CHAPTER VII
Motion Induced by Capillarity

64, THE INTERFACIAL REGION

The boundary between contiguous bulk phases of matter is known
as the interfacial region or, simply, the interface [1].

The interfacial region is that thinlayer surrounding a geometric
surface of separation, within which the physical properties differ
noticeably from those in either of the bulk phases, The thickness of
this layer is illdefined because the variation of physical properties
across it is continuous, Under conditions well away from the
critical point, however, the layer is only a few molecules thick
and, in any event, is very small compared to the wavelength of
visible light. This is obvious from the reflection of light from the
surface of a liquid. Close to the critical point the thickness of the
interfacial region increases to become quite appreciable,

Here, we adopt an approximation in which the interface is in-
finitely thin; i.e., we regard the phase boundary as a geometric
surface, and assume that the properties right up to the interface
are unchanged from those of the respective bulk phases,

Since the thickness of the interface is of the order of molecular
dimensions, such an approximation is fully justified in treating the
macroscopic properties of liquids, Because the properties of matter
in the interfacial region differ from those inbulk, the interface has
free energy per molecule FZ which is peculiar to it,

We consider only the case of one-component systems.

The surface free energy is defined as

F=F —(F,+Fy,

where F is the total free energy of the system consisting of two
phases separated by an interface, and Fy+ Fy is the sum of the free
energies of the two bulk phases, computed on the assumption that
both remain homogeneous right up to the surface of separation, This
surface free energy is the thermodynamic potential for which
temperature T and surface area I are the Independent variables;
therefore
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dF* = — 8%dT -+ adL,

where S® is the surface entropy,
The guantity*
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is the surface free energy per unit areaat constant temperature, It
iz obvipus that the work of reversible isothermal expansion of the
surface dA is equal to the decrease in free energy, lLe.,

dA=——¢odk,

The quantity 0 is known ag the interfacial temsion or surface
tension,

The surface free energy in a one-component system is fully
determined by two parameters, for example by the temperature T
and surface area . The surface tension o, therefore, is a function
only of temperature T,

The surface tension of liquids decreases with temperature. There
is, however, no generally accepted or sufficiently well grounded
theory describing the dependence of surface tension ontemperature.
The general character of this dependence becomes apparent only
near the critical point,

65. CONDITIONS OF EQUILIBRIUM BETWEEN TWO
FLUID PHASES AT REST

Let us determine the conditions for thermodynamic eguilibrium
in a two-phase, gas-liquid system, separated by an interface pos-
sessing surface tension o [2].

The first obvious equilibrium condition is the equality of tem-
perature in both phases, Having assumed the temperatures of the
two phases to be the same, let us determine the equilibrium condi-
lions at constant temperature,

Thermodynamic equilibrium in an isothermal system requires
that the free energy of the system be a minimum; i,e,, the following
condition must be fulfilled

aF =10,

where &6F is an arbitrary and infinitesimal variation of the free
energy of the system. Let us imagine two cylinders, one in each of

*This definition is valid only for the one-component systems that
are considered here,
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the two phases, resting on a surface element dZ, and let us relate
all quantities to this element. The free energy of the system con-
sists of the free energies of the bulk phase in each of the cylinders
F; and F; of the surface free energy. Therefore,

BF — 8F, 4-8F, L 8FT —0, (65.1)

The change in the free energy of the system at constant temperature
can occur only as a result of changes in volume of the two phases
and a change in area of the interface, The change in the free energy
within the bulk phases at constant temperature is given by

WP = —p WV, (65.2)
3Py = — p, 8V, (65.3)

where p; and p: are the abzolute pressures and 6V, and 6V, are
changes in the volumes of the two cylinders, The change in surface
free energy at constant temperature equals

3Ft —a 4L, (65.4)

Since the total volume of the system remains constant, an in-
crease in the volume of one phase causes a corresponding decrease
in the volume of the other; i.e.,

8V, = —iV,. (65.5)
Therefore, the total change in the free energy of system is
8F — — (p, — po) BV, - 3 BE. (65.6)

The relation between the two gquantities §V and 6Z should now b
established, Let us first examine the case inwhich the curvature of
the interface is very small, Here, in computing the change in free
energy the interface may be considered a plane surface.

First, let us determine the variation inthe surface area 6%, if all
of its elements are subjected to some arbitrary and infinitesimal
displacement along the normal to an undeformed surface, i.e., the
plane z = 0,

We consider a surface element dZ on the interface, The sidon
of the element are dx and dy and therefore dZ ;= dxdy. The defor-
mation of the surface element occurs through extention or contrao-
tion, which transform the element of area to

em_]/T1_(r;’r)! %, (66,7

where { is the vertical displacement over the plane z = 8,
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The formula takes into account only such deformations of linear
elements on the surface (x, y) as result in a change of the surface
area of the element dZ.

