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Preface

Some 35 years ago, I became involved in conservation of endangered animal
species. It all started while I was a biology student at the Biological Department
of the Royal Rotterdam Zoological and Botanical Gardens (“Blijdorp Zoo”). It was
around the time that the international zoo world introduced cooperative species
management programmes, based on demographic and genetic science, in order
to establish self-sustaining populations of endangered species. This created an
environment in which applied and fundamental research were intertwined and which
shaped my scientific background in population genetics.

The introduction of personal computers opened a “new” creative platform that
allowed me to develop the skills of computer programming. This resulted in devel-
oping simulation models to explore population genetic processes in real populations
with their complex pedigrees. The first computer program that I developed was
followed by the next, and the next, etc. resulting in studbook software that included
a range of demographic and genetic analyses.

The catalyst for writing this book dates back to the years that I worked for
the Dutch National Foundation for Research in Zoological Gardens/European
Association of Zoos and Aquaria. Teaching, training and advising coordinators
of European Endangered Species Programmes (EEPs) in population biology and
studbook software meant exposure to a diversity of practical problems in species
management. Solutions to some of these problems may be embedded in the
studbook itself, and that is where exploring starts.

I participated in various workshops of the IUCN/SSC/Conservation Breeding
Specialist Group in which the knowledge of zoo and wildlife professionals was
exchanged and combined. These workshops, the Population and Habitat Viability
Assessment of the Aruba island rattlesnake in particular, exposed me to the reality
of field conservation.

I became more directly involved in nature conservation projects in the 1990s
through the conservation fund of the Dutch zoos. The induction was a population
viability study on lions in the Queen Elizabeth National Park (Uganda) that was
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vi Preface

carried out by Makerere University (Kampala). Individual identification of lions, a
small population and urbanised areas acting as a barrier to movement do not make
it difficult to foresee studbook-style management in the future.

A few years later, I started to write the first chapters while living next to
Ranomafana National Park, a rainforest in the south-east of Madagascar. No zoo
environment, but wild nature. However, the state of some endangered species in
this 42,000 ha protected area highlighted that nature is (gradually) becoming a big
zoo. Take, for example, the closely monitored greater bamboo lemur population in
this park at that time. One day there were six animals, the next day one animal
was “missing”, and one month later a young was born, bringing the group total
back to six. This doesn’t sound like a wild population but more closely resembles a
zoo group. Field conservation is exploring too, as researchers discovered four new
groups, totalling more than 100 individuals, in fragmented bamboo forests within
the peripheral zone of the park in 2009 and 2010.

The idea of exploring studbook data for its relevance to conservation in the
natural habitat was reinforced while I was living in Dzanga Sangha Protected Areas
(Central African Republic). The secretive lifestyle of many of the inhabitants of
this tropical rainforest not only makes it difficult to assess population sizes but
also to obtain natural history data that are required for conservation measures. My
background prompted me to ask zoo colleagues for studbook data in order to extract
basic biological information on species in the protected area. I have included a PVA
study on lowland bongo as an example in this book.

Exploring studbook data “forced” me to explore statistics in more depth than
I had done before. Studbooks are relatively small and the issue of reliability
of estimated parameters cannot be ignored. Moreover, problem-solving involves
comparative studies that simply require significance tests. However, this is not a
book on studbook statistics. The main focus is exploring the wealth of (biological)
data in studbooks, in which statistics can play a supporting role.

I have selected topics in demographics and genetics of studbook populations that
deserve more attention, but which can be studied in standard data sets. These topics
are interconnected, which means that, for example, life tables are used in tests
for inbreeding depression and litter size is considered as a “trait” in quantitative
genetics.

This book is intended for professionals in zoo and wildlife conservation who are
involved in management of captive populations; reintroduction or management of
small, isolated, fragmented populations in the wild; and for researchers and students
who are planning studies that are based on studbook populations or who want to
explore what studbook data can offer for topics in academic research.

East Rudham, UK F.P.G. Princée
September, 2016
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Chapter 1
Introduction

Abstract This chapter provides an introduction to this book’s goal of exploring
studbooks. The development of studbooks is reviewed, starting with the first
studbooks for domestic species in the eighteenth and nineteenth centuries, which
became data sources for the early studies on inheritance. The history of studbooks
on wild species started around the end of the nineteenth century and expanded
considerably in the 1960s. The overview continues with the founding of regional zoo
management programmes in the 1980s and the transition of studbooks from registers
to electronic databases with demographic and genetic analyses. The concept
of the “population management triangle” which reflects the interaction between
husbandry, demographics and genetics is presented. The section on exploring
studbooks, the title of this book, reviews the wealth of data on endangered animal
species that is stored in studbooks and that can be used for wildlife management
and conservation. An outline of the main topics of the book is provided. These
include natural history, census, life tables, survival analysis, population projections,
detection of inbreeding depression, quantitative genetics and the use of data from
captivity in conservation.

1.1 A Brief History

A studbook or stud book is described as “a written record of the pedigree of a
purebred stock, esp. of racehorses” (McLeod 1987). This reference to racehorses
is not a coincidence, as the first studbook known to be published (in 1791)
contained pedigrees of Thoroughbred horses that could be traced back to the
founders (Weatherby 1791). Some 30 years later, the first studbook or herd–book
for (short–horn) cattle was published (Coates 1822).

Following the publication of Darwin’s Origin of Species, scientific methods that
used pedigree data were applied to improve livestock, especially through selection
within breeds (Brewer 1893). Studbooks also became the data source for genetic
studies, e.g. reproductive selection in horses (Pearson et al. 1899); and studies
on Mendelian inheritance, e.g. coat colour in horses and dogs (Hurst 1906; Little
1914). The studbooks for domestic species can be considered as the foundation on
which studbooks on endangered species, which are the subjects of this book, were
established.

© Springer International Publishing AG 2016
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The first studbooks for wild species were for the European bison or wisent (Bison
bonasus), Père David’s deer (Elaphurus davidianus) and Przewalski’s horse (Equus
przewalskii) (Mohr 1971; Tong 1957; von der Groeben 1932). The purpose of these
studbooks differed from those of domestic species: preservation of species that were
on the brink of extinction or already extinct in the wild.

By the early 1920s, the wild population of European bison was in a deplorable
state due to the collapse of protection during the First World War and the Russian
Revolution (Ahrens 1921). A preservation programme similar to that of the Ameri-
can Bison Society, was proposed (Ahrens 1921, 1923). This resulted in establishing
the Internationale Gesellschaft zur Erhaltung des Wisents (International Society for
the Protection of the European Bison). A card catalogue with information on all
(then) living wisents had been compiled (Ahrens 1923) and formed the basis for the
first edition of the studbook for wisent in 1932 (von der Groeben 1932).

Some 70 years after the Przewalski’s horse was described by science (in 1881),
its extinction in the wild was feared (Bouman and Bouman 1994). The captive
population became critically important as the only way to preserve the species,
resulting in the compilation of the first edition of the studbook in 1959 (Mohr 1971;
Volf 1994).

In response to the increasing number of endangered animal species, the Inter-
national Zoo Yearbook (Zoological Society of London) initiated and published the
first world–wide zoo census of rare wild animals in 1962 (Anonymous 1962). This
census included species which were described as “endangered” by the International
Union for Conservation of Nature (IUCN). Five years later, the International Union
of Directors of Zoological Gardens (IUDZG)1 and the IUCN recommended starting
studbooks for rare species of animals in captivity in order to facilitate planned
breeding and to establish self–sustaining populations, i.e. populations without
import of wild–caught individuals (Anonymous 1968).

1.2 From Register to Management

The Convention on International Trade in Endangered Species of Wild Fauna and
Flora (CITES) entered into force in July 1975 (Wijnstekers 2011), by which time
some 37 international studbooks for rare animals had been established (Anonymous
1975). However, the zoos’ goal of establishing self–sustaining populations turned
out to be hard to achieve.

A study based on 15 years of census data in the International Zoo Yearbook,
showed that only 10 % of the listed species could be considered self–sustaining
by the end of the 1970s (Pinder and Barkham 1978). In addition, studies on zoo
populations showed the negative impact that inbreeding can have on fecundity and
(early) survival (e.g. Flesness 1977; Ralls et al. 1979). The IUDZG introduced new

1Renamed to World Association of Zoos and Aquariums (WAZA) in 2000.



1.3 Population Management Triangle 5

management guidelines in 1980, that involved a pro-active approach in conducting
demographic and genetic analyses on studbooks (Anonymous 1980).

Conservation genetics was “introduced” to the zoo world in the early 1980s (e.g.
Frankel and Soulé 1981; Schonewald-Cox et al. 1983). It was recommended to
maintain at least 90 % of the original (wild) genetic variation in captive populations
over a period of 200 years (Soulé et al. 1986). Simply breeding in numbers was
no longer considered sufficient to achieve self–sustaining populations. Minimising
genetic loss due to inbreeding and genetic drift required an interrelated approach of
both demographic and genetic management (Foose 1983).

Intensive population management includes recommendations such as which
individuals should be paired, and, depending on population size, which pairs (or
groups) are allowed to breed in the next season(s), and which should not breed.
Implementation of this type of management requires close cooperation between
individual institutions. Practical reasons (logistics, language, legislation) resulted
in zoos establishing regional cooperative management programmes in the 1980s,
e.g. the Species Survival Plan (SSP) in North America, Australasian Species
Management Programs (ASMP) of Australasia and the European Endangered
Species Programme (EEP)2 in continental Europe (e.g. Lees and Wilcken 2009).
By 2011 the number of international and regional studbooks had extended to 190
and 1,350, respectively (Anonymous 2015).

However, even regional zoo populations can be too small and/or based on too
few founders to be self–sustaining long term. This requires management at a global
level (Lees and Wilcken 2009). A global management plan for the red panda
(Ailurus fulgens) in which the regional programmes cooperated closely was already
developed in 1992 (Glatston and Princée 1993; Princée and Glatston 1992). The
need to move from regional to global management when required, was recognised
by the World Association of Zoos and Aquaria (WAZA) by introducing the Global
Species Management Plan (GMSP) (WAZA 2016).

Three international and five regional studbooks are used as case examples
throughout this book. Chapter 2 provides background information on the species
involved.

1.3 Population Management Triangle

Population management programmes may initially have been perceived as being
dominated by demographics and genetics. However, any recommendation, whether
referring to increasing reproductive success, reducing juvenile mortality or exchang-
ing animals between collections, directly or indirectly points to husbandry, i.e. the
science of breeding, rearing, and caring for animals.

2EEP is the abbreviation of the original name Europäisches Erhaltungszuchtprogramme.
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Fig. 1.1 Population
management triangle

Husbandry

Demographics Genetics

The interrelationship between husbandry, demographics and genetics is repre-
sented by the Population Management Triangle in Fig. 1.1. A successful population
management programme depends on good husbandry practice with high standards
of welfare, allowing the breeding of individuals on a regular and planned basis, fol-
lowing demographic and genetic goals, from generation to generation. Husbandry
can affect the success of a population management programme in various ways.
For example, reproductive success may be limited to a few institutions, resulting,
sooner or later, in inbreeding. This scenario is not uncommon in populations that
were established before the introduction of studbooks and population management
programmes.

Risks of inbreeding or aggressive behaviour exist when offspring are kept with
their parents beyond the age of dispersal or sexual maturity. This is generally not a
deliberate decision, but can be due to a variety of factors, including delayed transport
permits to another institution, or individuals reaching sexual maturity at an earlier
age than previously known.

Demographic analyses can be used in comparative studies to evaluate husbandry
practices or to assess vulnerability to inbreeding depression. Results of such studies
can lead to improvements in husbandry or in the development of exchanges between
regional programmes to keep inbreeding within regions at acceptable (low) levels.

The Population Management Triangle reflects an holistic approach to animal
management and is present in the background throughout this book.
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1.4 Exploring Studbooks

Computerisation of studbooks in the mid 1980s initiated the development of demo-
graphic and genetic analyses programs within the zoo community (see overview
in Ballou et al. 2010). Since then, some 30 years of experience has been gained
in population management involving a wide range of wild species. The science
behind small population management is tested and validated (Lees and Wilcken
2009), with management guidelines produced and regularly updated (e.g. Ballou
and Lacy 1995; Ballou et al. 2010; Foose and Ballou 1988). This has resulted in
development of population management software in which previously stand–alone
analyses are combined e.g. PMx (Ballou et al. 2011).

Species managers and studbook keepers primarily use these software tools to
assess the status of a population, to evaluate effects of management measures to
achieve the goal of self–sustaining populations, and to make recommendations.
However, some studbooks have been kept for 30+ years and thus contain sufficient
numbers of records (i.e. sample sizes) to allow for comparative studies that can be
tested statistically.

Studbook data can be used to study differences between subgroups within
(regional) populations or to study effects of a factor on a given biological parameter,
e.g. influence of climate on juvenile survival in red pandas (Princée and Glatston
2016). Studbook analyses do not necessarily need to be aimed at improving
captive management. Conservationists are often confronted with limited available
knowledge on life history of endangered species. Analyses of studbook data can
provide baseline information on species’ life history that is essential in Population
and Habitat Viability Assessment (PHVA). Studbook data, whether on a single or on
multiple species, as in the database of the International Species Information System
(ISIS),3 can be important more generally, e.g. for studies on life expectancy and
ageing (Ricklefs 2010; Young et al. 2012).

This book focusses on exploring studbook data that are or could be useful for
management, conservation and science in general. An overview is provided in
the next section. Chapter 2 presents a brief description of the software that was
specifically written to analyse studbooks and statistically test results.

1.4.1 Natural History

Husbandry depends on knowledge of a species’ natural history. Unfortunately, such
information is incomplete for many (animal) species, and often requires long–term
field studies to obtain. Some natural history elements can be obtained by analysing
studbook data. This is particularly true for life history data such as longevity or
reproductive lifespan.

3Renamed to Species360 in July 2016.
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Chapter 3 presents analyses to retrieve information on lifespan, longevity,
reproductive lifespan, litter size, seasonality and inter–birth interval from studbook
data. Results of these analyses can be used to adjust husbandry practices, in
comparative studies, as baseline data in PHVAs and/or in management of wild
populations.

1.4.2 Census

Before computerisation, population growth and birth and death rates in zoo stud-
book populations were mainly estimated from annual census counts, i.e. the number
of living individuals at specific dates, as for example published in the International
Zoo Yearbook (e.g. Pinder and Barkham 1978). The methodology is similar to
wildlife census, except that captive conditions most of the time allow for total
counts, and support the collection of additional data, such as on neonatal survival.

Although life table analysis is, in principle, more accurate in estimating pop-
ulation growth, this method does not fully replace census analysis in studbook
management. An historical overview of population size, and imports, births, exports
and deaths, is essential for understanding the dynamics of the studbook population.
Furthermore, census analysis does not require identification of individuals, age of
individuals or parentages and can, therefore, be applied to semi–wild or reintroduced
populations.

Chapter 4 presents analyses of census counts. Births, deaths and migration
(import and export) are considered as census events as they are counted between
census intervals. Chapter 5 presents analyses of census events to explain trends in
population size. In addition, census data on sex–ratio at birth are used to study sex
allocation. Chapter 6 explores the use of exponential and logistic growth models to
describe development of studbook populations.

1.4.3 Life Tables

Future development of a population not only depends on its size, but also, as
fecundity and mortality are age related, on its age structure. For example, a
population in which most of the individuals are close to the post–reproductive age
will decline in the short term, and may never recover. Age structures in males and
females are often graphically presented as two opposing vertical histograms, named
age pyramids (although the shape could be different). Chapter 7 describes the use of
age pyramids as a tool to obtain a rough idea about population dynamic processes
that occurred in the past and about how the population may develop.

Age–specific fecundity and mortality tables reflect the life history of individuals
in the studbook population. These tables can be constructed directly from studbook
data. The methods used are derived from those used in wildlife management (e.g.
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Caughley 1977). However, the access to dates of birth and death allow the
application of refinements such as prorating (Odum and Smith 2001) and censoring
of data (Faust et al. 2012). Chapter 7 describes these methods and techniques.

Life tables4 are often presented in the context of future projections, but are
equally important in evaluating husbandry and reproductive management. The
significance of life table data depends on the studbook (=sample) size. Populations
that have been recently established may not provide sufficient data from which to
draw reliable conclusions.

Chapter 8 presents methods to estimate variances and confidence limits from
underlying statistical distributions (binomial and Poisson) and bootstrap techniques.
In addition, statistical data manipulation such as pooling and smoothing, and curve
fitting with parametric models, e.g. Gompertz and Siler curves (Gompertz 1825;
Siler 1979), are presented.

Chapter 9 presents techniques to estimate population growth rates, generation
time, reproductive value and stable age distribution from fecundity and mortality
tables. Future projections are important in assessing the viability of populations
and whether (and which) measures need to be taken to increase or to control
population size. Chapter 11 describes techniques to project population development
from census data and life tables.

Survival analyses based on age classes do not take full advantage of the (usually)
accurate dates of birth and death in studbooks. Chapter 10 describes the use
of Kaplan–Meier Product Limit Estimator (Kaplan and Meier 1958) and Cox
Proportional Hazard Regression model (Cox 1972). Survival in these models is
not estimated at fixed age intervals but at each time a death has occurred in
the population. Both survival models were developed for clinical trials, and are
extremely useful for comparative studies on factors affecting survival in studbook
populations (e.g. Princée and Glatston 2016).

1.4.4 Genetic Analyses

Practical experiences in wildlife management contributed to the development of
demographic management of captive populations (Foose and Ballou 1988), whereas
applying population genetics to management of real populations had to start more
or less “from scratch”. The available models in the early 1980s were mostly based
on idealised populations (Crow and Kimura 1970; Nei 1975), and the genetics used
in livestock breeding was very much focussed on selective breeding (e.g. Falconer
1960).

Much of the practical implementation of population genetics in the management
of captive populations, such as the use of founder representation, mean kinship
values, development of simulation models and group management, can be attributed

4A life table in studbook management refers to fecundity and mortality combined.
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to “zoo geneticists” (e.g. Ballou and Lacy 1995; Foose 1983; Lacy et al. 1995;
Princée 1995). Now, these methods have become part of general conservation
genetics and are well described in text books (e.g. Allendorf et al. 2013; Frankham
et al. 2010). The genetics section of this book therefore only provides a brief
overview of population genetic theory and instead explores what studbook data can
contribute to genetic management.

Chapter 12 presents a brief overview of the measures of genetic variation that
are used in genetic management of studbook populations. This chapter also pays
attention to different interpretations of the term generation, and their associated
methods. As a result, the calculated generation of individuals can differ between
methods. Differences between calculation methods and their practical use are also
discussed in Chap. 12.

Chapter 13 briefly describes the process of inbreeding and inbreeding depression
due to consanguineous matings and the calculation of inbreeding coefficients. This
chapter focusses on the various methods available to detect inbreeding depression
from studbook data.

The loss of genetic variation due to genetic drift and the methods to estimate
effective population size are covered in Chap. 14. This chapter also discusses the
use of computer simulation models that have been developed to estimate loss of
genetic variation in real (pedigreed) populations.

Chapter 15 discusses avoidance of selection in captive populations. Founder
representation and mean kinship are presented in this chapter in the context of
detecting and avoiding potential selection in studbook populations.

Although the importance of maintaining phenotypic variation in zoo populations
is recognised (e.g. Arnold 1995), quantitative genetics has not (yet) found its way
into studbook management. Chapter 16 explores methods and techniques, as applied
to wild populations in ecological studies (e.g. Charmantier et al. 2014), to estimate
heritability in life history traits from studbook data.

1.5 Conservation Data

Lack of predators, stable food supply and veterinary care represent some of
the differences between captive and wild environments. It can be expected that
natural history elements such as life history will differ between captive and wild
populations. This generates the question of whether the use of data from captive
animals in conservation and wildlife management is justified. Chapter 17 discusses
the extent to which captive– and wild–sourced data differ; the availability of wild
data; and how to handle data from captivity when applied to field conservation.
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1.6 More Topics

The quality of studbook data is not considered in the chapters that describe
the various demographic and genetic analyses. Although it is generally true that
studbook data are more accurate (and detailed) than data collected from wild
populations, they are not perfect. For example, a microsatellite DNA study in
Przewalski’s horses showed that some horses in a particular herd had different
parents to those listed in the studbook (Bowling et al. 2003). The age of wild–born
individuals is often, depending on the species and method of collection, an estimate
or unknown.

Data errors, incomplete and missing data can affect the results of demographic
and genetic analyses. Zoo organisations provide guidelines for improving the quality
of studbook data (see Thompson et al. 1997; Wilcken and Lees 2012), but it is
not always possible to solve all cases of incomplete data. However, that is not
necessarily a reason to exclude incomplete data records from analyses. Chapter 18
discusses practical aspects of handling missing data in demographic and genetic
analyses.

This book uses statistics as a tool to help in interpreting the results of analyses
of often complex (studbook) data. Chapter 19 provides additional information on
statistical issues with dependent data, i.e. pseudoreplication (Hurlbert 1984), and
incomplete data e.g. estimated dates.

There are likely many more topics on studbooks that are not explored in this
book. The criterion for selecting topics was based on availability of data that are
stored as standard in studbook databases i.e. parents, sex, dates of birth/death and
locations of birth/death. As the various topics in this book illustrate, these minimal
data sets already embed a wealth of information that can be used in studbook
management and wildlife conservation.

The on–going development of the Species360/ZIMS animal record keeping
system will undoubtedly result in extending studbooks with the richness of animal
data as stored at the level of individual zoological institutions. It will then be possible
to relate demography and genetics to husbandry practices, veterinary medicine
or behavioural studies without sending questionnaires to individual institutions.
Examples of such studies could include explaining trends in mortality with post
mortem data; extending heritability studies to e.g. behaviour, colour, weight and
size; and relating reproductive success with group compositions.
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Chapter 2
Studbooks and Software

Abstract Studbooks on the red crowned crane, African wild dog, red panda,
wolverine, snow leopard, Californian sea lion, blesbok and mountain bongo are
used as examples in this book. Short profiles of the species and their studbooks
are presented. These include information on geographic distribution and IUCN Red
Data List status, scope of the studbook, i.e. global or regional, type of population
management and studbook keeper. A brief history of the development of software
tools for population management by the international zoo community is presented.
This includes computerised animal record keeping systems, such as ARKS and
SPARKS, and demographic and genetic analyses that are nowadays integrated in the
standard zoo population management software PMx. The Population Management
Library (PML) software that was developed specifically for this book is described.
This software imports data directly from SPARKS studbooks and applies its own
data filters to create subsets for comparative studies. The PML program is used
throughout the book for natural history, demographic and genetic analyses of the
studbook examples. PML includes basic statistics but uses R through the add-on
module studbookR for statistical analyses and graphic representation of population
analyses. An overview of the available analyses and statistical tests in PML and
studbookR is provided.

2.1 Introduction

The international zoo community had established 190 international and 1,350
regional studbooks on endangered animal species by 2011 (Anonymous 2015). The
studbook examples for this book were selected on the basis of personal experience
with the species. These studbooks either were the source of topics in this book
and/or matched the characteristics to illustrate topics that I had in mind. The next
section describes the studbooks that are used throughout this book.

Analysis of studbook data can be tedious or almost impossible to conduct without
the aid of computers and dedicated software. The second section of this chapter
provides a brief historic overview of (zoo) studbook software and introduces the
programs that are used throughout this book.

© Springer International Publishing AG 2016
F.P.G. Princée, Exploring Studbooks for Wildlife Management and Conservation,
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2.2 Studbook Examples

The results of analyses presented in this book are for illustrative purposes only and
should not be used to evaluate population management of the species involved or
used as sources for comparative studies. Moreover, older versions of studbooks that
are used do not necessarily reflect current management.

The original data of all studbooks are computerised in the program SPARKS
v1.66 (Scobie and Bingaman Lackey 1997–2012). Table 2.1 presents a summary of
species information as included in each individual studbook database.

The total wild population of red crowned cranes in south–eastern Russia, north–
east China, Mongolia and eastern Hokkaido (Japan) is estimated to be 2,750
individuals, of which 1,650 are mature (BirdLife International 2013). The species
is listed as Endangered (EN) in the IUCN Red List of Threatened Species. The
European zoo population of red crowned cranes has been managed as an EEP
since 1991. The studbook data that are used in this book are current through 1
January 2012 and were compiled by R. Belterman (Rotterdam Zoo, The Nether-
lands).

Red crowned cranes are monogamous with stable pair bonding for years in the
wild (Klenova et al. 2009). This species is held, in accordance with its natural

Table 2.1 Overview of studbooks that are used as examples in this book. Scope of the studbook
are EEP: EAZA European Endangered Species Programme, ESB: EAZA European studbook, intl:
International studbook

Incubation Date

English name Scope Type Gestationa rangeb N Update

Red crowned crane EEP Egg–laying 31 2 1,170 01 Jan 2012

African wild dog EEP Live–bearer 98 3 2,174 01 Mar 2006

2,697 25 Aug 2013c

Red panda intl Live–bearer 132 3 2,907 31 Dec 2008

3,559 31 Dec 2012c

Wolverine EEP Live–bearer 30 3 159 01 Aug 2001

Snow leopard intl Live–bearer 96 3 2,481 17 Mar 2003

Californian sea lion ESB Live–bearer 365 3 1,531 31 Dec 2009

Blesbok ESB Live–bearer 240 3 1,460 18 May 2009

Mountain bongo intl Live–bearer 270 3 2,305 31 Dec 2010

N Total number of individuals in studbook
a Incubation time or gestation length in days
b Range in birth or hatch dates of same litter or clutch in days
c Studbook data used in genetic analyses

2.2.1 Red Crowned Crane Grus japonensis
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breeding behaviour, in (breeding) pairs (Mirande et al. 1996). The number of
captive–born red crowned cranes with unknown parentages is therefore relatively
low i.e. �4 %.

