Espacios de Sobolev

Definición

Teorema.

 $ightharpoonup W^{1,p}(\Omega)$ equipado con la norma

$$||u||_{W^{1,p}(\Omega)} := \left(||u||_{L^p(\Omega)}^p + \sum_{i=1}^N ||\frac{du}{dx_i}||_{L^p(\Omega)}^p\right)^{1/p}$$

es un espacio de Banach.

- ▶ $W^{1,p}(\Omega)$ es reflexivo si 1 ;
- ▶ $W^{1,p}(\Omega)$ es separable si $1 \le p < \infty$;
- $ightharpoonup H^1(\Omega)$ es un especio de Hilbert.

Sea X un espacio lineal real.

Definición.

Un mapa $\| \|: X \to [0,\infty)$ se denomina una norma si

- ▶ $||u + v|| \le ||u|| + ||v||$ para todo $u, v \in X$;
- ▶ $\|\lambda u\| = |\lambda| \|u\|$ para todo $u \in X$ y $\lambda \in \mathbb{R}$;
- $\|u\| = 0$ si y solo si u = 0.

Definición.

Decimos que $\{u_n\}_{n\in\mathbb{N}}\subset X$ converge a $u\in X$, y escribimos

$$u_n \rightarrow u$$

si

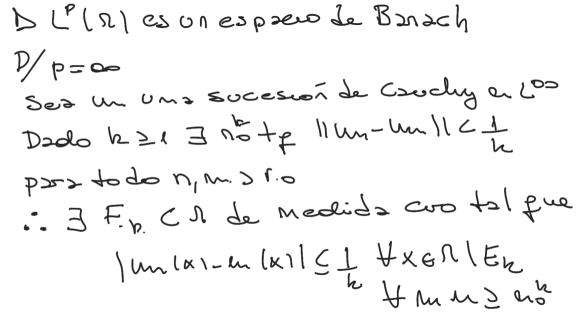
$$\lim_{n\to\infty}\|u_n-u\|=0.$$

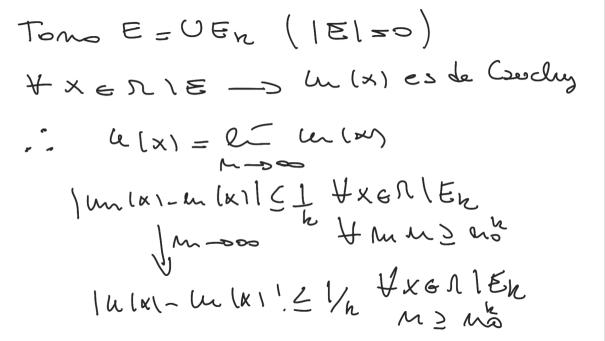
Definición.

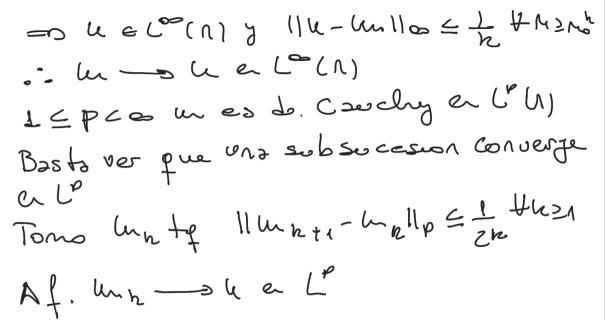
▶ Decimos que $\{u_n\}_{n\in\mathbb{N}}\subset X$ es una sucesión de Cauchy si para todo $\varepsilon>0$ existe un $n_0\in\mathbb{N}$ tal que

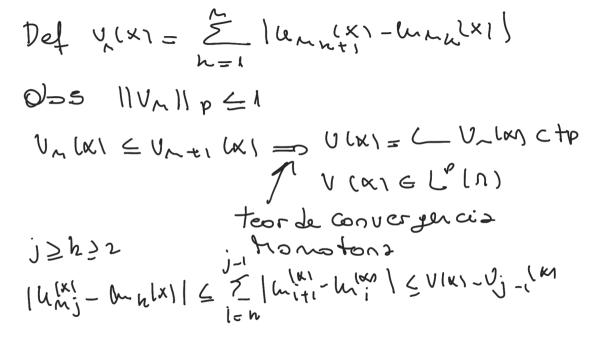
$$||u_n-u_m||<\varepsilon\quad\forall m,n\geq n_0.$$

- X es completo si toda sucesión de Cauchy en X converge.
- ► Un espacio X es de Bananch si es un epacio lineal normado y completo.
- ► Un espacio X es de Separable si es un contiene un denso numerable