For the sake of simplicity, we have also assumed that the dis-
placements { occur in the plane y = const, producing a surface that
ig curved in only one direction.,

At small displacements £, equation (65.7) may be approximated

by
dﬂz(l —[—%(%),)dxdy. (65.8)

The surface area after deformation is

2= [ S (g () )2

The variation in the surface area is

at au
an_ffax X dxdy =

.=f( ot a'r )dy —ff Edrdy_—ff O Wdxdy,  (65.9)

since two surface points may be consideredfixed, and 6{;= 6L, = 0.
The change in the volume 6V, of the first phase produced by an
infinitesimal displacement of points on the surface is

aviifa:dmy. (65.10)

Substituting expressions (65.9) and (65,10) into the equation of
total change in the free energy of the system (65.6), we get

oF = [ -~

In an equilibrium state the free energy is a minimum and
OF = 0, Since 8 is an arbitrary and an infinitesimal quantity, it
follows from equation (65,11) that

]u:dmy (65.11)

P — pg=—e . (65.12)

ot

The difference in pressures in the two contiguous phases, in the
presence of surface tension, is known as capillary pressure pg. It
follows [rom (656,12) that, with small deformations of a surface
vurved only In one direction, we have
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Pe=p —pr=—a 2% (65.13)

The expression ps = p; - Pp gives the change in mechanical
equilibrium of two contiguous phases when the interface is not a
plane, Formula (65,13) and analogous expressions that are derived
below determine the shape of the free surface of the liguid.

A similar expression for capillary pressure can be derived for
the case of a surface that is curved in two directions,

For subsequent discussion, we need to derive expressions for
capillary pressure at small deformations of a cylindrical and a
spherical surface,

The surface area in ¢ylindrical coordinates (r, z, {) is

[ VT e wsas

Assuming that the undeformed cylindrical surface had a radius
a, and that the deformed surface has a radius a + (Y, z), then the
deformed surface for a small displacement { (¢, z) 18 described by

o ff‘“"“f'l/l-i-( =) a(5) dzav~
g&ff{ﬂ""n 1'*’-‘(3%]_4-@(@)'] dz df ==
Mff ‘H- +5 a;)“‘ i ‘]E]dzm;a_

The variation of the surface area is

aE_ff[ ST (ﬂf)‘w]dzw

Integrating the second and third terms of the last equation by parts
with respect to the variables z and §, we obtain

o L ag el gy — % .. o
J] &S aa= [ uhv [ [ Zwazap=
-/ f——-ru-

" oA, Ehv [ ar - A
J‘ R n‘zd,r._.-f d,,& dz dy.

Here, L designates the length of the cylinder, At the limita of
integration the variation 6{ may be assumed to be zero,
We then find:
f J‘ ;.'.]1 -aim — = 52 dy da. " (66,18)

il
a oyt | i
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The variation in the volume for an infinitesimal displacement of
the surface may be written in cylindrical coordinates in the form

av:ffa:{a 45 dzdb. (65.16)

Substituting (65,15) and (65.16) into (65.6), we get

Ef=ff—{ﬂi_p2}ﬁ:{ﬂ Ddzdp4-
+ff l_ad':__:;%]a:dwz.

The condition of minimum free energy gives

Fi 1 1 g%
- — Pz:l+¢+L[1 ooy — E.M.!]:a.

whence
] fi L
=(_p1_pt)wz— [ —|— gd:!—l' a'-"l.l'—_,,:l.

The first term % is a constant that is immaterial here and may be
omitted. We then have

p— H[e+et s+ 5] (65.17)

The capillary pressure in the case of deformation of a spherical
surface may be derived in exactly the same manner,

In spherical coordinates (r, 9, L), the surface area is

—-ff}/ L+ 5 a&)"‘r«s.‘?ﬁ(g;)’zm“ﬂ‘ﬂ”

If the undeformed sphere has a radius R, then the radius of the de-

formed surface is R + {(0, ¢), For a small displacement [, the
deformed surface is given by

’rfl/ 1+R! &H +R“51ﬂ"l’r(d'.b)1 (R—4-CFsin 0 df dd =
i f./ ‘+;;]¢‘ +—M.nslm (W)](R-F %) sin 0 di d.