The African wild dog has disappeared from much of its former (pan–African)
range. The species is virtually eradicated from North and West Africa, and greatly
reduced in Central Africa and north–east Africa. The largest populations remain
in southern Africa and the southern part of East Africa (Woodroffe and Sillero–
Zubiri 2012). Dispersal distances of up to 520 km have been observed in African
wild dogs (Masenga et al. 2016). This can explain new observations, such as in
the southeastern part of the Central African Republic (Hickisch and Aebischer
2013).

The total wild population is estimated to be 6,600 adults and yearlings. The
number of sexually mature individuals is 1,400 as only alpha males and females and
sub–dominant animals that breed successfully are included. The African wild dog
is listed as Endangered (EN) in the IUCN Red List (Woodroffe and Sillero–Zubiri
2012).

The African wild dog is a social species living in packs with on average 10
adults and yearlings, although larger packs have been observed (Alderton 1994;
Courchamp and Macdonald 2001). The alpha male and female are the main breeders
in the pack, with their same sex siblings as helpers (Girman et al. 1997). This
composition is followed in population management programmes such as in the EEP
for African wild dogs.

An international studbook for African wild dogs was established in 1972, fol-
lowed by regional breeding programmes. The studbook data of the EEP programme
compiled by W. and H. Verberkmoes (GaiaZoo, Kerkrade, The Netherlands), current
through 1 March 2006, is used. A newer version, current through 25 August 2013,
and compiled by R. Barnes (Port Lympne Reserve, Lympne, United Kingdom) is
used for quantitative genetics.

The red panda lives in temperate cloud forests of the Himalayan region and western
China. Two subspecies are described: the Nepalese red panda (Ailurus fulgens
fulgens) with an estimated population of 600–1,000 and the Chinese red panda
(A. f. styani) with an estimated population of 3,000–7,000. The species is listed
as Endangered (EN) in the IUCN Red List (Glatston et al. 2015).

An international studbook including both red panda subspecies was initiated
in 1978 and since then maintained by Rotterdam Zoo (The Netherlands).

2.2.2 African Wild Dog Lycaon pictus

2.2.3 Red Panda Ailurus fulgens
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The first edition of the International Red Panda Studbook already included
demographic analyses (Glatston 1980). The Nepalese red panda population
belongs to the first examples of pedigree analysis using computer simulation
models (Princée 1988, 1989a). The zoo populations of both red panda subspecies
are managed through regional management programmes. Since 2015 these regional
programmes cooperate as a Global Species Management Plan (GSMP) (WAZA
2016).

Two studbook data sets, one current through 31 December 2008 and a more
recent set current through 31 December 2012, were used in this book. These data
were compiled by international studbook keeper A. Glatston (Rotterdam Zoo). The
2012 dataset was used for genetic analyses.

The wolverine is listed as Least Concern (LC) in the IUCN Red List at the species
level, with large populations in North America and northern Asia. The European
wolverine has an estimated wild population of 2,260 and is considered Vulnerable
(VU) (Abramov et al. 2009). The EEP programme for the European wolverine was
established in 1994 and since then the studbook has been maintained by the Nordic
Ark (Hunnebostrand, Sweden). The computerised data set which is used in this
book is current through 1 August 2001 and was compiled by EEP coordinator L.
Blomqvist. This early version of the wolverine studbook has only 159 records and is
mainly used to illustrate the challenges of demographic analysis with small sample
sizes.

The natural distribution of the snow leopard is restricted to the high mountains
of Central Asia. The wild population is estimated to be between 4,500 and
6,500 individuals and the species is listed as Endangered (EN) in the IUCN Red
List (Jackson et al. 2008).

The International Pedigree Book for snow leopard was established in
1976 (Blomqvist 2004). The computerised data set used in this book is current
through 17 March 2003, and was compiled by international studbook keeper L.
Blomqvist (Helsinki Zoo, Finland). This particular data set comprises records on
2,500 individuals with only a single captive–born individual with unknown parents.
The size and complete pedigree make this studbook a good example for comparative
studies.

2.2.4 European Wolverine Gulo gulo gulo

2.2.5 Snow Leopard Uncia uncia



2.2 Studbook Examples 19

The Californian sea lion is classified as Least Concern (LC) in the IUCN Red List
(wild population � 390;000) (Aurioles–Gamboa and Hernández–Camacho 2015).
However, this species is protected under the U.S. Marine Mammal Protection Act
of 1972. This means that individual sea lions need to be registered. The European
studbook compiled by G. H. Meijer (Ouwehand Zoo, Rhenen, The Netherlands)
with data current through 31 December 2009 is used here. This studbook evolved
from a Dutch national studbook that was established in the early 1980s. Californian
sea lions show strong seasonality in births (Temte 1993) and are used as an example
of applying circular statistics to test whether stillbirths are premature births.

The IUCN recognises two subspecies of the bongo antelope: the lowland or western
bongo (Tragelaphus eucerycerus eurycerus) in the lowland rainforests of West and
Central Africa, and the eastern or mountain bongo (T. e. isaaci) in montane forests
of Kenya (Aberdares, Mount Kenya, Mau Forest and Eburu Forest). The lowland
bongo is classified as Near Threatened (NT) in the IUCN Red List (wild population
� 28;000 in 1999) due to ongoing population decline as a result of habitat loss
and hunting pressure. The eastern bongo, with an estimated population size of 74–
140 individuals, is classified as Critically Endangered (CR) (IUCN SSC Antelope
Specialist Group 2008).

Although the bongo is the largest forest antelope, with males weighing up to
400 kg (Estes 2012), its secretive lifestyle means that knowledge of natural history
on this species is limited. A Population Viability Analysis (PVA) of lowland bongo
in Dzanga Sangha Protected Areas (Central African Republic) (Princée 2011) used
life history data extracted from the International studbook for the eastern/mountain
bongo. This studbook contains 2,305 records and was compiled by L. Bosley with
data current through 31 December 2009 (Bosley 2010). The PVA study on lowland
bongo is used as an example in Chap. 17 to illustrate the use of data from captivity
in wildlife conservation.

The original distribution of blesbok is open grassland in southern Transvaal, Orange
Free State and northeastern Karoo (South Africa). This species was almost driven
to extinction in the nineteenth century due to excessive hunting for its hide by

2.2.6 Californian Sea Lion Zalophus californianus

2.2.7 Bongo Tragelaphus eurycerus

2.2.8 Blesbok Damalisicus pygargus phillipsi
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European settlers (du Plessis 1972). The population recovered from some 2,000
individuals, mainly kept on private farmland, to an estimated 235,000–240,000 in
1998 (East 1999). Blesbok are listed as Least Concern (LC) in the IUCN Red
List (Lloyd and David 2008). A European studbook was established in 1998.
Studbook data compiled by H. Verberkmoes (GaiaZoo, Kerkrade, The Netherlands)
and current through May 2009 are used as a case study in this book.

This studbook characterises zoo species that are kept in (harem) groups and have
a history of successful reproduction long before the principles of maintenance of
genetic variation were introduced. Some 30 % of individuals listed in the European
studbook have either a single or both parents unknown. The majority of these
individuals were born before the European studbook was established in 1998.
Missing parentages affect both demographic analyses and genetic analyses, and
thus, management. Census and census-style analyses are applied to determine
population trends in the studbook population of the blesbok, as if it was a survey
on the wild population.

2.3 Software Tools

The introduction of personal computers in the mid 1980s has been tremendously
beneficial in evolving the science behind the management of small populations.
Database systems developed by the International Species Information System (ISIS)
allowed zoological gardens more easily to manage in–house data, from daily
observations to births, deaths and transfers, in the program Animal Record Keeping
System (ARKS). Exchange of data on individuals between zoological collections
was facilitated through the central ISIS on–line database. Meanwhile, ARKS has
been replaced by the new Zoological Information Management System (ZIMS) and
internet has replaced floppy disks to update the central database.

Development of studbook software followed shortly after the introduction of
ARKS. The dBase programmes “Omaha” and “Houston” were the predecessors
of Zooresearch Studbook Management (ZRBOOK) (Princée 1989b) and the Single
Population Animal Record Keeping System (SPARKS) (Scobie and Flesness 1989).
The ZRBOOK software was mainly used in Europe and was discontinued in
favour of further development of the global studbook program SPARKS. This DOS
program is still in use and has been updated to export studbook data to analysis
programs (Scobie and Bingaman Lackey 1997–2012). The studbook program
PopLink is an alternative to SPARKS, as it runs under the Windows operating
system (Faust et al. 2012).

A large variety of demographic and genetic analyses have been developed since
electronic studbook databases became available (see overview in Ballou et al. 2010).
Chapter 14 describes genetic simulation models that use studbook data. Most of the
stand–alone analyses have been re-designed and grouped into the single population
management program PMx (Ballou et al. 2011).
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One impetus for this book was the need to design new analysis software to tackle
biological topics that were not covered in other software. The next section briefly
describes this software.

2.3.1 Population Management Library

The Population Management Library (PML) software (Princée 2014a) is a set of
library modules for demographic and genetic analyses of studbook data. It includes
a command–line interface which uses its own script language to invoke analyses
and to apply population view settings (data filters). The software is written in C++
and is designed to be cross–platform (Mac OS X, Linux/Unix and Windows). It is
available under an open source license at “http://www.princee.com”.

Table 2.2 Analyses and statistical tests in the Population Management Library/studbookR

Analysis Description

Age at death/longevity Summary statisticsa; histogram

Age at reproduction Summary statistics; histogram

Clutch/litter size Summary statistics; histogram

Inter–birth interval Summary statistics; histogram

Birth/litter season Mean date; rose diagram; circular statistics; effects of latitude, captive
generation and age of dam

Death season Mean date; rose diagram; circular statistics

Annual census Graphics; annual growth rates; logistic and exponential model

Births Graphics; birth rates, runs test on sex–ratio

Deaths Graphics; death rates

Neonatal deaths Graphics; death rates

Imports Graphics; import rates

Exports Graphics; export rates

Age distribution Age pyramid

Fecundity Age–class specific fecundity rates; confidence limits

Mortality Age–class specific mortality rates; confidence limits

Full life table Reproductive values; stable age distribution; R0, r, �

Survival analyses Kaplan–Meier product estimator; Cox’s proportional hazard regres-
sion; comparative studies on e.g. sex, inbreeding, captive generation,
location and climate (if lat/lon data are available)

Age at first breeding Kaplan–Meier product estimator

Founder representation In group(s) and individuals

Inbreeding depression Survival curves and lethal equivalents

Heritability Parent–offspring regression and animal model on natural history
“traits” in studbook data

a Summary statistics includes Tukey’s five number summary, mean and variance

http://www.princee.com
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The base of the PML is formed by a redesign of analyses that were part of the
ZRBOOK suite (Princée 1991). The software not only includes new analyses but
also implements basic statistical tests and the resampling techniques bootstrap and
jackknife (Efron 1979; Quenouille 1949; Tukey 1958). PML can import studbooks
that have been created in SPARKS.1

A large variety of view filters can be applied to the data, including sex, (census)
dates, locations, inbreeding levels, generation number, neonatal age and stillbirths
and accuracy level of dates. These filters are used to define the scope of the analyses
for management or comparative studies.

The statistics program R (R Core Team 2015) and add–on packages are used for
additional (more elaborate) statistical tests and graphic capabilities. PML exports
analysis results and/or filtered studbook data which can then be imported in R (and
in most spreadsheet programs). The R script files that import and further analyse
these files are bundled in the package studbookR (Princée 2014b), which is part of
the PML distribution.

Table 2.2 presents an overview of the available analyses and statistical tests in
PML and/or studbookR. The R add–on packages that are used within studbookR
are mentioned and cited in the relevant chapters. An overview of available script
commands in the PML library and functions in the studbookR package are provided
in Appendix A.
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Chapter 3
Natural History

Abstract Natural history data are important for husbandry and population man-
agement of wild species in captivity, although these data are often incomplete
or missing on wild species. However, some of these data can be extracted from
studbooks. They are referred to as natural history elements in this book to distinguish
them from data obtained from the wild. Histograms and descriptive statistics such as
Tukey five number summary are used to describe characteristics of (reproductive)
lifespan, litter/clutch size and inter–birth interval in the population. Results from
these statistics are placed in the context of husbandry and population manage-
ment. Techniques to detect outliers (possible artefacts) in longevity, first age at
reproduction and maximum lifespan are presented. The non–parametric Wilcoxon
two–sample test is applied to test for differences in (reproductive) lifespan between
sexes and different periods of time. The problem of assessing litter size in species
that use dens, and a possible solution, is discussed in this chapter. Circular statistics
are applied in seasonality analyses of births and deaths. Effects of latitude (northern
and southern hemispheres) on birth season are discussed. Additional topics such
as the use of seasonality analysis in detecting premature births and sex–bias are
explored.

3.1 Introduction

Population management starts with having basic knowledge of the natural history
of the species involved. Natural history refers to life history information such as
longevity and reproductive lifespan, to type of reproduction (sexual or asexual),
method of reproduction (viviparous, oviparous or ovoviviparous) and social mating
systems (pair, harem, multi–male/female groups). In short, the entire biology of a
species.

Natural history in general refers to observations of wild populations. Unfor-
tunately, these data are incomplete for many (endangered) species. A secretive
lifestyle or inaccessible habitat makes it difficult to obtain data from the wild, or
long–term studies are required to collect sufficient data. In addition, it is harder
to study species that are rare. It is not uncommon for zoo data, e.g. on longevity,
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gestation length or litter size, to be used to characterise species in encyclopaedias
and field guides (e.g. Estes 2012; Kingdon 2015). The term natural history elements
is used throughout this book and refers to data obtained from captive populations.

Knowledge of natural history is the basis from which to manage populations.
It provides the information source, such as appropriate diet or social structure, for
husbandry (keeping animals alive and healthy). These data can be considered as a
foundation before even thinking about population management. Studbooks contain
a wealth of data that are part of a species’ natural history. In particular, the older
(larger) studbooks provide sample sizes that allow for the application of statistical
tests. But the issue is often “how to extract these data?”. Well, software programs
like SPARKS (Scobie and Bingaman Lackey 1997–2012), PopLink (Faust et al.
2012) and PML (Princée 2014) (this last program is used in this book), provide
analyses that can reveal natural history elements. Yet population management in
zoos often tends to be focussed on future projections with respect to population
growth and maintenance of genetic variation, “forgetting” that other valuable data
(and analysis tools) are available.

Natural history data are not only important for managing zoo populations.
Conservation models like Population Viability Analysis (PVA) require data such
as litter/clutch size, inter–birth interval and reproductive lifespan. Zoo populations
are the source whenever these data are incomplete or missing on wild populations.
These are the data that can be used to understand and, ultimately, to protect species
in their wild habitat.

This chapter introduces some basic analyses to extract information on natural
history elements, such as longevity, life expectancy, reproductive lifespan, litter size,
inter–birth interval and seasonality patterns, from studbook data. The emphasis of
this chapter is on exploring the data set and interpreting the results, rather than
solely learning the methodologies (and statistics). Descriptive statistics, comparable
to Tukey’s five number summary (Tukey 1977), are used to provide first impressions
of the data.

More elaborate analyses are available in some cases, such as age–specific
life table analyses, which will be discussed in later chapters (see Chap. 7). The
International studbook for snow leopards (Blomqvist 2004) is used as the main
example in this chapter.

3.2 Lifespan and Longevity

The lifespan of an individual is the interval between its birth and its death, or more
simply the age at death. Lifespan differs between individuals as some die shortly
after birth, while others survive even beyond the age of reproduction. Longevity
(symbol: ˝) is not strictly defined in demography (Barlow and Boveng 1991),
but generally refers to the longest lived individual as observed in a species or in
a specific population (see Sect. 3.2.2). Analyses of ages at death are not limited
to determining longevity. Results of these analyses can, for example, pinpoint age
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Fig. 3.1 Frequency counts of
age at death in captive snow
leopards from 1890 to 2003
(n D 1;606). Accurate data
only. Bars correspond to
1 year intervals
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Table 3.1 Summary statistics of age at death (in days) in captive snow leopards for different levels
of date precision from 1890 to 2003. See text for explanation of precision categories

Precision 1st Median Mean 3rd Maximum n

Accurate 4 142 1,694 3,372 7,981 1,606

By montha 4 151 1,697 3,374 7,981 1,609

By yeara 5 160 1,722 3,480 7,981 1,640

Alla 7 365 1,782 3,510 7,981 1,818

1st first quartile, 3rd third quartile, n sample size
a Includes data of previous category/categories

groups with high mortality or indicate mean or median life expectancy, which is the
mean or median age a newborn is expected to reach. Analyses of age at death should
initially include individuals of all sexes,1 restricted to individuals with accurate dates
of both birth and death.

Graphic representations are important as they provide a “feeling” for the
distribution pattern of the data and, therefore, for the interpretation of statistics in
terms of biology. Figure 3.1 presents a histogram with frequency counts of the age
at death, grouped in age classes of 1 year, in captive snow leopards. The summary
statistics of the same data (group Dead) – but based on age in days – is presented in
Table 3.1.

High mortality in the first year is the most obvious feature that can be observed
in Fig. 3.1. High juvenile mortality is common in wild populations of many
species (e.g. Caughley 1966). No deaths have been recorded after age class 21,
implying that longevity is between 21 and 22 years. The results of summary

1The following sex–group categories are included: male, female, unknown sex, hermaphrodite and
abnormal sex.
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statistics (Table 3.1) on this data set provide numerical “support” for the features
observed in Fig. 3.1. Note that the data in these statistics were not grouped in
age classes. Fifty percent (the median) of deaths occur between 0 and 142 days
(�4 1

2
months), while the maximum observed age at death in this population is

7,981 days (�22 years).

3.2.1 Estimated Dates

Exact dates of birth are not always available. This is especially the case for wild–
caught individuals whose age (i.e. dates of birth) needs to be assessed from their
estimated age at arrival. Such dates will almost always, by definition, be estimates.
However, such information may not be available for individuals that were imported
in the early phase of a studbook. Dates of birth will consequently remain unknown.
Dates of death can also be estimates or unknown, for a variety of reasons.

The SPARKS studbook software provides the option of entering the precision
of dates (Scobie and Bingaman Lackey 1997–2012). The following categories are
used: accurate, estimated by day, month or year, date range and unknown date.
Estimated by day refers to a precision of a few days, while estimated by month
or year refer to a date within the given month or year, respectively. In general, the
midpoint of a month (day 15/16) or a year (1 July) are used for these estimates.
Date ranges are provided in months or in years. In the case that the date of birth is
completely unknown, it equals the date of first of arrival in the studbook population.

Incomplete dates, and especially unknown dates, can have effects on demo-
graphic analyses. These effects depend on the precision of estimates and the
proportion of data that are estimates. Handling of estimates and missing data will
be discussed in more detail in Chap. 18. Nevertheless, lifespan analyses on accurate
data sets can provide a guide to what extent estimates can comfortably be included.

Longevity of 7,981 days, based on accurate dates, in snow leopards does not
differ from values estimated in data sets that include estimated dates of birth by day
or month (Table 3.1). This means that including individuals with estimated dates
by day and month would have negligible impact in assessing longevity. Estimates
by year could introduce an error of less than 5 % on determining longevity in
this species. The level of precision depends on the resolution of an analysis. For
example, individuals with estimated dates by day or month should not be included
in analyses of perinatal or neonatal mortality.

Effects of including estimated dates of birth and/or death on lifespan analyses are
presented in Table 3.1. The international studbook on the snow leopard (Blomqvist
2004) does not include records with dates that are estimates by day. Each category
also includes records of higher precision. For example, “estimated by year” includes
accurate dates and estimates by month. The category ‘all’ includes accurate dates,
estimates and unknown dates.
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The maximum observed ages (longevity) in the four data sets do not differ,
indicating that this value is based on a record with accurate dates. The general
trend is that the quartiles and the mean values increase with lower accuracy levels
(Table 3.1). This can be explained by the fact that individuals with estimated dates
of birth have, in general, survived the first week or months, before being registered.
Snow leopards with unknown dates of birth are likely to have passed the juvenile
stage. This is reflected by the median age at death in the “all” group. This value has
more than doubled compared to the median in the data set that includes estimates
(Table 3.1).

It is recommended to inspect studbook data on the origin of individuals with
estimated or unknown dates. For example, captive–born snow leopards are all
registered with accurate dates of birth and death. This means that estimated data
refer to wild–caught individuals. Therefore, further analyses in this section will be
based on accurate dates only i.e. on captive–born individuals.

3.2.2 Longevity

Longevity records are popular in zoo literature (e.g. Brouwer et al. 1994; Jones
1993). This information served, especially before the introduction of computerised
studbooks, as an indication of success in keeping wild animals (alive). However,
one should realise that the (general) definition of longevity means that its value is
based on a single observation – the age of the longest lived individual. This single
record may not be representative for the species, e.g. when analyses are limited to a
single (sub–)population. Since longevity is only known at death, living individuals
that are older than previous (dead) ones are not “counted”. For example, this has
been observed in African elephants (Loxondonta africana) and Asian elephants
(Elephas maximus) in European and North American zoo populations (Wiese and
Willis 2004), where living elephants are older than the previous longevity record (in
these populations).

3.2.2.1 Artefacts

The oldest observed ages at death in studbooks could be artefacts due to errors in
recording dates of birth and/or death. Artefacts can also be introduced by veterinary
intervention in cases where the life of older individuals is “artificially” prolonged.
It is clear that such artefacts should ideally be excluded from analyses, especially in
the context of gaining information on natural history.

Statistical methods such as the Dixon’s test and Grubbs’ test (Komsta 2011) can
be used to detect artefacts that show up as outliers in data sets. However, these
tests assume that data are normally distributed (Sokal and Rohlf 2012). Figure 3.1
shows that the age at death is extremely skewed to the left (first year) and, therefore,
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cannot be considered to be normally distributed.2 This means that outliers may not
be detected or may be wrongly detected. Therefore, these tests should be applied
with caution.

Studbooks are usually small data sets which do not necessarily include sufficient
data to reflect the “real” distribution of mortality. Figure 3.1 shows that frequency
counts are declining in the older age groups. Thus the “samples” for these age
groups are low. This means that statistical tests may consider valid data as outliers.
One of these outliers may actually be a “true” longevity record.

Since studbooks contain extensive data on individuals, it is possible to evaluate
outliers in terms of data quality. For example, the software program PopLink lists the
ten highest “longevity” ages from both living population and death records. Outliers
based on artefacts or inaccurate dates of birth and/or death can be excluded from
analyses.

3.2.2.2 Data Truncation

Longevity (symbol: ˝) based on a validated outlier may be appropriate “for the
record”, but it is not recommended to use this value in analyses and/or comparative
studies. Simulation experiments based on samples of observed age in marine
mammals showed that longevity based on maximum observed age is sensitive to
sample size (Barlow and Boveng 1991). The 95th and 99th percentiles3 were shown
to be less sensitive to sample size than longevity based on maximum observed
age.

In contrast, sample size is less of an issue in semelparous species with rapid
senescent mortality, e.g. post–spawning mortality of Pacific salmon (Oncorhynchus
spp.) (Morbey et al. 2005), and post–mating male mortality of carnivorous marsu-
pials (Dasyuridae) (Bradley 2003).

Small sample sizes not only affect longevity, but can also affect basic statistics
such as mean and median age at death as well. Therefore it is recommended to
truncate (exclude) the data above the selected percentile and (re-)calculate the
quartiles and mean. Table 3.2 presents truncation of the snow leopard data set
in the range 1, 5 and 10 percent of the tail of the death–age distribution (right
truncation). The maximum age in these data sets corresponds to the 99th, 95th and
90th percentiles, respectively.4

Since the older ages at death are excluded, values for quantiles, mean and
maximum observed age consequently decrease with increasing levels of truncation.
The obvious question arises “Which percentage of truncation (or percentile) to

2A major characteristic of the normal distribution is that the curve is symmetrical around the
(arithmetic) mean. Therefore mean, median and mode are all located at the same point.
3These percentiles mean that 95 % or 99 % of data ordered by age were included.
4The maximum observed ages in truncated data sets can differ from percentiles due to rounding of
number of records that are excluded, and the method that is used in calculating the percentiles.
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Table 3.2 Summary statistics of death ages (in days), truncated at different percentages, in captive
snow leopards from 1890 to 2003

Truncation (%) 1st Median Mean 3rd Maximum n

None 4 142 1,694 3,372 7,981 1,606

1 4 127 1,637 3,260 7,035 1,590

5 4 99 1,431 2,800 6,185 1,526

10 3 76 1,188 2,244 5,504 1,446

1st first quartile, 3rd third quartile, n sample size

Fig. 3.2 Stripchart of the tail
of the mortality distribution
for different percentages of
truncation in captive snow
leopards, from 1890 to 2003
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apply?”. First of all, it is not the intention to exclude data that would be informative
for the distribution of mortality. The answer is to have a closer look at the data
in the tail of the distribution (this means the data that would be excluded after
truncation).

Figure 3.2 shows one dimensional scatterplots of data in the 1 % (bottom
plot), 2.5 % and 5 % (middle) and 10 % (top) of the distribution tail i.e. oldest
ages at death. The maximum observed age of 7,891 days could be considered
as an outlier (even if the observation is validated). Truncation levels of 5 % and
10 % are clearly too high, as a large amount of data that forms a continuous
distribution (regions where strips overlap) and thus likely reflects the mortality
distribution, will be excluded. This could more or less have been expected on the
basis of the number of 80 and 160 records which need to be excluded, respectively
(Table 3.2).

A truncation level of 1 % is still too high for this data set, given that the first
block of data is part of the continuous distribution, remembering that the analysis
is based on accurate dates. A lower truncation of, for example, 0.5 % would seem
to be more appropriate. This example shows that truncation should not be applied a
priori without knowledge of the distribution of the data.
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3.2.3 Pathologist’s View

Table 3.1 shows that mean age at death in snow leopards during the period 1890–
2003 is 1,694 days (�4 1

2
years). The mean age at death is also known as (mean) life

expectancy (Caughley 1977). Life expectancy is often calculated as the arithmetic
mean or median age at death. However, calculations based on death records do not
necessarily reflect the “true” life expectancy.

