3.6.23). In Figure 3.6.4,
the state distributions for О and R are depicted as gaussians for reasons that we will dis-
cover below.

Now let us consider the rate at which О is reduced from occupied states on the elec-
trode in the energy range between E and E + dE. This is only a part of the total rate of re-
duction, so we call it a local rate for energy E. In a time interval Дг, electrons from
occupied states on the electrode can make the transition to states on species О in the same
energy range, and the rate of reduction is the number that succeed divided by Д*. This rate
is the instantaneous rate, if At is short enough (a) that the reduction does not appreciably
alter the number of unoccupied states on the solution side and (b) that individual О mole-
cules do not appreciably change the energy of their unoccupied levels by internal vibra-
tional and rotational motion. Thus At is at or below the time scale of vibration. The local
rate of reduction can be written as

Pred(E)AN0CC(E)dE
Local Rate(E) = r e d

 д^
о с с — (3.6.25)

where AN0CCdE is the number of electrons available for the transition and Pred(E) is the
probability of transition to an unoccupied state on O. It is intuitive that /\ed(E) is propor-
tional to the density of states DO(A, E). Defining e r e d(E) as the proportionality function,
we have

6rred(E)£>o(A, E)ANocc(E)dE
Local Rate(E) = red ° ' — ^ ^ - ^ — (3.6.26)

20In this discussion, the phrases "concentration in the vicinity of the electrode" and "concentration near the
electrode" are used interchangeably to denote concentrations that are given by C(0, i) in most mass-transfer and
heterogeneous rate equations in this book. However, C(0, t) is not the same as the concentration in the reactive
position at an electrode (i.e., in the precursor state), but is the concentration just outside the diffuse layer. We
are now considering events on a much finer distance scale than in most contexts in this book, and this
distinction is needed. The same point is made in Section 13.7.
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where ered(E) has units of volume-energy (e.g., cm3 eV). The total rate of reduction
is the sum of the local rates in all infinitesimal energy ranges; thus it is given by the integral

Rate = v \ e r e d(E)Do(A, E)AN0CC(E)dE (3.6.27)
J — 0 0

where, in accord with custom, we have expressed Ar in terms of a frequency, v = 1/Дг.
The limits on the integral cover all energies, but the integrand has a significant value only
where there is overlap between occupied states on the electrode and states of О in the so-
lution. In Figure 3.6.4, the relevant range is roughly -4.0 to -3.5 eV.

Substitution from (3.6.20) and (3.6.24) gives

Rate = vANKC'o(0, t) J sred(E)W0(A, E)/(E)p(E)dE (3.6.28)
J — 0 0

This rate is expressed in molecules or electrons per second. Division by ANA gives the
rate more conventionally in mol cm" 2 s"1, and further division by CQ(0, t) provides the
rate constant,

Г 00

(3.6.29)

In an analogous way, one can easily derive the rate constant for the oxidation of
R. On the electrode side, the empty states are candidates to receive an electron; hence
Nunocc(E) is the distribution of interest. The density of filled states on the solution
side is £>R(A, E), and the probability for electron transfer in the time interval Ar is
P0X(E) = 80X(E)Z)R(A, E). Proceeding exactly as in the derivation of (3.6.29), we
arrive at

(3.6.30)

In Figure 3.6.4, the distribution of states for species R does not overlap the zone of
unoccupied states on the electrode, so the integrand in (3.6.30) is practically zero every-
where, and &ь is negligible compared to kf. The electrode is in a reducing condition with
respect to the O/R couple. By changing the electrode potential to a more positive value,
we shift the position of the Fermi level downward, and we can reach a position where the
R states begin to overlap unoccupied electrode states, so that the integral in (3.6.30) be-
comes significant, and къ is enhanced.

The literature contains many versions of equations 3.6.29 and 3.6.30 manifesting
different notation and involving wide variations in the interpretation applied to the in-
tegral prefactors and the proportionality functions e r e d(E) and eo x(E). For example, it
is common to see a tunneling probability, Kej, or a precursor equilibrium constant, A^o
or /sTp R, extracted from the e-functions and placed in the integral prefactor. Often the
frequency v is identified with vn in (3.6.2). Sometimes the prefactor encompasses
things other than the frequency parameter, but is still expressed as a single symbol.
These variations in representation reflect the fact that basic ideas are still evolving.
The treatment offered here is general and can be accommodated to any of the extant
views about how the fundamental properties of the system determine v, e r e d(E), and
eo x(E).

With (3.6.29) and (3.6.30), it is apparently possible to account for kinetic effects of
the electronic structure of the electrode by using an appropriate density of states, p(E), for
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the electrode material. Efforts in that direction have been reported. However, one must be
on guard for the possibility that ered(E) and eOx(E) also depend on p(E).2 1

The Marcus theory can be used to define the probability densities W0(A, E) and
WR(A, E). The key is to recognize that the derivation leading to (3.6.10b) is based implic-
itly on the idea that electron transfer occurs entirely from the Fermi level. In the context
that we are now considering, the rate constant corresponding to the activation energy in
(3.6.10b) is therefore proportional to the local rate at the Fermi level, wherever it might
be situated relative to the state distributions for О and R. We can rewrite (3.6.10b) in
terms of electron energy as

E ~ ^ » (3.6.31)

where E° is the energy corresponding to the standard potential of the O/R couple. One can
easily show that AG| reaches a minimum at E = E° + A, where AGj = 0. Thus the maxi-
mum local rate of reduction at the Fermi level is found where E F = E° + Л. When the
Fermi level is at any other energy, E, the local rate of reduction at the Fermi level can be ex-
pressed, according to (3.6.2), (3.6.26), and (3.6.31), in terms of the following ratios

J JА Л Е - E
Local Rate (EF = E) ^^ЫУ

Local Rate (EF = E° + A) VnKel

g r e d ( E ) P o ( A , E ) / ( E F ) p ( E F )

ered (E° + A) Do (A, E° + A)/(EF) p (EF)

Assuming that e r e d does not depend on the position of EF, we can simplify this to

Z)0(A,E) _ Г (Е-Е°-А) 2 1

( 3 - 6 3

Z)O(A,E°
= exp - (3.6.33)

Wo(\, E) = (4TT\£T)~1/2 exp -

This is a gaussian distribution having a mean at E = E° + Л and a standard deviation
of (2A^T)1/2, as shown in Figure 3.6.4 (see also Section A.3). From (3.6.24),
£>O(A, E)/D0(A, E° + Л) = Wo(\, E)/Wo(\, E° + A). Also, since Wo(\, E) is normal-
ized, the exponential prefactor, WO(X, E° + A), is quickly identified (Section A.3) as
(2тг)~ / times the reciprocal of the standard deviation; therefore

(3.6.34)

21Consider, for example, a simple model based on the idea that, in the time interval Ar, all of the electrons in the
energy range between E and E + dE redistribute themselves among all available states with equal probability. A
refinement allows for the possibility that the states on species О participate with different weight from those on the
electrode. If the states on the electrode are given unit weight and those in solution are given weight /cred(E), then

/cred (E)D0(A, E)5

p(E) + /cred(E)£>0(A, E)d

where 8 is the average distance across which electron transfer occurs, and /cred(E) is dimensionless and can be
identified with the tunneling probability, /cel, used in other representations of kf. If the electrode is a metal, p(E)
is orders of magnitude greater than Kred(E)Z)0(A, E)8; hence the rate constant becomes

which has no dependence on the electronic structure of the electrode.
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(3.6.35)

thus the distribution for R has the same shape as that for O, but is centered on E° - Л, as
depicted in Figure 3.6.4.

Any model of electrode kinetics is constrained by the requirement that

= е (3.6.36)

which is easily derived from the need for convergence to the Nernst equation at equilib-
rium (Problem 3.16). The development of the Gerischer model up through equations
3.6.29 and 3.6.30 is general, and one can imagine that the various component functions in
those two equations might come together in different ways to fulfill this requirement. By
later including results from the Marcus theory without work terms, we were able to define
the distribution functions, WO(X, E) and WR(A, E). Another feature of this simple
Gerischer-Marcus model is that sox(E) and ered(E) turn out to be identical functions and
need no longer be distinguished. However, this will not necessarily be true for related
models including work terms and a precursor equilibrium.