The variation of the surface is then expressed as follows:

i e— oL sl 1 a5 ot B 4
ffiil{H 4= 5) 85 < Wty T ”{Ifﬁlnl']r}idr.
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Integration of the last two terms by parts gives

gtﬁ a;l; sin ﬂdﬁ-_-[(ﬁ smﬂ) L .fa‘ﬂﬁ sin ﬁﬂ') a0,

fg;au-: dy = ar

Since the variation 8 at the limits of integration is zero we find

ar.'f"

. P 1 d' . l}: 1 ﬂx -
The variation in the volume enclosed by the surface is
w.:_[a:er sin B df di. (65.19)

Substituting (65.18) and (65.19) into (65.6) we have:

5F=f{—fm—p=}{2+t}=+2a(n+q_
d f . a ae ) i
- 5|:u i (5"1& ﬁ)-{'ﬁ' m} B sin B 6 @i,

The reguirement of minimum free energy leads to the expression
for capillary pressure

p_z_,i_‘i:__ﬁi. [;ﬁ d{;-(sinﬂ g_;)ﬁ;ﬁ]_ (65.20)

Equations (65.13), (65.17) and (65,20) are often presented in the
following form:

po=2(z+ %) (65.21)

where By and Ry are the principal radiiof curvature of the surface,
Equation (65.21) is known as the Laplace equation, It may be shown
that, at small curvatures (large radii of curvature), the expressions
for the sum of the radii of curvature correspond to the formulas
given ahove,

For simple geometric confipurations, equation (65.15) may be
fully integrated. For example, let aliquid be adjacent Lo one side of
a plane vertical wall (Figure 68), Letus designate the height of the
meniscus by ¥ and its thickness by h, and let 8 be the angle of con-
tact between the liquid and the wall, Let the y axis be ‘vertically
upward, and the surface of the lguld be at the plane ¥ = Oy The gon
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pressure p, is constant and may be
selected asthe reference for pressure
measurements, The pressure in the
liquid at rest is

=t

py = const—p gy, (65.22)
i
One of the radii of curvature, R, for
example, is equal to zero. >z
Condition (65.21), therefore, gives

Figure 68. Meniscus at a

¥
— == const.
PEY=rp.+ . 65.23) vertical plate,

For the radius of curvature, we may write

dath
Rl_l=_(1+(—j—:})g. (65.24)
dx

Assuming that the constant in equation (65,23) is equal to zero,
we have

arh
Lo Pex

Integrating twice equation (65.25) yields an expression which defines
the shape of the surface

3 0
hix)=—V -F}argchE éﬁ-k]f é E—F—g:—-{-mns!. (65.26)

The constant here is determined by the magnitude of the angle of
contact, *

Under given conditions, tangential forces may be exterted on the
surface of the ligquid, along with normal pressure. If the surface
tension of the liguid changes from point to point, a tangential force
will be exerted in addition to the pressure normal to the surface, This
force is similar to the volume force that appears in a medium with
nonuniform pressure, and its magnitude is determined by the surface
tension gradient.

(65.25)

*Editorial note, In the elegant study of M, M, Kusakov and D, N,
Nekrasov [9], the capillary rise in capillaries of arbitrary shapes
I8 examined,
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The tangential force per unit area is
py=grad 3. (65.27)

The plus sign preceding the gradient indicates that the force Pt tends
to move the surface of the liquid in a direction form lower to higher
surface tension,

66. MOTION INDUCED BY CAPILLARITY

The presence of surface tension on the free surface of a liguid
may, in certain cases, considerably affect the regime of motion of
the liquid, Those cases of liguid motion in which surface tension
plays an important role, are often described by the general term
“capillary hydrodynamics,*

The presence of an interface between fluid phases may exert an
influence on the motion of the liguid in two instances: when the
interface has finite curvature, and when the interfacial tension
varies from point to point in the liguid surface, In both instances,
forces appear in the interfacial region that generally affect the
liquid motion, The effect of surface tension on the motion of the
liquid is shown by a new system of boundary conditions for the
interface between two contiguous liquids,

Let us set up a system of boundary conditions for the interface
between two liguid phases,

As pointed out in Section 1, the following conditions obtain at the
interface between two liquid phases:

1) The tangential velocity component at the liguid surface must
be continuous:

olt) = o), (66.1)

Condition (66,1) indicates that the molecular interactions of particles
in both phases occur without slippage.

