Práctico 2: Balance Radiativo, Estabilidad Vertical y Convección

El Sistema Climático 2024 - PEDECIBA Geociencias

Nota: los ejercicios marcados con (\mathbf{E}) son para entregar. Fecha de entrega $\mathbf{8}$ de Mayo.

Ejercicios de balance energético global

Ejercicio 1 Teniendo en cuenta que la luminosidad solar es $L_0 = 3.9 \times 10^{26} W$, y que el radio del sol es $R_0 = 6.96 \times 10^8 m$, calcule la temperatura del mismo y la longitud de onda asociada al máximo de su espectro de emisión. Indique dentro de qué banda del espectro se encuentra dicha longitud de onda.

Datos: la constante de Stefan-Boltzman es $\sigma = 5.67 \times 10^{-8} Wm^{-2}K^{-4}$, y la constante que relaciona la longitud de onda asociada al máximo del espectro de emisión de un cuerpo negro en equilibrio térmico con su temperatura es $2.897 \times 10^{-3} mK$.

Ejercicio 2

- a) Considere el modelo de atmósfera de 1 sola capa visto en clase, donde la atmósfera es transparente a la radiación solar y opaca a la radiación terrestre de onda larga. Considere un albedo de 0.3. ¿Cuál sería la temperatura de emisión de la superficie terrestre?.
- b) Calcule la temperatura de emisión de la superficie terrestre bajo los supuestos de la parte anterior, pero considerando que un 12% de la energía emitida en el rango infrarrojo, se escapa directamente hacia el espacio (ventana atmosférica).
- c) Calcule la temperatura de emisión de la superfice de la Tierra si, considerando los supestos de la parte a), la luminosidad del Sol fuese un 10% menor a la actual.

Datos: distancia Tierra-Sol $d = 149.6 \times 10^6 km$.

Ejercicio 3 Considere el modelo de una sola capa visto en clase. Calcule la temperatura de la superficie de la Tierra si toda la energía de onda corta proveniente del sol que ingresa a la atmósfera fuera absorbida por la misma en lugar de por la superficie terrestre.

Ejercicio 4 (E) Considere una atmósfera de una sola capa, transparente a la radiacón solar de onda corta, que interactúa con la radiación emitida por la superficie de la Tierra. Asuma que la atmósfera absorbe una proporción de la radiación de onda larga emitida por la Tierra, la cual depende linealmente de la concentración de dióxido de carbono. Es decir, la emisividad de la atmósfera se puede escribir como:

$$\epsilon = \epsilon_0 + [CO_2]\epsilon_1,\tag{1}$$

donde [CO₂] es la concentración en ppm, $\epsilon_0=0.734~y~\epsilon_1=1\times 10^{-4} ppm^{-1}$.

Calcule la temperatura de la superficie para:

- a) La atmósfera actual, con una concentracón de CO₂ de 360ppm.
- b) La atmósfera pre-industrial, con una concentración de 280ppm.
- c) Una potencial atmósfera futura con una concentración que duplique los valores actuales.


Ejercicio 5 Responder las siguientes preguntas justificando brevemente:

- a) Teniendo en cuenta las leyes de Planck y de Wien, y dados dos cuerpos a temperaturas T₁ > T₂; ¿cuál de ellos tiene el máximo de emisión a mayor longitud de onda?.
- b) ¿Aumenta o disminuye la energía recibida desde el ecuador a los polos?.
- c) ¿Qué es el albedo?.
- d) Globalmente la Tierra está en equilibrio, de forma tal que la energía ganada y perdida es la misma. ¿Qué ocurre a nivel local?.

Ejercicios de estabilidad y convección

Ejercicio 6 La siguiente figura muestra un sondeo aerológico.

- a) Calcule el gradiente vertical de temperatura para cada tramo de la curva.
- b) Considerando que el gradiente adiabático seco es de aproximadamente 10°C/km, determine si cada capa es estáticamente estable, neutra o inestable.
- c) Si empujamos una parcela de aire seco ubicada a 2km y con una temperatura T = 5°C hacia arriba o hacia abajo, ¿ascenderá, descenderá, o se quedará en la misma altura?. Justifique su respuesta.

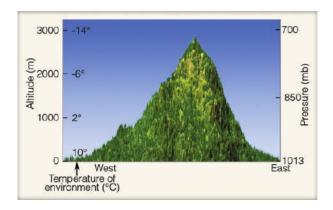
Ejercicio 7 Considere una masa de aire que a un nivel de presión de 1000hPa tiene una temperatura de 16°C. ¿Qué temperatura debe tener en el nivel de 700hPa para que continúe siendo la misma masa de aire?. Considere que el contenido de humedad no varía.

