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Abstract 

In recent decades, there has been increasing eutrophication of rivers and lagoons in Uruguay and 

solutions leading to water purification are being sought. The growing pollution has been attributed 

to nitrogen and phosphorus compounds exported from the river basins with intensification of 

agricultural production and the absence of tertiary treatment for urban and industrial effluents. 

Although nitrogen and phosphorus are relevant to eutrophication, there are also other factors that 

can promote eutrophication and algal blooms. This paper reports a broad analysis of water quality 

variables recorded over 9 years (2009-2018) at 17 sampling stations on the Uruguay River and 16 

sampling stations on the Río Negro, and explores their relationship with the changes of chlorophyll 

a (Chl-a) concentrations using a generalized linear model and a neural network simulation (NNS). 

The input variables were total phosphorus; total suspended solids; electrical conductivity of water 

( wEC ); alkalinity; water temperature (T); water pH (pH) and sampling month. The NNS explained 

79% of Chl-a variations and showed the most relevant variables to be T, wEC , and pH. Moreover, 

the NNS showed that replacement of current land uses by natural prairie would not significantly 

reduce Chl-a concentrations. The results showed that the main factors that drive Chl-a 

concentrations (i.e., algae) are not directly linked to agriculture land use. 

Highlights 

• The algal bloom at Uruguay was promoted by the Climate Change 

• Chl-a levels were increased by temperature, electrical conductivity and pH of rivers 
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• Reduction in agricultural P emissions to rivers would not avoid high Chl-a levels 

• The replacement of agriculture by natural prairie do not avoid the algae bloom 

Keywords: neural network simulations, eutrophication, Chl-a, freshwater 

1 Introduction 

The contamination of freshwater bodies is one of the most important environmental 

impacts threatening sustainable development. This is agreed in the Millennium Development 

Goals (Sachs, 2012), the risk analysis of the World Economic Forum (Bakker, 2012; World 

Economic Forum Water, 2009), and by the International Organization for Standardization (e.g., 

(ISO, 2014)) through the Water-footprint Use in Life Cycle Assessment working group. All of 

these promote both the protection of freshwater bodies and the water quality in them, mainly 

against anthropic eutrophication processes. 

Eutrophication is the enrichment with minerals and nutrients that increase the natural 

primary production (i.e., algae and macrophytes) of water bodies (lentic and lotic) (Wetzel, 2001). 

Therefore, concentrations of nitrogen, phosphorus, and chlorophyll a (Chl-a) are monitored to 

assess the degree of anthropic eutrophication being promoted in water bodies (Wetzel, 2001). The 

eutrophication could result from point and/or diffuse pollution sources such wastewater discharges 

and fertilizers washed from basins, respectively. High Chl-a concentrations generally correspond 

to high amounts of algae in a freshwater body. Thus, it is possible to infer that increasing Chl-a 

concentrations are positively correlated with increasing risk of harmful cyanobacteria (Watson et 

al., 1997). 

Since 1982, Uruguay has been reporting anthropic eutrophication, and environmental 

management of these impacts has focused on control of emissions of nitrogenous and phosphorus 

compounds (Conley et al., 2009; Wetzel, 2001). However, Wetzel (2001) has pointed out that can 

be other factors that promote eutrophication and thus algal blooms. Variables such as water 

temperature changes (Konopka and Brock, 1978; Rose and Caron, 2007; Zhao et al., 2019); loss of 

freshwater herbivores (Delpla et al., 2009; Yoshimura and Endoh, 2005); increasing electrical 

conductivity of the water ( wEC )(Casanova et al., 2009) by ions in runoff from agricultural areas 

(Armstead et al., 2016; Bowling, 1994; Bowling and Baker, 1996; Delpla et al., 2009; Schuytema 

et al., 1997); and increases in pH may all promote cyanobacteria growth (Gao et al., 2015; Zhao et 

al., 2019). These key influences highlight the importance of land use changes in basins. Greater 

soil cover can reduce soil erosion; plants protect the soil, as reflected in the (universal soil loss 
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equation, revised universal soil less equation) USLE/RUSLE models C-factor. Better soil cover 

can also reduce total phosphorus export to freshwater, as identified for the Río Negro (Beretta, 

2019), and the 
wEC  according to Carrasco-Letelier et al. (2014) and Carrasco-Letelier and 

Beretta-Blanco (2017). 

Neural network simulation (NNS) is a data analysis tool that has recently become available 

for most personal computers. This methodology allows a multidimensional analysis of datasets 

relating diverse problems (Karul et al., 2000). NNS can identify contributing relationships with a 

specific variable and simulate potential scenarios (Gao et al., 2015; Huo et al., 2013). Thus, this 

process has been used to determine the influence of changes in several freshwater variables; a 

diagnostic process with less bias than when variables are defined on the basis of expert experience 

(Gao et al., 2015; Huo et al., 2013; Karul et al., 2000). 