2) The velocity components normal to the interface of two
immiscible phases equal zero:

vl =gt =0, (66,2)

The existence of interfacial tension has no effect on boundary
conditions (66.1) and (66.2), In addition to these kinematic condi-
tions, dynamic conditions must also be fulfilled at the interface,

3) Normal force components per unit area of the interface
{normal components of the stress tensor) must be continupus:

Pan+ Py = Pan. (66,9)
Condition (66.3) is the direct generalization of condition (65,13) nnd

represents the balance of the normal component of forces 'exerted on
the interface, .
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4) The tangential force component per unit area must be con-
tinuous, This is the condition of continuity of the tangential com-
ponents of the stress tensor

Put JU':=P::- {66,4)

The above boundary conditions include the quantities pgand pg,
which are functions of surface tension., It is obvious that the effect
of surface tension ig reflected in conditions (66.3) and (66.4), It
should be noted here that while condition (66.3) can be fulfilled on
the surface of a static liquid, condition (66.4) cannot be fulfilled
under static conditions.

Indeed, the normal stress tensor component in a liquid at rest,
according to formula (1.5), reduces to the usual pressure, and
equations (66.3) and (65,13) will agree,

Conversely, by definition (1.5), the tangential stress tensor
component vanishes for a liquid at rest, Boundary condition (66,4)
in such a liguid, therefore, cannot he satisfied since pit= pi'y'= 0,
and pt # 0. The occurrence of variations in surface tension always
gets the liguid into motion,

Another general remark can be made with respect to boundary
conditions (66.3) and (66.4): there is no effect of the liquid surface
in large scale motions,

The extent of this effect may be evaluated from boundary condi-
tions (66,3) and (66.4), For example, when motion takes place in a
field of gravity, it follows from condition (66,3) that capillary pres-
sure may be neglected, provided that

p.= < pgh, (66.5)

where A is the scale of motion.
In other words, if the scale of motion & is large in comparison

1
with the capillary constant (—F-;-TE) ’é, the surface forces do not affect

the motion, For example, as shown in Sec, 93, surface tension
nffects the wave process on the surface of a liquid only in the case

1
those waves whose length A is shorter than (_p':_) ’é

In general, the effect of varying surface tensionon the motion of
i liquid which has a free surface or which is contiguous to another
ligquid may be viewed as follows, Letus reduce the boundary condi-
tions, for example, condition (66.4), to a dimensionless form, As-
suming that the motion of the liquid is viscous, we may write

I-“I_.' IV 4. 1 dz wher 4’3‘1"_; {66.6)
T oF I oX Fi il
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p U vy

o |aq| ; i) (66.7)

L
Y | ax w0l T =

Assuming the dimensionless dErivative—a;f— to be of the order
of unity, the surface tension term may be omitted if

5l m=t (66.8)
|7 | & <R (66.9)

Since the motion of the liquid was assumed to be viscous, the Reynolds
mumber must be small compared to unity, Therefore, formula
(66.9) may now be rewritten

05| 12
ldx | pad

< 1. (66.10)

It follows from (66.10) that the effect of the varying surface
tension on the liquid motion may be disregarded for changes in
surface tension such that

iz pve
ix *ﬂ:ﬁ.

Thus, when the liquid velocity is low and the flow region is suffi-
ciently thick, the effect of surface forces arising in variations of
surface tension from one point to another may be neglected only at

very small values of g—i—.

Of course, the characteristic thickness L mustnot be too large, if
the Reynolds number is to remain small compared to unity.

67. RATE OF CAPILLARY RISE

As the simplest example of capillary motion, we examine the
rise of liguid in a cylindrical capillary,

Capillary rise of liquids is often encountered in practice and in
nature; it plays an important role in liguid motion through porous
media,

The surface of a liguid filling a vertical capillary is subjected to
a capillary force equal to ps+ S, where pgis the capillary pressure
and 5 is the free surface of the liquid, Capillary pressure is equal to

P =2—: and the liquid column of height hexerts a hydrostatic pres-

sure equal to pgh, The liguid is, therefore, subject to the difference
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in pressures Ap= pg, - pgh. Under the influence of this pressure
difference, the ligquid moves at a rate which may be easily computed,
Since the pressure gradient along the capillary is constant, the
Poiseuille equation may be used tocompute the rate of the rise, We
may write
_dh it Ap

where v is the rate of rise produced by the pressure difference.
Substituting the value of Ap, we find

dh r® j2g
= 5 (7 —reh)- (67.2)
Integrating this equation, we obtain
B b
.fzrﬁ{finln m-—f;) (67.3)

In order to simplify equation (67.3), we have designated the
equilibrium height of capillary rise by hg, which is defined by

2o =
T - pghy = 0.