The reorganization energy, A, has a large effect on the predicted current-potential
response, as shown in Figure 3.6.5. The top frame illustrates the situation for A = 0.3 eV,
a value near the lower limit found experimentally. For this reorganization energy, an
overpotential of —300 mV (case a) places the Fermi level opposite the peak of the state

-2

-3

-4

-5

-6

- .

_ERe° • ~

d — а ж к = а

Electrode States Solution States

Figure 3.6.5 Effect of A on kinetics in the
Gerischer-Marcus representation. Top:
A = 0.3 eV. Bottom: A = 1.5 eV. Both
diagrams are for species О and R at equal
concentrations, so that the Fermi level
corresponding to the equilibrium potential,
E F eq, is equal to the electron energy at the
standard potential, E° (dashed line). For
both frames, E° = -4.5 eV. Also shown in
each frame is the way in which the Fermi
level shifts with electrode potential. The
different Fermi levels are for (a) r] = -300
mV, (b) г] = +300 mV, (c) rj = -1000
mV, and (d) r) = +1000 mV. On the
solution side, Wo(\, E) and WR(X, E) are
shown with lighter and darker shading,
respectively.
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distribution for O; hence rapid reduction would be seen. Likewise, an overpotential of
+ 300 mV (case b) brings the Fermi level down to match the peak in the state distribu-
tion for R and enables rapid oxidation. An overpotential of -1000 mV (case c) creates
a situation in which WO(A, E) overlaps entirely with filled states on the electrode, and
for 7] = +1000 mV (case d), WR(\, E) overlaps only empty states on the electrode.
These latter two cases correspond to very strongly enabled reduction and oxidation,
respectively.

The lower frame of Figure 3.6.5 shows the very different situation for the fairly large
reorganization energy of 1.5 eV. In this case, an overpotential of —300 mV is not enough
to elevate the Fermi level into a condition where filled states on the electrode overlap
Wo(\, E), nor is an overpotential of +300 mV enough to lower the Fermi level into a
condition where empty states on the electrode overlap WR(A, E). It takes 77 ~ -1000 mV
to enable reduction very effectively, and 77 ~ +1000 mV to do the same for oxidation.
For this reorganization energy, the anodic and cathodic branches of the i-E curve would
be widely separated, much as shown in Figure 3.4.2c.

Since this formulation of heterogeneous kinetics in terms of overlapping state distrib-
utions is linked directly to the basic Marcus theory, it is not surprising that many of its
predictions are compatible with those of the previous two sections. The principal differ-
ence is that this formulation allows explicitly for contributions from states far from the
Fermi level, which can be important in reactions at semiconductor electrodes (Section
18.2) or involving bound monolayers on metals (Section 14.5.2).

3.6.4 Tunneling and Extended Charge Transfer

In the treatments discussed above, the reactant was assumed to be held at a fixed, short
distance, JC0, from the electrode. It is also of interest to consider whether a solution species
can undergo electron transfer at different distances from the electrode and how the elec-
tron-transfer rate might depend on distance and on the nature of the intervening medium.
The act of electron transfer is usually considered as tunneling of the electron between
states in the electrode and those on the reactant. Electron tunneling typically follows an
expression of the form:

Probability of tunneling °c ехр(-Дх) (3.6.37)

where x is the distance over which tunneling occurs, and /3 is a factor that depends upon
the height of the energy barrier and the nature of the medium between the states. For ex-
ample, for tunneling between two pieces of metal through vacuum (73)

/3 « 4тг(2тФ)1/2//г « 1.02 A" 1 eV~1/2 X Ф 1 / 2 (3.6.38)

where m is the mass of the electron, 9.1 X 10~28 g, and Ф is the work function of the
metal, typically given in eV. Thus for Pt, where Ф = 5.7 eV, /3 is about 2.4 A" 1 . Within
the electron-transfer theory, tunneling effects are usually incorporated by taking the trans-
mission coefficient, /<el, in (3.6.2) as

KeiW = ке1°ехр(-/ЗД (3.6.39)

where ке\(х) -> 1 when x is at the distance where the interaction of reactant with the elec-
trode is sufficiently strong for the reaction to be adiabatic (48, 49).

In electron-transfer theory, the extent of interaction or electronic coupling between
two reactants (or between a reactant and the electrode) is often described in terms of adia-
baticity. If the interaction is strong, there is a splitting larger than 6T in the energy curves
at the point of intersection (e.g., Figure 3.6.6a). It leads to a lower curve (or surface) pro-
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G°(q)

(a) (b)

Figure 3.6.6 Splitting of energy curves (energy surfaces) in the intersection region, (a) A strong
interaction between О and the electrode leads to a well-defined, continuous curve (surface)
connecting О + e with R. If the reacting system reaches the transition state, the probability is
high that it will proceed into the valley corresponding to R, as indicated by the curved arrow.
(b) A weak interaction leads to a splitting less than 4T. When the reacting system approaches the
transition state from the left, it has a tendency to remain on the О + е curve, as indicated by the
straight arrow. The probability of crossover to the R curve can be small. These curves are drawn for
an electrode reaction, but the principle is the same for a homogeneous reaction, where the reactants
and products might be О + R' and R + O', respectively.

ceeding continuously from О to R and an upper curve (or surface) representing an excited
state. In this situation of strong coupling, a system will nearly always stay on the lower
surface passing from О to R, and the reaction is said to be adiabatic. The probability of
reaction per passage approaches unity for an adiabatic reaction.

If the interaction is small (e.g,. when the reactants are far apart), the splitting of the
potential energy curves at the point of intersection is less than &T (Figure 3.6.6/?). In this
case, there is a smaller likelihood that the system will proceed from О to R. The reaction
is said to be nonadiabatic, because the system tends to stay on the original "reactant" sur-
face (or, actually, to cross from the ground-state surface to the excited-state surface). The
probability of reaction per passage through the intersection region is taken into account by
KQi < 1 (47, 48). For example, ке 1 could be 10~5, meaning that the reactants would, on the
average, pass through the intersection region (i.e., reach the transition state) 100,000
times for every successful reaction.

In considering dissolved reactants participating in a heterogeneous reaction, one can
treat the reaction as occurring over a range of distances, where the rate constant falls off
exponentially with distance. The result of such a treatment (48, 74) is that electron trans-
fer occurs over a region near the electrode, rather than only at a single position, such as
the outer Helmholtz plane. However, the effect for dissolved reactants should be observ-
able experimentally only under rather restricted circumstances (e.g., D < 10~10 cm2/s),
and is thus usually not important.

On the other hand, it is possible to study electron transfer to an electroactive species
held at a fixed distance (10-30 A) from the electrode surface by a suitable spacer, such as
an adsorbed monolayer (Section 14.5.2) (75, 76). One approach is based on the use of a
blocking monolayer, such as a self-assembled monolayer of an alkane thiol or an insulat-
ing oxide film, to define the distance of closest approach of a dissolved reactant to the
electrode. This strategy requires knowledge of the precise thickness of the blocking layer
and assurance that the layer is free of pinholes and defects, through which solution
species might penetrate (Section 14.5). Alternatively, the adsorbed monolayer may itself
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Electroactive Centers

Alkylthiol
chains

Gold Electrode

Figure 3.6.7 Schematic diagram of an
adsorbed monolayer of alkane thiol
containing similar molecules with
attached electroactive groups held by the
film at a fixed distance from the electrode
surface.

contain electroactive groups. A typical layer of this kind (75) involves an alkane thiol
(RSH) with a terminal ferrocene group (-Fc), that is, HS(CH2)nOOCFc (often written as
HSCnOOCFc; typically n = 8 to 18) (Figure 3.6.7). These molecules are often diluted in
the monolayer film with similar nonelectroactive molecules (e.g., HSC^CH3). The rate
constant is measured as a function of the length of the alkyl chain, and the slope of the
plot of ln(£) vs. nor x allows determination of /3.