In the current situation, Uruguay does not have any management tool to predict the 

increase in Chl-a concentrations, and it was assumed that the phosphorus load is the main factor 

that promotes eutrophication. However, Wetzel (2001) and Allan and Castillo (2007) have pointed 

out that eutrophication is a multi-factor process. Therefore, to achieve sound environmental 

management, a tool that reduces bias and the influence of the researcher’s beliefs on the diagnosis 

is required. In this direction, the simulation of the NNS could help both in the identification of the 

main variables that promote eutrophication; as in the simulation of the change in water quality due 

to the change in land use of the basin, if this information is used by NNS. For current freshwater 

problems, an NNS would offer an unbiased diagnostic tool and simulation capability to assist 

environmental management of the basin’s land use. 

If we recognize that the eutrophication process is a multidimensional event, a reductionist 

and unidimensional way of analysis would not identify all relevant variables linked to increasing 

Chl-a. Any resulting model would fail to adequately simulate the potential risk of algal blooms 

when key factors are modified. The hypothesis of this work is, therefore, that an NNS can identify 

the variables that drive increases in Chl-a concentrations, and consequently the factors that must be 

managed to avoid algal blooms. To explore this hypothesis, a database of freshwater variables 

from the Uruguay River and the Río Negro were analyzed using an NNS to identify which 

freshwater and land use variables are most closely linked to Chl-a changes and how the rivers 

would be affected if the use of the land would be restored to its natural (i.e., natural prairies). 
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2 Materials and Methods 

2.1 Database of freshwater variables 

A database of freshwater variables (Table 1) was acquired from the open database service 

of the National Environmental Agency (MVOTMA, 2019) for the period 2009-05-01 to 

2018-11-30 for the Río Negro and for the period 2014-06-01 to 2018-11-30 for the Uruguay River. 

The freshwater variables included: Chl-a expressed in 1 g L  ; alkalinity (ALC), expressed in 

1 mg L  
3CaCO ; electrical conductivity of water (

wEC ), expressed in 1 S cm  ; total phosphorus 

(TP), expressed in 1 g L  ; total suspended solids (TSS), expressed in 1 mg L ; water acidity 

expressed in pH, and water temperature (T) expressed in degrees Celsius ( Co ). Any measures of 

Chl-a higher than the 99.5% percentile were regarded as outliers and excluded. These outliers 

occurred at the following sampling sites: RN3 (2012-12-05), RN5 (2012-12-06 and 2012-01-19), 

RN6 (2012-08-15), and RN12 (2018-04-17). The average monthly radiation for each river was 

derived from Abal et al. (2011). 

 

Figure 1: Uruguayan rivers analyzed in this study: Uruguay river, Río Negro and Cuareim river. 

The sampling points used for the database are marked (circles with centered star). The 

georeferecing data of each coded point were pointed out in Table 1. 

Table 1: Geographic location of rivers and sampling points used in the data analyses. 

River Sampling Geolocation River Sampling Geolocation 

name point  name point  

  Latitude Longitude   Latitude Longitude 

Ro Cuareim RC10 -30.694941 -56.150588 Ro Negro RN15 -33.234717 -58.009994 

Ro Cuareim RC20 -30.503327 -56.367441 Ro Negro RN16 -33.240824 -58.056944 

Ro Cuareim RC33 -30.40431 -56.452048 Ro Negro RN17 -33.388324 -58.317224 

Ro Cuareim RC60 -30.27903 -57.41578 Uruguay River RU0 -32.902139 -58.116389 

Ro Cuareim RC35 -30.395397 -56.455783 Uruguay River RU1 -33.074944 -58.151806 

Ro Cuareim RC3C70 -30.335783 -57.046419 Uruguay River RU2 -33.086556 -58.136611 

Ro Cuareim RC40 -30.357963 -56.547252 Uruguay River RU3 -33.107472 -58.186444 

Ro Cuareim RC50 -30.151363 -56.784697 Uruguay River RU4 -33.0945 -58.211889 
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Ro Cuareim RCYU80 -30.347013 -57.328938 Uruguay River RU5 -33.105167 -58.216583 