Eguation (67.3) shows that although infinite time is necessary for
a rise of the liquid to its maximum height, the liquid actually reaches
a height that differs little from the maximum in a relatively short
period of time,

Similar considerations for the case of ahorizontal capillary lead
to the following expression for the time it takes the liguid to travel
a distance I along the capillary:

§ = Dt

Tre

In arriving at formula(67.3), we employed Poiseuille’s law (67.1)
which is valid for steady flow, Inreal cases, however, capillary rise
is not a strictly steady-state phenomenon,

At large values of t, capillary rise becomes quasi-stationary.
Therefore, formula (67.3) should be used only forlarge values of t,

2
i.e., when t=P%"

Experiments conducted by S, 8, Kozlovskii [4] with transformer

oil confirmed the applicability of formula (67.3) to the capillary

s
rise of lHquids in a glass tube when t m-EL—_



384 MOTION INDUCED BY CAPILLARITY
68, THERMOCAPILLARY MOTION

As a second example of capillary motion, we examine the motion
of a liguid with varying surface tension, The variation in surface
tension from one point to another leads to the appearance of tan-
gential stresses on the liguid surface as described by equation
(65.27).

The reason for the variation in surface tension of the liquid is
not important here, Later, we present numerous examples of
reasons for the variation in surface tension, such as the introduction
of surface-active substances with concentrations that vary from
point to point, the presence of a varying electric charge on the liquid
surface, and 2o on.

The simplest reason, however, is the variation in surface tem-
perature,

Let us assume that the liquid is placed in a vessel whose sides
are at different temperatures, The surface temperature of the liquid
will, in that case, vary from point to point. Since the surface tension
of the liguid is a function of temperature, it will also vary from
point to point across the surface., When tangential forces act on the
liguid surface, a motion will be produced. This motion is known as
capillary convection, Obviously, the temperature difference in the
vessel walls will produce the usual convective motion within the
liquid in addition to the capillary convection, Incertain cases, how-
ever, the usual convection will play a relatively unimportant role,
When the surface of the liquid is sufficiently large compared to its
volume, e.g., if the liquid is poured into a sufficiently wide shallow
pan, the usual thermal convection will produce liquid velocities that
are small compared tothose caused by capillary convection, Indeed,
the surface effects in this case must ke large compared to those in
the bulk of the liquid, because the surface dimensions are relatively
large, and the surface tension forces are very significant compared
tothe gravitational forces, which are proportional toextremely small
changes in liquid density,

Guantitative calculations confirm these qualitative considera-
tions [5].

We examine the motion of a liquid poured into a shallow pan to a
depth h, The two walls of the pan are at temperatures Ty and Ty,
with Ty > Ty, We assume that the usual mixing by thermal convec-
tion may be neglected and that the temperature is constant along the
vessel, This assumption is justified later,

Let us find the expression for the variation in surface tension of
the liguid, We take the x axis in the direction of the temperature
gradient, and the y axisinthe direction perpendicular to the surface
of the liquid. The variation in surface tension is given by

il .
prad s 1, grad 7 J

(GH,1)
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The ligquid surface is at the plane y = 0, and the bottom of the
pan i at the plane y= h,
The temperature coefficient for the surface tension of all liguids

(%g;) < (; i,e,, o decreases with increasing liquid temperature, As a
first approximation, we assume that the temperature gradient is
constant along the length of the pan

-:ruu:r(Tﬂ—‘—(’:—;) T"Tnx. (68.2)

The surface tension varies from point to point along that sur-
face, attaining a maximum at the colder wall of the pan, and de-
creasing linearly in the direction of the warmer wall,

According to expression (65.27), the force exerted per 1 cm? of
surface is

p‘=£=(:—;)grﬂd T. (6B.3)
We determine the motion of the liquid produced by this force,
Since the depth of the pan is very small compared to its other di-
mensions, and the assumpiion has been made that usual convection
can be neglected, the hydrodynamic equations can be simplified,
Since there is no temperature gradient across the pan, there will
be no motion in that direction. Furthermore, inthe absence of con-
vection arising in heating of the liguid, there can be no forces
exerted in the direction ofthey axis. The velocity component in the
y direction therefore is zero, The equation for the velocity compo-
nent in the x direction, in accordance with expression (1.2), is

dp (o, LT
=G+ 55)- (68.4)

Since the depth of the pan is very small in comparison to its other
dimensions, the derivative avx.f gx will be very small in comparison
with the derivative 8vy/8y, Hence, we may ®mit the term 9%v,/9x? in
equation (68.4) as a higher order infinitesimal., We then obtain

2y ”;;t (68.5)

Again, since the pan is shallow, it may be assumed that the
pressure is not a function of the distance y, This is clearly evident
[rom the equation for the velocity component in the ¥ direction

dp
iy

0, (GE,G)
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In equation (68.5), therefore, the pressure p may be considered
a function of the distance x only,

The system of equations (68.5) and (68.6) must be completed
with the continuity equation, Inthis case, the continuity equation can
be conveniently expressed in terms of the total flow of the liquid in
the pan by setting the equation equal to zero. Indeed, the flow of
liquid at the surface, set in motion by surface forces, is accom-
panied by flow in the opposite direction in the remainder of the
vessel, The reverse flow is due to the pressure gradient along the
pan as given in equation (68.5).