The type of data as presented in the previous figures and tables can be compared
with the data that veterinary pathologists will collect over years of work. They
will have data sets of post–mortem records with information on the age at death.
However, pathologists generally do not have data on the living population, such as
number of births or number and age of living individuals. Yet, living individuals and
individuals that disappeared (Lost To Follow–up (LTF)) have ages and, therefore,
contribute to life expectancy too! They inform us of having reached a certain age at
the date of monitoring or, in the case of LTF, the age at the date when they were last
observed.

For example, the mean age of living African and Asian elephants in regional zoo
populations was 24.6 and 31 years, respectively. This is higher than calculations
of mean age based on dead animals only (16.9 and 25 years) (Wiese and Willis
2004). Combining data sets on ages at death, ages of living individuals at end of
study period, and ages of LTF individuals will result in better estimates of life–
expectancy (Wiese and Willis 2004).

3.2.4 History and Husbandry

Husbandry in zoological gardens has improved tremendously in the last 100 years,
with increased knowledge from practical experience, and from biological and
veterinary sciences, including field studies. Living snow leopards most likely
“profit” from this improved knowledge of husbandry and have, consequently, a
higher life expectancy in recent decades than did those who were imported or were
born in the first half of the twentieth century (see Table 3.3).5

While longevity records require the full historical data set, it makes more sense
to use a time–span which reflects modern knowledge of husbandry when estimating
life expectancy. The choice of an appropriate time–span depends on the longevity
of the species involved and the year the studbook was initiated. Studbooks on
zoo populations often only include historical data on those individuals that are

5Although International studbooks for Przewalski’s horses (Equus przewalskii) and European bison
or wisent (Bison bonasus) were initiated at the beginning of the 20th century, captive propagation
programmes in zoological gardens started on a larger scale in the 1960s. Regional breeding
programmes such as the North American SSPs© and European EEPs, which were initiated in the
mid 1980s, now include compilation of husbandry manuals.
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Table 3.3 Summary statistics of mean age at death in captive snow leopards for different periods
of time

Group 1st Median Mean 3rd Maximum n

1890–1982 4 35 688 610 7,286 396

1983–2003 4 395 2,026 4,260 7,981 1,213

1st first quartile, 3rd third quartile, n sample size

relevant for the pedigree of the population (prior to the date when the studbook
was established). This particularly applies to studbooks that were established before
computerised in-house registration, linked to the global database at the International
Species Information System (ISIS), became active (Flesness and Mace 1988;
Flesness et al. 1995). This implies that the data of the “early” years in a studbook
may be restricted to those individuals that survived until the age of reproduction
and, moreover, have (surviving) descendants in the current population. This leads to
the following guidelines in selecting study periods:

1. Include a study period that covers approximately the maximum lifespan
(longevity) before the last update of the studbook. For example, the first date
for captive snow leopards would be 1981 or 1983, based on a longevity of
20–22 years (see Table 3.1) and the last full update as on 31 December 2003.

2. Start the study period in the year when the studbook was established in the case
that the longevity record refers to an earlier date.

3. Start the study period around 1990 for recent studbooks, especially when data
have been extracted from the ISIS database (Flesness et al. 1995).

4. Use results of census analyses and census-like analyses such as births and deaths
per year (see Chap. 4) to determine the appropriate start and end of the study
period. For example, when the number of births outnumber the number of
imports (Faust et al. 2003).

Since the International studbook on snow leopards was established in the 1970s,
it is possible to analyse a study period that comprises the longevity record: from
1983 to 2003. Summary statistics for lifespan (note: based on death records only)
during this period are presented in Table 3.3. These results are compared with results
from the entire previous period: 1890–1982. Twenty-five percent of the deaths occur
between 0 and 4 days after birth in both periods of time. This indicates that modern
husbandry has had no effect on (reducing) perinatal mortality (death around birth)
in snow leopards. However, mean life–expectancy has almost tripled from 688 to
2,049 days (Table 3.3).

The data set as used in the above example includes individuals that were born
before 1983 (and died before the end of 2003). This means that lifespan as estimated
for the period 1983–2003 can have been (partly) determined by husbandry factors
in the previous period. The solution to this problem is to include only individuals
that were born and died during the study period.
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Fig. 3.3 Mortality in the first
year in captive snow leopards
from 1983 to 2003. Bars
correspond with 1 month
(30.5 days) intervals
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3.2.5 Early Life Stages

Causes of death are usually of different origins during different life stages.
Figure 3.1 shows that the majority of deaths in snow leopards occurs in the first
year. This period covers the early life stages of snow leopards: perinatal mortality,
neonatal mortality and juvenile mortality. For example, perinatal mortality, which
includes stillbirths and premature deaths, accounts for 25 % (=1st quartile) of deaths
in captive snow leopards, while the median age at death, during recent times, is
approximately 1 year (see Fig. 3.1 and Table 3.3).

Figure 3.3 presents the frequency counts for mortality in the first year (365 days).
This figure shows, as expected from the summary statistics, that the majority of
deaths occurred during the first month or neonatal stage. A further refinement,
mortality within the first 30 days, is presented in Fig. 3.4a. This shows that the
highest mortality within this period occurred in the first week. Thus, a further
refinement, mortality within the first week, is recommended.

Figure 3.4b shows that the highest mortality in newborns occurred on the day
of birth (which is day 0). Death at date of birth can include stillbirths, spontaneous
abortions and death shortly after birth.6 Life–span analyses within age groups (or
life stages) will not reveal the underlying causes of deaths, but can at least provide
information to be used in further studies, for example an examination of post–
mortem reports. Mortality due to inbreeding depression, however, can be directly
detected from studbook data whenever pedigree data are available. This subject will
be discussed in Chap. 13.

6Premature births are recorded as births in studbooks.
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Fig. 3.4 (a) Mortality in the first month (30 days) in captive snow leopards from 1983 to 2003.
(b) Mortality in the first week

The period of weaning can also result in higher mortality. Figure 3.3 shows a
slight increase in mortality in snow leopards in the third month, when weaning starts.

3.2.6 Differences Between Sexes

The lifespan analyses in the previous sections did not distinguish between sexes.
This was to allow the inclusion of individuals of unknown sex. This particularly
applies to perinatal mortality, when it may not always be possible to determine
the sex through post–mortem examination (for example, due to cannibalism or
decomposition). The proportion of individuals of unknown sex in death records
is likely to decline, even in species with no obvious sexual dimorphism, during
later life stages. Either sex has been determined during life, through observation,
examination, karyotyping or applying DNA tests, or through examination after
death.

Death during the neonatal and juvenile stage is generally not related to sex,
although exceptions will exist. Therefore, analysing lifespan without distinguishing
between the sexes seems to be a “safe” approach for the neonatal and juvenile
stages. Differences in mortality between sexes are likely to start around the age of
sexual maturity, especially in species with sex–biased dispersal. The dispersing sex
will, under natural conditions, leave the territory of the parents (or natal group) and
potentially be exposed to risks varying from encountering hostile conspecifics and
predators, to ending up in unsuitable habitat that increases mortality. The situation
in zoological gardens is much more benign than in nature, as such risks are minimal
(there is a risk from introductions to conspecifics). Yet, it is the dispersing sex which
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Fig. 3.5 (a) Mortality after the first year in captive male snow leopards from 1983 to 2003. Bar
width corresponds with 1 year (365.25 days) intervals. (b) Females

will eventually be transported to another zoo (or any other ex–situ environment)
as part of a breeding programme. However carefully planned and well guided,
transport of an animal always entails a mortality risk, whether during transport,
quarantine or adaptation to the new zoo environment.

Later differences between sexes can occur during the reproductive ages (see
Sect. 3.3). Females can die of complications during pregnancy and delivery, or
during egg-laying. Both males and females, depending on the social system, can
be involved in dominance fights that can result in fatal injuries.

The proportion of neonatal and juvenile mortality can make it difficult to
visualise mortality in later stages (see Fig. 3.1). Therefore, it is recommended to
exclude the data of these stage groups from the data set. Figures 3.5a and 3.5b
show mortality in male and female snow leopards which have survived the first
year, respectively.

The frequency count of male deaths in the first year is higher than in females,
resulting in a different scale on the frequency axis. This makes it difficult to interpret
whether male and female mortality differ over the entire lifespan.

The Quantile-Quantile (Q–Q) plot is a graphical method that can be used to
visualise potential differences between two distributions (R Core Team 2015).
Figure 3.6 shows a Q–Q plot for mortality in male and female snow leopards. When
the quantile points are positioned approximately on the 45–degree reference line
(the dashed line), the distributions of mortality for males and females are the same.
However, statistical tests are required to determine whether deviations from this
central reference line imply significant differences.

Lifespan data do not follow a normal distribution (as discussed in Sect. 3.2.2).
Therefore parametric tests, such as the Student’s t test, cannot be applied to test for
differences in mean age at death between males and females. A nonparametric test,
such as the Wilcoxon two–sample test (Sokal and Rohlf 2012), can be applied to test
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Fig. 3.6 Q–Q plot of male
and female mortality after the
first year in captive snow
leopards from 1983 to 2003
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for differences between males and females. The null hypothesis (H0) is that both
samples are drawn from the same (statistical) population.

The Wilcoxon two–sample test on male and female mortality in snow leopards
(W D 42; 231:5; p > 0:05) does not reject the null hypothesis.7 This means that no
difference, between male and female mortality in snow leopards which survived the
first year, could be detected with this test.

It is recommended to present mortality data per age group proportional to the
total number of deaths, whenever comparisons between distributions need to be
made. The proportion of total number of deaths in age group x refers to the
probability (chance) that a new–born dies in that age group. This parameter is known
as age–specific mortality (symbol: dx) in life–tables (see Chap. 7).

Lifespan analyses as presented in this section are based on frequency counts of
age at death. The number of individuals that were actually born and survived are
ignored (see Sect. 3.2.3). Chapters 7 and 10 will present methods that include both
death records and data that include number of births and survival per age group.

Nonparametric tests are not free from the basic statistical requirement of indepen-
dent sampling. The litter effect, maternal effect and individuals sharing conditions
that are specific for individual zoos (e.g. husbandry practices), are examples of
pseudoreplication that can affect the validity of statistical results (see Hurlbert 1984;
Lombardi and Hurlbert 1996).

A list with ages at death does not suffice to determine whether pseudoreplication
occurred. Additional information on individuals, such as location of birth and
lifespan of litter mates, would be required. The life–table methods that are applied
to studbooks use such information, and, therefore, are more reliable for comparing

7The statistical terminology is to reject and to not reject the null hypothesis.
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mortality differences between groups (such as males and females) than the “crude”
lifespan analyses are. Nevertheless, the “crude” lifespan analyses provide a quick
way to assess longevity and to gain an initial overview of age–related deaths in the
population.

3.3 Reproductive Lifespan

Reproductive lifespan refers to the age of individuals at time of birth (or hatching)
of their first and last offspring. The PML software (Princée 2014), which is used in
this section, includes all reproductive ages. This means that additional parameters,
such as median and mean age at reproduction, can be estimated too.

Since differences between sexes (can) exist, this analysis is usually carried out
separately for males and females. The major use of this analysis is to describe the
biological age limitations of reproduction. Therefore, offspring of both sexes are
included in the analyses. This method differs from age–specific fecundity rates,
which are generally based on offspring of the same sex as the parent (see Chap. 7).

Reproductive lifespan is calculated from birth data of individual offspring and
not from litter dates. This means that potential effects of the parent’s age on litter
size is reflected in the results.

Figures 3.7a and 3.7b present histograms of reproductive ages in captive male
and female snow leopards during the period 1983–2003, respectively. These figures
shows that reproduction increases rapidly with age to a peak and then drops
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Fig. 3.7 (a) Reproductive lifespan in captive male snow leopards from 1983 to 2003. Frequency
counts refer to numbers of births to males per age group. Bars correspond to 1 year intervals. (b)
Females
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Table 3.4 Summary statistics of age at first reproduction and reproductive life-span (in days) in
captive snow leopards from 1983 to 2003

Analysis Group Minimum 1st Median Mean 3rd Maximum n

Lifespan Female 500 1,824 2,527 2,603 3,272 5,573 1;557a

Male 733 1,819 2,569 2,779 3,656 6,180 1;521a

First age Female 500 1,449 1,819 1,953 2,206 5,444 281b

Male 733 1,436 1,830 2,103 2,627 5,506 262b

1st first quartile, 3rd third quartile, n sample size
a Number of births
b Number of breeders

gradually. Summary statistics, presented in Table 3.4, provide a way of expressing
the characteristics of reproductive lifespan in numbers. Note that both the minimum
and maximum ages can be outliers (see discussion in Sect. 3.2.2).

The first quartile and median values are quite similar for both males and females
(Table 3.4). However, the mean and third quartile show that reproduction in females
tends to decline more rapidly than in males (see also Figs. 3.7a and 3.7b). The
Wilcoxon two–sample test shows that male and female reproductive lifespans differ
significantly (W D 1; 266; 411; p < 0:001).

The arithmetic mean age at reproduction is also known as generation time
(symbol: NT). This value is used in population genetics to determine the expected
loss in genetic variation – which is generally expressed as loss per generation –
over a given period of time (see Chap. 14). Note that generation time is generally
calculated from life–table analyses (Chap. 7).

It is important to note that the method presented here is based on individuals that
have produced offspring. This type of analysis does not provide information on the
actual fraction of individuals within age groups that have reproduced. To do this
requires calculation of age–specific fecundity rates, as will be discussed in Chap. 7.

3.3.1 Age at First Reproduction

The minimum observed age at reproduction can be an outlier. Therefore, it is
not recommended to use this value as age at first reproduction (symbol: T1). The
arithmetic mean or median age at first reproduction should be used instead (symbols:
NT1 and QT1, respectively). Figure 3.8 presents age at first reproduction in male snow

leopards. It shows that the majority of males do not start breeding until the age of
3–5 years.

Table 3.4 presents summary statistics for age at first reproduction in both male
and female snow leopards. The median age at first reproduction for both sexes is
5 years.
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Fig. 3.8 Age at first
reproduction in male snow
leopards from 1983 to 2003.
Bar width corresponds to
1 year intervals
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3.3.2 Artefacts

Reproduction in captive populations is influenced by management. For example,
logistics such as the time to obtain permits for international transports (for example
CITES permits) and/or length of quarantine, can delay the physical possibility for
reproducing. This means that the biological first age at reproduction can be lower
than observed in the studbook data. Likewise, artificial reproductive techniques can
prolong reproductive lifespan, even beyond the death of individuals. This refers to
the concept of the “frozen zoo” when sperm and/or embryos of individuals which
have died are used in artificial reproduction (Benirschke 1984; Clarke 2009). This
means that data referring to offspring from such techniques need to be excluded
from analyses.

The main aim of analysing ages at reproduction is to provide an impression of
ranges in reproductive lifespan and to indicate potential optimal ages (as indicated
by the mean age) for reproduction. This information is important for selecting age
groups for reintroduction/translocation.

3.4 Litter Size

Litter size in the context of studbooks generally refers to the number of offspring
born to a female of a live-bearing species or to the number of hatchlings from
a single clutch of an egg-laying species.8 Although zoological gardens maintain

8Studies on wildlife populations usually consider clutch size rather than hatchlings.
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Fig. 3.9 (a) Litter size in snow leopards from 1983 to 2003 (n D 700 litters). (b) Litter size in
African wild dogs from 1986 to 2006 (n D 234 litters)

records on clutch size (and incubation time), these data are not included in
studbooks (Thompson et al. 1997). The life of an individual in a studbook starts at
the moment of birth or hatching. Stillbirths, spontaneous abortions and hatchlings
which died during hatching are included. However note that these data only refer to
individuals that have actually been observed (or their remains detected).

Figure 3.9a shows the frequency distribution of litters in captive snow leopards
in the period 1983–2003. The median and mean values are 2.000 and 2.146,
respectively (n D 700). Litters of four offspring are rare and those of five offspring
seem to be exceptional.

Histograms of frequency counts provide an intuitive way to judge the signifi-
cance of a distribution pattern. Stochastic population modelling programs, such as
VORTEX (Lacy et al. 2009), require that litter sizes are provided as fractions or
percentages which are used as probabilities. In this, be aware that data presented as
fractions may not be that informative whenever based on small sample sizes.

3.4.1 Assessing Litter Size

Litter sizes in the EEP population of African wild dogs show a wide range from 1 to
18 offspring (Fig. 3.9b). The median and mean values are 4 and 4.7, respectively
(Table 3.5). However, the first quartile – accounting for 25 % of the litters – is
only one offspring per litter. One could take these results at face value, but do they
actually reflect the reproductive biology of African wild dogs?

African wild dogs deliver in a den and the litter size generally remains unknown
until the puppies emerge after 3–4 weeks. This situation is not much different in
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Table 3.5 Summary statistics of litter size based on record dates of births and surviving puppies
at 21 days (when they are assumed to emerge from the den) in the EEP population of African wild
dogs, from 1986 to 2006 (n D 234)

Group 1sta Median Mean 3rda Maximum

Birth 1 4 4.7 7 18

Den emergea 1 1 3.4 5 14

1st first quartile, 3rd third quartile
a Emerging from den is around 21 days (Estes 2012)

zoological gardens, where keepers tend to leave the den/box undisturbed during the
breeding season. This means that only puppies which survived these first weeks
are observed and, thus, counted. By the time the den can be inspected, remains
of puppies which have died will not be found. Thus, the actual litter size is likely
to be underestimated in species which deliver in dens that are not accessible for
observations.

Infra–red cameras installed in dens can be used to determine litter sizes more
accurately. This technique is used in zoological gardens, for example to record
birth in polar bears (Ursus maritimus) and wolverines. Recording vocalisations
of puppies has proved to be a good technique to determine litter size in African
wild dogs at an early stage. This information will contribute to better biological
knowledge of ranges in litter sizes and perinatal mortality.

The techniques as described above may, depending on costs involved, only be
applied to a small number of dens (and/or litters). This means that in these cases,
accurate data can actually create bias in estimating the overall, observed, distribution
(and mean, median etc.), of litter sizes. This bias is determined by mortality in the
den, accounting for potential differences between actual litter size and litter size as
observed when offspring emerge from the den. This bias will affect the biological
interpretation of litter sizes, and, therefore, comparison with data-sets that are solely
based on observation of surviving offspring.

A solution to cope with “missed” offspring is to calculate litter sizes as number
of surviving offspring around the date that they are expected to emerge from the
den i.e. ignore the problem. This method is applied in collecting data on African
wild dogs in the wild (e.g. McNutt and Silk 2008). Puppies of the African wild dog
emerge from the den around 3 weeks (Estes 2012). Litter size, based on surviving
puppies in the EEP population at the age of 3 weeks, is presented in Table 3.5.

3.4.2 Date Range in Litter/Clutch Size

Calculating litter sizes from studbook data is a retrospective method in which
offspring born to a female within a biologically meaningful date range are counted
as belonging to the same litter. The method is generally straightforward in assessing
litter sizes in live-bearers, as births of the first and last offspring are likely to occur
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within 24–48 hours. It becomes more complex, however, in egg–laying species
when eggs are laid over several days, or new eggs are laid to replace lost ones.
This may include management techniques to increase reproduction by removal of
eggs which are incubated artificially or by foster parents. This means that eggs from
a single clutch may hatch at different times.

Artificial incubation can also create wider ranges in hatch (birth) dates within
a clutch as, for example, a group of eggs could have been divided over different
incubators to experiment with humidity and temperature. The problem as described
above can be solved for species with distinct birth seasons (birth–pulse model). The
range in hatch date within a single clutch could in those cases simply refer to the
length of the birth season.

Analyses of seasonality in births (hatching) and inter–birth (hatch) intervals can
be helpful in determining reasonable ranges in dates which refer to the same litter
or clutch (see Sects. 3.5.2 and 3.6).

3.5 Seasonality

Seasonality refers to events, such as migration and breeding season, which occur in
a regular pattern within a year. These seasons could be spring, summer, autumn and
winter in the temperate zones or rainy and dry seasons in tropical zones. Studbooks
contain data on two potentially seasonal events: births and deaths. The seasonality
in these events, and methods to test their (statistical) significance, will be discussed
in the following sections.

3.5.1 Mean Date

Days, weeks, months and quarters can, conveniently, be numbered from 1 to 365,9 1
to 52, 1 to 12 and 1 to 4, respectively. It may seem that it would be easy to calculate
the mean season and its standard error. However, seasons are annually repeating
events which do not necessarily start or end within a calendar year (for example,
winter in the northern hemisphere). Therefore, re–coding of dates to a scheme where
the first date has a lower “value” than the last date is required in order to calculate
the mean date and its variance (see e.g. Caughley 1977). This is also the underlying
method of circular statistics (Pewsey et al. 2013; Zar 1984). Time intervals, whether
days or quarters, are re–scaled to 360 degrees on the circle. This statistical method is
presented in more detail in Chap. 19. The R package circular (Agostinelli and Lund
2013) is used for seasonality analysis in this book.

9366 days if leap years are taken into account.
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3.5.2 Seasonality in Births

The reproductive season encompasses the period from mating to birth or hatching.
Knowledge of seasonality in breeding, especially in mating activities, is impor-
tant for management of captive populations.10 Cooperative breeding programmes
involve exchanges of animals between zoos in order to minimise inbreeding and
genetic loss (Lacy et al. 1995). Appropriate timing in planning these exchanges is
important, especially for species with a short reproductive lifespan (Sect. 3.3). One
could easily miss a mating season.

Two major breeding systems are generally described (Caughley 1977):

1. Birth–flow: the rate of breeding is constant throughout the year.
2. Birth–pulse: all offspring are produced on 1 day, the date being the same from

year to year.

In reality, these systems do not necessarily fully apply to species or populations.
However, the reproductive season may come close to one of them. Knowledge of
the breeding model that “fits” best with a species is relevant to determining census
dates, and will be discussed in Chaps. 4 and 7.

Information on seasonality in mating season may reveal the underlying mecha-
nism(s) which potentially triggers reproductive behaviour, as will be illustrated in
this section. Such information is important as captive conditions (climate, day-light
regime) often differ from the natural habitat. Although modern zoos will register
mating activities of species in the in–house registration systems, these data are not
necessarily included in studbooks.

Studbooks generally only register “hard” observations such as date of birth. This
limits the use of studbook data for detecting mating season. Therefore, the mating
season needs to be deduced, using existing natural history data on gestation or
incubation length, counting backwards from the date of birth.

Seasonality in births in species that have singletons is based on individual dates
of birth. In species with multiple births, only a single date, e.g. first or median, from
a litter is used in order to avoid pseudoreplication (Hurlbert 1984).

Species that predominantly produce singletons can still produce the odd twin or
triplet. For example, 6 out of 793 individuals in the blesbok population sample are
from twin litters. Including the “extra” half of these twins as individual records is
not expected to change the results, in this particular case.

Figure 3.10 shows a circular graph of date of births (litters) in the European
zoo population of the wolverine. This figure shows a rather distinct season from
1 February until 8 March, with a peak in births in early March. The Rayleigh
test shows a significant mean date of birth at day 51, which is 21 February (r D

0:99; p < 0:001; n D 42).

10The breeding season of species with delayed implantation is actually divided in a mating, an
“implantation” and a birth season, sometimes separated by months.
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Fig. 3.10 Season of birth
based on litter dates in the
captive population of
wolverines in European zoos
from 1963 to 2001. Stacked
points refer to births per day
of year; the area sectors in the
rose diagram represent
relative frequencies of births
per month; and the arrow
indicates the mean date of
birth (21 February)
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3.5.2.1 Sex at Birth

Data on births can include a relatively large proportion of animals of unknown
sex (see Sect. 3.2). This refers especially to those species where post–mortem
examinations of neonates is not feasible, for example in the case where the remains
are disposed of by the parents. Excluding animals of unknown gender may reduce
the sample size required to detect seasonality – remember the number of records in
studbooks on endangered species is relatively low. Therefore, it is recommended to
include all sexes in the initial analyses of seasonality in births.

Separate analyses of seasonality per sex may not be relevant for species
with genotypic (chromosome–based) sex determination (GSD). These are typically
warm–blooded (or homeothermic) species, but do not necessarily exclude cold–
blooded (or poikilothermic) species. However, cold–blooded species can be subject
to embryonic environmental conditions which determine the sex of offspring. For
example, temperature–dependent sex determination (TSD) has been observed in
various fish and reptile species (Valenzuela 2004, 2008).

Differences in temperatures do not only determine sex, but can affect later
reproductive success of the hatchlings as well. For example, experiments in the
Jacky dragon (Amphibolurus muricatus), that involved decoupling of sex and
incubation temperature by hormonal manipulations, resulted in males and females
that developed outside the “sex–specific” temperature range. The study showed
that only females and males that were born at natural (sex-specific) temperatures
reproduced successfully (Warner and Shine 2008).

Captive programmes which maintain poikilothermic species in outdoor breeding
facilities (for example in range countries), should certainly take differences in
seasonality between sexes into account.

Seasonal trends in sex–ratio have been observed in birds, especially in raptors,
e.g. nests produced early in the season in the European kestrel (Falco tinnunculus)
have excess of males; late nests have excess of females (Dijkstra et al. 1990).
Male calves in reindeer (Rangifer tarandus) are heavier in weight than females,
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Table 3.6 Seasonality in
births of female and male
blesbok in the northern
hemisphere from 1970 to
2008

Group 2.5 % Mean 97.5 % n p

Female 14 June 19 June 24 June 556 <0:001

Male 21 June 25 June 30 June 598 <0:001

2.5 %, 97.5 % confidence limits, n sample size, p probabil-
ity of Rayleigh statistic

and gestation length is longer for males than for females (Mysterud et al. 2009;
Weladji and Holand 2003). This could suggest potential differences in mean birth
dates between sexes.

Table 3.6 shows that the mean dates of birth of female and male blesbok in the
northern hemisphere are 19 and 25 June, respectively. The birth season in both sexes
is not uniform (Rayleigh test, p < 0:001). However the 95 % confidence intervals
overlap the period 21–24 June, which may indicate that these mean values are not
significantly different. The “Watson’s two sample test” (Zar 1984) confirms this
suspicion: the null hypothesis “the seasons are the same” is not rejected (p > 0:10).