Ro Negro RN0 -31.81922 -54.459889 Uruguay River RU6 -33.1115 -58.219361 

Ro Negro RN1 -32.109839 -54.667486 Uruguay River RU7 -33.104111 -58.25775 

Ro Negro RN2 -32.503888 -55.505278 Uruguay River RU8 -33.109417 -58.265111 

Ro Negro RN3 -32.621107 -55.841937 Uruguay River RU9 -33.119361 -58.26947 

Ro Negro RN5 -32.823319 -56.419437 Uruguay River RU10 -33.1155 -58.282139 

Ro Negro RN6 -32.835265 -56.419282 Uruguay River RU11 -33.106111 -58.2955 

Ro Negro RN7 -32.821112 -56.5130572 Uruguay River RU12 -33.104667 -58.301994 

Ro Negro RN9 -32.876116 -56.798615 Uruguay River RU13 -33.118056 -58.3365 

Ro Negro RN10 -32.871883 -56.809333 Uruguay River RU14 -33.177139 -58.359972 

Ro Negro RN11 -33.097219 -57.126662 Uruguay River RU15 -33.165111 -58.391917 

Ro Negro RN12 -33.143322 -57.101672 Uruguay River RU15 -33.165111 -58.391917 

Ro Negro RN13 -33.066936 -57.45417 Uruguay River RU16 -33168 -58.358167 

Ro Negro RN14 -33.049706 -57.453616     

 

2.2 Analysis of variables by linear model 

The annual trends in the water quality variables were evaluated with a generalized mixed 

linear model, which considered the year as a fixed effect and months and sampling sites as random 

effects (Eq. 1). 

=  ( )V B year month S   (1) 

V, B and S correspond to any freshwater variable measured, the coefficient of annual trend 

analysis and the random effect nested in the sampling month, respectively. 

Correlations between Chl-a level and the other freshwater variables were first determined. 

In addition, a boundary line was fitted for boundary points Delmotte et al. (2011); this 

corresponded to the maximum response of the dependent variable for each value of Chl-a and 

approximated a sigmoid model up to the maximal value of Chl-a and then, except for pH and T, an 

exponential decay pattern. Based on these boundary lines, we estimated the values of the 

independent variables at which one trophic state changes to another. We used the trophic 

categories established by the Organisation for Economic Co-operation and Development (OCDE, 

1982): ultraoligotrophic state, Chl-a concentrations lower than 2.5 1 g L  ; oligotrophic state, 
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from 2.5 to 8 1 g L  ; mesotrophic state, from 8 to 25 1 g L  ; and eutrophic state from 25 to 75 

1 g L  . 

2.3 Neural network simulations 

 

Table 2: Characteristics of the neural network that was adjusted to estimate the values of Chl-a, 

expressed in 1 g L  . 

Input data Transformation Layer of Response Output 

  hidden function 1  function 2  

  neurons   

ALC   6( 8 10 )

1

1 2 X 
 

(0.01 )

50

10 Y
 

ECw      

TP     

pH Normalized data    

T     

TSS     

Month 
 

12

Month number
    

Bias 3      

T: water temperature ( o C); TSS: total solids ( 1 mg L ); ALC, alkalinity ( 1

3  mg CaCO L ); TP: total 

phosphorus ( 1 g L  ); wEC , electrical conductivity of water ( 1 S cm  ). 

(1) X represents the sum of each transformed data value multiplied by the perceptron coefficients 

of the neural network; 

(2) Y represents the addition of each hidden layer neuron multiplied by its weight factor; 

(3) bias is an input variable to the NNS that does not depend on water data (García, 2002). 

 

 

Figure 2: Flux diagram of inputs, structure and output of artificial neural network. 

 

NNS was used to identify how the different water variables linked to Chl-a concentration 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



produce changes. The construction of NNS was made following García (2002) using Microsoft 

Excel
®
 software. The NNS was set up with input of seven variables (Fig. 2, Table 2), a hidden 

layer of 10 neurons, and one exit neuron. First, the input variables were transformed to produce 

input values between 0 and 1 for each neuron, the variables ALC, 
wEC , TP, pH, T and TSS were 

normalized, while the month variable was divided into 12. Then, each neuron of the hidden layer 

received as input, from each learning observation, the sum of the normalized values was multiplied 

by an input weight ( ) (Eq. 2). Each neuron in the hidden layer responded with a value between 

zero and one, given its sigmoid function, according to the value it received as input (Eq. 3). The 

response value of each neuron was multiplied by an input weight ( ) to the a single exit neuron, 

which also used a sigmoid function, with output values from 0 to 50 (Eq. 4). The neural network 

was adjusted through supervised training by back-propagation, looking for the smallest sum of 

squares error. The maximum number of neurons that did not produce overfit during learning was 

used, which was corroborated when estimating the testing values. The NNS was trained using 

values from the Río Negro and Uruguay River sampling sites (training dataset), and it was tested 

with Río Cuareim dataset (Table 1). The NNS simulated values of Chl-a (Chl-a RN ) were regressed 

against the real Chl-a values to determine whether there was a significant linear relationship and 

whether the regression errors had a normal distribution. 