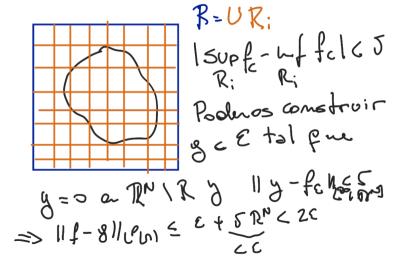


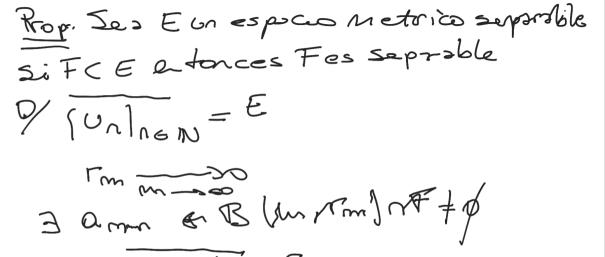


= LIXI es de Credry y anverge + LIXI = 1 mix1-mix11 = U(x) + 6 = 2 = uel Finalmente por el terr de Convergencia dominada h -> h en L.

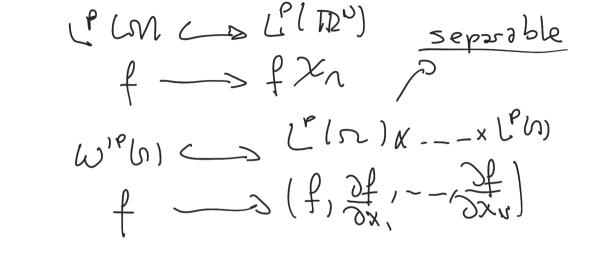
► Vormos que La [RN] es separable ICPCOO R= II(Qk, bn) Qk, bn & A E = el Q-espaco vectorial generado por [Xn] (5 Es numerable (Tarca)

Como f's E C'c , Dado 5>0





>> Somm = F Numerable



Operadores lineales

Sean X, Y dos espacios de Banach.

Definición.

▶ Un mapa $A: X \rightarrow Y$ es un operador lineal si si

$$A(\lambda u + \mu v) = \lambda Au + \mu Av \quad \forall u, v \in X, \lambda, \mu \in \mathbb{R}.$$

▶ Un operador lineal $A: X \rightarrow Y$ es un acotado si

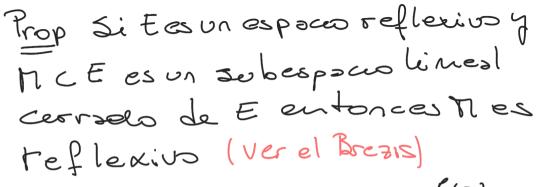
$$||A|| := \sup\{||Au||_Y : ||u||_X \le 1\} < \infty.$$

Operadores lineales

Definición.

- ▶ Un operador lineal acotado $F: X \to \mathbb{R}$ se denomina un funcional lineal acotado.
- \blacktriangleright El espacio de todos los funcionales lineales acotados en X se denomina el espacio dual de X y se denota con X^* .
- ▶ Un espacio de Banach es reflexivo si $(X^*)^* = X$.

Brack Separable Reflecios Espaca Rual 1CPC00 No 2 0>



WIPLN) C= L'(n|x--xL'(n)

Es reflexivo

Espacios de Banach Producto interno

Sea H un espacio lineal real.

Definición.

Un mapa $\langle , \rangle \colon H \times H \to \mathbb{R}$ es un producto interno si

- $\lor \langle u, v \rangle = \langle v, u \rangle$ para todo $u, v \in H$.
- ▶ El mapa $u \to \langle u, v \rangle$ es lineal para cada $v \in H$.
- $ightharpoonup \langle u,u \rangle \geq 0$ para todo $u \in H$.
- $\langle u,u\rangle=0$ si y solo si u=0.

Espacios de Hilbert

Definición.

El espacio H es un Hilbert si es un espacio de Banach con la norma generada por el producto interno.

Teorema de representación de Riesz

Teorema.