For saturated chains, /3 is typically in the range 1 to 1.2 A"1 . The difference be-
tween this through-bond value and that for vacuum (through-space), ~ 2 A~ , reflects
the contribution of the molecular bonds to tunneling. Even smaller /3 values (0.4 to 0.6
A"1) have been seen with тг-conjugated molecules [e.g., those with phenyleneethynyl
(-Ph-C=C-) units] as spacers (77, 78). Confidence in the /3 values found in these elec-

trochemical studies is reinforced by the fact that they generally agree with those found

for long-range intramolecular electron transfer, such as in proteins.
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3.8 PROBLEMS

R =3.1 Consider the electrode reaction О + ne «^ R. Under the conditions that C R = C o = 1 mM,
k° = 10~7 cm/s, a = 0.3, and n = 1:
(a) Calculate the exchange current density, jo = IQ/A, in fiA/cm2.

(b) Draw a current density-overpotential curve for this reaction for currents up to 600 /лА/ст2 an-
odic and cathodic. Neglect mass-transfer effects.

(c) Draw log \j\ vs. 7) curves (Tafel plots) for the current ranges in (b).

3.2 A general expression for the current as a function of overpotential, including mass-transfer effects,
can be obtained from (3.4.29) and yields

expt-a/rj] - exp[(l - a)fr]]
1 ~ i | exp[- afq] exp[(l - a)frj\

(a) Derive this expression.

(b) Use a spreadsheet program to repeat the calculation of Problem 3.1, parts (b) and (c), including
the effects of mass transfer. Assume m0 - mR= 10~3 cm/s.

3.3 Use a spreadsheet program to calculate and plot current vs. potential and ln(current) vs. potential for
the general i-iq equation given in Problem 3.2.

(a) Show a table of results [potential, current, ln(current), overpotential] and graphs of / vs. 17 and
ln|/| vs. 7] for the following parameters: A = 1 cm2; C o = 1.0 X 10~3 mol/cm3; C R = 1.0 X
10"5 mol/cm3; n = 1; a = 0.5; k° = 1.0 X 10" 4

cm/s; m o= 0.01 cm/s; mR= 0.01 cm/s; E° = -0.5 V vs. NHE.

(b) Show the i vs. E curves for a range of k° values with the other parameters as in (a). At what val-
ues of к0 are the curves indistinguishable from nernstian ones?

(c) Show the / vs. E curves for a range of a values with the other parameters as in (a).

3.4 In most cases, the currents for individual processes are additive, that is, the total current, /t, is given
as the sum of the currents for different electrode reactions (/1? 12, /3, . . . ) . Consider a solution with a
Pt working electrode immersed in a solution of 1.0 M HBr and 1 mM K3Fe(CN)6. Assume the fol-
lowing exchange current densities:

H+/H 2

Br2/Br~

Fe(CN)^/Fe(CN)£-

70 = 10~3 A/cm2

j 0 = 10~2 A/cm2

j 0 = 4 X 10~5 A/cm2
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Use a spreadsheet program to calculate and plot the current-potential curve for this system
scanning from the anodic background limit to the cathodic background limit. Take the appro-
priate standard potentials from Table C.I and values for other parameters (ra0, a, . . . ) from
Problem 3.3.

3.5 Consider one-electron electrode reactions for which a = 0.50 and a = 0.10. Calculate the relative
error in current resulting from the use in each case of:
(a) The linear i—r) characteristic for overpotentials of 10, 20, and 50 mV.

(b) The Tafel (totally irreversible) relationship for overpotentials of 50, 100, and 200 mV.

3.6 According to G. Scherer and F. Willig [/. Electroanal Chem., 85, 77 (1977)] the exchange current
density, j 0 , for Pt/Fe(CN)^~ (2.0 mM), Fe(CN)^" (2.0 mM), NaCl (1.0 M) at 25°C is 2.0 mA/cm2.
The transfer coefficient, a, for this system is about 0.50. Calculate (a) the value of k°; (b)y'o for a so-
lution 1 M each in the two complexes; (c) the charge-transfer resistance of a 0.1 cm electrode in a
solution 10~4 M each in ferricyanide and ferrocyanide.

3.7 Berzins and Delahay [/. Am. Chem. Soc, 11, 6448 (1955)] studied the reaction

Cd 2 + + 2e ^ Cd(Hg)

and obtained the following data with Ccd(Hg) = ®'^® ^ :

CCd2+(mM) 1.0 0.50 0.25 0.10

;o (mA/cm2) 30.0 17.3 10.1 4.94

(a) Assume that the general mechanism in (3.5.8)-(3.5.10) applies. Calculate n' + a, and suggest
values for n', n'\ and a individually. Write out a specific chemical mechanism for the process.

(b) Calculate k%p.

(c) Compare the outcome with the analysis provided by Berzins and Delahay in their original
paper.

3.8 (a) Show that for a first-order homogeneous reaction,

A-IB

the average lifetime of A is l/kf.

(b) Derive an expression for the average lifetime of the species О when it undergoes the heteroge-
neous reaction,

Note that only species within distance d of the surface can react. Consider a hypothetical sys-
tem in which the solution phase extends only d (perhaps 10 A) from the surface,

(c) What value of kf would be needed for a lifetime of 1 ms? Are lifetimes as short as 1 ns possible?

3.9 Discuss the mechanism by which the potential of a platinum electrode becomes poised by immer-
sion into a solution of Fe(II) and Fe(III) in 1 M HCl. Approximately how much charge is required to
shift the electrode potential by 100 mV? Why does the potential become uncertain at low concentra-
tions of Fe(II) and Fe(III), even if the ratio of their concentrations is held near unity? Does this ex-
perimental fact reflect thermodynamic considerations? How well do your answers to these issues
apply to the establishment of potential at an ion-selective electrode?

3.10 In ammoniacal solutions ([NH3] ~ 0.05 M), Zn(II) is primarily in the form of the complex ion
Zn(NH3)3(OH)+ [hereafter referred to as Zn(II)]. In studying the electroreduction of this com-
pound to zinc amalgam at a mercury cathode, Gerischer [Z. Physik. Chem., 202, 302 (1953)]
found that

д log L д log L
0 • = 0.41 ± 0.03 — — | - ^ — = 0.65 ± 0.03<Hog[Zn(II)] * ~ • <Hog[NH3]

д log in д log in
— = -0.28 ±0.02 t *L°, = 0.57 ± 0.03

] д log [Zn]
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where [Zn] refers to a concentration in the amalgam.

(a) Give the equation for the overall reaction.

(b) Assume that the process occurs by the following mechanism:
HgHg

Zn(II) + e i^Zn(I) + i/1>NH NH3 + ^ 1 O H - O H (fast pre-reactions)

Zn(I) + ^ Zn(Hg) + i>2,NH NH3 + F 2 , O H ~ O H (rate-determining step)

where Zn(I) stands for a zinc species of unknown composition in the +1 oxidation state, and
the v's are stoichiometric coefficients. Derive an expression for the exchange current analogous
to (3.5.40), and find explicit relationships for the logarithmic derivatives given above.

(b) Calculate a and all stoichiometric coefficients.

(c) Identify Zn(I) and write chemical equations to give a mechanism consistent with the data.

(d) Consider an alternative mechanism having the pattern above, but with the first step being rate-
determining. Is such a mechanism consistent with the observations?

3.11 The following data were obtained for the reduction of species R to R~ in a stirred solution at a 0.1
cm2 electrode; the solution contained 0.01 M R and 0.01 M R~.

7j(mV): -100 -120 -150 -500 -600

i(jiA): 45.9 62.6 100 965 965

Calculate: /0, k°, a, Rcb //, ra0, Rmt

3.12 From results in Figure 3.4.5 for 10~2 M Mn(III) and 10~2 M Mn(IV), estimate j 0 and k°. What is the
predicted j 0 for a solution 1 M in both Mn(III) and Mn(IV)?