= (   )ijInput Normalized variable input Bias    (2) 

Where ij  is a weight of input variable i  in j  neurons, and be adjusted in the learning 

process 

0.000008

1
=

(1 2 )
j intput

RHN
 

 (3) 

Where RHN is the response of hidden neurons j , and be between 0 and 1. 

0.01 ( )

50
=

1
RHN

j j
RN

e
  


 (4) 

Where RN is the response of exit neurons, and j  is a parameter of weight of j  neurons of 

hidden layer, and be adjusted in the learning process. 

After the NNS adjustment, Chl-a RN  values were simulated up to 2025 according to Eq. 1 

for the Río Negro assuming temporal tendency of input variables using in NNS (Fig. 2). An 

additional simulation was carried for a land use changes that replace all agriculture with natural 
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prairie, that would change the input values of PT and 
wEC . The expected reduction of TP export 

from the basin to the Río Negro waters was estimated using Beretta (2019): 

 = 0.834   12.57NPTP TP   (5) 

where 
NPTP  is the expected TP in river waters if the basin is restored to natural prairie. 

Any 
NPTP  values lower than zero were recorded as zero. Similarly, 

wEC  changes were estimated 

using Eq. 6, according to Carrasco-Letelier et al. (2014) with soil loss described by 

Carrasco-Letelier and Beretta-Blanco (2017), assuming a C-factor of 0.02 and an annual mean 

rainfall of 1000 mm: 

0.8025( )
=1,310,973.93  [ ]max

rainfall mm
EC

C factor




 (6) 

where maxEC  corresponds to the highest value of wEC  ( 1 S cm  ) estimated for natural 

prairie land use. 

3 Results 

3.1 Annual change analysis 

The annual values in the period 2009-2018 showed decreasing trends in pH, ALC, wEC  

and TSS and an increasing trend for T in the Río Negro (Table 3). The TP and Chl-a concentrations 

did not show any temporal trend. In the Uruguay River, ALC, TP and T values decreased over 

time; pH, wEC  and TSS increased, and Chl-a did not change significantly. 

 

Table 3: Mean monthly values, deviations, and annual changes in water quality variables from the 

Río Negro (May 2009 - November 2018) and the Uruguay River (June 2014 - November 2018). 

 Chl-a ALC ECw(1) TP pH TSS T 

 1 g L   1

3  mg CaCO L  1 S cm   1 g L    1 mg L  Co  

Río Negro 

Mean 2.5 39 85.7 118 7.38 122.3 20.1 

Variance 5.0 19.2 34.3 114.2 0.51 55.2 5.2 

Annual coefficient 0.05 -1.26 -2.73 -0.85 -0.04 -1.44 0.23 

p-value 0.4212 <0.0001 <0.0001 0.1439 0.0001 0.0255 <0.0001 
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Degrees of freedom 251 251 251 249 251 103 251 

Uruguay river 

Mean 1.9 29 66.0 99 7.31 88.6 21.2 

Variance 2.0 2.7 7.4 25.5 0.2 7.5 5.2 

Annual coefficient 0.02 -1.25 4.70 -9.65 0.12 3.57 -0.5 

p-value 0.8073 0.0004 <0.0001 0.0024 <0.0001 0.0001 <0.0001 

Degrees of freedom 124 133 251 141 140 142 120 

T, water temperature; TSS, total solids; ALC, alkalinity; TP, total phosphorus; wEC , electrical 

conductivity of water; ND, no data. 

 

3.2 Freshwater changes linked to Chl-a concentrations 

The recorded Chl-a concentrations (Fig. 3) in the studied rivers had positive, but low, 

correlations with: T ( 2R  = 0.25; p <0.01), wEC  ( 2R  = 0.14; p <0.01), pH ( 2R  = 0.26; p <0.01), 

TSS ( 2R  = 0.09; p <0.01), monthly average daily radiation ( 2R  = 0.24; p <0.01), and ALC ( 2R  = 

0.06; p = 0.05). No correlation was found between Chl-a and TP concentrations. 

 

Figure 3: Relationship between Chl-a concentrations and ALC (a), wEC  (b), TP (c), pH (d), TSS 

(e) and T(f). The solid line corresponds to the boundary of expected maximal values. 