Thus, the continuity equation in this case becomes

.3

f o, dy = 0. (68.7)
Q

We can now write the system of boundary conditions for equations
(68.5) to (68.7), At the hottom of the vessel, the liquid velocity is
Zero, and

{ﬂz}y=h =0 ‘.E‘B-B]

The condition of continuity of the tangential stress component must
be fulfilled at the free liquid surface;i.e,, the viscous stress and the
gurface force per unit area must be equal;

P{%)y=u=Prr (68.9)

Using the definition of p; given above, the boundary condition at
the surface is

dty s
" (_&I.}M — spendT. (68.10)

Integrating equation (68.5), and remembering that pressure
changes only in the x direction, we obtain

11 &
{Jx=ﬂ—|—¢"_1’+§; ‘ﬁ)’g (68.11)

Boundary conditions (68.8) and (68,10) yield the following values
for the constants a and b:

. 1 da | _lds 1 dp .,
b=— 50 0=y “'.!p.r.'i.r'u'

As an important example of an actual operation in which thermao-
capillary motion plays the principal part, we now examine the mass
transfer through a thin Hoguld film, .
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The transfer of oxygen through thin layers of a liquid plays an
important role in metal corrosion when the metal is covered with
afilmofelectrolyte, The electrolyte is in contact with the atmos-
phere, and equilibrium concentration is established on its outer
surface,

The corrosion rate strongly depends on the magnitude of the
oxygen flux to the metal surface,

The convective diffusion equation in the thin film is

o %
ﬂIE=D&}|—!'

where vy is determined from equation (68.11). On the assumption
that the diffusion resistance isinaregionof low velocities (i.e., the
thickness of the diffusion layer is small compared to that of the
filmy}, the following expression may be written for vy

v Ay,
where y' is the vertical distance y' = y - h, measured from the
1
bottom, and ﬂ'='§;"g% . The boundary conditions in this case are
e~y as Voo,
=10 at =1

Thus, we obtain

1 g2
o= g e (=) — g gr (B — ). (68.11')

Substituting the velocity as given above into the continuity
equation, we get

dp 3 ds
de Thdx®

Integrating the equation for the pressure gradient, we find the
pressure distribution in the liguid

P= o5z o (x) —s(O)] (68.12)

The constant p, 18 an undetermined constant pressure,
Using the pressure gradient as given in equation (63,12), we
arrive at the final formula for velocily distribution

l &9 ... o AT
Uy ™= 1 3T (3 yf Ay = T (6B.13)



388 MOTION INDUCED BY CAPILLARITY
The maximum velocity of the liquid at the surface is

1 s a7

Wadymo =g 57 " ax- (68.14)

The velocity increases with the temperature gradient and with the
depth of the liquid layer in the pan, This is true only for thin liquid
layers, If the depth of the vessel becomes sufficiently great, the
above solution will not apply, because it was obtained on the assump-
tion that the following inequality is valid:

dus o0,
U g Y Gyt

i,e., it was assumed that the depth h? of the ligquid layer is small
compared tnl-%. Using expression (68,14), the following inequality
is the condition for applicability of our solution,

P dpl
S h i -&_rl : (68.15)
ar || dx

The velocities arising in the liquid under the action of the surface
forces are quite large, For example, for water, at |grad T| = 0.1
degree/cm, in a vessel whose depth iz h = 0,03 cm, and where

X - - 0.15 erg/cm®- degree, we find:

(vg),.p="0.1 cm/sac,

Such velocities are substantially greater than those arising in the
liguid due to ordinary convection, which in turn is caused by the
density differences in the liquid at the walls,

It should also be borne in mindthat equation (68,14) was derived
on the assumption that the value of the Reynolds number is low, This
equation may be used only when

(©'a) o oh 1 85 dT

Re =Ffﬁhg = 1. (68.16)

The above inequality corresponds to the general condition
(66,10},

The diffusion problem is found to be identical with that of diffu-
sion at the inlet section of a tube as presented in Sec. 20, Using
equation (20.11), the mass flux equation is

eoSD¥ 1 gy ¥
Tipr = 0.6 —— (-- )
diff % Ay o)

where S is the area of the film and L its length (the larger dimen-
aion), -
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The mass flux is independent of the film thickness provided the
latter is large compared to the thickness of the diffusion layer; i.e.,
PO e .
it 1 daris f
(F E)
At values for 6" of the order of h, the flux is given hy

Deps
fme 250

The expressions given above were derived by I, L, Rosenfel’d
and K, A, Zhigalova [6].