The subject of sex bias in season of birth is related to the complex subject of
sex allocation, in which social rank and physical condition of females also play a
role (see e.g. Cockburn et al. 2002; Komdeur 2012). Tests on differences in season
of birth between sexes in species with multiple births can be achieved by weighting
litter dates for number of males and females.

3.5.2.2 Premature Births

Studbooks do not always register whether stillborns or individuals that die shortly
after birth refer to premature births. Refinement of seasonality analyses by including
data on viability of offspring could help to detect premature births. For example, a
study on birth timing in Californian sea lions in captive facilities in North America
showed that mean dates of birth in stillborn and non–viable (lived less than 1 day)
offspring occurred 4 weeks before the mean birth date (13 June) of viable (lived at
least 1 day) offspring (Temte 1993). In other words, the stillborn and non–viable
births are likely to refer to premature births.

Similar analyses, but using circular statistics, have been carried out on the
European studbook population of Californian sea lions for this book. Individuals
that were born alive but died the same day can not be distinguished from stillborn
in basic studbook data sets. These individuals are grouped in this study under the
category “day–zero–death”. The survival criterion in the Temte’s (1993) viable
category is extended from at least 1 day to at least 6 months (“weaning age”).
Offspring that survived 1 day but died before being weaned are grouped in the
category “non–weaned”.

Table 3.7 presents results of seasonality analyses on these categories. The mean
birth date of day–zero–deaths is 16 and 22 days earlier than those that died before
and after reaching the weaning age, respectively. Offspring that died before the
weaning age were born on average 6 days earlier. The non–parametric pairwise
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Table 3.7 Seasonality and
viability in births in captive
Californian sea lions in
Europe from 1978 to 2008

Group n Day Date p

Weaning–age 695 161 10 June < 0:001

Non–weaned 96 155 4 June < 0:001

Day–zero–death 138 139 19 May < 0:001

n sample size, day day of year, p probability of
Rayleigh statistic

Fig. 3.11 Season of birth
(litters) in the global captive
population of Nepalese red
pandas from 1986 to 2006.
Stacked points refer to births
per day of year; the area
sectors in the rose diagram
represents relative
frequencies of births per
month; and the arrow
indicates the mean date of
birth (26 June)
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Wilcoxon rank test with Holm’s correction for multiple comparisons (R Core Team
2015) was applied to these data. Season of birth in day–zero–death category differs
significantly from non–weaned and weaned–age categories (both p < 0:0001).
Seasonality in the non–weaned category also differs significantly from the weaned
category (p D 0:0002).

It is beyond the scope of this book to discuss the possible reasons for differences
in results of these studies. The main importance of this type of information is that
analyses of seasonality in birth can contribute to knowledge of natural history –
information which can be used in daily management. For example, zoo keepers may
find remains of a new–born, for which it is not clear whether it was a premature birth,
stillbirth or whether it was killed by conspecifics. The last cause may imply that a
study on potential social problems is required. However, knowing that the date of
birth refers to a premature birth changes these perspectives.

3.5.2.3 Latitude

Figure 3.11 shows seasonality of birth (litters) in the international studbook
population of Nepalese red pandas from 1986 to 2006. A mean birth season in
the period June–July and a second, less pronounced, season in December–January
seems to occur. Circular statistics, however, will not detect that second season, as
the number of litters in the “first” season outnumbers the “second” season. The
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Table 3.8 Results of the Rayleigh test on seasonality in births (litters) in captive Nepalese red
pandas from 1986 to 2006

Regions n Na Day r p

All regions 787 3.05 177 (26 Jun) 0.764 < 0:001

Northern hemisphere 644 3.04 177 (26 Jun) 0.972 < 0:001

Southern hemisphere 79 �0.15 358 (23 Dec) 0.975 < 0:001

n sample size, Na mean angle in radians, r resultant vector, p probability of Rayleigh statistic

Rayleigh test shows a significant (r D 0:764; p < 0:001; n D 787) mean season
(for all regions) corresponding with day 177 which is 26 June (see Table 3.8). This
example emphasises the importance of visualising data, such as through circular
plots, to detect bi–modality.

However, it would be a mistake not to study the “second” season in more detail.
International studbooks include individuals in zoos in different parts of the world,
with different seasonal characteristics. For example, it is summer in Australia at the
time it is winter in Europe. Table 3.8 shows significant differences between breeding
seasons of red pandas in the Northern and Southern hemispheres with mean dates of
birth (litter) of 26 June and 23 December, respectively. This explains the bi–modality
in birth season.

3.5.2.4 Photoperiod

The day number as used in the previous examples refers to the Gregorian calendar
(i.e. day 1 = 1 January, day 365/366 = 31 December11). This definition is
useful, though most would prefer to use the date rather than the day number, in
terms of management of populations. However, when studying the mechanisms
behind seasonality in birth, it may be better to use day numbers that refer to the
astronomical calendar which starts at 20 or 21 December (shortest and longest
day, in the Northern and Southern hemispheres, respectively). The mean date of
birth in Nepalese red pandas is, according to these data, 4–5 days after the longest
day (June and December solstices, in the Northern and Southern hemisphere,
respectively).

Geographic differences in seasonality in births can be more subtle than observed
in Nepalese red pandas between the Northern and Southern hemisphere (Table 3.8).
A smooth change in birth (pupping) date across latitude was observed in captive
Californian sea lions in USA facilities – although the origin of most founders could
be traced to the same wild population (Temte 1993). This study showed a strong
correlation between photoperiod (day length) triggering birth (birth timing) in this
species across the different latitudes in North America.

11This depends on leap years.
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3.5.3 Seasonality in Deaths

Under natural conditions, seasonality in death is expected to be as common as
seasonality in births. Whether a climate with dry or rainy seasons, or a temperate
climate with four seasons, they both have periods with shortage of food and/or water
during which mortality increases. Captive populations, especially those which are
maintained in zoological gardens, are not exposed to the harsh conditions of dry
or winter seasons or migration. Does this mean that it is not necessary to analyse
seasonality in deaths? The straight answer is no!

Captive populations which are located outside the natural habitat are exposed to
seasons which differ from their natural environment. Seasonal effects may be subtle
and are not necessarily detected. For example, a single mortality case in a waterfowl
species in late summer at a single zoo may not trigger extra attention. However,
seasonality analysis of studbook data may show that deaths in late summer are more
common than expected. Such a result could initiate a follow–up study looking into
post–mortem reports.

Figure 3.12a shows seasonality in deaths in the EEP population of African wild
dogs. This analysis includes all recorded deaths from 1986 to 2006. Although
deaths are more distributed over the year, the period November–January shows a
concentration, close to the observed season of births. The Rayleigh test rejects a
uniform distribution, with a mean day of 2 January (p < 0:001; n D 447).

Neonatal mortality contributes substantially to the total number of deaths in a
population (see Sect. 3.2). Consequently, seasonality in deaths will occur whenever
seasonality in births exists. Furthermore, neonatal and juvenile deaths in species
with litters can be subject to the litter effect, i.e. litter mates have a higher or lower
chance of dying than would be expected from the mortality rate (see Chap. 19 for
more details).
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Fig. 3.12 (a) Season of death in African wild dogs in European zoos from 1986 to 2006 (n = 447).
Stacked points refer to deaths per day of year; the area sectors in the rose diagram represents relative
frequencies of death per month; and the arrow indicates the mean date of death (2 January). (b)
Season of death in individuals older than 1 year (n = 315). Mean date is 30 November
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Deaths in this population are distributed more uniformly over the year when those
that occurred in the first year (neonates and juveniles) are excluded (see Fig. 3.12b).
However, a seasonality with a mean date of 30 November (p < 0:001; n D 315)
still exists.

3.6 Inter–Birth Interval

Inter–birth interval is the time–span between successive litters (or clutches) pro-
duced by the same female. Various biological factors such as birth–flow or
birth–pulse breeding systems (see Sect. 3.5), gestation or incubation length, wean-
ing period and infant survival can influence inter–birth interval. The effect of
environmental factors such as food availability, especially in combination with
density–dependent reproduction, may seem to be restricted to wild populations.
However, mark the words “seem to be”, as the zoo environment clearly can also
have an impact on inter–birth intervals.

Figure 3.13 shows the distribution of inter–birth (litter) intervals, grouped in
classes of 1 month, in captive snow leopards. It shows a sequence of more or less
equally distributed peaks. Snow leopards – in zoos in the Northern hemisphere –
have a significant birth season in May (Rayleigh test: r D 0:844; p < 0:0001; n D

988). This means that the observed peaks in inter–birth intervals refer to sequences
of these annual birth seasons. The median and mean inter–birth intervals are 690 and
712 days, respectively (Table 3.9). This means that 50 % of the litters are produced
(nearly) biennially.

Fig. 3.13 Inter–birth interval
in captive snow leopards from
1983 to 2003
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3.6.1 Management Effects

The minimum observed inter–birth interval in the snow leopard studbook is
114 days (Table 3.9), which is close to the gestation length of 96 days (Blomqvist
2004). May is the main season of birth, but some captive snow leopards have
produced litters in August and September. Given that this species originates from
the Himalayas, one would not expect new litters during late summer in the wild.
Moreover, weaning age in snow leopards is around 3 months (Blomqvist 2004).
However, it is common knowledge in zoological gardens that “strict” seasonal
breeders may produce a second litter when the previous litter is not viable or
when the newborns have been separated from the mother (and foster–reared or
hand–reared). This illustrates the impact of the zoo environment on inter–birth
intervals.

Cooperative breeding programmes involve transfers of animals between zoo
locations in order to avoid inbreeding and to optimise maintenance of genetic
variation (Lacy et al. 1995). Inter–birth interval can be affected when females are
transferred to another location between mating seasons. Individual adaptation to the
new environment and/or the species’ specific biology, for example adaptation to
photoperiod (see Sect. 3.5.2), can cause a temporary increase in inter–birth interval.

A more “natural” distribution of inter–birth intervals can be obtained by exclud-
ing intervals when (1) offspring of the previous litter are hand–reared or foster–
reared; (2) all offspring of the previous litter died before weaning; and (3) the
previous litter was delivered at a different location.

Table 3.9 shows the results of analysis of “natural” inter–birth intervals in
captive snow leopards. These data show a shift towards longer inter–birth intervals,
compared to the data set that includes all litters. The minimum observed interval of
125 days, however, still refers to a second litter within the same year. This indicates
that a female became pregnant 1 month after giving birth, but before weaning her
(viable) offspring. It is important to evaluate the data to determine whether this
outlier is an exception, an artefact such as kittens that have been taken from the
mother after a month, or that the date of birth or type of rearing (of the previous
litter) is a typing error. In this, analyses of natural history elements act as feedback
mechanisms to improve data quality of studbooks.

Table 3.9 Summary statistics of inter–birth interval in snow leopards from 1983 to 2003

Rearing n Minimum 25 % Median Mean 75 % Maximum

All 425 114 373 690 711.6 783 3,287

“Natural”a 217 125 627 729 842.1 1,087 2,527

25 % first quartile, 75 % third quartile
a Only intervals between litters that match criteria to minimise effects of the captive environment
and/or management are included (see text)
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Table 3.10 Summary statistics of “natural” inter–birth interval in snow leopards during different
periods of time

Perioda n Minimum 25 % Median Mean 75 % Maximum

1974–1983 40 330 363.8 376.5 529 703 1083

1994–2003 78 173 693.2 771.5 912 1104 2208

n sample size, 25 % first quartile, 75 % third quartile
a Refers to 1 January of the first year to 31 December of the last year

The maximum observed inter–birth intervals in both “all” and “natural” data sets
(Table 3.9) are detected as outliers in statistical tests (see Komsta 2011). These
outliers are likely to be – within the biological context – artefacts due to captive
management. For example, cooperative breeding (management) programmes iden-
tify genetically important individuals that need to reproduce. This can refer to older
females that have not been in a breeding (mating) position for some time since their
previous litter.

Management programmes that involve birth control, either by separating sexes
and/or by applying chemical contraception, will result in prolonged inter–birth
intervals. Although these type of data are registered at the individual zoo level,
they are not widely included in studbooks. But even when studbooks include “birth
control” data it is likely that early data (prior to computerised registration) are not
included. That limits the option of refining the data set in order to analyse “natural”
inter–birth intervals.

However, this is not the end of the story! The median and (arithmetic) mean
values for inter–birth intervals are expected to increase during periods of time when
birth control is implemented on a wider scale. Census data, which will be discussed
in Chap. 4, can be used to indicate when birth control has likely been implemented.
One could also apply a “rule of thumb” by assuming that birth control was not
actively implemented before cooperative breeding programmes were established (in
the mid 1980s). In other words, one would expect lower values for the median and
the mean in early studbook data.

Table 3.10 shows results of analyses on the snow leopard studbook for different
(10 year) periods (1974–1983 and 1994–2003). The criteria for “natural” data sets
have been applied in both analyses. Median and mean values for inter–birth intervals
in the period 1994–2003 have almost doubled compared to the period 1974–
1983. The nonparametric Wilcoxon two–sample test, as discussed in Sect. 3.2.6,
can be applied to test whether these differences are significant. The (one–sided)
test shows that inter–birth interval in the period 1974–1983 is significantly shorter
(W D 604:5; p < 0:001) than in the period 1994–2003. This is an indication that
behaviour and/or population management has increased inter–birth interval in snow
leopards.
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3.6.2 Egg–Laying Species

Section 3.4.1 discussed the problems that arise in calculating clutch sizes in egg–
laying species, where eggs may be laid, either naturally or through manipulation,
over a period of time. The same problem occurs in calculating inter–birth intervals.
In this, the main question is “What is a clutch?”.

Analyses of seasonality in hatching, whether based on individual hatch dates or
clutch dates, will show if a species follows a birth–pulse model (distinct breeding
season). The season may be stretched because of the longer period of egg–laying,
but one would expect to find a significant cluster of hatch dates. A simple approach
would be to count all offspring of the same dam which hatched during that hatching
cluster as one single clutch, or, alternatively, define the date range in clutches as the
width of the hatching season.

This approach clearly will not work for a species that shows a birth–flow model.
However, analysing inter–birth intervals using different date ranges can be helpful in
defining the fine line between clutches. For this, it needs to be assumed that females
of wild species (as opposed to some domestic bird species) do not continuously
produce fertile eggs during the year. The clutch interval would be the interval that is
larger than the evaluated date range.
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Chapter 4
Census Analysis

Abstract Direct census counts of wild populations depend on whether and when
a species can be easily observed. Due to field conditions, the timing of census may
not cover both sexes and/or all age groups. Census of sex and age groups relies
on characteristics that can be observed under field conditions. These limitations do
not apply to studbook census which is based on data from identifiable individuals.
Timing of this virtual census is not bound by field conditions but can be optimised
to the species’ reproductive biology, e.g. pre– or post–breeding census, or classical
end–of–year census. Census analysis of studbooks is generally based on annual
intervals, but can be based on any interval that suits the life history of a species. The
blesbok studbook is used as the main example. Graphic plots of census data visualise
the history and dynamics of a captive population. This information is important
when interpreting and validating results from the more complex life table analyses.
Measures of population growth, i.e. finite rate of increase (�) and intrinsic rate of
increase (r), can be estimated from census data. Studbook software also estimates
the geometric means of � values for each year in retrospect. The annual values
for � are used to detect trends in population dynamic processes in the studbook
population. The different methods that are used to express sex–ratio are described.
Plotting sex–ratio at census dates is used to detect trends and shifts in the population.

4.1 Counting Animals

Census is defined as “complete counting of a whole population with respect to the
variable under study” (Lawrence 2008). In the context of population biology this
“variable” refers to the number of living individuals, at a given moment in time –
the census date. In addition, individuals are categorised (whenever feasible) by sex
and/or by life stage such as juvenile, sub-adult or adult. Census data can include
a category for individuals of unknown sex. This category generally refers to new–
borns whose sex has not been determined at the census date; and/or individuals of
species whose sex may have to be determined at a later life–stage. Censuses that
are repeated regularly over fixed time intervals (e.g. annually) provide information
on trends in the population without knowledge of numbers of births, deaths,
immigration and emigration. Moreover, census does not require identification of
individuals.

© Springer International Publishing AG 2016
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Census is often considered in the context of counting animals in wildlife
populations. The detail provided by census on wildlife populations depends on
sexual dimorphism and life–stage related characteristics such as coat colour or
shape of antlers/horns. These characteristics may not easily be observed in the field.
Furthermore, the optimal period for census may differ between sexes. Therefore, it is
not uncommon that census of wildlife populations is restricted to counting females
as the reproductive unit.

Wildlife census is often envisioned as counting population numbers of species
such as plains zebras (Equus burchellii) and buffalos (Syncerus caffer caffer) on
African savannas. It is actually better to state “estimating numbers”, as studies show
that even counting savanna elephants (Loxodonta africana) is subject to underesti-
mation (Jachman 1991). Estimating population sizes of species in rainforests often
needs to be based on indirect signs such as dung piles. Transforming such indirect
signs to actual number of individuals requires information on daily defaecation rates
and decay rates (Buckland et al. 2001; Laing et al. 2003). However, these rates
can vary per season and habitat and often require assumptions, given that species
such as forest elephants (Loxodonta cyclotis) cannot readily be followed to measure
defaecation rates (see Hedges 2012).

Difficulties in census are not necessarily restricted to wildlife populations.
Species management in zoos also includes species that live in social groups, where
individual identification is not always feasible (Mace et al. 1998; Princée 1995,
1998). This means that life table analysis cannot be applied. The same restrictions
apply to groups that are managed under semi–free range conditions or have been
reintroduced. Furthermore, the number of individuals in large zoo colonies of
some species, such as bats (Chiroptera), may have to be extrapolated through
indirect methods. For example, the colony size of the Egyptian fruit bat (Rousettus
aegyptiacus) in Rotterdam Zoo is estimated from data on the actual daily food intake
(G. Visser, personal communication).

Wildlife managers and ecologists are confronted with the difficulties of obtaining
detailed data on wild populations. It is not surprising therefore that various
statistical techniques have been developed to interpret limited data sets and to
correct biased field data, and to provide decision tools for wildlife management (see
e.g. Caughley 1977; Sinclair et al. 2006; Skalski et al. 2005). Management of
studbook populations with either almost “perfect” data, or those populations that
resemble characteristics of wildlife populations, can benefit from experiences with
interpretation and handling of data from wildlife census. This benefit is reciprocal
as census analysis on studbook populations with complete data sets can be used
for testing “wildlife” census techniques. The European studbook for the blesbok,
a species kept in harem groups, is used as the main example in this chapter (see
background information in Chap. 2).
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4.2 Census Date

Zoo inventory reports traditionally use 31 December as the annual census date.
Census reports generated by the first studbook software also used this date (Princée
1989; Scobie and Flesness 1989). The “end–of–year” count may be appropriate for
studbook analyses of species that have birth–flow breeding systems. However, it
is recommended to adapt the census date for species which have clear birth–pulse
breeding systems.

The choice of census date is either a date just before (pre–breeding census) or
just after the breeding season (post–breeding census) (Caswell 2001). In the field,
the choice depends on the best period to observe a species, females in particular.
Visibility of individuals is not an issue, nor date or number of censuses, in studbook
populations.

Census in studbook populations is carried out in retrospect i.e. after the studbook
has been updated. Analysis software enables a census to be carried out at any date,
or multiple dates e.g. both pre–breeding and post–breeding.

Pre–breeding census provides counts on living individuals with the youngest
group born in the previous season (yearlings in annual census). This census type,
therefore, provides information on the reproductive potential of the population.
Post–breeding census, which includes new–borns, is not strictly necessary as
studbook software counts all individual births per season (see Chap. 5).

Blesbok in the European region show a clear season of birth in June. The pre–
breeding census date could be set to 14 June (see Table 3.6). The last census date
used in the analysis is 14 June 2007.

4.3 Census

Graphic representation of census data provides a tool to visualise trends in studbook
populations. Figure 4.1 shows census counts for males, females and the total
population in the European studbook population of blesbok from the first historical
(census) date in 1950 until 2007. This studbook population varied between 1 and 3
individuals from 1950 to 1960. It is very likely that these census data do not reflect
the “true” historical population sizes as not every institution maintained a detailed
record keeping system.

The period 1960–1970 is characterised by a slow increase. This still refers to the
period before computerised in–house zoo registration became common. Therefore,
this period may also not reflect the “true” historical population sizes. Census–
style analyses such as number of imports, births and neonatal deaths can provide
additional information by which to determine the level of completeness of data in a
studbook (see Chap. 5). For example, stillbirths and individuals that died as neonates
were not always registered in the past. In the case of the blesbok, the available data
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Fig. 4.1 Annual census of
the European zoo population
of blesbok from start until
2007. The census date was set
to 14 June (see text)
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on neonatal mortality indicate that all individuals which died before contributing
genetically to the population are included in the studbook.

Census analyses show the development of a population size over time. It is good
practice initially to include all historical studbook data. It allows the determination
of whether early data reflect the “true” population size or only comprise founders1

and their descendants that have contributed genetically to the current studbook
population (see Sect. 3.2.4).

The blesbok population shows a steady growth from 1970 until 1994 (Fig. 4.1).
Since then the population is growing – with fluctuations – less rapidly; and the
female population is actually declining. Figure 4.1 shows that females outnumber
males at census dates. This reflects the management of this species in harem groups.
However, the female population size was more or less stable from 1994, while the
number of males was still increasing. The population was approaching equal sex–
ratio in 2007.

Census analyses alone will not provide a causal explanation for the trend as
observed in Fig. 4.1. For example, shifts in sex–ratio at census could be the result
of shifted sex–ratio at birth and/or death (see Sect. 5.2.1). These trends could, for
example, also reflect the result of management programmes. Fewer and smaller
harem groups may be maintained to control population growth (which would be
in line with the reduced population growth), and bachelor herds may have been
established to maintain potential genetic variation in the population.

Since this census analysis involves a regional (European) zoo population, import
and export to other regions (see Sect. 5.4) may also affect the differences in

1Founders are wild–born individuals that have produced (viable) offspring.
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sex–ratio. These questions partly arise due to analysing this studbook without
prior knowledge of management measures that could be in place. This stresses the
importance of working together with studbook keepers and/or breeding programme
managers in the interpretation of analyses.

4.4 Population Growth

It is important to describe and interpret the historical and current patterns (trends)
as observed in raw census data (see Fig. 4.1). This provides a first feel for processes
that are occurring or have occurred in the population. The next step is to quantify
these patterns in terms of the finite rate of increase (symbol: �) between census
intervals (Caughley 1977):

� D NtC1=Nt (4.1)

where Nt and NtC1 are the population sizes at census dates t and t C 1, respectively.
A value of � > 1 means an increase in population size; � D 1 means no growth;

0 < � < 1 means a decrease in population size. Values for growth rates are often
presented as percentages: .� � 1/ � 100 (Caughley 1977). Thus values for � of
110 % (1.1) and 90 % (0.9) refer to a 10 % increase and decrease between intervals,
respectively.

Figure 4.2 shows annual growth rates in the European studbook population
of blesbok between census dates 1970–2007. Growth rates can, as shown in this
figure, fluctuate greatly between censuses, especially in the initial phase after a

Fig. 4.2 Annual growth rates
in the European studbook
population of blesbok
between census dates
1970–2007. The census date
was set to 14 June. The
dashed line refers to the
geometric mean �G. The solid
line represents a stable
population size, i.e. � D 1
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studbook population has been established. Therefore, averaging � would provide
more meaningful values. The geometric mean is often used in averaging ratios
and percentage changes (Zar 1984), and has been applied to population growth
rates (Shryock et al. 1980; Woofter 1932).

The programs SPARKS (Scobie and Bingaman Lackey 1997–2012),
PopLink (Faust et al. 2012) and PML (Princée 2014) implement geometric means
of � in their census analyses. These means are calculated for every period before
the last census (see Eq. 4.2). For example, the geometric mean listed for the year
1971 refers to all � values starting in 1971 to the last census. This means that the
geometric mean changes in retrospect, i.e. each time a new census has been carried
out. This is shown in Eq. 4.2.

�G.t/ D antilog
1

n

t�nX

t

log � (4.2)

where n is the number of censuses previous to the last census date t and n > 2.
The dashed line in Fig. 4.2 represents the geometric mean of � for each

year. Table 4.1 shows geometric means for the year 1971 and the period 2004–
2007.

The geometric mean clearly “smooths” the peaks in annual growth rates
(Fig. 4.2). For example, the growth rate between 1970 and 1971 is 1.556 (55.6 %)
while the geometric mean is 1.059 (or 5.9 %). Growth rates for the period
2003–2007 are in the range 0.942–1.055, which results in a geometric mean of
1.003 (see Table 4.1).

The finite rate of increase (�) is a relatively easy measure for interpreting trends
in populations within the context of “human” time–units such as a year. However,
the intrinsic or instantaneous rate of increase (symbol: r) is the preferred measure
in ecology (Caughley 1977).

Table 4.1 Annual growth
rates (�) and geometric
means (�G) in the European
studbook population of
blesbok for the years
1970–1972 and 2003–2007

Year N � �G Period

2007 229 1.055

2006 217 1.019 1.037 2006–2007

2005 213 0.991 1.021 2005–2007

2004 215 1.009 1.018 2004–2007

2003 213 0.942 1.003 2003–2007

.... ... ..... .....

1972 38 0.905 1.048 1972–2007

1971 42 1.556 1.059 1971–2007

1970 27

N population size, � annual growth rate, �G

geometric mean of annual growth rates
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The relation between � and r is:

� D er (4.3a)

r D ln � (4.3b)

where e D 2:718282 (base of natural logarithms) (Caughley 1977).
To illustrate the conversion between both measures: values for � of 0.5, 1 and

2 result in the r values �0:69, 0 and 0.69, respectively. Thus a negative value of r
refers to population decrease, whereas no growth (i.e. stable size) is indicated by
r D 0. The measure r can be more easily converted to other time–units than �. For
example, if r per year is x, than r per day is x=365.