 

Using the Chl-a maximum values and a boundary, the relationships of this variable with the 

rest of studied variables were of two types. The first type exhibited a sigmoidal pattern at low 

variable values, with an inflection point ( iC ) and a maximum value ( optC ). After the peak, as the 

studied variable increased, there was exponential decay in Chl-a concentrations. This occurred 

with: ALC ( iC : 27 1 mg L  3CaCO , optC : 49 1 mg L  3CaCO ), wEC  ( iC : 63 1 S cm  , optC : 

120 1 S cm  ), ST ( iC : 78 1 mg L ; optC : 130 1 mg L ), and TP( iC : 60 1 g L  ; optC : 140 

1 g L  ) (Figure 3). 

The second type of relationship also initially showed a sigmoidal pattern; after the 

inflection point ( iC ) the pattern became asymptotic to the maximum value ( optC ). This second 

kind of relationship was evident in T ( iC : 18 Co ) and pH ( iC : 7.0). These variables did not show 
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exponential Chl-a decrease after a maximal value. In both rivers, month mean values of Chl-a 

(Table 3) showed an increasing trend related to increasing T, 
wEC , and pH values (Fig. 4). 

The interactions, across the sampling sites, of Chl-a with T and of ECw with pH were 

found to be more significant when using month means ( 2R : 0.60) than when based on individual 

sampling events (month) ( 2R : 0.4). 

 

Figure 4: Mean Chl-a values for each month and year and interaction with T ( Co ), 
wEC  

1(  )S cm  , and pH for the Río Negro (triangles) and the Uruguay River (circles). Equation line is 

8 2 4= 4.1 10 5.3 10 2.15y x x     ; 2R  = 0.64, n = 61 (p <0.01). 

 

The variables T and 
wEC  did show clear effects on maximum Chl-a concentrations: 58% 

of Chl-a records did not reach a mesotrophic level when wEC  was < 79 1 S cm   or > 141 

1 S cm  ; or, in 47% of records, when T was lower than 19.1 Co  (Table 4). No such boundaries for 

TSS and TP concentrations were found in the database. 

 

Table 4: Limits of the other variables required to influence the trophic state and the observed 

proportion (%) of samples in each state as defined by Chl-a content (OECD, 1982). 

Variable Units Trophic state % of samples 

  Ultraoligo Oligo Meso Ultraoligo Oligo Meso 

T Co
 10 13.8 19.1 1 11 35 

TSS 1 mg L  > 60; <365 >68; <268 >81; <173 1 3 20 

pH  6.08 6.52 7.13 1 3 22 

ECw 1 S cm   >47;<233 >61; <186 >79; <141 2 19 37 

ALC 1

3  mg CaCO L  >15.5; <89. >21; <72.7 >28.6; 

<56.4 

2 3 29 

TP 1 g L   >21; <316 > 39; <244 >66; <172 4 1 17 

T, water temperature; TSS, total suspended solids; ALC, alkalinity; PT, total phosphorus; wEC , 

electrical conductivity of water. 
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The developed NNS (Fig. 4) and its adjusted coefficients (Table 3) explained 79% of the 

variations in Chl-a concentrations (Fig. 5), with a mean error of 0.74 1 g L   (p <0.01) for the Río 

Negro and Uruguay River and an average error of -0.68 1 g L   (p <0.01) for the Cuareim River. 

For both datasets, adjustment and validation, the relationship between observed and estimated 

values was 1:1 (p <0.05). The errors had acceptable values although they did not have normal 

adjustment distributions for the Río Negro and the Uruguay River. In validation with Cuareim 

River data, a normal distribution was determined using the Shapiro-Wilk test. At low values, the 

NNS underestimated Chl-a concentrations. The model would therefore be inappropriate for Chl-a 

concentrations below 5 1 g L  ; the 95th percentile of absolute errors was 4.9 1 g L  . 

 

Figure 5: Chl-a values estimated by NNS for the Uruguay River and the Río Negro (crosses) and 

the Cuareim River (squares). 

Figure 6: Chl-a values from Río Negro for the period 2009-2025: recorded data (fill circles) and 

simulated values (fill squares) by NNS. a) means values; b) 90th percentil values. 

 

Using the NNS to project Chl-a concentrations in the Río Negro up to December 2025 

showed decreasing mean values at a rate of 0.05 1  g Chl a L   (Fig. 6a)(p <0.001), but the 90th 

percentile values were unchanged (Fig. 6b). This trend reflects the interaction of Chl-a 

concentrations with the T, wEC  and pH variables (Fig. 4). Simulation of the effects of 

replacement of current land use by natural prairie in the Río Negro basin indicated that wEC  

would drop below 222 1 S cm  ; however, neither the mean values of Chl-a (0.39 1 g L  ) nor the 

90th percentile values would change (Fig. 7). However, if the land use would be restored to natural 

prairie, the 90th percentile of Chl-a values would drop from 15.73 to 15.00 1 g L  , and the 

number of samples exceeding 8 1  g of Chl a L  , a mesotrophic state according to the OCDE 

(1982), would rise from 47 to 60. 