Sea H un espacio de Hilbert con producto interno \langle , \rangle . Entonces para cada $F \in H^*$ existe una única $u \in H$ tal que

$$F(v) = \langle u, v \rangle \quad \forall v \in H.$$

Convergencia Debil Ses Eun espocade Bonach. Deemos pere (Intre N° E Converge debit : u si F(un) - F(u)

Iared Mash as hash

m→ L FEEX F(m) & 11F11E* 11 WILE Flui chaf Ilhile 4 FEET(0) Sup F(W) C in of ||a||E FEE* 11F11

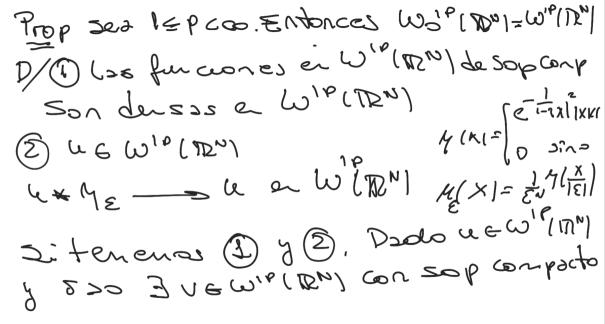
obs sup FIWI = IIVIIE FLW ENWHEV La otra designal dad es Mas complicada Ver per ej. el Brezis Tambien se puede ver que sul es acotada

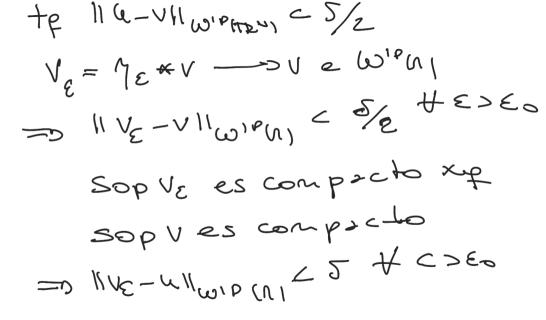
Toor Son E es un espacio de Bonach reflexivo. Si (m) cs acotado entonces) (ln)

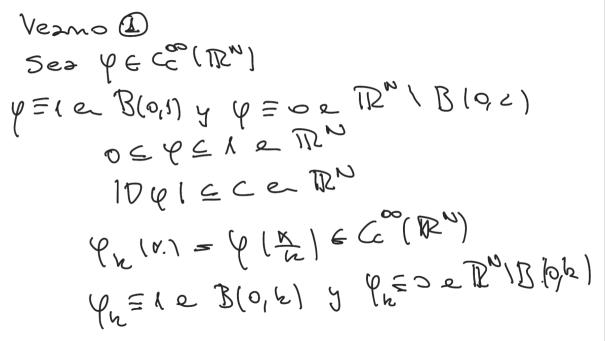
y hEEtp un -> h.

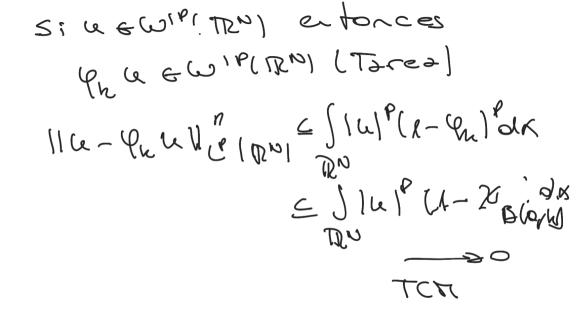
Def
$$W_0^{(P)}(n) = C_0^{(Q)}(n)$$
 $H_0(n) = W_0^{(P)}(n)$
 $U \in W_0^{(P)}(n) \implies U_0 = 0$

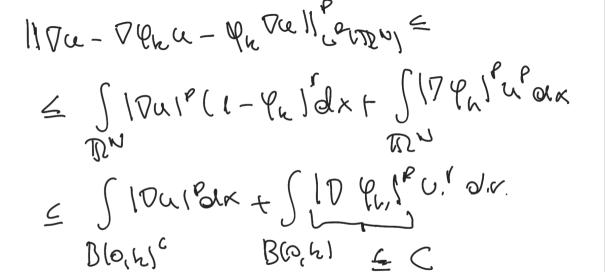
Tear de trotas



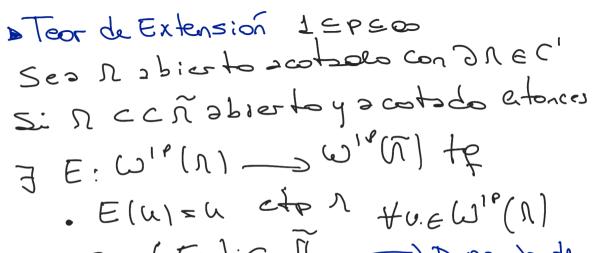








$$Si(TR^{N}|\Omega)^{\circ} = 0$$
 entonces
$$(W^{(p)}(\Omega)) \subseteq (W^{(p)}(\Omega))$$



· Sop(Fu) C M. Depende de · Il Eallwignon = Challwign