The measure r is often pronounced as “Little r” to avoid confusion with “Big
R”, the net reproductive rate (symbol: R0), which is the population growth per
generation time (symbol: NT) (see Chap. 9).

4.5 Sex–Ratio

Sex–ratio is typographically presented as males W females e.g. 1 W 1, 1 W 4, 50 W 50 or
the actual number of males to the number of females i.e. Nm W Nf .

As females are the reproductive unit, the measure of sex–ratio Nf =Nm is generally
used in wildlife management (Caughley 1977; Skalski et al. 2005). However,
this measure has the disadvantage that the function is asymptotic to the right as
division by zero (males) is undefined. This problem does not exist when sex–ratio
is expressed as the proportion of females:

sex ratio D
Nf

Nf C Nm
(4.4)

where Nf and Nm are the numbers of females and males, respectively.
Another advantage of using proportions is that these values can be interpreted as

probabilities in stochastic population models such as VORTEX (Lacy et al. 2009).
Figure 4.3 presents sex–ratio (as proportion of females) in the European zoo

population of blesbok at census dates for the period 1970–2007. Although this
figure does not provide new information additional to plotting census data of both
males and females (see Fig. 4.1), it better shows shifts and trends in sex–ratio in the
population.

Sex–ratio at census date is the result of sex–ratios in births, deaths and migration.
These population dynamics in captive populations are presented and discussed in
Chap. 5. The topic of sex allocation is discussed in the context of sex determination
and sex–ratio at birth.
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Fig. 4.3 Sex–ratio at census
date in the captive population
of blesbok in European zoos
from 1970 to 2007.
Pre–breeding census date is
14 June
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Chapter 5
Births, Deaths and Migration

Abstract Data on numbers of births, deaths, emigrants and immigrants between
census dates are required properly to understand population dynamics as observed
in census counts. Such data can be difficult to obtain for wild populations, but
are relatively easy to obtain from studbooks. Crude birth rates that are estimated
from birth and census counts provide an idea about the reproductive potential of
the population. This measure can be refined, for example to female births per
adult female. This chapter discusses several topics that are related to biased sex–
ratio at birth. The different sex determination systems in the animal kingdom and
their potential effects on biased sex–ratio are discussed. Equality in sex–ratio per
breeding season or over longer periods of time can be tested with the binomial
test. The annual data on sex–ratio in births provide material to study sex allocation
at the (studbook) population or individual institutional level. The runs test can be
used to detect sex allocation in annual data. Patterns of annual death rates and the
proportion of neonatal (30 day) mortality can be obtained from death and census
counts. The last section presents migration, which refers to imports from the wild
and reintroduction within the context of a single studbook population, or transfers
between any population in the wider context of metapopulation management, e.g.
transfers between regional zoo populations, between zoos and with reintroduced
populations.

5.1 Census Events

Census analysis provides information on population development, but does not
provide detail on the underlying processes. Data on numbers of births (symbol: B),
deaths (symbol: D), emigrants (symbol: E) and immigrants (symbol: I) between
census dates are required to understand population dynamics properly. These
processes can be “captured” in a simple but fundamental population model:

NtC1 D Nt C .BŒt;tC1� � DŒt;tC1�/ C .IŒt;tC1� � EŒt;tC1�/ (5.1)

where t and t C 1 are census dates (Skalski et al. 2005).
Collecting data on these dynamic processes (census events) in wildlife popula-

tions (including semi–free and reintroduced populations) will be subject to similar
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F.P.G. Princée, Exploring Studbooks for Wildlife Management and Conservation,
Topics in Biodiversity and Conservation 17, DOI 10.1007/978-3-319-50032-4_5

69



70 5 Births, Deaths and Migration

practical difficulties as described for census data (Chap. 4). Counting the number
of births may be feasible in species with a distinct birth season (birth–pulse model)
where census takes place at a post–breeding date. Deaths and migration will take
place throughout the year. These census events not only require regular surveys, but
are also more difficult to assess.

In general, death due to predation is rarely witnessed in wild populations.
Whereas skulls of African hoofstock on savanna can be recovered (e.g. Spinage
1972), the situation in rainforest is more difficult. For example, even the carcass of a
forest elephant that is some metres from a track is not always detected (A. Turkalo,
personal communication). Determining which individuals are immigrants depends
entirely on being able to identify individuals.

Studbooks will provide more than sufficient detail to determine population
parameters such as births, deaths and migrants. Even estimated dates can be
included in analyses, as long as the event took place within the census interval,
e.g. the year of birth or death is sufficient for annual censuses at the end of the year.
The European studbook for the blesbok is used as the main example in this chapter.

5.2 Births

Censuses of number of births between census intervals provide historical infor-
mation regarding breeding success and/or failure in the studbook population.
Figure 5.1 shows the number of births in the European studbook population of
blesbok from 1970 to 2007. Breeding in this population started from 1970 on
and increased steadily after that. Combining census counts of births with those of
imports (Sect. 5.4) provides information about when the captive population became

Fig. 5.1 Annual number of
births in the captive
population of blesbok in
European zoos from 1970 to
2007. Pre–breeding census
date is 14 June
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independent of imports. This allows fine–tuning in the selection of relevant time
periods in demographic analyses to evaluate captive populations (Faust et al. 2003).

Since birth census provides only absolute numbers, this is insufficient to gauge
whether reproduction is enough to maintain the population. Therefore, birth data
need to be combined with census data on living individuals (Chap. 4) in order to
calculate birth rates.

The crude birth rate (symbol: bt), between census dates is computed as:

bt D BŒt;tC1�=Nt (5.2)

where Bt;tC1 is the number of births between census dates t and t C 1, and Nt is
population size at census date t. The crude birth rate is also expressed as the number
of births per 100 or per 1,000 individuals (of the sex and age groups in the census).

Figure 5.2a presents crude birth rates between annual censuses for the captive
blesbok population from 1970 to 2007. A similar pattern of large fluctuations as
discussed for annual growth rates (see Sect. 4.4) can be observed in births. The
median inter–birth interval of 388 days suggests that this species is an annual
breeder. The geometric means as calculated according to Eq. 4.2 “smooth” the
annual crude birth rates results. These mean values fluctuate around a rate of 0.2
(or 20 births per 100 individuals) until 1995, but then gradually decline. The decline
in crude birth rate is expected from the slower population growth in the recent period
(see Fig. 4.1). However, the decline in population growth is not determined by births
alone, but also by mortality and migration (see Sects. 5.3 and 5.4).

Wildlife managers often only consider the female population, as being the
reproductive unit, in censuses. Furthermore, it is often easier to count females (with
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Fig. 5.2 (a) Crude birth rates in the captive population of blesbok in European zoos from 1970
to 2007. Pre–breeding census date is 14 June. The dashed line refers to the geometric mean. (b)
Births per female (natality or productivity)
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offspring) than males (Caughley 1977). The crude birth rate then refers to the ratio
births per female (symbol: bFt) under such a census regime. The ratio births per
female is also named natality (Krebs 1994) or productivity (Skalski et al. 2005).
Figure 5.2b presents the annual productivity in the blesbok population. Geometric
means are, as expected, higher and fluctuate around a birth rate of 0.35.

Following the idea of females being the reproductive unit, one can add a
refinement by calculating the ratio female births per female (symbol: bFFt), named
fecundity (Skalski et al. 2005). These rates will be on average half the values
observed in total births per female when sex–ratio at birth is equal (see Sect. 5.2.1).
Fecundity rates are presented for the blesbok population in Fig. 5.3a.

Fecundity and productivity actually refer to census of females in the reproductive
age group (Krebs 1994; Skalski et al. 2005). The reproductive life–span of female
blesbok in European zoos ranges from 719–5,193 days (�2–14 years) in the period
1970–2007 (n D 601, 1 % truncation). Fecundity rates that take these reproductive
ages into account are presented in Fig. 5.3b. These rates are considerably higher than
those in Fig. 5.3a as they refer to females that can potentially breed. This method
may not be feasible for wildlife populations of species where sex–determination of
newborn and/or juveniles and/or age determination at census date is difficult.

The choice of census date is important for species with a birth–pulse system.
Pre–breeding census dates are recommended as these counts will reflect the number
of potential breeders close to the birth season.
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Fig. 5.3 (a) Female births per female in all age groups (fecundity) in the captive blesbok
population in European zoos from 1970 to 2007. The census date was set to 14 June. The dashed
line refers to the geometric mean. (b) Female births per sexually mature female (fecundity)
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5.2.1 Sex–Ratio at Birth

Figure 5.4 presents sex–ratio at birth in the blesbok studbook population between
1970 and 2007. The sex–ratio fluctuates annually, with an extreme of no female
births in 1971. Since only three births occurred in 1971, the chance of having all
males, assuming that chances to be born as male or female are equal, is not that
extreme i.e. p D 0:125. Nevertheless, the 1971 data could be considered as outliers
due to the small number of births, whenever annual trends in sex–ratio are studied.
However, these data could be included when evaluating sex–ratio in the total number
of births that occurred in the period 1970–2007.

The mean sex–ratio at birth of 0.483 (Bm D 570; Bf D 533) suggests a small
male bias. However, the null hypothesis, i.e. sex–ratio at birth is equal, is not rejected
in a binomial test (R Core Team 2015; Zar 1984) (p D 0:278).1

Sex–ratio at birth is not necessarily equal in all populations, and can have serious
practical impact on population management (Faust and Thompson 2000; Glatston
1997). The mechanisms and processes behind biased sex–ratios will be briefly
discussed in the following sections.

5.2.1.1 Sex Determination

Sex determination systems in the animal kingdom vary between strict genetic
control to strict environmental control. Sex chromosome systems such as the male

Fig. 5.4 Sex–ratio at birth in
the captive population of
blesbok in European zoos
(1970–2007)
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1Sex at birth could not be determined in 19 individuals. The null hypothesis is also not rejected in
the case that these individuals are assumed to be either all male or female.
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XX=XY system in mammals2 and the female ZZ=ZW system in birds are examples
of genotypic (heterogametic) sex determination (GSD) systems that result in sex
determination at fertilisation (Valenzuela 2008). The chances of being male or
female in a GSD system are expected to be equal, resulting in a sex–ratio at
fertilisation that is expected to follow a binomial distribution.

Environmental sex determination (ESD) takes places during embryogenesis and
has been observed among vertebrates in fish, amphibians and reptiles (Devlin
and Nagahama 2002; Valenzuela 2008). Temperature–dependent sex determination
(TSD) during incubation has been extensively studied in reptiles (see overviews
Ciofi and Swingland 1997; Valenzuela 2004). The TSD system has been observed
in tuataras, all studied crocodile species, it is prevalent in turtles, common in lizard
species of the families Agamidae and Geckonidae, but has not been observed in
snakes.

The temperature effects differ among reptile taxa, e.g. low temperatures result in
females in most lizards, males in many chelonians. A third TSD type that is found
in many crocodilians results in females at low and high temperatures, and males at
intermediate temperatures (see Ciofi and Swingland 1997). Other environmental
factors, such as the pH, are known to influence sex–ratio in fish species (see
overview in Devlin and Nagahama 2002).

Reptile clutches that are laid under captive conditions are generally moved
to incubators where temperature and humidity can be controlled. This provides
opportunities to manipulate sex–ratio in species that show the TSD system. For
example, if too many males have been born in recent years, the studbook manager
may recommend incubation temperatures that result in females to achieve equal
sex–ratio. However, the sex determination system is not fully known, especially
in fish species. Analysis of sex–ratio at birth in studbook populations is useful,
especially in combination with information on incubation conditions, in providing
more detail on the underlying sex determination system (Ciofi and Swingland 1997).

5.2.1.2 Biased Sex–Ratio

The stochastic nature of GSD systems explains fluctuations in annual sex–ratio in
small populations, such as the blesbok studbook population where annual births in
the study period do not exceed 60 (see Figs. 5.1 and 5.4). Although overall sex–ratio
over a longer period of time is expected to be equal, male or female bias has been
observed in birds and mammals (Hardy 2002; Komdeur 2012).

Some of the studbook examples in this book also show biased sex–ratios. For
example, the sex–ratio at birth in the International studbook population of mountain
bongo (total number of births (B) for the years 1977–2008) is female biased i.e.
0.55 (B D 2; 045; p < 0:001). A significant male biased sex–ratio of 0.46

2Some exceptions e.g. the platypus exist.
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(B D 1;115; p D 0:02) is observed in the European studbook population of African
wild dogs for the years 1986–2012 (which happens to be similar to the observed
sex–ratio in a wild population in Northern Botswana (McNutt and Silk 2008)).

5.2.1.3 Sex Allocation

Given the large numbers of births in the studbook populations of African wild dogs
and lowland bongo, the observed biases cannot be explained by stochastic effects.
The explanation maybe found in sex allocation, which refers to the resources that
are allocated to male versus female offspring (Fisher 1930).

Sex allocation in birds and mammals is the subject of scientific debates (see
overviews in e.g. Cockburn et al. 2002; Frank 1990; Komdeur 2012). It is beyond
the scope of this book to discuss this subject in great detail. However, the practical
impact of biased sex–ratio, and the potential that studbook data can contribute to
science (e.g. Faust and Thompson 2000; Glatston 1997; Thogerson et al. 2013)
merits some attention to this subject.

Five main categories of adaptive models that explain sex–ratio in birds and
mammals are recognised (Cockburn et al. 2002). One of the basic models is Fisher’s
equal allocation theory (Fisher 1930), which states that selection should favour an
unbiased sex ratio at the population level. The homeostasis theory is a variant in
which the parents produce the sex that is rare (Cockburn et al. 2002).

Equal mean sex–ratio does not exclude effects of sex allocation. Nonrandom
patterns such as years of male bias that are followed by years of female bias can
indicate sex allocation. Figure 5.5 shows years with statistically significant (p <

0:05) female bias (“F”) and male bias (“M”) in sex–ratio in Nepalese red pandas
for the period 1990–2010. The mean sex–ratio for this period is exactly 0.5 (Bm D

Bf D 652).

Fig. 5.5 Bias in sex–ratio at
birth in the captive population
of Nepalese red pandas
(1990–2010). F = female
bias, M = male bias, the
dotted line represents
sex–ratio. Sex–ratio per year
is tested for significant
difference from equality using
a binomial test (˛ D 0:05)
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Several sequences of male and female bias can be observed during this
period. The runs test can be applied to test the randomness of these sequences
(“runs”) (Sokal and Rohlf 2012). The graph in Fig. 5.5 can also be represented as
text: “MMMFFFMMMMMMFFFFM”. Years of equal sex–ratio are omitted in the
runs test. The null hypothesis that the above sequences are random is rejected (p D

0:028) by a two–sided runs test in the R package tseries (Trapletti and Hornik 2015).
Runs tests require dichotomous data, and cannot, therefore, be applied to data

that are sex biased for one sex. However, for such biased data–sets with more than
5 births, the binomial test will reject (i.e. p < 0:05) the null hypothesis that the
sex–ratio is equal anyway.

The above example illustrates bias in sex–ratio at the population level. However,
sex allocation can occur at the individual level as well. The Trivers–Willard
effect (Trivers and Willard 1973) refers to polygynous species in which females in
good condition are expected to produce (more) sons. Studies for this model require
pedigree data, such as available in studbooks. The chronological sequence(s) of sex
of an individual‘s offspring are tested for randomness with the runs test (newborns
of unknown sex are omitted).

The introduction of computerised in-house record keeping systems in the mid
1980s means that to date some 30 years of detailed historical data are available for
most species in zoological gardens. Studbooks can even include data that go back
to the early 1900s e.g. snow leopard (see Chap. 3). These data allow the study of
(reproductive) fitness over multiple generations, e.g. a recent study using long–term
data from San Diego Zoo tested whether parents (P0) with biased sex–ratio among
their offspring, “produced” more grandchildren (F2) (Thogerson et al. 2013).

Zoo populations have been used in studies of sex allocation (Glatston 1997).
These studies are also informative about difficulties that can be encountered in
interpreting zoo data in terms of sex allocation theory. For example, the male bias
in African wild dogs may refer to the sex–ratio around the time pups emerge from
the den (see Chap. 3). Sex determination in various species cannot take place until
newborns can be separated from the parents. The sex of those that die earlier,
especially neonates, can often not be accessed. This means that the possibility that
early mortality is sex–biased cannot be excluded.

Since environmental conditions in captivity differ from those in the natural
habitat, mechanisms of sex allocation may differ or sex allocation may even be
absent. It is clear, however, that biased sex–ratios do occur in zoo populations.

5.3 Deaths

Estimating mortality in wild populations depends on either finding remains (car-
casses) or deducing numbers of deaths from census data, births and net migra-
tion (e.g. Caughley 1977; Spinage 1972). The situation for studbook populations is
different as the date of death of most individuals is known. Even estimated dates, as
long as the assumed deviation in time falls within a census interval, can be included
in studbook analyses.
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Fig. 5.6 Annual number of
deaths in the captive
population of blesbok in
European zoos from 1970 to
2007. The census date is 14
June
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Figure 5.6 presents the annual number of deaths in the blesbok population from
1970 to 2007. Annual deaths in females and males do not seem to differ dramatically
at first glance. This figure provides an impression about the order of magnitude in
numbers of annual deaths. However, trends need to be evaluated within the context
of census data and/or number of births.

The crude death rate (symbol: dt) between census dates is computed as:

dt D DŒt;tC1�=Nt (5.3)

where DŒt;tC1� is the number of deaths between census dates t and t C 1, and Nt is
population size at census date t. Crude death rate is also presented as number of
deaths per 100 or per 1,000 individuals.

Crude death rates in the blesbok population are presented in Fig. 5.7a. Death
rates fluctuate annually, especially in the first years when the population was small.
Geometric means of annual death rates (see Eq. 4.2) provide a “smoother” pattern
that makes it easier to detect possible trends.

The geometric means range from 0.15 to 0.18 per year during the period
1970–2008 (Fig. 5.7a). Death rates in the period 1994–2001 are higher than in
previous and later periods. However, one cannot draw conclusions regarding the
reasons/causes of this trend without additional information.

The crude death rates in Fig. 5.7a are based on deaths in all age groups. Mortality
in neonates and juveniles is high compared to other age groups (see Chap. 3). This
means that an increase in births can result in an increase in (total) deaths (and rates)
too. Figure 5.7b presents the annual proportion of neonatal deaths (deaths within
30 days) of total number of deaths. The pattern in neonatal mortality, however, does
not fully explain the pattern in total death rates during the period 1994–2001.
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Fig. 5.7 (a) Crude death rates in the captive population of blesbok in European zoos from 1970
to 2008. Pre–breeding census date is 14 June. The dashed line refers to the geometric mean. (b)
Proportion of neonatal deaths (deaths within 30 days) of total annual deaths

The absence of neonatal mortality until the mid 1980s is likely to be an artefact
i.e. only (living) ancestors born in the pre–studbook period are registered. This
artefact can explain the lower death rates observed in the period prior to 1994.

5.4 Migration

The term migration has different meanings within biological disciplines (Allendorf
et al. 2013). Ecologists will generally refer to the movement of individuals during
their lifetime from one geographic area or region to another e.g. seasonal migration
of birds. Population geneticists refer to migration as movement of individuals from
one (genetic) population to another.

Studbooks were established to genetically manage closed (sub–)populations,
and so migration refers to planned transfers of individuals. Therefore using the
“geneticist” definition of migration makes more sense in the context of studbook
management. The relevance of migration in the context of population dynamics is
to evaluate the effects of migration on population growth.

The term dispersal, which is generally used in ecological literature to refer to
genetic exchange between populations (Allendorf et al. 2013; Caughley 1977), can
also be applied within the context of studbook populations. Dispersal not only refers
to exchanges between populations, but also to exchanges between social (breeding)
groups within the same population as well (Princée 1995, 1998; Shields 1987).
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5.4.1 Migration Patterns

Studbook management in the context of meta–populations stretches beyond captive
populations. Therefore, the terms immigration and emigration are used instead of
the traditional zoo terms import and export. Figure 5.8 presents a schematic repre-
sentation of possible migration patterns in managed (zoo) studbook populations.

Immigration refers to import of individuals from the original wild population(s),
transfers from other regional zoo populations and transfers from reintroduced
populations; emigration refers to reintroduction and transfers to other regional zoo
populations.

Figure 5.9a presents imports into the European zoo population of blesbok since
1970. The largest numbers of imports occurred in the period 1970–1975. These
imports not only refer to wild–born individuals, but to individuals of unknown
provenance as well. The total number of imports is important in determining
whether a population is growing through births or imports. Imports of wild–born
individuals, however, are of more interest for population genetics. Figure 5.9b
shows that imports of blesbok from the wild population are considerably fewer,
and infrequent, compared to the total number of imports.

Migration rates can provide a better insight into population dynamic processes,
as discussed for births and deaths. The immigration rate (symbol: it) and emigration
rate (symbol: et) are calculated as:

it D IŒt;tC1�=NŒt� (5.4a)

et D EŒt;tC1�=NŒt� (5.4b)

where IŒt;tC1� is the number of immigrants and EŒt;tC1� the number of emigrants
between census dates t and t C 1, respectively; and Nt is the census at date t.

Fig. 5.8 Migration patterns
in managed zoo populations.
W = wild population, Z = zoo
region, R = reintroduced
population
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Fig. 5.9 (a) All imports in the captive population of blesbok in European zoos from 1970 to 2008.
Pre–breeding census date is 14 June. (b) Imports from the wild

Fig. 5.10 Historic overview
of census (solid line), births
(ı), deaths (�) and imports
(Þ) in the European
studbook population of
blesbok. The Y–axis is on a
logarithmic scale
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5.5 Bringing it Together

Equation 5.1 in the introduction of this chapter describes the relation between
population dynamic processes (births, deaths and migration) and population size.
Each of these processes has been described separately in the previous sections to
show that census events provide more information than simply “being” numbers
that make up population size. However, returning to population dynamics, it is good
practice to bring all the census–style data of a studbook together in a single graph.

Figure 5.10 presents census (solid line), births (open circle), deaths (cross)
and imports (diamond) in the blesbok population since 1959. The Y–axis is on a
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logarithmic scale in order to combine the relatively small numbers of imports with
census data in a single graph.

This overview shows the effects of the different dynamic processes, in relation
to each other, on population development, e.g. births that outnumber imports, births
and deaths that tend to equalise, although still fluctuating, since 2000. As mentioned
previously, historical overviews are important to decide which periods of time are of
special interest to analyse, or whether sufficient data are available for more detailed
analysis, e.g. for the life tables that will be discussed in Chap. 7.
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Chapter 6
Ecological Models

Abstract The exponential and logistic population growth models, which are used
in ecology to describe population dynamics, are presented. These models can be
applied to census data obtained from studbooks. Data from the European blesbok
studbook are used to illustrate fitting these models. The method of fitting and
testing the exponential growth model as a linear regression model on logarithmic
transformed census counts is described. The fitted model and observed census data
of the blesbok are compared, and the regression coefficient, which represents the
intrinsic rate of increase (r), is tested. The example shows that a significant fit of
the exponential population growth model is not necessarily describing the latest
trend. This is demonstrated by fitting the logistic growth model using nonlinear least
square regression on the blesbok data. The �2 goodness of fit test is applied to fitted
and observed data in the blesbok example. Interpretation of r in the logistic growth
model is discussed. Adaptation of model data to retrieve realistic values for initial
population size and start date of the logistic model in R is explored. The advantages
and limitations of the “simple” exponential and logistic growth models, and other
available methods to analyse time series, are discussed.

6.1 Introduction

Chapters 4 and 5 described population trends in terms of counts (absolute) and
rates (relative). These descriptive trends are important in order to understand the
basic dynamics of the population. However, it is preferable to describe population
trends in terms of models that can be statistically tested and, therefore, can also have
predictive value (see also Chap. 11).

The general approach is to find a model and fit a curve. Different models
can be used, varying from “simple” linear and exponential curves, multi–degree
polynomials (Sokal and Rohlf 2012) to non–linear and time–series regression
models as implemented in statistical software such as R (R Core Team 2015).
Choosing what “complexity” of models to be applied depends on the observations,
e.g. patterns of growth and decline, sample size, and on the goal of the study (Bart
et al. 1998).

It is worthwhile first to explore some basic ecological models that describe
population growth. The exponential (or geometric) and logistic (or sigmoid) models

© Springer International Publishing AG 2016
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Fig. 6.1 Exponential and
logistic growth curves.
K D carrying capacity
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will be discussed in the following sections. Figure 6.1 illustrates the shape of
populations that develop according to these models.

The use of ecological models, especially basic ones, on studbook populations
may invoke scepticism, especially since populations are often maintained in the
rather safe and controlled environments of zoological gardens. Demographic studies
in the 1920s, however, showed that even the development of various human
populations followed one of the exponential or logistic models (Pearl 1927). It
is important to note that these models do not provide an explanation of why a
population developed in such a way. The European studbook for the blesbok will
be used, in line with the previous chapters, as a main example in this chapter.

6.2 Population Growth Models

Studbook populations are not expected to be limited by resources such as food
and water, or to be exposed to predation. This “unlimited” environment is the
condition for exponential growth (see Krebs 1994). However, availability of space,
i.e. enclosures and/or semi–free range areas, is a realistic constraint on con-
tinuous growth. Space can be considered as the major factor that contributes
to the carrying capacity (symbol: K) of studbook populations. Logistic growth
occurs in environments with a carrying capacity. The above suggests that both
models may apply during different periods of time in the history of studbook
populations.
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6.2.1 Exponential Growth

The exponential growth model assumes no limitation in resources such as food,
water, nesting sites, territories, etc. The discrete version (e.g. annual growth) of
exponential growth is named geometric growth.

The exponential model is based on the intrinsic rate of increase (symbol: r):

Nt D N0ert (6.1)

where t is the time since start, Nt is the population size at time t, N0 is the population
size at t D 0 and e D 2:718282 (base of natural logarithms) (Krebs 1994).