3.13 The magnitude of the solvent term (1/гор - l/ss) is about 0.5 for most solvents. Calculate the value
of Лo and the free energy of activation (in eV) due only to solvation for a molecule of radius 4.0 A
spaced 7 A from an electrode surface.

3.14 Derive (3.6.30).

3.15 Show from the equations for DO(E, Л) and DR(E, Л) that the equilibrium energy of a system, E e q, is
related to the bulk concentrations, CQ and C R and E° by an expression resembling the Nernst equation.
How does this expression differ from the Nernst equation written in terms of potentials, Ещ and £°?
How do you account for the difference?

3.16 Derive (3.6.36) by considering the reaction О + e ±± R at equilibrium in a system with bulk con-
centrations CQ and C R .



CHAPTER

4
MASS TRANSFER
BY MIGRATION
AND DIFFUSION

4.1 DERIVATION OF A GENERAL MASS
TRANSFER EQUATION

In this section, we discuss the general partial differential equations governing mass trans-
fer; these will be used frequently in subsequent chapters for the derivation of equations
appropriate to different electrochemical techniques. As discussed in Section 1.4, mass
transfer in solution occurs by diffusion, migration, and convection. Diffusion and migra-
tion result from a gradient in electrochemical potential, JL. Convection results from an im-
balance of forces on the solution.

Consider an infinitesimal element of solution (Figure 4.1.1) connecting two points in
the solution, r and s, where, for a certain species j , Jip) Ф ^(s). This difference of ^
over a distance (a gradient of electrochemical potential) can arise because there is a differ-
ence of concentration (or activity) of species у (a concentration gradient), or because there
is a difference of ф (an electric field or potential gradient). In general, a flux of species j
will occur to alleviate any difference of /Zj. The flux, Jj (mol s ^ c m " 2 ) , is proportional to
the gradient of /xj:

Jj oc grad^uj or Jj oc V)itj (4.1.1)

where grad or V is a vector operator. For linear (one-dimensional) mass transfer, V =
i(d/dx)9 where i is the unit vector along the axis and x is distance. For mass transfer in a
three-dimensional Cartesian space,

V = i | - + j | - + k | - (4.1.2)
dx J dy dz

Point s
Point r #

(a) (b)

Figure 4.1.1 A gradient of electrochemical potential.
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The constant of proportionality in (4.1.1) turns out to be —CJO>^IRT\ thus,

For linear mass transfer, this is

(4.1.3)

(4.1.4)

The minus sign arises in these equations because the direction of the flux opposes the di-
rection of increasing ~jl-

If, in addition to this ~jx gradient, the solution is moving, so that an element of solution
[with a concentration C}(s)\ shifts from s with a velocity v, then an additional term is
added to the flux equation:

For linear mass transfer,

CD

IF

(4.1.5)

(4.1.6)

Taking cij ~ Cj, we obtain the Nernst-Planck equations, which can be written as

^-(RT In С д + ~-(z:F<£) +Cv(x) (4.1.7)

or in general,

/j(A) С # W 1 С (4.1.8)

(4.1.9)

In this chapter, we are concerned with systems in which convection is absent. Con-
vective mass transfer will be treated in Chapter 9. Under quiescent conditions, that is, in
an unstirred or stagnant solution with no density gradients, the solution velocity, v, is
zero, and the general flux equation for species j , (4.1.9), becomes

For linear mass transfer, this is

dCfx)
dx

D J C

RT » Л dx

(4.1.10)

(4.1.11)

where the terms on the right-hand side represent the contributions of diffusion and migra-
tion, respectively, to the total mass transfer.

If species У is charged, then the flux, /j, is equivalent to a current density. Let us con-
sider a linear system with a cross-sectional area, A, normal to the axis of mass flow. Then,
/j (mol s" 1 cm" 2) is equal to —Ц/ZJFA [C/s per (C mol" 1 cm2)], where ц is the current
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component at any value of x arising from a flow of species j . Equation 4.1.11 can then be
written as

(4.1.12)J ¥A ¥A

with

ЯГ

(4.1.13)

(4.1.14)

where /^j and /mj are diffusion and migration currents of species 7, respectively.
At any location in solution during electrolysis, the total current, i, is made up of con-

tributions from all species; that is,

or

F2A (4.1.16)

where the current for each species at that location is made up of a migrational component
(first term) and a diffusional component (second term).

We will now discuss migration and diffusion in electrochemical systems in more de-
tail. The concepts and equations derived below date back to at least the work of Planck
(1). Further details concerning the general problem of mass transfer in electrochemical
systems can be found in a number of reviews (2-6).

4.2 MIGRATION

In the bulk solution (away from the electrode), concentration gradients are generally
small, and the total current is carried mainly by migration. All charged species contribute.
For species j in the bulk region of a linear mass-transfer system having a cross-sectional
area А, ц = /mj or

H = ~^f Tx (4-2.1)

The mobility of species y, defined in Section 2.3.3, is linked to the diffusion coefficient by
the Einstein-Smoluchowski equation:

"i RT
(4.2.2)

hence ц can be reexpressed as

ij = |zj|FAwjCj^ (4.2.3)

For a linear electric field,

d4z = ^ r (4.2.4)



140 Chapter 4. Mass Transfer by Migration and Diffusion

where Д£// is the gradient (V/cm) arising from the change in potential AE over distance /.
Thus,

\z;\FAuiCiAE
1 ( 4 . 2 . 5 )

J /

and the total current in bulk solution is given by

j J

which is (4.1.16) expressed in particular for this situation. The conductance of the solu-
tion, L {ОГ1), which is the reciprocal of the resistance, R (£1), is given by Ohm's law,

where к, the conductivity (П * cm l; Section 2.3.3) is given by

к = / r2l2jlMjCj (4.2.8)
j

Equally, one can write an equation for the solution resistance in terms of p, the resistivity
(fl-cm), where p = 1/к:

R = j (4.2.9)

The fraction of the total current that a given ion7 carries is Ц, the transference number
of 7, given by

ti=J7 = (4.2.10)

See also equations 2.3.11 and 2.3.18.

4.3 MIXED MIGRATION AND DIFFUSION NEAR AN
ACTIVE ELECTRODE

The relative contributions of diffusion and migration to the flux of a species (and of the
flux of that species to the total current) differ at a given time for different locations in
solution. Near the electrode, an electroactive substance is, in general, transported by
both processes. The flux of an electroactive substance at the electrode surface controls
the rate of reaction and, therefore, the faradaic current flowing in the external circuit
(see Section 1.3.2). That current can be separated into diffusion and migration currents
reflecting the diffusive and migrational components to the flux of the electroactive
species at the surface:

i = id + *m (4.3.1)

Note that /m and i$ may be in the same or opposite directions, depending on the direction of
the electric field and the charge on the electroactive species. Examples of three reductions—
of a positively charged, a negatively charged, and an uncharged substance—are shown in
Figure 4.3.1. The migrational component is always in the same direction as id for cationic
species reacting at cathodes and for anionic species reacting at anodes. It opposes id when
anions are reduced at cathodes and when cations are oxidized at anodes.
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Cu2 + + 2e -> Cu Cu(CN)J~ + 2e -> Cu + 4CN'

0

Cu2

0

Cu(CN)J"

Cu(CN)2 + 2e -» Cu + 2CN~

Cu(CN)2

0

{a) i = id + \im\ {b) i = id - \im\ (c) i = id

Figure 4.3.1 Examples of reduction processes with different contributions of the migration
current: (a) positively charged reactant, (b) negatively charged reactant, (c) uncharged reactant.

For many electrochemical systems, the mathematical treatments are simplified if the
migrational component to the flux of the electroactive substance is made negligible. We
discuss in this section the conditions under which that approximation holds. The topic is
discussed in greater depth in references 7-10.

4.3.1 Balance Sheets for Mass Transfer During Electrolysis

Although migration carries the current in the bulk solution during electrolysis, diffusional
transport also occurs in the vicinity of the electrodes, because concentration gradients of
the electroactive species arise there. Indeed, under some circumstances, the flux of elec-
troactive species to the electrode is due almost completely to diffusion. To illustrate these
effects, let us apply the "balance sheet" approach (11) to transport in several examples.

