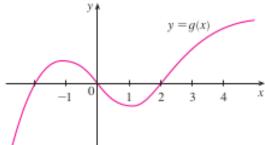
Práctico 3: Repaso de derivada

- 1. Sea $C \subset \mathbb{R}^2$ la parábola de ecuación $y = 4x x^2$.
 - a) Halle la pendiente de la recta tangente a C en el punto (1,3), usando la definición de derivada como un límite.
 - b) Encuentre la ecuación de la recta tangente del inciso a).
 - c) Dibuje la parábola y la recta tangente.
- 2. Encuentre la ecuación de la recta tangente a los gráficos de cada una de las siguientes funciones en el punto dado, usando la definición de derivada como un límite:

a)
$$y = 4x - 3x^2$$
, $(2, -4)$; b) $y = x^3 - 3x + 1$, $(2, 3)$; c) $y = \sqrt{x}$, $(1, 1)$.

3. Una partícula empieza moviéndose a la derecha a lo largo de una recta horizontal; la gráfica de su función posición se muestra en la figura.

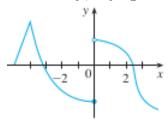
- a) ¿Cuándo se mueve la partícula a la derecha? ¿Cuándo a la izquierda? ¿Cuándo permanece inmóvil?
- b) Dibuje una gráfica de la función velocidad.
- **4.** Para la función g cuya gráfica está dada, reordene los números 0, g'(-2), g'(0), g'(2), g'(4) en orden creciente y explique su razonamiento.

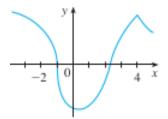


5. Determine si f'(0) existe en cada una de las siguientes funciones.

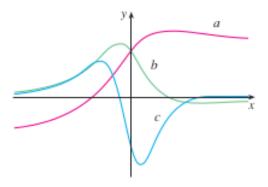
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}, \ f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

6. Determine los puntos en los cuales la función f, cuya gráfica se da a continuación, no es derivable.





7. La figura muestra las graficas de f, f' y f''. Indique cada curva y explique el porqué de su elección.



8. Considerar las funciones $f, g : \mathbb{R} \to \mathbb{R}, h : [0, \infty) \to \mathbb{R}$, definidas por

$$f(x) = |x^2 - 1|, g(x) = |x^3 - 1|, h(x) = \sqrt{x}.$$

- a) Hallar la ecuación de las rectas tangentes a los gráficos de f y g por derecha y por izquierda, en los puntos en que dichas funciones no son derivables; en cada caso, indique el valor en radianes del ángulo formado por cada recta tangente y el eje de las x.
- b) Probar que h no es derivable por derecha en 0 y analizar si existe una recta tangente por izquierda al gráfico de h en dicho punto.
- 9. Considerar la curva C de ecuación $y = 2x^3 + 3x^2 12x + 1$,
 - a) Encuentre los puntos de C cuya recta tangente es horizontal.
 - b) Encuentre los puntos de C cuya recta tangente es paralela a la recta de ecuación y = -2x + 1.

10. Si

$$f(x) = \begin{cases} x^2 & \text{si } x \le 2\\ mx + b & \text{si } x > 2 \end{cases},$$

hallar m y b para que f sea derivable en \mathbb{R} .

11. Calcular la función derivada de cada una de las siguientes funciones:

a) $f(x) = x^2(1-2x);$ c) $R(a) = (3a+1)^3;$ e) $G(p) = e^p(p+g) h(x) = \frac{x^2+4x+3}{x^2-1};$ $p\sqrt{p});$

b) $A(t) = 2t^{-3/4}$; d) $B(s) = -\frac{12}{s^5}$; f) $g(x) = 2e^{3x} + \frac{4}{\sqrt[3]{x}}$; h) $S(r) = 4\pi r^2$.

12. Si f es una función derivable, encuentre una expresión para la función derivada de las siguientes:

$$\frac{f(x)}{x^2}, xf(x), \frac{1+xf(x)}{\sqrt{x}}.$$

13. Calcule las derivadas de f, donde f(x) es una de las siguientes:

a) $x^2 \operatorname{sen} \pi x$;

c) $\left(\frac{x-1}{x^2+x+1}\right)^4$;

e) $\frac{e^{1/x}}{x^2}$;

h) arc cos x.

f) $\sec(1+x^2)$;

b) $\log(x \log x)$;

d) $e^{x \log x}$;

g) $\log |x^3 - 1|$;

i) $\arcsin x$

14. Encuentre los valores máximo absoluto y mínimo absoluto de f sobre el intervalo dado.

a) $f(x) = 12 + 4x - x^2$, [0, 5],

b) $f(x) = e^x(x^2 + 1), [-2, 2],$

c) $2x^3 - 3x^2 - 12x + 1, [-2, 3],$

d) $xe^{-x^2/8}$, [-1, 4].