Equation 6.1 can be rewritten in the form of natural logarithms1 (Caughley 1977):

ln.Nt/ D ln.N0/ C rt (6.2)

This equation represents the linear regression form y D a C bx, where slope b
is the intrinsic rate of increase (r). Therefore, linear regression on log transformed
census counts is the statistical method of choice to test whether actual population
growth follows the exponential growth model (Caughley 1977; Sinclair et al. 2006).

Figure 6.2a presents the natural logarithms of the total blesbok census data (ln N)
and the linear regression which represents the exponential growth model (Eq. 6.2).
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Fig. 6.2 (a) Exponential growth model in the blesbok population during the period 1970–2007.
Population size N is transformed to the natural logarithm. The solid line is the linear regression
(see text). (b) Logistic growth model. The solid line refers to the best fit logistic model. The upper
dashed line refers to a carrying capacity (K) of 254. The middle horizontal dashed line is half K
and the vertical dashed line is the year in which population size reaches half K (see text)

1The symbol for natural logarithm is either ln or loge.
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The intrinsic rate of increase (r) in the exponential model is 0.047. This is lower
than the geometric mean of r D 0:055 for the period 1970–2007 (calculated from
values for � in Table 4.1). Although the linear fit is significant (Radj

2 D 0:8739,
F D 264:3, p < 0:001), the exponential model does not fit the data around the first
and last censuses very well.

6.2.2 Logistic Growth

The logistic growth model was originally described by Verhulst in 1838 (mentioned
in Pearl 1927). This model assumes a carrying capacity that is determined by avail-
ability of resources and results in a reduction of the rate of increase proportionate to
the increase in population size. The equation for the logistic model can be written
as:

Nt D
K

1 C e.A�rt/
(6.3)

where K is the carrying capacity, A is a constant, e D 2:718282 (base of natural
logarithms), r is the intrinsic rate of increase at t D 0, and t are the time units (Krebs
1994).

The S–shaped curve of the logistic model explains the alternative name sigmoid
growth model (see Fig. 6.1). Equation 6.3 is considered the simplest density–
dependent growth model as it assumes a linear decline in the intrinsic rate of
increase r with increasing population size (N).

The nonlinear least squares method can be used to fit a logistic model (Eq. 6.3)
onto the total census data (Fox and Weisberg 2010). This method determines the best
fit for different values of K, A and r, for which initial values need to be provided.
The statistics program R provides functions to calculate the initial values and to
determine the best fit for a logistic growth model (Fox and Weisberg 2010; R Core
Team 2015).

Figure 6.2b presents total census data for the blesbok and a logistic growth model
(solid line) based on the best fit (K D 253:5; A D �223:2; r D 0:1124). However,
the “best fit” does not necessarily mean that this model significantly resembles the
census data. The chi–square (�2) goodness of fit test (Sokal and Rohlf 2012) can be
used to test the null hypothesis that the census data and the fitted model are from the
same distribution.

The �2 value of the chi–square test on the blesbok census data and the best fitted
logistic model is 19.74. The probability of �2 pŒ19:74;38� D 0:994 is larger than the
significance level ˛ D 0:05. Therefore, the hypothesis (H0), that census data and
logistic model are from the same distribution is not rejected. This means that the
pattern in census data can be explained by a logistic model (with K D 253:5; A D

�223:2; r D 0:1124).
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The intrinsic rate of increase at t D 0 in the logistic model refers to the
maximum possible rate (symbol: rm) that a population, with stable age distribution
(see Chap. 7), can reach in its environment when food is abundant and there are no
predators, pathogens and competitors (Caughley 1977; Sibly and Hone 2002). The
population size N0 can be calculated from Eq. 6.3 using the estimated values for K,
absolute value of A (jAj) and r. Note that the R function SSlogis (Fox and Weisberg
2010) uses the logistic growth model with exponent �.A C rt/. This results in a
negative value for A.

The largest (annual) increase in size occurs when the population has reached half
the carrying capacity (�127). The year that half K is reached can be estimated as
jAj=r D 223:2=0:1124 � 1986.

The value of 3.0e-95 for N0 does not make sense in a biological context. This
value is the result of using the time–unit “century years”, which means that t0 refers
to 0 AD. This means that the best fit for the mathematical model that describes
logistic growth during the period 1970–2007, is based on a population that started
1,970 years earlier. A more appropriate approach is to index census years to the
year when the first historical studbook data with at least a male and female were
recorded, in this case 1956 (1 male and 2 females).

Nonlinear regression for different values of t0 shows that the value for A changes
but that values for K and r do not. The results of the �2 test also do not change, i.e.
census data and logistic model do not differ. For example, the value for A increased
from �223:2 to �3:28 when t0 D 1956. This results in a value for N0 of 9.21 (or 9
individuals in the real world.)

The logistic model describes development of the blesbok studbook population
during the period 1970–2007 as logistic growth in a population that started with
9 individuals in 1956, with an initial (maximum) intrinsic rate of increase (rm) of
0.1124, and a carrying capacity (K) of 254 individuals.

The model is not a perfect fit as the studbook population in reality started with
3 individuals in 1956. However, the chi–square test indicates that the model is a
close fit to the real census data. This means that the model can be used in population
projections (see Chap. 11).

The estimated carrying capacity, as estimated with the logistic model, is not
necessarily related to the available space at studbook locations holding blesbok.
However, the reduced population growth since the mid 1990s (Fig. 6.2b) indicates
that population size is controlled.

6.3 Remarks

The exponential and logistic models described in the previous section have the
advantage that meaningful parameters such as growth rates (r and rm) are used.
However, these models can only be applied to populations with a growth trend in one
direction, increasing or decreasing. Ecology is obviously not limited to the simplest
logistic model. However, applying more complex ecological models that anticipate
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predation, species competition or environmental fluctuations is not appropriate for
studbook populations, but is used for viability models such as VORTEX (Lacy and
Pollak 2014) .

Linear and curvilinear regression are statistical techniques that seem to be
appropriate, at first sight, for empirically describing trends in population size.
However, there is an important pitfall as the census points are not independent,
i.e. the number of individuals in 1 year also depends on the number in the previous
year (McDonald 2013). Trends in time series, such as census counts, can be analysed
with Generalised Least Squares (GLS) in combination with Auto–Regressive (AR)
models that handle errors due to correlations between data (see e.g. Skalski et al.
2005; Zuur et al. 2009).
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Chapter 7
Age, Mortality and Fecundity

Abstract Studbooks provide the data to describe life history in terms of age–
specific mortality and fecundity tables. Life tables are preferably constructed from
following individuals born in the same season (cohort) until all have died. Since
studbooks on endangered species are relatively small, virtual cohorts (individuals
born over a period of years) are used. Age classes usually have a width of 1 year,
but this can be adapted to the biology of a species. Age distributions of living
males and females in the studbook population are constructed. The shapes of age
pyramids, as described by Bodenheimer, can provide, with some caution, an idea
about population dynamics. Construction of mortality tables with mortality rates
and associated measures are illustrated with studbook data on snow leopards. The
differences between mortality and mortality rate, and between survivorship and
survival rate are explained. The differences between mortality tables constructed
from recorded deaths in the cohort (uncensored data) and data that are left truncated
(staggered entry) and right censored (lost to follow up or living at end of study)
are explained. The use of the Mantel–Haenszel (logrank) statistic in comparative
survival studies is presented and illustrated by testing differences in survivorship
between sexes. Construction of age–specific fecundity rates based on offspring of
the same sex as the parents is presented and illustrated with real data. The topics
of applying prorating to censored life table data and handling unknown sex and
unknown parents are discussed.

7.1 Introduction

Census provides data on numbers of living individuals at given dates (see Chap. 4).
However, studbooks also contain data on dates of birth and death. These data provide
more detail on the status of a studbook population than “just” the number of living
individuals (per sex). This detail means that, for example, an age–distribution can
be constructed from studbook data at any census date. The age–distribution will be
discussed in Sect. 7.4.

Detailed information on the life history of individuals allows the construction
of life (history) tables that describe mortality and fecundity at different ages. In
the strict sense, a life table refers to mortality (Krebs 1994). Methods to construct
these tables were already used by actuaries in the nineteenth century (e.g. to
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calculate annuities and insurance premiums) (Gompertz 1825), before being applied
to ecology (Deevey 1947; Pearl and Miner 1935). Both the strict definition of life
tables and life tables in which mortality and fecundity are combined, are used in
ecological literature (e.g. Begon et al. 2006; Caughley 1977; Krebs 1994).

Studies (and computer software) that involve population projections include
fecundity data in life tables (e.g. Ballou et al. 2011; Caswell 2001; Foose and
Ballou 1988). These life tables are named extended life tables in this book, to avoid
confusion in terminology, and are discussed in Chap. 9.

The International studbook of the snow leopard (Blomqvist 2004) is used as the
main example in this chapter. This allows the comparison of results of life–table
analyses with results from natural history analyses as presented in Chap. 3.

7.2 Cohort

Mortality and fecundity rates are estimated from death and birth events that have
occurred in a cohort. Within the context of ecology and population biology, a cohort
generally refers to a group of individuals of the same sex, who were born in the same
breeding season. The cohort is followed over time until the last individual has died.

Since all individuals in a cohort were born in the same birth season, it can be
assumed that they have been exposed to similar conditions during their life (see
Sect. 3.2.4). However, cohort sizes in studbook populations are in general too small
to provide valid results (see Sect. 8.4). For example, the number of annual births,
i.e. cohort size, in snow leopards during the period 1983–2001 ranges from 19 to
50 female cubs. These cohort sizes are too small for life history analyses, as will be
discussed in Chap. 8.

Studbooks do not necessarily include data which encompass the entire life–
span from birth until the last death in a cohort. For example, a studbook on Asian
elephants needs to include a sufficiently large cohort of individuals which were born
at least 77 years ago.1

These limitations mean that cohorts cannot easily be studied in small (studbook)
populations. Therefore, an imaginary cohort (Caughley 1977) that combines births
(real cohorts) over a period of time is created. The basic imaginary cohort for snow
leopards, as used in this chapter, refers to individuals that were born during the years
1983–2002. This period covers a large part of the observed life–span in this species
(see Table 3.1).

Each individual is followed from birth until it dies or until the end of the study
period (2002), whichever comes first. This means that individuals born in 2002
are followed, depending on day of birth and census date, for at most 12 months.
Imaginary cohorts can include individuals that were born before the study period.
This will be discussed in Sect. 7.5.3.

1This is the observed age of a living Asian elephant in the North American zoo population.
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7.3 Age Class

Using “the same breeding season” to define a cohort does not imply that individuals
are exactly the same age. The breeding season in birth–flow reproduction systems
generally refers to a calendar year or a year between consecutive censuses.
Birth–pulse systems can encompass several weeks (see Chap. 3). This means that
individuals of a cohort are grouped into an age class.

The class width used in studbook analysis is generally 1 year (e.g. Faust et al.
2012b; Pollak et al. 2005; Scobie and Bingaman Lackey 1997–2012). However,
this width can be too large, especially for short–lived species in which individuals
reach sexual maturity and reproduce after a few months or even less. Larger class
widths may be more appropriate for long–lived species. For example, a class width
of 5 years is commonly used in human demography (Shryock et al. 1980). Such
class widths could also apply to great apes and elephants. The PMx (Ballou et al.
2011) and PML (Princée 2014) software facilitate flexible class widths.

The initial (first) age class is either numbered 0 or 1. Class 0 is generally used
in life tables (e.g. Caughley 1977; Krebs 1994; Skalski et al. 2005), whereas class 1

is more commonly used in population projections based on matrices (e.g. Caswell
2001). This difference may seen trivial, but it can lead to confusion when life
table data are used in matrices (see Chap. 11). Demographic management of captive
populations has traditionally used the class 0 numbering scheme (e.g. Ballou et al.
2010; Foose and Ballou 1988). The symbol ! is often used for the oldest age
class (Keyfitz and Caswell 2005).

7.4 Age Distribution

The first editions of the EAZA/EEP Yearbook included graphic representations
of age structure, age pyramids, of EEP and ESB populations. The shape of age
pyramids provides an overview of population status at a glance. Three major
schematic shapes that were presented by Bodenheimer (1938) are often used to
interpret age pyramids:

• Pyramid shape with younger age classes that are larger in size than older classes;
associated with population growth.

• Bell or pillar shape with age classes more or less similar in size, the oldest age
classes can be smaller; associated with a stable population.

• Urn or beehive shape with younger age classes that are smaller in size than older
age classes; associated with population decline.

Figure 7.1 presents the age pyramid for the snow leopard population on 1 January
1983. The triangular shape with its broad base (the result of births in 1982), suggests
that the studbook population was increasing in that period. However, one needs to
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Fig. 7.1 Age distribution of captive snow leopards as on 1 January 1983

be cautious – hence the wording “suggests” – in drawing immediate conclusions
from age pyramid shapes (Caughley 1977; Eberhardt 1988).

The interpretation of age pyramid shapes and population growth by Bodenheimer
(1938) refers to urban human populations, and does not necessarily apply to other
species (Caughley 1977). Furthermore, the age structure can be in a phase of
converging to a stable distribution. This means that the shape does not represent
the dynamics, but is just a “snapshot” in time (see Chaps. 9 and 11).

It is important to interpret age pyramids in the context of census data. Figure 7.2
shows census data for the period 1983–2002 and age distributions at the start (as in
Fig. 7.1) and the end of this census period. The triangular shape of 1983 does indeed
represent the characteristics of a growing population. The pillar shape of the 2002
age distribution reflects the stationary size of the previous 4 years.

7.5 Mortality Table

Mortality patterns in a population, such as age–specific mortality rates, are generally
presented in table format. Caughley (1977) presents several techniques, depending
on the type of data available, for constructing mortality tables. The basic data
required are the number of living individuals at the start of each age class (symbol:
Nx) – commonly referred to as individuals at risk – and the number of deaths that
occurred within that age class (symbol: Dx).
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Fig. 7.2 Censuses of the
snow leopard population
during the years 1983–2002,
and age distributions at 1
January for the years 1983
and 2002 (as insets)
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7.5.1 Death Records

Chapter 3 presented histograms with frequency counts of ages at death. These
histograms are important for exploring population data, e.g. to detect patterns and to
provide a “feeling” for available sample sizes in relation to statistics. The frequency
counts are actually mortality tables, as the data are treated as if all the individuals
that died are members of an imaginary cohort.

The Dx values are the frequency counts for age intervals as presented in life-
span analysis (Chap. 3); and the cohort size (N0) is the total number of deaths. The
number of individuals at risk of death (Nx) for subsequent age–classes is calculated
from the cohort size N0 minus the total number of deaths that occurred in previous
age–classes:

Nx D N0 �

!X

yD0

Dy . for x > 0/ (7.1)

where Dy is the number of deaths in age class y; ! is the oldest age class.

7.5.1.1 Mortality Rate

The mortality pattern in a population is generally expressed in terms of age–specific
mortality rates (symbol: qx). This measure is defined as the proportion of individuals
alive at the start of age class x that died before the end of that age class:
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Fig. 7.3 Age–specific
mortality rates (qx) based on
death records in captive male
snow leopards in the years
1983–2002
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where Nx is the number of living individuals at the start of age class x, and Dx is the
number of individuals that died before the end of age class x.

Mortality rates reflect the risks of dying during different stages of life. Figure 7.3
shows age specific mortality rates (qx) in male snow leopards based on deaths that
occurred during the years 1983–2002.2 The mortality rate is high in the class 0 (0–
1 year); drops and is more or less stable until class 10; and then increases steeply
until the last individual died in class 21. This pattern resembles the “U” shape,
and has been observed in various species of large mammal (e.g. Caughley 1966,
1977). In terms of life–stages the pattern describes a high juvenile mortality, low
(sub–)adult mortality and high mortality at the end of physical life.

Since numbers of individuals at risk of dying (Nx) decline per age class (Eq. 7.1),
number of deaths (Dx) will have high impact on the reliability of mortality rates
(qx) in subsequent classes. For example, the single individual at risk in class 21 died
during that class. Consequently, the mortality rate is 1.0 (see Table 7.1).

7.5.2 Mortality Measures

Mortality patterns are not only expressed in terms of mortality rates (qx). A variety
of mortality and survival measures, which are interrelated (Caughley 1977), can be

2The year 2003 is excluded as the update of the version used in this book is 17 March 2003.
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Table 7.1 Mortality table for male snow leopards based on death records in the years 1983–2002

Age class Nx Dx dx qx px lx Lx ex

0 519a 228 0.439 0.439 0.561 1.000 0.780 6.188

1 291 21 0.040 0.072 0.928 0.561 0.540 9.644

2 270 14 0.027 0.052 0.948 0.520 0.507 9.356

3 256 11 0.021 0.043 0.957 0.493 0.483 8.840

4 245 15 0.029 0.061 0.939 0.472 0.458 8.214

5 230 9 0.017 0.039 0.961 0.443 0.434 7.717

6 221 15 0.029 0.068 0.932 0.426 0.411 7.011

7 206 13 0.025 0.063 0.937 0.397 0.384 6.485

8 193 13 0.025 0.067 0.933 0.372 0.359 5.889

9 180 10 0.019 0.056 0.944 0.347 0.337 5.278

10 170 17 0.033 0.010 0.900 0.328 0.311 4.559

11 153 19 0.037 0.124 0.876 0.295 0.276 4.010

12 134 19 0.037 0.142 0.855 0.258 0.240 3.507

13 115 21 0.040 0.183 0.817 0.222 0.201 3.004

14 94 23 0.044 0.245 0.755 0.181 0.159 2.564

15 71 21 0.040 0.296 0.704 0.137 0.117 2.232

16 50 16 0.031 0.314 0.680 0.096 0.081 1.960

17 34 10 0.019 0.286 0.704 0.066 0.056 1.647

18 24 13 0.025 0.560 0.458 0.046 0.034 1.125

19 11 8 0.015 0.727 0.273 0.021 0.013 0.864

20 3 2 0.004 0.667 0.333 0.006 0.004 0.833

21 1 1 0.002 1.000 0.000 0.002 0.001 0.500

Nx individual at risk, Dx number of deaths, dx mortality, qx mortality rate, px survival rate,
lx survivorship, Lx midpoint survivorship, ex life expectancy
a N0 D

P!
xD0 Dx

derived from qx. The most common measures are presented in Table 7.1, and will
be discussed in this section. Each of these interrelated measures provides a different
way of interpreting mortality and survival patterns. The scope of a study dictates
which measures are the most appropriate to be presented in a mortality table.

7.5.2.1 Mortality

The measure mortality (symbol: dx) has been briefly discussed in Chap. 3. It refers to
the probability that a new–born dies within age class x. Mortality can be calculated
as the proportion of deaths in age class x of the total number of deaths:

dx D
DxP!

yD0 Dy
(7.3)
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Fig. 7.4 (a) Mortality dx (�) and mortality rates qx (ı) in captive male snow leopards. (b) Survival
rate px (�) and survivorship lx (ı)

where Dx and Dy are the number of deaths in age classes x and y, respectively; !

is the oldest age class. The total number of deaths equals the cohort size (N0) for
tables that are based on death records.

Equation 7.3 is not valid for life–tables that are based on censored data (see
Sect. 7.5.3). Therefore, the general method of calculating dx from survivorship rates
(lx) needs to be applied:

dx D lx � lxC1 (7.4)

The terms mortality and mortality rate can give rise to confusion. A way to
remember the difference is that dx is the combined probability that a new–born
survives up to the start of age class x and dies in that age class. The mortality rate
(qx) is the probability that an individual which has survived up to the start of class
x, dies in that age class. Figure 7.4a shows differences between dx and qx for male
snow leopards. The main difference between the two measures is that dx will decline
as fewer and fewer individuals survive to the older age class, while qx will increase
to one as finally all individuals will die. See also columns dx and qx in Table 7.1.

7.5.2.2 Survival Rate

The survival rate (symbol: px) is the proportion of individuals alive at the start of
age class x that are still alive at the end of that age class:

px D 1 � qx (7.5)
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7.5.2.3 Survivorship

Survivorship (symbol: lx) is the probability at birth of surviving to the exact age x
(which is the start of age–class x). The survivorship at birth (l0), which is the start of
age–class 0, is by definition 1. The survivorship for subsequent age classes (x > 0)
is calculated as the product (

Q
) of survival rates (px):

lx D

x�1Y

yD0

px .for x > 0/ (7.6)

The terms survival rate (px) and survivorship (lx) can lead, similarly to mortality
(rate), to confusion. Figure 7.4b shows the difference between both measures. Since
lx is the proportion of individuals that have survived until a given age class, this
measure will consequently decline towards zero (which it will reach after the oldest
age class). The survival rate refers to the chance of surviving to the next age class,
and will be zero for the oldest age class. See columns px and lx in Table 7.1.

7.5.2.4 Midpoint Survivorship

The midpoint survivorship (symbol: Lx) is the probability at birth of surviving within
age class x. The average of lx and lxC1 is the most basic method of calculating
Lx (Caughley 1977):

Lx D .lx C lxC1/=2 . for x < !/ (7.7a)

L! D l!=2 (7.7b)

where ! is the oldest age class.
Midpoint survivorship is used to estimate the number of individuals that are at

risk for reproduction in birth–flow breeding systems.

7.5.2.5 Life Expectancy

The mean life expectancy for an individual that is alive in a given age class (symbol:
ex) can be calculated from survivorship and midpoint survivorship (Shryock et al.
1980):

ex D

P!
yDx Ly

lx
(7.8)

where Ly and lx are midpoint survivorship and survivorship, respectively; ! is the
oldest age class.
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Note that life–expectancy of a new–born snow leopard (class 0) is lower than
that of a 1–year old (Table 7.1). The reason is that the risk for a newborn to die in
the first year is higher than in the second year. For example, mortality rates in age
classes 0 and 1 in male snow leopards are 0.432 and 0.072, respectively (Table 7.1).

7.5.3 Censored Data

Mortality schedules constructed from ages at death that occurred during the study
period, do not provide the full “picture” of mortality in a (studbook) population.
Individuals that are alive at the end of the study period, and those that emigrated or
are “lost to follow–up” during the study period, also contribute to information on
survival. These individuals have been “at risk” for each class from birth either to the
date when they emigrated (or were lost) or until the end of the study period. This
type of incomplete observation is called right censored (Kaplan and Meier 1958).

Analyses of ages at death show that husbandry of snow leopards has improved
tremendously – measured in terms of increased life–expectancy – since this species
arrived in zoological gardens at the end of the nineteenth century (see Chap. 3).
Knowledge of natural history of this species was limited in the early days, and
consequently husbandry was poor. This means that mortality tables need to be
constructed from an imaginary cohort that properly reflects current trends.

The length of study periods, especially in long–lived species, can be too short to
provide sufficient data on deaths in the older age classes. A solution to this problem
is to include individuals that were born before the start of the study period. These
individuals are “at risk” for age classes from the date they entered the study period.
This procedure is called left truncation or staggered entry (Kaplan and Meier 1958;
Pollock et al. 1989). Left truncation also applies to immigrants i.e. the individuals
are only included for the age classes after they entered the studied population.

Table 7.2 presents a schematic to illustrate left truncated and right censored data
in mortality tables based on different life–histories of individuals A to F. The study
period in this hypothetical example is from 1 January 2000 to 31 December 2004,
and the class–width is 1 year.

Table 7.2 Left truncated and right censored life–table data. See text for explanation

Individual Truncated 2000 2001 2002 2003 2004 Censored

A H) H) H) H) 	

B H) H) H) H) 	

C H) H) H) ?

D (1997) H) H) H) 	

E (1999) H) H) H) H) H) H) H)

F (2001) H) H) 	

G (2001) H) H) ?

	 = death; ? = lost to follow–up
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The following list provides information on how each of these individuals is
“treated”:

A Born in year 2000 and dies in year 2003. This individual is included as being at
risk of dying in age classes 0–3; and counted as a death in age class 3.

B Born in 2002 and dies after the end of 2004. This individual is included as being
at risk in age classes 0–3. Since this individual is alive at the end of the time
window, it is right censored.

C Born in 2001 and “lost” in 2004. This individual is included as being at risk in
age classes 0–2. It is right censored at class 3.

D Born in 1997; arrives in the population in 2000 and dies in 2001. The period
1997–1999 is not considered (left truncated). This individual is included as being
at risk in age classes 3 and 4, and counted as a death in class 4.

E Born in 1999 and alive after the end of 2004. This individual is included as
being at risk in age classes 1–5. This individual is both left truncated and right
censored.

F Born in 2001 outside the population (for example wild–born); arrived in 2002
and died in 2003. This individual is included as being at risk in age classes 2 and
3, and counted as a death in class 3. It is left truncated.

G Born in 2001 outside the population; arrived in 2002 and lost in 2003. This
individual is included as being at risk in age classes 2 and 3. It is both left
truncated and right censored.

Studbook analyses software such as SPARKS (Scobie and Bingaman Lackey
1997–2012), PopLink (Faust et al. 2012a) and PML (Princée 2014) implement the
“rules” as described above to construct mortality tables (and fecundity tables, see
Sect. 7.6).

Censored mortality data are left truncated and/or right censored, while data that
only include deaths are considered as uncensored data.

The method of constructing imaginary cohorts differs between mortality tables
based on uncensored and censored data. The cohort based on uncensored data
consists of individuals that died during the study period (see Sect. 7.5.1). The cohort
size declines according to deaths (Dx) that have occurred in previous age classes
(see Eq. 7.3). Note that the death data that are used in this section are not truly
uncensored as these data are left truncated, i.e. individuals that were born before the
study period are included in the calculations (individuals A, D and F in Table 7.2).

It is difficult to define a single cohort when staggered entries are included.
Individuals that were born before the “date window”, and/or arrived from another
population after the start of the study period, are added as being at risk for the
appropriate age class(es). The numbers at risk (Nx) for a given age class x can be
larger than the number for a previous class e.g. when individuals of age x were
imported in the population (individuals D and E in Table 7.2). This means that
Eq. 7.3 is not valid.