Example 4.1
Consider the electrolysis of a solution of hydrochloric acid at platinum electrodes (Fig-
ure 4.3.2a). Since the equivalent ionic conductance of H + , Л+, and of Cl~, A_, relate
as Л+ ~ 4A_, then from (4.2.10), t+ = 0.8 and t- = 0.2. Assume that a total current
equivalent to lOe per unit time is passed through the cell, producing five H2 molecules

0.,.,©

i Э
- Pt/H+, CI7Pt

(a)

(Cathode) (p\

^0e

10H+-

8H+

2СГ

diffusion

2H+

2СГ

diffusion

8СГ

8H+

© (Anode)

10СГ-10е-
-10СГ

>5CI2

Figure 4.3.2 Balance
sheet for electrolysis of
hydrochloric acid solution.
(a) Cell schematic, (b)
Various contributions to
the current when lOe are
passed in the external
circuit per unit time.

(b)
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at the cathode and five Cl2 molecules at the anode. (Actually, some O 2 could also be
formed at the anode; for simplicity we neglect this reaction.) The total current is car-
ried in the bulk solution by the movement of 8H+ toward the cathode and 2C1~ toward
the anode (Figure 4.3.2b). To maintain a steady current, 10 H + must be supplied to the
cathode per unit time, so an additional 2H + must diffuse to the electrode, bringing
along 2CF to maintain electroneutrality. Similarly at the anode, to supply 10 Cl~ per
unit time, 8C1~ must arrive by diffusion, along with 8H + . Thus, the different currents
(in arbitrary e -units per unit time) are: for H + , i& — 2, /m = 8; for Cl~, i& = 8, /m = 2.
The total current, /, is 10. Equation 4.3.1 holds, with migration in this case being in the
same direction as diffusion.

For mixtures of charged species, the fraction of current carried by the 7th species is Ц\
and the amount of the total current, /, carried by theyth species is t}i. The number of moles
of the 7th species migrating per second is tf/zjF. If this species is undergoing electrolysis,
the number of moles electrolyzed per second is \tji\/nF, while the number of moles arriv-
ing at the electrode per second by migration is ± im/nF, where the positive sign applies to
reduction of 7, and the negative sign pertains to oxidation. Thus,

/ td
±J^ = -1= (4.3.2)

nF zf
or

im=±\t-j (4.3.3)

From equation 4.3.1,

(4-3.4)

(4.3.5)

where the minus sign is used for cathodic currents and the positive sign for anodic cur-
rents. Note that both / and z} are signed.

In this simplified treatment, we assume that the transference numbers are essentially
the same in the bulk solution and in the diffusion layer near an electrode. This will be true
when the concentrations of ions in the solution are high, so that only small fractional
changes in local concentration are caused by the electrolytic generation or removal of
ions. This condition is met in most experiments. If the electrolysis significantly perturbs
the ionic concentrations in the diffusion layer compared to those in the bulk solution, the
Ц values clearly will differ, as shown by equation 4.2.10 (12).

Example 42
Consider the electrolysis of a solution of 10" 3 M Cu(NH 3) |+, 10" 3 M Cu(NH3)J, and 3
X 10~3 M Cl~ in 0.1 M NH3 at two Hg electrodes (Figure 43.3a). Assuming the limiting
equivalent conductances of all ions are equal, that is,

^Cu(II) = ^Cu(I) = ^ C l - = ^ (4.3.6)

we obtain the following transference numbers from (4.2.10): fcu(ii) = 1/3, ĉu(i) = 1/6 and
*ci~ = 1/2- With an arbitrary current of 6e per unit time being passed, the migration cur-
rent in bulk solution is carried by movement of one Cu(II) and one Cu(I) toward the cath-
ode, and three Cl~ toward the anode. The total balance sheet for this system is shown in
Figure 4.3.3/7. At the cathode, one-sixth of the current for the electrolysis of Cu(II) is pro-
vided by migration and five-sixths by diffusion. The NH3, being uncharged, does not con-
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-Hg/Cu(NH3)4CI2(1 (Г 3 М), Cu(NH3)2 С1(1(Г3М), NH3 (0.1 M)/Hg-

(a)

(Cathode)

6Cu(II) + 6e -» 6Cu(I)
6Cu(II)

6Cu(I)

6Cu(II)

6Cu(I)

3 d "

diffusion

5Cu(II)

7Cu(I)

ЗСГ

diffusion

5Cu(II)

7Cu(I)

ЗСГ

Q (Anode)

6CU(I) - 6e -> 6CU(II)

Figure 4.3.3 Balance sheet for electrolysis of the Си(П), Cu(I), NH3 system, (a) Cell schematic.
(b) Various contributions to the current when 6e are passed in the external circuit per unit time;
/ = 6, n = 1. For Cu(II) at the cathode, |im | = (l/2)(l/3)(6) = 1 (equation 4.3.3), /d = 6 - 1 = 5
(equation 4.3.4). For Cu(I) at the anode, |/J = (l/l)(l/6)(6) = 1, /d = 6 + 1 = 7.

tribute to the carrying of the current, but serves only to stabilize the copper species in the
+1 and +2 states. The resistance of this cell would be relatively large, since the total con-
centration of ions in the solution is small.

4.3.2 Effect of Adding Excess Electrolyte

Example 43
Let us consider the same cell as in Example 4.2, except with the solution containing 0.10
M NaClO4 as an excess electrolyte (Figure 4.3.4a). Assuming that ANa+ = А с ю ^ = »̂
we obtain the following transference numbers: tNa+ = ^107 » = 0.485, fcu(n) = 0.0097,
*Cu(D = °- 0 0 4 8 5> 'ci- = 0.0146. The Na + and СЮ4 do not participate in the electron-
transfer reactions; but because their concentrations are high, they carry 97% of the
current in the bulk solution. The balance sheet for this cell (Figure 4.3.4Z?) shows that
most of the Cu(II) now reaches the cathode by diffusion, and only 0.5% of the total
flux is by migration.

Thus, the addition of an excess of nonelectroactive ions (a supporting electrolyte)
nearly eliminates the contribution of migration to the mass transfer of the electroactive
species. In general, it simplifies the mathematical treatment of electrochemical systems by
elimination of the Чф or дф/дх term in the mass transport equations (e.g., equations 4.1.10
and 4.1.11).

In addition to minimizing the contribution of migration, the supporting electrolyte
serves other important functions. The presence of a high concentration of ions decreases
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• Hg/Cu(NH3)4CI2(10~3 M), Cu(NH3)2 CI(10~3 M)/Hg -

NH3 (0.1 M), NaCIO4 (0.10 M)

Ions in cell:
Cu(NH3)f (10-3M), Cu(NH3)2 (10-3M),

СГ(3 x 10~3 M), Na+ (0.1 M), CIO4 (0.1 M)

Э

(Cathode) Г\

6e

6Cu(II) + 6e -» 6Cu(I)
6Cu(II)

6Cu(I)

2.91 Na+

2.91 CIO7

0.0291 Cu(II)

0.0291 Cu(I)

0.0873 СГ

diffusion

5.97Cu(II)

2.92Na+

2.92CIO4

diffusion

5.97Cu(II)

6.029Cu(I)

2.92Na+

2.92CIO4

Q (Anode)

6Cu(I) - 6e -> 6Cu(II)

(b)

Figure 4.3.4 Balance sheet for the system in Figure 4.3.3, but with excess NaC104 as a supporting
electrolyte, (a) Cell schematic, (b) Various contributions to the current when 6e are passed in the
external circuit per unit time (/ = 6, n = 1). fCu(II) = [(2 X 10 ~3) A/(2 X 1(Г3 + 1(Г3 + 3 X 1(Г3

0.2)Л] = 0.0097. For Си(П) at the cathode, |/J = (l/2)(0.0097)(6) = 0.03, id = 6 - 0.03 = 5.97.

the solution resistance, and hence the uncompensated resistance drop, between the work-
ing and reference electrodes (Section 1.3.4). Consequently, the supporting electrolyte al-
lows an improvement in the accuracy with which the working electrode's potential is
controlled or measured (Chapter 15). Improved conductivity in the bulk of the solution
also reduces the electrical power dissipated in the cell and can lead to important simplifi-
cations in apparatus (Chapters 11 and 15). Beyond these physical benefits are chemical
contributions by the supporting electrolyte, for it frequently establishes the solution com-
position (pH, ionic strength, ligand concentration) that controls the reaction conditions
(Chapters 5, 7, 11, and 12). In analytical applications, the presence of a high concentra-
tion of electrolyte, which is often also a buffer, serves to decrease or eliminate sample ma-
trix effects. Finally, the supporting electrolyte ensures that the double layer remains thin
with respect to the diffusion layer (Chapter 13), and it establishes a uniform ionic strength
throughout the solution, even when ions are produced or consumed at the electrodes.