Dato: $R/c_p = 0.286$.

Ejercicio 8 (E) Los datos de un radiosondeo arrojan los siguientes valores de presión y temperatura:

P(hPa)	1022	987	810	740	578
$T(^{\circ}C)$	17	10	4	0	-12

- a) Calcule la temperatura potencial para cada punto y realice un diagrama de su comportamiento vertical.
- b) Determine las condiciones de estabilidad de la atmósfera. Justifique su respuesta.


Ejercicio 9 (E) ¿Bajo qué tipo de condiciones podría observar la base de una nube tipo cumulonimbo lo más alejada posible de la superficie?. Considere para ello que la temperatura del aire en superficie y del punto de rocío son:

- a) $35^{\circ}C$, $14^{\circ}C$
- b) $30^{\circ}C$, $19^{\circ}C$
- c) $34^{\circ}C$, $9^{\circ}C$

- d) $29^{\circ}C$, $7^{\circ}C$
- e) $32^{\circ}C$, $6^{\circ}C$

Ejercicio 10 En la siguiente figura aparecen reflejados los valores de temperatura obtenidos en un radiosondeo (temperatura del ambiente).

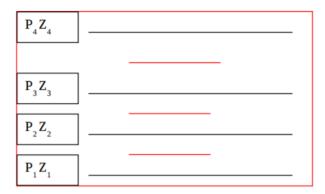
- a) Calcule el gradiente térmico vertical de la atmósfera.
- b) Determine la estabilidad estática de la atmósfera.

Suponga la presencia de vientos que soplan de oeste a este y una parcela de aire que empieza a ascender por la montaña (por el lado oeste). Suponga que justo en el punto en que empieza a ascender, la parcela tiene una temperatura de $10^{\circ}C$ y una temperatura del punto de rocío de $2^{\circ}C$.

- c) ¿Cuál es la humedad relativa de la parcela de aire a 0m de altura, justo cuando empieza a ascender?. Considere los datos dados en la tabla al final del documento.
- d) ¿A qué altura apróximadamente empezaría la condensación?.
- e) ¿Cuál es la temperatura del punto de rocío en la base de la nube?.
- f) ¿Cuál sería la temperatura de la parcela de aire y su temperatura del punto de rocío a 3000m?. Suponga que el gradiente adiabático húmedo es de 6°C/km.
- g) A 3000m de altura, ¿cuánto vale la temperatura del ambiente y de la parcela de aire?. ¿Qué tipo de estabilidad atmosférica se tiene?.
- h) A 3000m, ¿esperaría que la nube se siguiera desarrollando verticalmente?.

Teorema del espesor

Ejercicio 11 (E) Considere una capa de la atmósfera ubicada entre los niveles de presión P_1 y P_2 y caracterizada por una temperatura T_c constante. Considerando la atmósfera como un gas ideal, la existencia de balance hidrostático y que $d\phi = gdz$:


a) Obtenga la relación: $\phi_2 - \phi_1 = RT_c ln (P_1/P_2)$.

b) Si $Z_2 - Z_1 = (\phi_2 - \phi_1)/g$ representa el espesor de la capa de aire entre los niveles de presión P_1 y P_2 , calcule el espsor de una columna vertical de aire que se ubica entre 1000hPa y 500hPa si la capa presenta una temperatura (i) $T_c = 18^{\circ}C$, y (ii) si presenta una temperatura $T_c = -30^{\circ}C$. ¿Qué conclusiones puede sacar al respecto?.

Dato: $R = 287Jkg^{-1}K^{-1}$.

Ejercicio 12 La siguiente figura muestra distintas capas de la atmósfera, donde P es la presión y Z la altura a la cual se encuentra dicho nivel de presión. Considerando una atmósfera constituida solo por aire seco, calcule la densidad y la temperatura promedio en cada capa si los valores de P y Z son:

- Nivel1: $P_1 = 1000hPa$, $Z_1 = 164m$ Nivel2: $P_2 = 700hPa$, $Z_2 = 3000m$
- Nivel3: $P_3 = 500hPa$, $Z_3 = 5500m$ Nivel4: $P_4 = 300hPa$, $Z_4 = 9000m$

Ejercicios que incluyen visualización y análisis de datos

Ejercicio 13 En el siquiente link se encuentran disponibles datos de modelos, reanálisis y observaciones: https://psl.noaa.gov/data/gridded/index.html. Los datos pueden ser descargados, o se pueden realizar análisis sencillos online.

a) Calcule y grafique el mapa global del promedio de un año de datos diarios de la energía proveniente del sol que llega al tope de la atmósfera y de la energía que llega a la superficie. Compare ambos mapas y discuta las diferencias observadas.