Table 7.3 shows mortality rates (qx) and survivorship (lx) which are based on left
truncated and right censored data in snow leopards during the period 1983–2002. A
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Table 7.3 Mortality table for male and female snow leopards based on left truncated and right
censored data combined for the years 1983–2002

Males Females

Age class Nx Dx qx lx Nx Dx qx lx
0 702 228 0.325 1.000 725 229 0.316 1.000

1 466 21 0.045 0.675 474 9 0.019 0.684

2 438 14 0.032 0.645 466 7 0.015 0.671

3 419 11 0.026 0.624 454 16 0.035 0.661

4 395 17 0.043 0.608 421 8 0.019 0.638

5 365 10 0.027 0.582 406 11 0.027 0.626

6 348 14 0.040 0.566 380 13 0.034 0.609

7 333 13 0.039 0.543 356 11 0.031 0.588

8 311 13 0.042 0.522 345 24 0.070 0.570

9 285 10 0.035 0.500 317 16 0.050 0.530

10 260 17 0.065 0.482 271 13 0.048 0.503

11 226 19 0.084 0.451 234 21 0.090 0.479

12 194 18 0.093 0.375 197 13 0.066 0.436

13 160 19 0.119 0.330 162 21 0.130 0.407

14 121 23 0.190 0.267 128 18 0.141 0.355

15 89 21 0.236 0.204 103 26 0.252 0.305

16 56 16 0.286 0.146 67 22 0.328 0.228

17 38 9 0.237 0.129 38 12 0.316 0.153

18 28 13 0.464 0.111 21 11 0.524 0.105

19 12 8 0.667 0.060 9 6 0.667 0.050

20 3 2 0.667 0.020 2 0 0.000 0.017

21 1 0 0.000 0.007 2 2 1.000 0.017

Nx individual at risk, Dx number of deaths, qx mortality rate, lx survivorship

number of differences between censored (Table 7.3) and uncensored data (Table 7.1)
can be observed. Since individuals that were alive at the end of the study period are
included, the numbers of individuals at risk per age class in censored data are larger
than in uncensored data.

The mortality rate (qx) in the last age class of a censored mortality table can be
lower than 1, as individuals in that class can still be alive by the end of the period
of interest. For example, a single male individual in class 21 (Table 7.3) did not die
before the end of 2002.3

Tables 7.1 and 7.3 indicate that mortality patterns in censored and uncensored
data in male snow leopards do differ. For example, mortality (rates) in age class
0 differs significantly between censored and uncensored data (�2 D 16:46; p <

0:001; df D 1). Survivorship (lx) curves are useful to visualise differences between

3This male is the same individual that holds the longevity record – as on 31 December 2002 – for
captive snow leopards (see Chap. 3).
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Fig. 7.5 (a) Survivorship (lx) in male snow leopards based on censored (�) and uncensored (ı)
data from 1983 to 2002. (b) Survivorship (lx) in female red crowned cranes in the European
studbook population from 1984 to 2007 based on censored (�) and uncensored (ı) data

mortality patterns. Figure 7.5a presents male survivorship for censored (closed dots)
and uncensored (open dots) data in snow leopards.

Survivorship based on censored data is higher than that based on death data only.
However, differences diminish in the oldest age classes i.e. � 20 (see Fig. 7.5a).
Since the study period of 20 years4 is close to longevity in snow leopards (see
Chap. 3), differences between both data-sets in these classes are not expected.
However, one needs to be cautious in drawing conclusions as sample sizes in the
older age classes are very small (see Tables 7.1 and 7.3).

Differences between censored and uncensored data are likely to occur in
studbooks of long–lived species, such as the red crowned crane. Longevity in the
European studbook population is �43 years. Figure 7.5b shows differences between
survivorship curves for censored (closed dots) and uncensored (open dots) data in
female red crowned cranes for the period 1984–2007. Analysis of uncensored data
shows that most females have died by the age of 24 (l24 D 0:025), whereas analysis
involving censored data shows that 50 % are still alive at that age.

The red crowned crane example illustrates the importance of using similar
types of data (and methods) to compare survivorship, and other measures of
mortality, between populations (see also discussions on longevity of elephants in
captivity (Mar et al. 2012; Wiese and Willis 2004)).

41 January 1983–31 December 2002.
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7.5.4 Logrank Statistic

The two–way contingency table (Sokal and Rohlf 2012)5 in the previous section
showed that mortality in age class 0 in censored and uncensored male snow leopard
data is not the same. However differences, whether subtle or extreme, can occur in
any age class. The logrank statistic, also known as Mantel–Haenszel test (Mantel
1963), can be used to test for differences in survivorship curves between groups
that are left truncated and right censored (Pollock et al. 1989). This test is generally
used to compare survivorship (lx) curves in Kaplan–Meier survival analysis (see
Chap. 10). However, the logrank test can also be applied to data that are grouped in
discrete intervals such as age classes (Morton and Stutchbury 2000; Zhang and Sun
2010). Data on individuals at risk (Nx) and number of deaths (Dx) per age class are
used in this test.

The logrank statistic between two groups is calculated as:

�2 D

�
O1 C E1

E1

�2

C

�
O2 C E2

E2

�2

(7.9)

where O1 and O2 are the total number of observed deaths in all age classes of
groups 1 and 2, respectively; E1 and E2 are the expected totals in these groups. The
degree of freedom for this �2 statistic is 1 (Peto and Peto 1972). The null hypothesis
(H0) considers the data in both groups to originate from the same distribution, and
is rejected when pŒ�2;1� < ˛.

The total expected number of deaths for group 2 (E2) is calculated as:

E2 D

!X

xD0

Dx

Nx
N2x (7.10)

where Dx and Nx are the combined totals of observed deaths and individuals at risk in
age class x in both groups, respectively; ! is the oldest age class; N2x is the number
of deaths in age class x of group 2. The value for E1 is calculated as Dtotal � E2,
where Dtotal is the total number of observed deaths in both groups (Bewick et al.
2004).

The logrank test has been applied to the censored and uncensored data sets of
male snow leopards (Tables 7.1 and 7.3). The null hypothesis that survivorship
between these groups does not differ is rejected (�2 D 29:39; p < 0:001; df D 1/.
This result is expected from the significant differences in survivorship between
both groups at age class 0 (see previous section). The use of survivorship rates
based on right censored and left truncated data are preferred above those based on
uncensored, i.e. deaths–only, data (Wiese and Willis 2004).

5The choice for Fisher’s exact test or the �2 test depends on sample sizes.
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Fig. 7.6 (a) Survivorship (lx) in male (�) and female (ı) snow leopards from 1983 to 2002. (b)
Survivorship (lx) in male (�) and female (ı) blesbok from 1970–2008

7.5.5 Comparative Survival Studies

The logrank statistic is important for comparative survival studies, such as differ-
ences between sexes, historical differences in husbandry, environmental conditions
(e.g. climate) or differences between inbred and non–inbred groups (see Chap. 13).

Figure 7.6a presents survivorship in male (closed dots) and female (open dots)
snow leopards between 1983 and 2002 (data from Table 7.3). Survivorship of
males and females does not differ significantly (�2 D 0:78; p D 0:376; df D 1).
However, survivorship of male and female blesbok does differ, as would be expected
from Fig. 7.6b (�2 D 26:32; p < 0:001; df D 1). This illustrates that graphical
presentations of data in comparative studies are helpful in the interpretation of
statistical tests.

The logrank test on censored data can be considered as an alternative to the
Wilcoxon test, which was discussed in Chap. 3, to test for differences in frequency
(count) distributions between ages at death.

No one will think of pseudoreplication in relation to life tables of wild popula-
tions. Missing data on parentages and siblings and/or pre–breeding census make
it virtually impossible to determine whether the litter effect occurs in juvenile
mortality, for example. Studbooks can provide these data and, therefore, enable the
testing of litter effects and potential impact on statistical analyses.

Chapter 19 presents a simulation study of the impacts of litter, maternal and spa-
tial effects on sampling variances in neonatal mortality. Chapter 10 presents the Cox
proportional hazard regression model (Cox 1972) that can take pseudoreplication
in survival data into account.
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7.6 Fecundity Table

Chapter 3 presents reproductive lifespan analysis, primarily used to determine first
and last age at reproduction (see Table 3.4). This data–set can also be used to
construct frequency distributions of reproductive ages (see Fig. 3.7a, b). However,
it provides only partial information about fecundity in the population, as only
individuals that have reproduced are included.

Fecundity tables that include animals at risk of reproducing (Nx) per age class
and the number of offspring born to parents in that age class (symbol: Bx) provide a
better estimate of age–related reproductive success than the life–span analysis. The
fecundity rate (symbol: mx) is the mean number of births (B) produced in the group
of living individuals (Nx) at the start of each age class x during that age class (see
Eq. 7.11).

mx D
Bx

Nx
(7.11)

where Bx is the total number of offspring.
The fecundity rate is not a probability, unlike the mortality rate (qx), as litter size

and number of litters produced by an individual within an age class can result in
Bx > Nx.

Fecundity tables are generally constructed separately for males and females.
Only offspring of the same sex as the parent group are included in Bx. This method
seems to be an “inheritance” from wildlife management, where often only the
female population and thus female offspring – as reproductive unit – is studied.
Fecundity tables that include all offspring are more appropriate to reflect fecundity
in the case of unequal sex–ratio at birth. However, such tables cannot be used in
standard future projections that are based on Leslie matrices (Leslie 1945) (see
Chap. 11). Therefore, fecundity rates that are based on offspring of the same sex
as the parent group are used in this section.

Table 7.4 presents fecundity tables for male and female snow leopards. Fecundity
rates (mx) are presented for the sexes separately in Fig. 7.7a, b. Reproductive lifespan
is more or less the same in both sexes i.e. age classes 2–15/16. However, the patterns
do differ: The highest fecundity rates in females are in classes 4–7, those in males
are in classes 3–11.

Caution is needed in interpreting fecundity rates of studbook populations, purely
in terms of biological features. For example, management measures to control
population size can involve delays in first reproduction and/or limiting the total
number of litters per individual. Furthermore, genetic management may temporarily
emphasise breeding of genetically important individuals who are near the end of the
reproductive lifespan.
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Table 7.4 Fecundity table for male and female snow leopards based on left truncated and right
censored data from 1983 to 2002

Males Females

Age class Nx Nbred;x Bx mx Nx Nbred;x Bx mx

0 702 0 0 0 725 0 0 0

1 466 0 0 0 479 0 0 0

2 438 3 6 0.014 466 4 5 0.011

3 419 26 39 0.093 454 26 36 0.080

4 395 36 58 0.147 421 42 66 0.158

5 365 30 42 0.115 406 47 62 0.153

6 348 31 55 0.158 380 39 62 0.164

7 333 32 51 0.154 356 35 57 0.161

8 311 27 41 0.132 345 30 39 0.113

9 285 19 28 0.099 317 21 28 0.089

10 260 30 45 0.176 271 19 32 0.118

11 226 21 28 0.124 234 21 28 0.120

12 194 10 16 0.083 197 17 18 0.092

13 160 13 17 0.107 162 6 9 0.056

14 121 5 5 0.041 128 6 6 0.047

15 89 1 1 0.011 103 1 1 0.010

16 56 1 1 0.018 67 0 0 0

17 38 0 0 0 38 0 0 0

18 28 0 0 0 21 0 0 0

19 12 0 0 0 9 0 0 0

20 3 0 0 0 2 0 0 0

21 1 0 0 0 2 0 0 0

Nx individuals at risk, Nbred;x individuals that bred, Bx number of births of the same sex as the
parent, mx fecundity rate

7.7 Prorating

The previous sections considered individuals to be at risk of dying or of reproducing
from beginning to end of an age class. This method is not necessarily correct when
applied to censored data in studbook views (studies) that involve date span and/or
are limited to geographic populations. Arrivals of individuals that are born outside
the studbook view, do not need to coincide with the start of an age class. Likewise,
individuals can leave the population before the end of a class.

In both cases, individuals are only partly at risk for these age classes while in the
studbook view. This can result in underestimation of mortality and fecundity rates.
Proportional distribution of time at risk within an age class (prorating) is a method
to reduce this bias (Odum and Smith 2001). For example, an individual that enters
the studbook view at the age of 8 months would be counted as 4

12
to be at risk for
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Fig. 7.7 (a) Fecundity rates (mx) in male snow leopards from 1983 to 2002. (b) Fecundity rates in
female snow leopards from 1983 to 2002

the remaining period of time in age class 0. A newborn individual that leaves the
population at the age of 8 months, is effectively at risk for the fraction 8

12
.

Prorating is not applied to the age class in which individuals died, regardless
of the time being at risk. Thus, each of the individuals in the examples would be
counted as 1 for being at risk if they had died in age class 0.

Since individuals that have died cannot reproduce, they are treated the same as
those that have left the study before the end of the age class, i.e. they are prorated
for being at risk for reproducing in that class. This approach applies to fecundity
in birth–flow species. Individuals in birth–pulse species are effectively no longer at
risk for reproduction after the breeding season. This means that prorating should
not be applied to individuals that die or leave after the breeding season (Odum and
Smith 2001).

The SPARKS and PopLink studbook software apply prorating to age class–based
mortality and fecundity tables (Faust et al. 2012b; Odum and Smith 2001). The PML
software (Princée 2014) provides combinations of disabling/enabling prorating, left
truncation and/or right censoring in life tables.

7.8 Unknown Sex and Unknown Parents

The examples of mortality and fecundity in the previous sections do not consider
individuals of unknown sex. Although the subject of “incomplete and missing data”
is discussed in more detail in Chap. 18, it is important to be aware of the potential
underestimation of mortality and fecundity rates (for sexes separately).
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Sex–determination of individuals that have died in the neonatal stage is not
always feasible, for various reasons. Unknown sex in mammal studbooks is often
associated with perinatal or neonatal death, whereas an individual of known sex has
likely survived that stage. For example, 123 snow leopards of unknown sex that
were born in the period 1983–2002 all died within the first 3 months, i.e. q0 D 1.
Mortality rates estimated for males and females in this age class are 0.325 and 0.316,
respectively (see Table 7.3). Including unknown sex, assuming equal distribution
over both sexes, increased the mortality rates to 0.378 and 0.369, in males and
females, respectively.

Fecundity rates are underestimated when offspring of unknown parents and
offspring of unknown sex are not included in the birth counts. Offspring of unknown
sex, but with known parents, can be distributed equally over the fecundity age
classes of its parents. Offspring with unknown parents can either be distributed
equally or according to the mx ratios (based on known parents) over the fecundity
age classes.

7.9 Remarks

Life–table analyses require a higher level of accuracy in dates of birth and death than
census analyses. Census analyses only require information on whether an individual
was alive at census date. Thus, as long as a birth, death or transfer occurred within
census intervals, the individual is counted.

Note that the date estimates in SPARKS use a real date (which is flagged as an
estimate) (Scobie and Bingaman Lackey 1997–2012). Protocols have been defined
to determine, depending on seasonality or estimated birth and death within the same
year, which date estimate is appropriate (Faust et al. 2012b; Thompson et al. 1997).
For example, the middle of the year is recommended for species with no distinct
breeding season (birth–flow model). These “real” dates do not affect census analyses
that are based on “end–of–year counts”, but can affect analyses that are based on
census dates within a year (see Chap. 18).

Pedigree data are essential to provide parent’s ages for calculating age–specific
fecundity rates. This means that missing parentages also affect the accuracy of
growth rates estimated from fecundity and mortality tables (see Chap. 9). Therefore,
census analysis is an important tool to determine population growth in the case that
life–table analyses cannot be applied properly.

Mortality tables in studbook analyses are based on methods that are used in
wildlife ecology. Mortality data on wild populations are in general collected and/or
deduced from annual census data. Studbooks, however, provide greater detail that
makes it possible to study mortality – provided that sufficient data per age class are
available – in units of months, weeks or even days. The Kaplan–Meier product limit
estimator (Kaplan and Meier 1958), which finds its origin (partly) in human medical
studies, can be applied to “profit” from detailed studbook data. This method will be
discussed in Chap. 10.
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Chapter 8
Confidence in Life Tables

Abstract Confidence limits of age–specific mortality and fecundity rates are rarely
provided. However, this information is important for judging the reliability of life
tables, especially those based on small studbooks. The occurrence of a single death
within an age class is a Bernoulli process, i.e. an individual is either dead or living
at the end of the age class, with the mortality rate as the probability of dying.
Simulation experiments using random sampling introduce the effect of sample size
on the confidence limits of mortality rates. Variances of mortality rates can be
calculated from binomial theory. Fecundity rates are often assumed to follow the
Poisson distribution. The variance is estimated accordingly. Variances, confidence
limits and coefficients of variation are estimated for both mortality and fecundity
in young and older age classes. Bootstrap is applied to measure variance (and
associated statistics) in both mortality and fecundity rates in female snow leopards.
The results of �2 tests show that theoretical and bootstrap variances do not differ
for mortality (except for the oldest age class). However, these variances do differ
for fecundity, indicating that the Poisson distribution is not the correct assumption.
Reliability of life tables can be improved by increasing sample sizes through
pooling older age classes and applying wider age classes (at the cost of detail).
Smoothing techniques to reduce gaps and peaks in life tables and application of the
Gompertz(–Makeham), Weibull and Siler parametric models to fit mortality curves,
are illustrated with real studbook data.

8.1 Introduction

Fecundity and mortality rates, particularly in older age classes, are often based
on relatively small sample sizes (see Tables 7.4 and 7.3, respectively). One can
intuitively judge that rates based on sample sizes of e.g. 3, 5 or 10 do not represent
the “true” mortality, whereas those based on sample sizes of 1,000 are more likely to
do so. But what about sample sizes in between? Variances and confidence intervals
provide more insight about appropriate sample sizes.

This chapter presents methods to calculate variances and confidence intervals
based on expected probability distributions of fecundity and mortality. However,
real–time data do not necessarily follow these distributions. For example, deaths in
litters are not necessarily independent events, e.g. in cases of poor parental care all

© Springer International Publishing AG 2016
F.P.G. Princée, Exploring Studbooks for Wildlife Management and Conservation,
Topics in Biodiversity and Conservation 17, DOI 10.1007/978-3-319-50032-4_8
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litter mates may die. Computer resampling techniques can be applied to estimate
variances and confidence intervals without knowledge of the underlying probability
distribution. The bootstrap method (Efron 1979) is presented in this chapter.

Variances will remain high when sample sizes per age class are small. Pooling of
older age classes, wider age classes and smoothing to remove data “peaks” due to
random effects, can be applied to improve life tables. These techniques are presented
in this chapter. In addition, parametric models that are applied to fit mortality data
are presented.

8.2 Tossing a Coin

The occurrence of a single death within an age class is a Bernoulli process (a special
case of a binomial process) that can be summarised as an individual either being
alive or dead at the end of that age class. The mortality rate (qx) can be considered
as the probability (risk or chance) of dying, and 1�qx is consequently the probability
of survival. It is like tossing a coin (an unfair one whenever qx ¤ 0:5).

Assume that the observed neonatal mortality rate is 0.3. One would expect that
30 out of 100 newborns in the next breeding season will die before reaching the
age of one year. However, in reality the actual number may differ purely by chance
from the expected number. This random process can be illustrated with simulation
experiments by sampling randomly from a binomial distribution with the number of
newborns as “trials” and the mortality rate as probability (p). Each sample represents
a number of newborns that died.

Figure 8.1a presents results of a simulation experiment with 10,000 random
samples (repeats). Although the mean mortality is close to 30 individuals, sample
values range from 14 to 47. The 2.5 and 97.5 % percentiles, which together are an
estimate of the 95 % confidence interval, are 21 and 39, respectively. This means that
the expected mortality rate for 100 newborns will likely be in the range 0.21–0.39.

The impact of this random process, named demographic stochasticity or uncer-
tainty (Shaffer 1981), increases for smaller numbers. Figure 8.1b presents a similar
simulation experiment based on 10 newborns (trials) and 10,000 samples. The mean
mortality is again close to the expected 3 individuals, but the 95 % confidence
interval ranges from 0 to 6 (or a mortality rate from 0 to 0.60).

The confidence interval will narrow around the mean for increasing numbers
of individuals. For example, increasing the number of newborns (trials) to 1,000
resulted in 2.5 and 97.5 % percentiles for mortality rates of 0.27 and 0.33,
respectively.

These simulation experiments provide an insight into the effects of demographic
uncertainty on mortality rates in relation to numbers of individuals at risk. Mortality
rates based on small numbers at risk are not likely to reflect the “true” mortality. This
means that such data are not suitable for use in comparative studies and population
projections (see Chap. 11). The next section will discuss variances and confidence
intervals for mortality rates in more detail.
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Fig. 8.1 (a) Frequency distribution of neonatal mortality in 10,000 random samples from a
binomial distribution with 100 trials (newborns) and probability of death (p) is 0.3. (b) Frequency
distribution based on a binomial distribution with 10 trials

8.2.1 Mortality

Considering mortality as a binomial process means that the variance (s2
qx

) of a
mortality rate can be calculated as:

s2
qx

D
qx.1 � qx/

Nx
(8.1)

where qx is the mortality rate and Nx the number of individuals at risk in age class
x (Daw 1974).

The 95 % confidence interval for mortality rates is calculated as qx ˙ 1:96
q

s2
qx

.

The confidence limits may need to be adjusted whenever they are outside the
0–1 range of mortality rates. Additionally, the coefficient of variation or “relative
variability” (symbol: CV) can be estimated:

CV D
sx

Nx
(8.2)

where Nx is the mean and sx is the standard deviation of parameter x (Sokal and Rohlf
2012). Since the mortality rate is a mean, Nx can be substituted with qx.

Coefficients of variation are often presented as percentages (by multiplying with
100). Since CVs are “unit free”, they can be used to compare relative variability
among age classes and between different life tables.

Table 8.1 presents theoretical variances, 95 % confidence interval, and coeffi-
cients of variation of mortality rates in female snow leopards. The coefficient of
variation (CV), or “relative variability”, provides the information on which to judge
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Table 8.1 Variance, 95 % confidence interval and coefficient of variation (as percentage) of
mortality rates in youngest and oldest age classes of female snow leopards. Mortality is assumed
to be a binomial process

Confidence interval

Age class Nx Dx qx s2
binomial Lower Upper CV(%)

0 725 229 0.3195 0.00030 0.2821 0.3497 5.48

1 479 9 0.0188 0.00004 0.0064 0.0310 33.64

...

18 21 11 0.5238 0.01188 0.3102 0.7374 20.81

19 9 6 0.6667 0.02469 0.3587 0.9747 23.57

Nx individuals at risk, Dx number of deaths, qx mortality rate, s2
binomial theoretical variance in

mortality rate (binomial distribution), CV(%) coefficient of variation in percentages

whether variance is low or (too) high. For example, the variance in class 19 is higher,
as expected from samples sizes, than the variance in class 1. However, the opposite
trend can be observed in the CV values.

8.2.2 Fecundity

The effects of random processes on fecundity rates can be expected to be similar
to those discussed for mortality rates in Sect. 8.2. The major difference is that
the expected number of births is often assumed to be distributed according to the
Poisson model (Akçakaya 2002). The variance of fecundity rates (s2

mx
) that follow

the Poisson process is calculated as:

s2
mx

D
mx

Nx
(8.3)

where mx is the fecundity rate and Nx the number of individuals at risk of
reproduction in age class x (Keilman and Pham 2000). The coefficient of variation
(CV) is estimated by substituting Nx with mx, in Eq. 8.2.

Table 8.2 presents theoretical variances (s2
Poisson), 95 % confidence limits and

coefficients of variation (CV) in fecundity rates. Several methods exist to calculate
exact confidence limits for the Poisson distribution (Patil and Kulkarni 2012). The
“Garwood method” in R is used (Fay 2010; R Core Team 2015).

The CVs for age classes with low numbers of births are large, e.g. the value for
age class 15 is over 100 %! Although a single birth was observed in this age class,
the upper confidence limit indicates that 103 � 0:0323 � 3 female offspring (from
103 females) could have been expected by chance alone.
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Table 8.2 Variance, 95 % confidence interval and coefficient of variation (as percentage) of
fecundity rates at beginning, middle and end of reproductive age–span of female snow leopards.
Fecundity is assumed to be a Poisson process

Confidence interval

Age class Nx Bx mx s2
Poisson Lower Upper CV(%)

2 466 5 0.0108 0.00002 0.0035 0.0250 41.4

3 454 36 0.0795 0.00018 0.0555 0.1098 16.9

...

6 380 62 0.1635 0.00043 0.1251 0.2092 12.7

7 356 57 0.1605 0.00045 0.1213 0.2074 13.2

...

14 128 6 0.0470 0.00037 0.0172 0.1020 40.9

15 103 1 0.0097 0.00009 0.0000 0.0323 102.0

Nx individuals at risk, Bx number of births, mx fecundity rate, s2
Poisson theoretical variance in

fecundity rate (Poisson distribution), CV(%) coefficient of variation in percentages

The assumption that births are a Poisson process is not necessarily justi-
fied (Devenish–Nelson et al. 2013; Kendall and Wittman 2010). Births in species
that are monovular (producing a single egg during each cycle, e.g. blesbok and
California sea lions) is a Bernoulli process: an individual gives birth or not.
Fecundity in such a species can be modelled, similar to mortality, as a binomial
distribution (Caswell 2001).

Modelling births in polyovular species (producing multiple offspring during each
cycle, e.g. snow leopards and African wild dogs) is more complex than in monovular
species, as probabilities of giving birth and of litter size need to be combined. Dis-
crete distributions such as binomial, negative binomial and Poisson are candidates
for describing the underlying model (e.g. Devenish–Nelson et al. 2013).

Fecundity rates are low in the younger and older age classes, e.g. Fig 7.7b. This
is due to a large proportion of non–breeders (zero litters) and possibly smaller
litter sizes (in polyovular species). The number of zero litters may exceed the
number expected from the binomial or Poisson distribution. This means that the
variances in the younger and older age classes may be better described by zero–
inflated distribution models which account for large numbers of zero litters, e.g.
zero–inflated Poisson model (e.g. Devenish–Nelson et al. 2013). These distribution
models are certainly more appropriate for describing male fecundity in species that
live in harem structures in which most non–harem holder males do not breed (e.g.
those in bachelor herds).