 

Figure 7: Observed Chl-a concentrations in the Río Negro and Chl-a concentrations simulated with 

an adjusted neural network, assuming natural prairie land use throughout the basin. 
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Figure 8: Distribution of toxic units, recorded annually, for 208 imported pesticides before and 

after 2004, the beginning of agriculture intensification in Uruguay. For each period, previous 

(1999-2004) and current (2009-2018) fugacity model level 1 (Mackay, 2001) was applied to 

define the fraction of pesticide that could reach the water and soil (data prepared by L. 

Carrasco-Letelier, not published). These amounts were divided by the median lethal dose, 50LD  

(48 h), for Daphnia magna (pesticide properties database, University of Hertfordshire, UK) to 

estimate the toxic units for each mass unit of pesticide. 

 

4 Discussion 

The differences in the annual trends of freshwater variables between the Uruguay River 

and the Río Negro could be the result of differences in water sampling before July 2014; 

subsequently, a common sampling procedure (i.e., subsurface sampling) was applied to both 

rivers. 

While the Uruguay River had lower values than the Río Negro for ALC, TSS, and wEC , 

both rivers had an increasing trend in TSS, and wEC . The mean annual temperature showed a 

downward trend in the Uruguay River, but increased in the Río Negro. In the six warmest months 

(October-December and January-March), in the Uruguay River the temperature increase was 

10.65  C yro  (p <0.001), while in the cold months, the temperature decreased at 10.58  C yro  (p 

<0.001). 

The three most important variables for explaining changes in the monthly/annual means of 

Chl-a in both rivers were T, wEC , and pH (Fig. 4). However, these variables did not adequately 

estimate the observed Chl-a values for each combination of sampling site and date. Thus, while 

these variables (T, wEC , and pH) can predict the overall condition of rivers with increasing Chl-a 

concentrations, they can change rapidly in short periods and from one sampling station to another 

one. To achieve less biased forecasting of Chl-a concentrations using these variables, it may be 

necessary to increase the frequency and spatial density of sampling. 

The increasing temperature of the river waters has been linked to increasing air 

temperature and/or ocean temperatures in some reports (Agency, 2016; Webb and Nobilis, 2007). 

The annual change in mean T in the Río Negro was approximately 10 times the 2.4 fold increase, 
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from 0.011 1 C yro  to 0.026 1 C yro  for the period 1901 to 2000, reported by Webb and Nobilis 

(2007) or the similar values for 1901 to 2014 reported by the Agency (2016). This may be partly 

because of differences in measurement methods. Webb and Nobilis (2007) do not specify the 

water depth of their measurements, while we used surface water layer (0-5 cm from the surface) of 

the main flow. However, the different temporal ranges in the studies are also likely to be 

significant. 

Konopka and Brock (1978) found that the maximum photosynthesis of algae in 

laboratories conditions occurs at 20-30 o C. Similarly, De León (2002) reported that cyanobacteria 

growth was favored by temperatures higher than 20 o C. However, the species Microcystis 

aeruginosa does not need such high temperatures for its development; because even at low 

temperatures the concentration of Chl-a can exceed 5 1 g L  . Moreover, the water temperature 

records may not be representative of algal bloom development potential in the rivers; the shallow 

areas near the river banks where T could reach values higher than the mean T of the river would be 

more conducive to algal growth. However, the measured temperatures were sufficient for 

maintenance of Chl-a concentrations and presumably also the concentration of cyanobacteria. 

Rose and Caron (2007) concluded that in algal blooms, lower temperatures favor the growth of 

cyanobacteria more than that of their predators. According to these researchers, temperatures 

lower than 15 o C favor the growth of cyanobacteria populations, while at 20 o C the growth rate is 

equal to their predators growth rate. Zhao et al. (2019) reported cyanobacterial blooms in lakes and 

reservoirs in China occurring at temperatures of 19.5 o C to 32 o C. Moreover, Brandão et al. (2012) 

found that temperature could affect the presence of Daphnia. Delpla et al. (2009) similarly 

reported that a warmer climate promotes cyanobacteria over phytoplankton and Abal et al. (2011) 

observed a positive correlation between Chl-a and radiation. Although our study found a 

significant correlation between T and monthly radiation, the individual effect of each variable on 

changes in Chl-a was not clear. 