Supporting electrolytes also bring some disadvantages. Because they are used in
such large concentrations, their impurities can present serious interferences, for example,
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Figure 4.3.5 Voltammograms for reduction of 0.65 mM T12SO4 at a mercury film on a silver
ultramicroelectrode (radius, 15 jam) in the presence of (a) 0, (b) 0.1, (c) 1, and (d) 100 mM LiClO4.
The potential was controlled vs. a Pt wire QRE whose potential was a function of solution
composition. This variability is the basis for the shifts in wave position along the potential axis.
[Reprinted with permission from M. Ciszkowska and J. G. Osteryoung, Anal. С hem., 67, 1125
(1995). Copyright 1995, American Chemical Society.]

by giving rise to faradaic responses of their own, by reacting with the intended product
of an electrode process, or by adsorbing on the electrode surface and altering kinetics.
Also, a supporting electrolyte significantly alters the medium in the cell, so that its prop-
erties differ from those of the pure solvent. The difference can complicate the compari-
son of results obtained in electrochemical experiments (e.g., thermodynamic data) with
data from other kinds of experiments where pure solvents are typically employed.

Most electrochemical studies are carried out in the presence of a supporting elec-
trolyte selected for the solvent and electrode process of interest. Many acids, bases, and
salts are available for aqueous solutions. For organic solvents with high dielectric con-
stants, like acetonitrile and N,N-dimethylformamide, normal practice is to employ tetra-
л-alkylammonium salts, such as, Bu4NBF4 and Et4NClO4 (Bu = «-butyl, Et = ethyl).
Studies in low-dielectric solvents like benzene inevitably involve solutions of high re-
sistance, because most ionic salts do not dissolve in them to an appreciable extent. In
solutions of salts that do dissolve in apolar media, such as Hx4NC104 (where Hx = n-
hexyl), ion pairing is extensive.

Studies in very resistive solutions require the use of UMEs, which usually pass low
currents that do not give rise to appreciable resistive drops (see Section 5.9.2). The effect
of supporting electrolyte concentration on the limiting steady-state current at UMEs has
been treated (12-14). Typical results, shown in Figure 4.3.5, illustrate how the limiting
current for reduction of Tl + to the amalgam at a mercury film decreases with an increase
in LiClO4 concentration (15). The current in the absence of LiClO4, or at very low con-
centrations, is appreciably larger than at high concentrations, because migration of the
positively charged T1(I) species to the cathode enhances the current. At high LiClO4 con-
centrations, Li+ migration replaces that of Tl+, and the observed current is essentially a
pure diffusion current. A similar example involving the polarography of Pb(II) with
KNO3 supporting electrolyte was given in the first edition.1

1 First edition, p. 127.
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P 4.4 DIFFUSION

As we have just seen, it is possible to restrict mass transfer of an electroactive species
near the electrode to the diffusive mode by using a supporting electrolyte and operating in
a quiescent solution. Most electrochemical methods are built on the assumption that such
conditions prevail; thus diffusion is a process of central importance. It is appropriate that
we now take a closer look at the phenomenon of diffusion and the mathematical models
describing it (16-19).

4.4.1 A Microscopic View—Discontinuous Source Model

Diffusion, which normally leads to the homogenization of a mixture, occurs by a "random
walk" process. A simple picture can be obtained by considering a one-dimensional ran-
dom walk. Consider a molecule constrained to a linear path and, buffeted by solvent mol-
ecules undergoing Brownian motion, moving in steps of length, /, with one step being
made per unit time, r. We can ask, "Where will the molecule be after a time, ft" We can
answer only by giving the probability that the molecule will be found at different loca-
tions. Equivalently, we can envision a large number of molecules concentrated in a line at
t = 0 and ask what the distribution of molecules will be at time t. This is sometimes called
the "drunken sailor problem," where we envision a very drunk sailor emerging from a bar
(Figure 4.4.1) and staggering randomly left and right (with a stagger-step size, /, one step
every т seconds). What is the probability that the sailor will get down the street a certain
distance after a certain time tl

In a random walk, all paths that can be traversed in any elapsed period are equally
likely; hence the probability that the molecule has arrived at any particular point is simply
the number of paths leading to that point divided by the total of possible paths to all ac-
cessible points. This idea is developed in Figure 4.4.2. At time т, it is equally likely that
the molecule is at +/ and -/; and at time 2т, the relative probabilities of being at +2/, 0,
and —2/, are 1, 2, and 1, respectively.

The probability, P(m, r), that the molecule is at a given location after m time units (m
= t/т) is given by the binomial coefficient

^h$" (4A1)

where the set of locations is defined by x = (—m + 2r)/, with r = 0, 1 , . . . m. The mean
square displacement of the molecule, Д1, can be calculated by summing the squares of the
displacements and dividing by the total number of possibilities (2m). The squares of the
displacements are used, just as when one obtains the standard deviation in statistics, be-
cause movement is possible in both the positive and negative directions, and the sum of
the displacements is always zero. This procedure is shown in Table 4.4.1. In general, Д2 is
given by

~~ * (4.4.2)

Figure 4.4.1 The one-
dimensional random-walk

I | \ | | or "drunken sailor
-4/ -3/ -2/ -i о +/ +2/ +3/ +4/ problem."
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Figure 4.4.2 (a) Probability
distribution for a one-dimensional
random walk over zero to four time
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where the diffusion coefficient, D, identified as /2/2r, is a constant related to the step size
and step frequency.2 It has units of Iength2/time, usually cm2/s. The root-mean-square dis-
placement at time t is thus

= V2Dt (4.4.3)

This equation provides a handy rule of thumb for estimating the thickness of a diffu-
sion layer (e.g., how far product molecules have moved, on the average, from an electrode
in a certain time). A typical value of D for aqueous solutions is 5 X 10~6 cm2/s, so that a
diffusion layer thickness of 10~4 cm is built up in 1 ms, 10~3 cm in 0.1 s, and 10~2 cm in
10 s. (See also Section 5.2.1.)

As m becomes large, a continuous form of equation 4.4.1 arises. For No molecules lo-
cated at the origin at t = 0, a Gaussian curve will describe the distribution at some later

TABLE 4.4.1 Distributions for a Random Walk Process0
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= 2°)
= 2')
= 22)
= 23)
= 24)

Д с

0
±/(1)
0(2), ±
±/(3), :
0(6), ±
±4/(1)

2/(1)
t 3/(1)
2/(4),

S Д

0

г/2

S/2

24/2
64/2

mnl\

F = ISA2

0
/2

2/2

3/2

4/2

= m2m/2) ml2

al = step size, 1/r = step frequency, t = mr = time interval.
bn = total number of possibilities.
CA = possible positions; relative probabilities are parenthesized.

2This concept of D was derived by Einstein in another way in 1905. Sometimes D is given as//2/2, where/is
the number of displacements per unit time (= 1/r).
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time, t. The number of molecules, N(x, t), in a segment Ax wide centered on position x is
(20)

«*•»- **,(=£) .4.4.4,

A similar treatment can be applied to two- and three-dimensional random walks, where
the root-mean-square displacements are (4Dt)l/2 and (6Dt)l/2, respectively (19, 21).