Measured values of the average current density equal to an,
using oxygen, are shown in Figure 69,
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Figure 69, Dependence of the
rate of oxygen reduction onthe
thickness of the electirolyte
film, The electrolyte is 0,1 N
NaCl; the cathode material is
copper., WVapor pressure of
water: 1) 17 mm Hg; 2) 1,15
mm Hg.

We see that the theoretical requirement that [ be independent of
h is found at h > 3+ 10-2 em, In this case § mls—ﬂh.
a0

. . . ao
3y inthese experiments gives3—~1

iat a film length L of a few centimeters), Such variation in surface
tension occurred because of nonuniformity of evaporation, change
in solution composition during electrolysis, and changes in concen-
tration of the electrolyte in various parts of the film,

An estimate of the value of
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Thermocapillary motion causes the formation of various types
of films in an unevenly heated liguid,

63, EFFECT OF SURFACE-ACTIVE SUBSTANCES
ON LIQUID FLOW

Experiments with liquids having clean surfaces are relatively
rare in actual practice, Usually, the liquid is covered with surface-
active substances to a greater or lesser degree [7].

Such a film meodifies the forces exerted on the surface of the
fluid, The modification is not simply the reduction of the surface
tension, It involves tangential forces arising on the liquid surface,

This leads to a change in forces of capillarity as well as to the
appearance of additional surface forces which are equal in magnitude
to the capillary pressure,

The presence of surface-active substances, therefore, may lead
to a significant change in the hydrodynamic regime, Indeed, the
motion of the liguid and the change in shape of the surface caused
by the motion lead to a change inthe distribution of the concentration
of the surface-active substance, Thus, the concentration of the latter
varies from point to point on the surface

I'=Tix, v. 20,

where (X, ¥, 2) are related to each other by the eguation for the
surface, A change in concentration of the surface-active substance
results in a variation in surface tension along the surface, There-
fore, capillary pressure; i.e,, the normal force acting per 1 cm? of
surface area

AL (69.1)

will be different at different points on the surface,

When the surface tension of the liguid varies from point to
point, then, a tangential furce arises on the liquid surface in addi-
tion to the capillary pressure. The tangential force is directed
from points of greater to points of lesser surface tension. Thin
force per unit of liquid surface area is given by

s ’
pp=gnd s = s oadl {69,2)

and is directed tangentially to the surface,

Thus, the presence of surface-active substances leads to the
appearance of surface forces and changes the boundary conditions
that must be fulfilled by the liguid velocity in the surface,
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The boundary conditions at the interface between two liquids (or
liguid-gas) are

Pan 0. = Pams (69.3)

Py 4 Py = P, (69.4)

where p,, and py; are the normal and tangential components of the
viscous stress tensor, py i8 the capillary pressure, and pt is the
tangential force (per 1 em? of surface area),

The difference in boundary conditions on aliquid surface covered
with a film, as compared to pure liquid, in turn leads to a different
flow regime,

The effect of surface-active substances onliquid flow is apparent
as long as the conditiongiven in(68,4)is controlling, This condition
concerns only the viscous stresses in the liguid, At high Reynolds
numbers, therefore, when the viscous forces are small compared to
inertia and the liguid viscosity is not important, the tangential
velocity of the liguid is not limited in any way, Thus, at high Reynolds
numbers, the presence of surface-active substances does not influ-
ence the liguid flow,* The meaning of this assertion is simple, At
high liquid velocities, the surface-active substances will be entirely
swept away (‘‘blown off’’), Conversely, in aviscous flow regime, the
effect of surface-active substances could be very significant, It
should be stressed that, along with the effect of the surface-active
substance on ligquid flow, the motion of the surface-active substance
should also be examined, Indeed, the energy dissipation caused by
irreversible processes occurs not only in the ligquid, but also in the
film formed by the surface-active substance, One can speak of a
surface viscosity which manifests itself when there is motion in
the film,

However, since films of surface-active substances generally are
composed of a single layer of surface-active molecules, the dissipa-
tion of energy in this layer is small compared to that in the bulk
phase, Later (Sec, 77) we discuss indetail the problem of viscosity
of monolayers and the circumstances under which this viscosity is
important, In any event, the viscosity of the monolayer can be taken
into account in formulating all further equations, The viscosity of