The reduction in annual mean wEC  (Table 3) could be because of reduced export of 

cations from basin soils; wEC  levels have an inverse relationship with the USLE/RUSLE models 

C-factor, which reflects land use (Carrasco-Letelier et al., 2014). A high C-factor implies that the 

soil is less protected from rain and therefore more exposed to water erosion and ion export. Thus, 

recent reductions in agricultural area (DIEA (Dirección de Información y Estadística 
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Agropecuaria), 2018) and greater enforcement of soil conservation law (ROU, 1981, 2008) have 

together reduced the C-factor mean and hence reduced 
wEC  values and cation loss from soils 

(Beretta, 2019). 

Casanova et al. (2009) reported a positive correlation between Chl-a and 
wEC ; export to 

water of both ions and nutrient increases 
wEC  while also increasing algal growth and, potentially, 

algal blooms. In this framework, because 
wEC  is linked to the ratio rainfall:C-factor 

(Carrasco-Letelier et al., 2014), 
wEC  would contribute to alga blooms when rains follow drought 

periods (Bowling, 1994; Bowling and Baker, 1996; Lürling et al., 2018). The soil erosion and 

runoff that occur during heavy rain events after a dry season increase the export of ions to 

freshwater (Delpla et al., 2009). The increasing wEC  can also limit the development of 

cyanobacterias predators. High wEC  can limit the reproduction of Ceriodaphnia dubia 

(Armstead et al., 2016) and, if wEC  is higher than 63 1 S cm  , the growth and reproduction of 

Daphnia magna, (Schuytema et al., 1997). This wEC  level is close to that observed at the 

transition between the oligotrophic to mesotrophic states in our study (Fig. 3b). A second factor is 

the growth in use of pesticide and veterinary products (Yoshimura and Endoh, 2005) after the 

beginning of agriculture intensification in 2004 (Fig. 8, data prepared by Carrasco-Letelier, not 

published) (Céspedes-Payret et al., 2009): changes that would have increased xenobiotic export to 

waters and perhaps reduced the zoobenthos populations that control cyanobacteria blooms. 

Although in this work the availability of nitrogen (N) was not evaluated, it is feasible to assume 

that it contributes to the increase in wEC  and, together, to increase the Chl-a concentrations. 

However, this effect is unlikely to be significant because the erosion process already supplies 

enough phosphorus (P) (Beretta, 2019) and N. Moreover, ecosystems with low N and high P 

availability can be colonized by diazotrophic cyanobacteria, which themselves introduce N to the 

system, and the system is subsequently exploited by non-diazotrophic cyanobacteria such as 

Microcystis (Tilahun and Kifle, 2019). The sampling frequency of the database did not allow 

visualization of this effect. 

Acidification of river water could be seen as a result of increasing atmospheric carbon 

dioxide ( 2CO ); although this effect would be insignificant given that the river 2CO  pressure is 

higher than the atmospheric 2CO  pressure (Wang et al., 2015). Other possible causes are the 
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increased respiration of aquatic biota and the existence of hydroelectric dams (Wang et al., 2015). 

Hao et al. (2016) also observed an acidification trend in Chinas rivers attributable to increases in 

agricultural activity, fertilizer use, and mining. Beretta-Blanco et al. (2019) reported soil 

acidification between 2002 and 2014 as a result of agricultural activity; this could cause 

acidification of the water that reaches the channels. However, Carrasco-Letelier and Beretta 

(unpublished) did not observe any relationship between land use and water pH in 99 basins in 

Uruguay. Weiss et al. (2018) reported an increase in 
2CO  in water reservoirs in Germany, to 

which they also attributed observed acidification. The annual magnitude of acidification observed 

in the Río Negro would be similar to the lowest value reported by Hao et al. (2016), who showed a 

decrease of approximately one unit of pH in 25 years. 

The positive correlation of Chl-a with pH was also reported by De León (2002). In 

addition, Zhao et al. (2019) reported that the maximum risk of algal blooms is at pH values from 

7.0 to 9.38. If the acidification is the product of an increase of partial pressure of 2CO  (data not 

available), a reduction of the Daphnia population, a potential predator of cyanobacteria, is also 

expected (Weiss et al., 2018). While the pH level can affect the development of cyanobacteria, it 

also changes as a consequence of them; consequently, it is possible that the relationships observed 

here are due to development of cyanobacteria. 

No correlation was observed, in either river, between Chl-a and TP concentrations. The 

lack of impact of TP on Chl-a concentrations is likely to be because P levels are high most of the 

time. Zhao et al. (2019) wrote that the maximum risk of algal blooms is when TP is between 130 

and 220 1 g L  ; a range close to the values observed in our study. Indeed, we observed that a 

significant limitation to the maximum concentrations of Chl-a could be expected at 220 

1  g of TP L   in both rivers. P availability is pointed out as a limiting factor for cyanobacteria 

growth by various authors (Aubriot and Bonilla, 2012; Bonilla et al., 2015). However, Wan et al. 