Pasos: 1. Seleccione el reanálisis NCEP/NCAR. 2. En el set de datos a elegir, seleccione other fluxes y solar energy fluxes. Allí aparecerán las variables a graficar. 3. Clickear donde dice **create a plot or subset**. 4. Realice la media de un año particular y mapeela.

- b) i. Realice el mapa de distribución global de SST promedio para el período entre 1971 2000. Utilice el producto NOAA Optimum Interpolation (OI) SST V2. ii. Realice el mapa de la distribución de la precipitación promedio entre 1991 2020. Utilice el producto CMAP precipitation. iii. Explique los patrones observados en ambos mapas relacionándolos con la circulación general atmosférica.
- c) Obtenga el mapa de correlación entre precipitación (CMAP) y el índice Niño 3.4 para la región de América del Sur. Las correlacciones pueden ser realizadas online en el siguiente link: https://psl.noaa.gov/data/correlation/. Discutir.

Ejercicio 14 (E) Se adjuntan los datos mensuales de radiación en el tope de la atmósefera durante el año 2021 obtenidos del reanálisis NCEP2 para tres regions: una ubicada sobre la región ecuatorial, otra sobre Uruguay y otra sobre la Antártida.

- a) Grafique para cada región el ciclo anual de: (i) la radiación solar de onda corta que llega al tope de la atmósfera, (ii) la reflejada en el tope de la atmósfera y (iii) de la radiación de onda larga emitida por la Tierra.
- b) Explique las gráficas obtenidas en el apartado a) y compare entre regiones.
- c) Realice el balance radiativo mensual en el tope de la atmósfera para cada región.

 Grafíquelos y compare entre regiones.
- d) Realice el balance radiativo anual para cada región y compare.

Datos: El archivo datos_NCEP2.txt incluye (en W/m^2) los datos de radiación de onda corta incidente y reflejada, y radiación de onda larga emitida por la Tierra.

Ejercicio 15 En este ejercicio se van a analizar series de datos de temperatura media mensual del aire y precipitacón acumulada mensual obtenidas de la estación de Artigas para el período 1951 – 2002.

- a) Grafique y comente amabas series.
- b) Calcule y grafique sobre los gráficos de la parte a), la media de toda la serie.
- c) Agregue al gráfico de la parte a) la desviación estándar. Comente.
- d) Calcule y grafique la climatología mensual para ambas series. Compare y comente.

- e) Calcule y grafique las anomalías de ambas variables para toda la serie. Comente en qué períodos se observan las mayores anomalías.
- f) Grafique el índice niño3.4 para el período 1951 2002 y calcule la correlación con la serie de anomalías de precipitación medidas en Artigas.

Datos: Los archivos T_Artigas.csv y PP_Artigas.csv contienen los datos de temperatura y precipitación en Artigas correspondientemente. El archivo oni.csv la serie del niño3.4.

Datos: Tabla para Ej.10

AIR TEMPERATURE		SATURATION VAPOR PRESSURE	AIR TEMPERATURE		SATURATION VAPOR PRESSURE
(°C)	(°F)	(MB)	(°C)	(°F)	(MB)
-18	(0)	1.5	18	(65)	21.0
-15	(5)	1.9	21	(70)	25.0
-12	(10)	2.4	24	(75)	29.6
-9	(15)	3.0	27	(80)	35.0
-7	(20)	3.7	29	(85)	41.0
-4	(25)	4.6	32	(90)	48.1
-1	(30)	5.6	35	(95)	56.2
2	(35)	6.9	38	(100)	65.6
4	(40)	8.4	41	(105)	76.2
7	(45)	10.2	43	(110)	87.8
10	(50)	12.3	46	(115)	101.4
13	(55)	14.8	49	(120)	116.8
16	(60)	17.7	52	(125)	134.2

^{*}The data in this table can be obtained in Fig. 4.10, p. 97, by reading where the air temperature intersects the saturation vapor pressure curve.