*It should be borne in mind, however, athigh Reynolds numbers,
that surface-active substances may have an indirect effect on the
motion of the liquid., S, I, Kosterin and M, N, Rubanovich [8] showed
that for ligquid flow in a tube, the presence of surface-active sub-
stances may cause persistent foaming, The presence of numerous
bubbles adhering to the tube walls leads to an increase in the hydro-
dynamic resistance coefficient (separating the bubbles from the
walls requires the expenditure of a fairly considerable amount of
anergy).
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the monolayer may be determined only from experimental data —
data on the energy dissipation in liquids covered by a monolayer of
surface-active materials, Experiments always measure the sum of
the effects, and provide no subdivision of the energy dissipation into
contributions from the surface and bulk phases,

For separate determination of the energy dissipated in the liguid
phase and in the monolayer, it is necessary to know the flow regime
in the presence of a surface-active material. Then, the energy
dissipated in the liquid could be computed, The difference between
the experimentally measured energy dissipation and the calculated
figure (or of two equivalent quantities) then would represent the
energy dissipation due to viscous flow in the surface phase,

It is shown later than in many instances — such as, for example,
the fall of a droplet through a ligquid when the liquid surface is
covered hy a surface-active substance — viscous motion in the
monolayer and the energy dissipation caused by it are so small
compared with the energy dissipation in the bulk phase that this
portion of the energy dissipated may be disregarded. In this sense
the viscosity of the monolayer need not be taken into account. It
would be incorrect, however, to regard this conclusion as generally
applicable.

In other instances, the energy dissipation in the monolayer may
be so important that it must be taken into account in computing the
total energy dissipated.

The presence of noticeable viscous energy dissipation in the
monolayer can be determined only by experiments and calculations
of the liguid flow regime, Inthese calculations the effect of surface-
active substances should be considered.

The calculation must consider boundary conditions (69,3) and
(69.4) at the surface of the liguid covered by an absorbed surface-
active material.

The normal and tangential forces — pg and pt, respectively — in
expressions (69,3) and (69.4) may be computed, provided the dis-
tribution of the surface-active substance onthe surface of the liguid,
i.e., T (x, v, &), i8 known,

Assuming that 0= o (I') the distribution of the surface-active
material on the moving liguid surface must be known in order to
determine the surface forces,

This distribution i=s affected by several factors, First, the
surface-active material on the surface is entrained by liguid flow,
As a result, a convective flux of the surface-active substance arisen
along the liguid surface

Jsurf=I've, (69.6)
where v; is the tangential liguid velocity at the surface. Since the

concentration of the surface-active material on the surface variom
from point to point, adiffusion of molecules of that material appenrs
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in the ligquid surface, The diffusion proceeds from points of greater
to points of lesser concentration. The diffusional mass flux arising
on the surface is given hy

jaiff =— Dy grad T, {69.6)

where Dg is the surface diffusion coefficient,

If the surface-active material ig soluble in the liguid, it can
pass from the surface phase into the bulk phase, or vice versa, at
any point on the surface,

Let j. designate the mass flux per unit area from the surface

to the bruﬂ: phase, or vice versa, Theflux is governed by the slower
of the two steps into which this may be subdivided in either direc-
tion:

1) the desorption (or adsorption) process, and

2) the passage of dissolved surface-active materials into the
bulk of the solution (or their passage to the surface from the bulk
of the solution),

The law of conservation of surface-active material may then be
written

ar . .
g T div Ugurf+Jaiff) + fo =0,
or

O 4+ div (I'v, — D, grad ) +- j, =0, (69.7)
In the case of a plane liquid surface represented inCartesian
coordinates, we get

dl’ . a ar al
5 = _|.E|LI“U:— Eﬂ).‘.}—i_lﬂ { DBE)=-D. lEQ-B}

It follows from equation (69.7) that the distribution of the material
in the surface may be found if the velocity distribution in the liquid
iz known (the flux j may be a function of the velocity distribution
in the liguid, if the flux is determined by the rate of transfer of the
surface-active material),

In turn, to find the velocity distribution, it is necessary to know
the forces acting on the liguid surface, i.e., the distribution of the
surface-active material,

Thus, in order to solve the complete problem of liguid flow in
the presence of surface-active materials, it is necessary to solve
gimultaneously the equations of viscous liguid motion, with consider-
ation of boundary conditions (69,3) and {69,4), and equation (69.7) for
the conservation of surface-notive material,