(2019) concluded that Microcystis has the capacity to adapt to systems with low P and suggested 

that decreases in cyanobacterial proliferation through decreases in P are limited to diazotrophic 

cyanobacteria. This study found that high P concentrations could promote the development of 

other communities that compete with cyanobacteria; for this reason, Chl-a concentrations could 

decrease as TP values increase (Fig. 3). Brandão et al. (2012) observed a positive correlation 

between TP concentrations and the population of Daphnia laevis. 
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4.1 Estimation of Chl-a concentrations with NNS 

The adjusted NNS estimated Chl-a concentrations satisfactorily and with similar results to 

Huo et al. (2013) and Gao et al. (2015). These authors, however, also incorporated total N and 

water transparency as input variables into their models. On the other hand, Gao et al. (2015) did 

not use total suspended solids or the effect of time. The NNS reported here is not adequate to 

estimate changes from ultraoligotrophic to oligotrophic conditions, given the lack of sensitivity at 

Chl-a concentrations lower than 5 1 g L  . Moreover, the NNS is unable to estimate values greater 

than 50 1 g L   because this concentration was exceeded only five times from 2009 to 2018 and 

these were excluded as being in the 99.5th percentile. Figure 5 shows that some conditions with 

Chl-a concentrations near to 0 1 g L   were not correctly estimated. This may be because 

cyanobacteria populations occurred in conditions not covered by the record of water quality. 

Although Karul et al. (2000) reported excellent accuracy ( 2R  = 0.95) of their neural network when 

estimating Chl-a concentration in small and homogeneous lakes, the fit of our model was better 

than these authors achieved for large and heterogeneous lakes ( 2R  = 0.60 to 0.75). 

The simulation of land use change to natural prairie in the Río Negro basin shifted the 

mean TP concentration to 80 1 g L   (Beretta, 2019): sufficient to significantly reduce Chl-a 

concentrations. For 95% water samples to have a mesotrophic condition, the mean concentration 

of TP should decrease to 17 1 g L  , with a maximum below 23 1 g L  . This result agrees with 

the current law that specifies acceptable TP values as below 25 1 g L   (Uruguayan Law 14,859, 

Decree No. 253/979). Reduction of wEC  values to a maximum of 222 1 S cm  , would also fail 

to impact Chl-a concentrations. For a significant reduction in Chl-a, the wEC  should reduce by 

34% (i.e., 76 1 S cm  ) or increase by 260% (i.e., 259 1 S cm  ); this would lead to 95% of 

samples being out of mesotrophic state. Thus, changing the entire basin land use to natural prairie 

would not reduce TP or wEC  to the levels required to produce a significant effect on Chl-a. 

TSS is expected to reduce over the next 5 years as a consequence of the land use change 

and enforcement of plans and laws on the use of soils from the Uruguayan Ministry of Livestock, 

Agriculture and Fishery. Such environmental management would evolve towards a scenario of no 

increase in mean concentration of Chl-a. 

As agricultural activity affects water quality, it is possible to influence the Chl-a 
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concentrations. 
wEC  indicates the presence of cations and anions in solution; by decreasing 

export from the soil, 
wEC  can be reduced along with persistent Chl-a concentrations. Reports by 

Carrasco-Letelier et al. (2014) and Carrasco-Letelier and Beretta-Blanco (2017) suggest that 

decreasing the C-factor could reduce 
wEC . Thus, changes in land use could help in 

wEC  

reduction but this will not achieve the required reduction goal. A limitation of P fertilizers, 

however, could not contribute significantly to reduction of mean Chl-a concentrations, because the 

goal for freshwater concentrations is already exceeded because of P linked to natural soil erosion. 

5 Conclusion 

NNS was found to effectively determine the variables linked to changes in Chl-a 

concentrations. However, to improve the Chl-a estimation, it is necessary to increase the spatial 

and temporal frequency of sampling. 

The average values of Chl-a in the channel waters of the Uruguay River and the Río Negro 

depend mainly on T, wEC , and pH. However, when using all eight variables analyzed here, it is 

possible to estimate Chl-a values, with acceptable accuracy, in the range from 5 to 50 1 g L  . 

Current evolution of the Río Negro suggests no increase in Chl-a extreme values (90th percentile) 

and the average value may decrease. By changing the current land use of the Río Negro basin 

towards natural prairies there would be no significant change in the average concentration of Chl-a 

or in extreme values. 

It would also not be possible to stop the increase of Chl-a production by reduction of TP in 

the water, but its increase could be mitigated by decreasing the export of cations from the ground 

to the water courses. An increase of T, however, will continue to favor higher Chl-a concentrations 

and, in these conditions, agriculture would have no direct effect. 
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