It may be instructive to develop a more molecular picture of diffusion in a liquid by
considering the concepts of molecular and diffusional velocity (21). In a Maxwellian gas,
a particle of mass m and average one-dimensional velocity, vx, has an average kinetic en-
ergy of l/2rnv2. This energy can also be shown to be 4T/2, (22, 23); thus the average mole-
cular velocity is vx = (6T/m)m. For an O2 molecule (m = 5 X 10~23 g) at 300 K, one
finds that vx = 3 X 104 cm/s. In a liquid solution, a velocity distribution similar to that of
a Maxwellian gas may apply; however, a dissolved O2 molecule can make progress in a
given direction at this high velocity only over a short distance before it collides with a
molecule of solvent and changes direction. The net movement through the solution by the
random walk produced by repeated collisions is much slower than vx and is governed by
the process described above. A "diffusional velocity," u^, can be extracted from equation
4.4.3 as

vd = A/t = (2D/t)l/2 (4.4.5)

There is a time dependence in this velocity because a random walk greatly favors small
displacements from a starting point vs. large ones.

The relative importance of migration and diffusion can be gauged by comparing ud

with the steady-state migrational velocity, v, for an ion of mobility щ in an electric field
(Section 2.3.3). By definition, v = uY%, where % is the electric field strength felt by the
ion. From the Einstein-Smoluchowski equation, (4.2.2),

v = \z{\ FDfflRT (4.4.6)

When v « L?d, diffusion of a species dominates over migration at a given position and
time. From (4.4.5) and (4.4.6), we find that this condition holds when

2D\112

RTl\z{\F

which can be rearranged to

(2Д/)1/2 % « 2 -Щ- (4.4.8)

where the left side is the diffusion length times the field strength, which is also the voltage
drop in the solution over the length scale of diffusion. To ensure that migration is negligi-
ble compared to diffusion, this voltage drop must be smaller than about 2RTl\z-^F, which
is 51.4/|z}| mV at 25°C. This is the same as saying that the difference in electrical potential
energy for the diffusing ion must be smaller than a few 4T over the length scale of diffu-
sion.

4.4.2 Fick's Laws of Diffusion

Fick's laws are differential equations describing the flux of a substance and its concentra-
tion as functions of time and position. Consider the case of linear (one-dimensional) diffu-
sion. The flux of a substance О at a given location x at a time t, written as JQ{X, t), is the
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net mass-transfer rate of O, expressed as amount per unit time per unit area (e.g., mol s l

cm~2). Thus Jo(x, i) represents the number of moles of О that pass a given location per
second per cm2 of area normal to the axis of diffusion.

Fick's first law states that the flux is proportional to the concentration gradient,
дСо/дх:

-Jo(x, t) = Do

dC0(x, t)

dx (4.4.9)

This equation can be derived from the microscopic model as follows. Consider location x,
and assume NQ(X) molecules are immediately to left of x, and NQ(X + Дл:) molecules are
immediately to the right, at time t (Figure 4.4.3). All of the molecules are understood to
be within one step-length, Ax, of location x. During the time increment, Д*, half of them
move Ax in either direction by the random walk process, so that the net flux through an
area A at x is given by the difference between the number of molecules moving from left
to right and the number moving from right to left:

No(x) No(x + Ax)

Jo(x,t) = ±-
At

(4.4.10)

Multiplying by Дх /Ax and noting that the concentration of О is C o = No/AAx, we de-
rive

-Jo(x, i) =
2At Ax

(4.4.11)

From the definition of the diffusion coefficient, (4.4.2), Do = Ax2/2At, and allowing Ax
and Д По approach zero, we obtain (4.4.9).

Fick's second law pertains to the change in concentration of О with time:

(4.4.12)

This equation is derived from the first law as follows. The change in concentration at a lo-
cation x is given by the difference in flux into and flux out of an element of width dx (Fig-
ure 4.4.4).

dCo(x, i) J(x, t) - J(x + dx, t)

dt dx
(4.4.13)

Note that J/dx has units of (mol s l cm 2)/cm or change in concentration per unit time, as
required. The flux at x + dx can be given in terms of that at x by the general equation

J(x + dx, t) = J(x, t) +
dx

(4.4.14)

N0(x) ^ ~ ~

2

No (x + Ax)

No (x + Ax)

2
— ^

Figure 4.4.3 Fluxes at plane x
in solution.
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dx

J0 (X, t) JQ (x + dx, t)

x + dx

Figure 4.4.4 Fluxes into and
out of an element at x.

and from equation 4.4.9 we obtain

_ dJ(x, t)
dx

d
dx'

x, t)
dx

Combination of equations 4.4.13 to 4.4.15 yields

(4.4.15)

(4.4.16)

When Do is not a function of x, (4.4.12) results.
In most electrochemical systems, the changes in solution composition caused by elec-

trolysis are sufficiently small that variations in the diffusion coefficient with x can be ne-
glected. However when the electroactive component is present at a high concentration,
large changes in solution properties, such as the local viscosity, can occur during electrol-
ysis. For such systems, (4.4.12) is no longer appropriate, and more complicated treat-
ments are necessary (24, 25). Under these conditions, migrational effects can also become
important.

We will have many occasions in future chapters to solve (4.4.12) under a variety of
boundary conditions. Solutions of this equation yield concentration profiles, CQ(X, t).

The general formulation of Fick's second law for any geometry is

dt
= DOV2CC (4.4.17)

where V2 is the Laplacian operator. Forms of V2 for different geometries are given in
Table 4.4.2. Thus, for problems involving a planar electrode (Figure 4.4.5a), the linear
diffusion equation, (4.4.12), is appropriate. For problems involving a spherical electrode

TABLE 4.4.2 Forms of the Laplacian Operator for Different Geometries'*

Type

Linear
Spherical
Cylindrical (axial)
Disk
Band

Variables V2

x д2/дх2

r d2/dr2 ^
г д2/дг2 Н
r, z д2/дг2 Н
x, z д2/дх2 -

- (2/r)(d/dr)
h (l/r)(d/dr)
- (l/r)(d/dr) H
f a2/az2

Example

Shielded disk electrode
Hanging drop electrode
Wire electrode

- d2/dz2 Inlaid disk ultramicroelectrode^
Inlaid band electrode6

aSee also J. Crank, "The Mathematics of Diffusion," Clarendon, Oxford, 1976.
r = radial distance measured from the center of the disk; z = distance normal to the disk surface.

cx — distance in the plane of the band; z = distance normal to the band surface.
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Figure 4.4.5 Types of diffusion
occurring at different electrodes.
(a) Linear diffusion to a planar
electrode, (b) Spherical diffusion
to a hanging drop electrode.

(Figure 4.4.5b), such as the hanging mercury drop electrode (HMDE), the spherical form
of the diffusion equation must be employed:

(4.4.18)

The difference between the linear and spherical equations arises because spherical diffu-
sion takes place through an increasing area as r increases.

Consider the situation where О is an electroactive species transported purely by dif-
fusion to an electrode, where it undergoes the electrode reaction

О + ne <± R (4.4.19)

If no other electrode reactions occur, then the current is related to the flux of О at the elec-
trode surface (x = 0), /Q(0, t), by the equation

(4.4.20)

because the total number of electrons transferred at the electrode in a unit time must be
proportional to the quantity of О reaching the electrode in that time period. This is an ex-
tremely important relationship in electrochemistry, because it is the link between the
evolving concentration profile near the electrode and the current flowing in an electro-
chemical experiment. We will draw upon it many times in subsequent chapters.

If several electroactive species exist in the solution, the current is related to the sum
of their fluxes at the electrode surface. Thus, for q reducible species,

q q

(4.4.21)i

FA 2
k = l

k=l

4.4.3 Boundary Conditions in Electrochemical Problems

In solving the mass-transfer part of an electrochemical problem, a diffusion equation (or, in
general, a mass-transfer equation) is written for each dissolved species (O, R , . . . ) . The so-
lution of these equations, that is, the discovery of an equation expressing CQ,
CR, . . . as functions of л: and t, requires that an initial condition (the concentration profile at
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t = 0) and two boundary conditions (functions applicable at certain values of x) be given
for each diffusing species. Typical initial and boundary conditions include the following.

(a) Initial Conditions
These are usually of the form

Co(x,0)=f(x) (4.4.22)

For example, if О is uniformly distributed throughout the solution at a bulk concentration
CQ at the start of the experiment, the initial condition is

Co(Jt, 0) = Cg (for all x) (4.4.23)

If R is initially absent from the solution, then

CR(JC, 0) = 0 (for all x) (4.4.24)

(b) Semi-infinite Boundary Conditions
The electrolysis cell is usually large compared to the length of diffusion; hence the so-
lution at the walls of the cell is not altered by the process at the electrode (see Section
5.2.1). One can normally assume that at large distances from the electrode (x —> °°) the
concentration reaches a constant value, typically the initial concentration, so that, for
example,

lim Co(x9 t) =C% (at all 0 (4.4.25)

lim CR(JC, t) = 0 (at all t) (4.4.26)

For thin-layer electrochemical cells (Section 11.7), where the cell wall is at a distance, /,
of the order of the diffusion length, one must use boundary conditions at x = I instead of
those for лс—> °°.

(c) Electrode Surface Boundary Conditions
Additional boundary conditions usually relate to concentrations or concentration gradi-
ents at the electrode surface. For example, if the potential is controlled in an experiment,
one might have

Co(0,t)=f(E) (4.4.27)

where f(E) is some function of the electrode potential derived from the general current-
potential characteristic or one of its special cases (e.g., the Nernst equation).

If the current is the controlled quantity, the boundary condition is expressed in terms
of the flux at x = 0; for example,

F H L <4A29)

The conservation of matter in an electrode reaction is also important. For example,
when О is converted to R at the electrode and both О and R are soluble in the solution
phase, then for each О that undergoes electron transfer at the electrode, an R must be pro-
duced. Consequently, /o(0, t) = - / R ( 0 , t), and

r<?CR(jt O l
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4.4.4 Solution of Diffusion Equations

In the chapters that follow, we will examine the solution of the diffusion equations under
a variety of conditions. The analytical mathematical methods for attacking these problems
are discussed briefly in Appendix A. Numerical methods, including digital simulations
(Appendix B), are also frequently employed.

Sometimes one is interested only in the steady-state solution (e.g., with rotating disk
electrodes or ultramicroelectrodes). Since dC0/dt = 0 in such a situation, the diffusion
equation simply becomes

V 2Co = 0 (4.4.31)

Occasionally, solutions can be found by searching the literature concerning analo-
gous problems. For example, the conduction of heat involves equations of the same form
as the diffusion equation (26, 27);

дТ/dt = a^2T (4.4.32)

where T is the temperature, and ax = к/ps (к = thermal conductivity, p = density, and s
= specific heat). If one can find the solution of a problem of interest in terms of the tem-
perature distribution, such as, T(x, t), or heat flux, one can easily transpose the results to
give concentration profiles and currents.

Electrical analogies also exist. For example, the steady-state diffusion equation,
(4.4.31), is of the same form as that for the potential distribution in a region of space not
occupied by electrically charged bodies (Laplace's equation),

V2<£ = 0 (4.4.33)

If one can solve an electrical problem in terms of the current density, j , where

-j = KV<J> (4.4.34)

(where к is the conductivity), one can write the solution to an analogous diffusion prob-
lem (as the function CQ) and find the flux from equation 4.4.20 or from the more general
form,

- / = DOVCO (4.4.35)

This approach has been employed, for example, in determining the steady-state uncom-
pensated resistance at an ultramicroelectrode (28) and the solution resistance between an
ion-selective electrode tip and a surface in a scanning electrochemical microscope (29,
30). It also is sometimes possible to model the mass transport and kinetics in an electro-
chemical system by a network of electrical components (31, 32). Since there are a number
of computer programs (e.g., SPICE) for the analysis of electric circuits, this approach can
be convenient for certain electrochemical problems.
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4.6 PROBLEMS

4.1 Consider the electrolysis of a 0.10 M NaOH solution at platinum electrodes, where the reactions

(anode) 2OH" -> \O2 + H2O + 2e

(cathode) 2H2O + 2e -* H 2 + 2OH"

Show the balance sheet for the system operating at steady state. Assume 20e are .passed in the
external circuit per unit time, and use the AQ values in Table 2.3.2 to estimate transference num-
bers.

4.2 Consider the electrolysis of a solution containing 10" l M Fe(ClO4)3 and 10"1 M Fe(C104)2 at plat-
inum electrodes:

(anode) F e 2 + ^ F e 3 + + e

(cathode) Fe 3 + + e -> F e 2 +

Assume that both salts are completely dissociated, that the Л values for Fe 3 + , Fe 2 + , and СЮ4" are
equal, and that lOe are passed in the external circuit per unit time. Show the balance sheet for the
steady-state operation of this system.

4.3 For a given electrochemical system to be described by equations involving semi-infinite boundary
conditions, the cell wall must be at least five "diffusion layer thicknesses" away from the electrode.
For a substance with D = 10~5 cm2/s, what distance between the working electrode and the cell
wall is required for a 100-s experiment?
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4.4 The mobility, u}, is related to the diffusion coefficient, Dy by equation 4.2.2. (a) From the mobility
data in Table 2.3.2, estimate the diffusion coefficients of H + , I~, and Li+ at 25°C. (b) Write the
equation for the estimation of D from the Л value.

4.5 Using the procedure of Section 4.4.2, derive Fick's second law for spherical diffusion (equation
4.4.18). [Hint: Because of the different areas through which diffusion occurs at r and at r + dr, it is
more convenient to obtain the change of concentration in dr by considering the number of moles
diffusing per second rather than the flux.]
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5
BASIC POTENTIAL

STEP METHODS

The next three chapters are concerned with methods in which the electrode potential is
forced to adhere to a known program. The potential may be held constant or may be var-
ied with time in a predetermined manner as the current is measured as a function of time
or potential. In this chapter, we will consider systems in which the mass transport of elec-
troactive species occurs only by diffusion. Also, we will restrict our view to methods in-
volving only step-functional changes in the working electrode potential. This family of
techniques is the largest single group, and it contains some of the most powerful experi-
mental approaches available to electrochemistry.

In the methods covered in this chapter, as well as in Chapters 6 and 7, the electrode
area, A, is small enough, and the solution volume, V, is large enough, that the passage of
current does not alter the bulk concentrations of electroactive species. Such circumstances
are known as small AIV conditions. It is easy to show on the basis of results below that
electrodes with dimensions of several millimeters operating in solutions of 10 mL or more
do not consume a significant fraction of a dissolved electroactive species in experiments
lasting a few seconds to a few minutes (Problem 5.2). Several decades ago, Laitinen and
Kolthoff (1, 2) invented the term microelectrode to describe the electrode's role under
small A/V conditions, which is to probe a system, rather than to effect compositional
change.1 In Chapter 11, we will explore large AIV conditions, where the electrode is in-
tended to transform the bulk system.

5.1 OVERVIEW OF STEP EXPERIMENTS

5.1.1 Types of Techniques

Figure 5.1.1 is a picture of the basic experimental system. An instrument known as a
potentiostat has control of the voltage across the working electrode-counter electrode
pair, and it adjusts this voltage to maintain the potential difference between the working
and reference electrodes (which it senses through a high-impedance feedback loop) in
accord with the program defined by a function generator. One can view the potentiostat

decent years have seen the rapid development of extremely small working electrodes, of dimensions in the
micrometer or nanometer range, which have a set of very useful properties. In much of the literature and in
casual conversation, these are also called "microelectrodes," in reference to their dimensions. They always
provide small A/V conditions, so they are indeed microelectrodes within the definition given above, but much
larger electrodes also belong to the class. To preserve the usefulness of the earlier term, very small electrodes
have been called ultramicroelectrodes (see Section 5.3). That distinction is respected consistently in the
remainder of this book, although it now seems likely that the new usage of the term "microelectrode" will soon
displace the historic one altogether.
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