The above illustrates the difficulties in making assumptions regarding the
underlying probability distribution of fecundity in polyovular species and males of
harem species. The following section introduces a method that is free of assumptions
regarding probability distributions.
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8.3 Resampling

Variances and confidence limits in mortality and, particularly, in fecundity rates
cannot be estimated when the underlying probability distributions are unknown.
Since only one studbook population (in time and space) exists it is not possible to
estimate variances from a sample of life tables.

The studbook population itself can be considered as the best available “image” of
the unknown imaginary population from which it was drawn. Statistical character-
istics, such as mean and variance, can then be estimated by resampling the observed
(studbook) data. This approach is the backbone of resampling techniques such as
the jackknife (Quenouille 1949; Tukey 1958) and the bootstrap (Efron 1979).

The jackknife technique systematically leaves out each observation once from
the original data set of size N (thus, each sample size is N � 1) and recalculates the
value(s). The removed observation is included again before the next sample is taken.
The mean and other statistics are estimated from the total N � 1 samples.

The bootstrap technique draws random samples (replicates or bootstraps) (sym-
bol: B) with replacement from the original data. Each sample is of the same size as
the original. This means that observations can occur more than once or not at all in
a sample. The mean and other statistics are estimated from the B samples.

Increased access to computers has resulted in more common use of these
techniques, particularly bootstrap, in biological research (Crowley 1992; Davidson
and Hinkly 1997). It is not surprising that resampling techniques have also been
applied to assess uncertainties in mortality and fecundity rates (Caswell 2001; Efron
1981; Meyer et al. 1986).

Bootstrap and jackknife resulted in similar variances of growth rates that were
estimated from life tables (Meyer et al. 1986). However, the jackknife performs
poorly in estimating variances of sample medians (Efron and Tibshirani 1986). This
means that this resampling technique is not suitable for analysis of median lifespan.
Therefore, the bootstrap technique has been implemented in the life table analyses
of the PML software (Princée 2014).

Individuals are sampled randomly with replacement from the (imaginary) stud-
book cohort which can include censored data (see Chap. 7). The life history of each
individual in the cohort is “followed” to determine in which age classes it was at
risk, in which age class it died, or in which age class it reproduced (fecundity and
mortality analyses are carried out separately in PML). This process is repeated in
each bootstrap. Mean and other statistics are estimated for each age class from the
bootstrap samples.

The number of bootstrap replicates that are required depends on the statistic (see
Davidson and Hinkly 1997). This number of B D 1;000 is considered as a rough
minimum to estimate bootstrap confidence intervals (Efron and Tibshirani 1986).
The number of replicates is adjusted when an exact test (with significance level
˛) is to be carried out: the result of ˛.B C 1/ must be an integer (Davidson and
MacKinnon 2000). The minimum of 1,000 bootstraps adjusted for ˛ D 0:01 results
in B D 999, which is used in this book.
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Fig. 8.2 (a) Bootstrap results (B D 999) of mortality rates (qx) in female snow leopards from
1983–2002. The histogram refers to the mean bootstrap value. The 2.5 and 97.5 % percentiles are
indicated with horizontal lines per age class. (b) Bootstrap results (B D 999) of fecundity rates
(mx) in female snow leopards

Figures 8.2a and 8.2b present results of bootstrap on mortality and fecundity
rates (left censored and right truncated) in female snow leopards, respectively. The
bars refer to the mean rates over 999 replicates (B). The lower and upper horizontal
bars refer to the 2.5 and 97.5 percentiles, and can be interpreted as a basic (95 %)
confidence interval (Davidson and Hinkly 1997).

The patterns in confidence intervals in Figs. 8.2a and 8.2b are similar to those
observed in the data presented in Tables 8.1 and 8.2. However, these figures do not
indicate whether the bootstrap rates differ from those calculated for the original data,
and/or whether variances differ from those calculated from probability distributions.

Table 8.3 combines results from the bootstrap analyses on fecundity and
mortality with the data in Tables 8.1 and 8.2. A chi–square test (˛ D 0:05) is
applied to test whether the sample (i.e. bootstrap) and theoretical variances (see
Eqs. 8.1 and 8.3) are the same (Sokal and Rohlf 2012). A plus sign means that this
null hypothesis is not rejected, and hence that the bootstrap variance and theoretical
variance do not differ.

Statistical tests on mortality rates in age classes 0–18 (not all presented in
Table 8.3), do not reject the null hypothesis. The rejection for age class 19 is likely
to be due to the small sample size (Table 8.1). These results justify the conclusion
that female mortality in the studbook population of snow leopards is a Bernoulli
process. This means that variances and confidence intervals can be calculated using
Eq. 8.1.

The bootstrap fecundity rates ( Nmx) and the observed rates merely differ at the
third decimal (this level of accuracy may not even be appropriate given the sample
sizes for females being at risk). First, these differences are likely to be due to the
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Table 8.3 Comparison of bootstrap analysis on mortality and fecundity rates with observed data
in female snow leopards. See text for details

Mortality

Age class qx s2
binomial Nqx s2

bootstrap �2testa

0 0.3297 0.00030 0.3286 0.00030 +

1 0.0292 0.00006 0.0297 0.00006 +

...

18 0.5238 0.01188 0.5238 0.01268 +

19 0.8889 0.01097 0.8883 0.01329 -

Fecundity

Age class mx s2
Poisson Nmx s2

bootstrap �2 testa

2 0.0108 0.00002 0.0108 0.00003 -

3 0.0795 0.00018 0.0799 0.00028 -

...

6 0.1635 0.00043 0.1641 0.00081 -

7 0.1605 0.00045 0.1631 0.00092 -

...

14 0.0470 0.00037 0.0471 0.00036 +

15 0.0093 0.00009 0.0093 0.00009 +

qx mortality rate, s2
binomial binomial variance qx, Nqx bootstrap qx, mx fecundity rate, s2

Poisson Poisson
variance mx, Nmx bootstrap mx
a + H0 not rejected: theoretical and bootstrap variances do not differ

stochastic nature of the bootstrap sampling process. A larger number of sampling
repeats can result in mean values that are closer to the observed values. Second,
the differences in observed and bootstrap fecundity rates are not that dramatic,
especially in the scope of small studbook populations. For example, the 380 females
in age class 6 would have produced, with Nmx D 0:1641, 62.38 cubs (which are 62 in
real life), instead of the observed 62 (Tables 8.2 and 8.3).

Although differences between observed and bootstrap fecundity rates in female
snow leopards seem to be small, theoretical and bootstrap variances for fecundity
rates do differ significantly, except for the older age classes with low birth numbers
(Table 8.3).

Bootstrap of life history data shows that variances in age–specific mortality in
female snow leopards follow a binomial distribution, except for the last age class.
However, these variances can differ from the theoretical variances (Eq. 8.1) when
pseudoreplication occurs (see Chap. 19).

Fecundity rates do not necessarily follow a Poisson or other known distribution,
as illustrated in female snow leopards. The advantage of bootstrap is that it provides
approximate confidence intervals (percentiles) regardless of the type of distribution.
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8.4 Sample Sizes

The previous section illustrated the effects of demographic stochasticity on age
classes with small numbers of individuals at risk. In studbook populations this
generally refers to the older age classes (Tables 7.3 and 7.4). Studbook populations
that have been established recently can have small sample sizes in all age classes. A
solution to the sample size problem is to reorganise the data by “pooling” older age
classes and/or increasing class–width.

8.4.1 Pooling

Pooling the data from older age classes in the tail of the distribution into a single
age class can be applied to life–tables in order to create a larger sample size. The
resulting class is generally indicated with the addition ‘C’. Table 8.4 shows the
effect of pooling age classes 18–21 into the single age class 18C on mortality rates.
The samples sizes of the four classes are small, but combining these data will result
in an age class where the mortality rate is 1.0 based on 24 individuals at risk. A class
size of around 30 individuals is recommended (Ballou et al. 2010).

Since the data in this example are uncensored, the number of individuals at risk
and deaths in class 18C is the sum of deaths in classes 18–21. This relation does
not exist in censored mortality data where individuals can be lost to follow–up.
Reconstruction of Nx and Dx from observed mortality rates (qx) for the classes to be
pooled is required.

Pooling age classes in fecundity tables from censored data is less straightforward
than explained for mortality. First the number of individuals at risk in the pooled age
classes needs to be reconstructed from mortality rates as described previously. The
next step is to calculate the expected number of births (Bx) from the reconstructed
Nx and (observed) fecundity rates (mx). The actual pooling is carried out on the
reconstructed table. The PML studbook software will automatically pool individuals
that live longer than the maximum requested age–class (Princée 2014).

Table 8.4 Pooling older
mortality classes (male snow
leopard data from Table 7.1)

Observed Pooled

Age class Nx Dx qx D0

x q0

x

18/18+ 24 13 0.560
9
>>=

>>;

24 1.000

19 11 8 0.727

20 3 2 0.667

21 1 1 1.000

Nx individuals at risk, Dx number of deaths, qx mor-
tality rate, D0

x pooled number of deaths, q0

x pooled
mortality rate in class 18C
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8.4.2 Class–Width

Studbook life tables are generally based on class–widths of one year, which is com-
mon in wildlife management where census tends to be carried out annually (Caugh-
ley 1977). Such a width is too wide for short–lived species, especially those that
reach sexual maturity and reproduce within the first year. Using one year would
result in loss of information on mortality in the neonatal, juvenile and sub–adult
life stages (see Chap. 3). In contrast, one year intervals can result in large numbers
of – less informative – age classes in long–lived species. For example, human
demographers tend to use class–widths of five years (e.g. Shryock et al. 1980).

Recent studbook software includes the option of selecting class–width, varying
from day, week, month(s) to years (Ballou et al. 2011; Princée 2014). Class–width
should ideally reflect a species’ life history. However, the available data in studbooks
may not be sufficient to gauge this, as explained in the previous sections. Statistical
methods to construct frequency distributions (histograms) can serve as guidelines to
selecting appropriate class–widths.

A basic recommendation in statistical literature is to base frequency distribution
(histograms) on 12–20 classes (e.g. Sokal and Rohlf 2012). This translates to class–
widths of one year for species with a longevity in the range of 12–20 years;
six months for species with a longevity of 5–12 years etc. Class–widths of 2–
5 years would be appropriate for species like elephants and great apes. However,
this recommendation does not consider the total sample size.

The Sturges algorithm (Sturges 1926)1 could be applied to estimate potential
class–width (symbol: w):

w D
˝

1 C 3:322 � ln.N/
(8.4)

where ˝ is the (observed) longevity and N the total sample size.
Recommended class–width for mortality and fecundity data on snow leopards

(see Tables 7.3 and 7.4) ranges between 0.83 and 1.23 years, for total sample sizes
of 100 to 1,000, respectively. Sturges (1926) recommends using “convenient” class–
widths such as 1, 2, 5, 10, 20 (units). This means that a class–width of one year
seems to be appropriate for species with a longevity of 20 years, such as snow
leopards. The Sturges algorithm does not consider the distribution of data and thus
does not necessarily reflect low sample sizes at the tail of mortality and fecundity.
This means that pooling of older age classes may still be required.

Increasing class–width for left truncated and/or right censored mortality
and fecundity tables can be achieved “manually” as outlined for pooling (see
Sect. 8.4.1). The new class–width must be a multiplication of the original width
with an absolute natural number (i.e. 1,2,3,4 ...etc.).

1The Sturges algorithm is implemented as default method in R statistics to estimate bin (class)
width.
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8.5 Smoothing

Small sample sizes of studbook data not only result in limited or lack of data in
older age classes, but in intermediate classes as well. Furthermore, the distribution
may show peaks that do not necessarily reflect the “true” mortality or fecundity
distribution. Figure 8.3a illustrates gaps and “unexpected” peaks, e.g. class 6, in
mortality rates (qx) in male wolverines. The available data in this studbook can be
considered small, i.e. Nm0 D 56, and data of older age classes are pooled in class
15C (N15C D 7).

The “noise”, i.e. gaps and peaks, can be removed by applying smoothing to
the original data–set. There is no “one” smoothing method. Basic methods involve
running (moving) averages or medians, and variations thereof, which can often be
calculated by hand (e.g. Tukey 1977). More complex methods involve smoothing
splines (e.g. Horton and Kleiman 2011).

The SPARKS software implements smoothing that is based on running averages
of three, for both mortality and fecundity rates (Scobie and Bingaman Lackey 1997–
2012). The PMx software implements a running median of three (Ballou et al. 2011).
Neither software program smooths age class 0. Furthermore, SPARKS calculates the
rate for age class 1 as rate1 D .rate1 C rate2/=2.

SPARKS and PMx extend the life table with an extra age class (! C 1) in order
to calculate the rate at the endpoint. SPARKS uses a rate of 0 for class ! C 1,
where PMx uses rate!C1 D 3 � rate!�2 � 2 � rate!�1. Smoothing can be repeated
recursively, i.e smoothing of smoothed values, in both SPARKS and PMx.
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Fig. 8.3 (a) Smoothed mortality rates (line) for male wolverines using the SPARKS algorithm of
running means (no repeats). The histogram presents actual values. (b) Smoothing using the PMx
algorithm of running medians (no repeats)
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Fig. 8.4 Smoothed fecundity
rates (line) for female
wolverines using the PMx
algorithm of running means
(no repeats). The histogram
presents actual values
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Figures 8.3a and 8.3b present smoothing of mortality rates in male wolverines
following the SPARKS and PMx methods, respectively. Both smoothing procedures
reduce the gaps and peaks in the observed rates. The smoothed values for the last
age class (15) are considerably lower than the observed q15 for both methods. This
can be expected as mortality rates in the previous age classes are also considerably
lower i.e. �0.2. Since the PMx method places more emphasis on the two age classes
previous to the last one, the smoothed value for q15 is lower than calculated by the
SPARKS method.

Smoothing can also be applied to fecundity rates. Figure 8.4 presents observed
and smoothed fecundity rates (black line) for female wolverines using the PMx
“method” of running medians (Ballou et al. 2011). Smoothing clearly results in
reducing the gaps (class 4) and peaks (classes 3, 7 and 10) as observed in the
original data.

Smoothing does not assume an underlying model. Its main purpose, as described
previously, is to reduce the noise in observed data in order better to visualise
potential trends with age. This noise is due to random sampling effects and has,
therefore, more impact on small data–sets. For example, observed mortality rates
in male snow leopards (Nm0 D 702) show a more fluent distribution than those
observed in male wolverines (Nm0 D 56; see Figs. 8.2a and 8.3a, respectively). It
is important to evaluate results of smoothing with the original data, especially in
relation to sample sizes, and/or species biology (Traylor–Holzer 2011).

8.6 Parametric Models

Smoothing procedures may not be sufficient to “bridge” data gaps between age
classes. A further step could be to test whether parametric models used in demogra-
phy will fit the data. The gap data can then be interpolated from the fitted model.
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Actuarial science has been a driving force in developing the first models to
describe mortality patterns in human populations. The Gompertz model (Gompertz
1825) and the extended Gompertz–Makeham model (Makeham 1860) were devel-
oped in the 1800s and are still in use today, not only in actuarial science, but
in ecology and (bio–)gerontology as well (e.g. Carriere 1992; Kohler et al. 2006;
Ricklefs and Scheuerlein 2001).

The Gompertz model, and other mortality models that are discussed in this
section, are generally presented as (instantaneous) hazard rates (symbol: hx). Other
names for the hazard rate in the context of life tables are force of mortality and
instantaneous rate of mortality (e.g. Klein and Moeschberger 1997; Ricklefs and
Scheuerlein 2002).

The instantaneous rate of mortality (hx) is the proportion of living individuals
at age x that die per unit of time. This measure differs from the mortality rate (qx)
which is expressed as the proportion of individuals at risk that die within a fixed
period of time i.e. class interval x.

hx D h0e�x (8.5)

where h0 is the initial instantaneous rate of mortality experienced in young adults
and � is the exponential rate of increase in mortality rate with age (Gompertz 1825;
Ricklefs and Scheuerlein 2002).

The Gompertz distribution is an exponential function, which means that it can
only describe increasing mortality rates i.e. in older age classes. The Gompertz–
Makeham model (Makeham 1860) is an extension of the Gompertz model that better
fits the early mature age classes where mortality rates are more or less constant.

hx D h0 C ae�x (8.6)

where h0 and a are constants that partition the initial instantaneous rate of mortality;
� is the exponential rate of increase in mortality rate with age (Gompertz 1825;
Ricklefs and Scheuerlein 2002).

The parameters h0, a and � need to be solved in order to fit the Gompertz(–
Makeham) model to observed data. Statistical programs such as the R package
fmsb (Nakazawa 2015) provide functions to estimate these constants. Moreover,
this package conveniently converts hx values to mortality rates (qx).

Figure 8.5a presents the Gompertz–Makeham curve for mortality rates (qx) in
male wolverines. It illustrates the limitation of this exponential model, i.e. the initial
decrease in mortality cannot be modelled (see Eqs. 8.5 and 8.6).

The Weibull distribution (Weibull 1951) is often preferred in comparative studies
of mortality (or survival) as it better fits early mature mortality (Pinder III et al. 1978;
Ricklefs and Scheuerlein 2001; Wiese and Willis 2004). The equation is:

hx D h0 C ˛xˇ (8.7)
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Fig. 8.5 (a) Gompertz–Makeham curve for mortality rates in male wolverines. The histogram
presents actual values. (b) Siler curve.The histogram presents actual values

where h0 is the initial instantaneous rate of mortality; and ˛xˇ is the age dependent
instantaneous mortality rate (Ricklefs and Scheuerlein 2002).

The initial mortality in the Weibull model refers, as in the Gompertz(–Makeham)
model, to the mature (young adult) stage where mortality rates are more or less
constant. Thus, this model also does not cover the juvenile stage. The Weibull model
is an important parametric model that is used, for example, in studying ageing in
both birds and mammals (Moorad et al. 2012; Ricklefs and Scheuerlein 2001).

The Siler model has been developed to study mortality over the entire lifespan in
animal species (Siler 1979). The model is partitioned into immature, mature (young
adults) and ageing stages:

hx D h0e��0x C h1 C h2e�1x (8.8)

where h0, h1 and h2 are initial hazard rates for the immature, mature and ageing
stages, respectively; and .�/�0 and �1 refer to changes in mortality in the immature
and ageing stage, respectively.

The partition h0e��0x describes the initial decreasing mortality from birth to
young adult. Parameter h1 refers to mortality in the mature stage, which can be
compared with h0 in the Gompertz(–Makeham) and Weibull models. The partition
h2e�1x is similar to the Gompertz model in describing ageing (Eq. 8.5).

Figure 8.5b presents the Siler curve for mortality rates (qx) in male wolverines.
This curve was constructed with the fmsb package. The Siler model results in a
better fit to juvenile mortality in this species than the Gompertz–Makeham model
does (Fig. 8.5a).
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Parametric models for fecundity rates are less well developed than those for
mortality rates (Gage 2001). Research in this field mainly focusses on human
populations (Peristera and Kostaki 2007; Williamson and Norman 2011). The Brass
polynomial and Hadwiger function that are used in human demography to model
fecundity have been applied to some mammalian species (Gage 1995, 2001). More
studies on the use of these models in different groups of species are required.
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Chapter 9
Extended Life Table

Abstract Life table analysis of studbooks combines mortality and fecundity data
in a single table. This table is named in this book “extended life table” to avoid
confusion, as life table can also refer to mortality data alone. This chapter shows
methods of estimating net reproductive rate (R0), generation time ( NT) and intrinsic
rate of increase (r) from age–specific mortality and fecundity rates. The method to
calculate Fisher’s reproductive value (Vx) is described. This measure refers to the
number of expected future offspring (of the same sex) produced by an individual
of a given age that is weighted against population growth. The unweighted value is
used as a measure of fitness. The age distribution of a population that is growing
geometrically with constant mortality and fecundity rates will gradually approach a
fixed or stable age distribution. The proportion of individuals in different age classes
can be estimated from age–specific survivorship (lx) and the finite rate of increase
(�). The use of midpoint survivorship (Lx) to estimate the proportional number of
births in species that breed all year round (birth–flow) is discussed. The last section
of this chapter compares life tables and census data to estimate population growth.

9.1 Introduction

Age–specific fecundity and mortality tables of a cohort are often combined in a
single life table (Ballou et al. 2010; Begon et al. 2006). Since life table is also defined
as mortality table (Krebs 1994), the combined table in this book is named extended
life table. The extended life table also includes measures that can be derived from
mortality and fecundity rates, such as reproductive value (symbol: Vx) and stable
age distribution (symbol: Cx).

Extended life tables contain a large number of parameters by combining mortal-
ity, fecundity and derived measures. Therefore, shortened versions that only include
the essential mortality and fecundity parameters required for study are often used.
Table 9.1 presents a shortened version limited to survivorship (symbol: lx), fecundity
rate (mx) and derived measures. The next sections will discuss the use of information
in this table.
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128 9 Extended Life Table

Table 9.1 Extended life
table for female snow
leopards based on left
truncated and right censored
data from 1983 to 2002
(inclusive)

Age class lx mx lxmx Vx VFx Cx

0 1.000 0.000 0.000 1.000 0.760 0.078

1 0.684 0.000 0.000 1.409 1.112 0.055

2 0.671 0.011 0.007 1.384 1.133 0.056

3 0.661 0.080 0.053 1.344 1.139 0.058

4 0.638 0.157 0.100 1.263 1.098 0.058

5 0.626 0.153 0.096 1.087 0.960 0.059

6 0.609 0.164 0.100 0.925 0.829 0.060

7 0.588 0.160 0.094 0.760 0.689 0.060

8 0.570 0.113 0.065 0.596 0.545 0.060

9 0.530 0.088 0.047 0.500 0.464 0.058

10 0.503 0.118 0.060 0.418 0.396 0.058

11 0.479 0.120 0.057 0.303 0.292 0.057

12 0.436 0.092 0.040 0.194 0.189 0.054

13 0.408 0.056 0.023 0.106 0.104 0.052

14 0.355 0.047 0.017 0.056 0.055 0.047

15 0.305 0.010 0.003 0.010 0.010 0.042

16 0.228 0.000 0.000 0.000 0.000 0.033

17 0.153 0.000 0.000 0.000 0.000 0.023

18 0.105 0.000 0.000 0.000 0.000 0.016

19 0.050 0.000 0.000 0.000 0.000 0.008

20 0.017 0.000 0.000 0.000 0.000 0.003

21 0.017 0.000 0.000 0.000 0.000 0.003

lx survivorship, mx fecundity rate, lxmx average number of
offspring produced by individuals in age class x, Vx unweighted
reproductive value, VFx Fisher’s reproductive value, Cx is the
proportion of the population in age class x under a stable age
distribution

9.2 Growth Rates

The net reproductive rate (symbol: R0) is the mean number of offspring (of the same
parental sex) produced by each cohort member until the end of the cohort (i.e. death
of all members) (Krebs 1994). This measure is calculated from survivorship and
fecundity rates:

R0 D

!X

xD0

lxmx (9.1)

where ! is the oldest age class; lx and mx are survivorship and fecundity rate for age
class x, respectively.

Values of R0 are interpreted as:

• 0 < R0 < 1: population size decreases.
• R0 D 1: population size does not change.
• R0 > 1: population size increases.
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The net reproductive rate projects population size in the next generation, when
conditions do not change. Generation refers to generation time (symbol: NT), which
is defined as the mean age of parents at date of birth of their offspring. This measure
is calculated as follows:

NT D .

!X

xD0

xlxmx/=R0 (9.2)

where ! is the oldest age class; lx and mx are survivorship and fecundity rate for age
class x, respectively; and R0 is the net reproductive rate.

The net reproductive rate and generation time for the female snow leopard
population during the period 1983–2002 is 0.724 and 8.36 years, respectively.
Note that the time unit for generation time refers to the class–width, i.e. 1 year
in this example. This means that the female population is expected to decrease by a
proportion of 1 � 0:724 D 0:276 (� 28 %) in � 8 years time.

The intrinsic rate of increase (r) can be estimated from life table data by solving
the Euler–Lotka equation:

!X

xD0

e�rxxlxmx D 1 (9.3)

where ! is the oldest age class; lx and mx are survivorship and fecundity rate for
class x, respectively.

Studbook software such as PML (Princée 2014) and PMx (Ballou et al. 2011)
implement algorithms to solve the Euler–Lotka equation. However, r can also be
approximated when R0 � 1 (Begon et al. 2006):

r � ln.R0/= NT (9.4)

where R0 is the net reproductive rate, and NT is the generation time.
Equations 9.3 and 9.4 both result, as expected from R0, in an r value of �0:03.

The finite rate of increase (�) is 0.96 (see Eq. 4.3). Note that � refers to annual
growth when the class–width is 1 year.

9.3 Reproductive Value

Management of studbook populations involves transfers (including translocation) of
individuals to create new breeding pairs and groups in order to avoid inbreeding and
to maintain genetic variation (see Chaps. 13 and 15). Although genetic importance
of individuals is the key selection criterion, other criteria such as fecundity and life
expectancy play a role as well. For example, individuals that have reached the post–
reproductive stage are no longer of interest for breeding. On the other end of the
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spectrum are the juveniles who have a high risk of dying before reaching sexual
maturity (see Chap. 7). From a demographic perspective, selecting individuals in
age groups that have high chances of producing offspring (i.e. low mortality and
high fecundity) during their remaining life time is preferred.

The reproductive value (symbol: Vx) is the number of offspring (of the same sex
as the parent) that an individual in age class (x) is expected to produce at present
and in the future:

Vx D

P!
yDx lymy

lx
(9.5)

where ! is the oldest age class; lx is survivorship for age class x; ly and fecundity
rate my refer to the remaining age classes (Krebs 1994).

Since reproductive value takes survival chances into account when estimating
expected offspring, this measure is useful in planning transfers of individuals to
create new breeding combinations. The reproductive value for individuals in age
class 0 is the total expected number of offspring in their lifetime, which is the net
reproductive rate (R0) as discussed in the previous section.

Equation 9.5 is a “simpler” version of the original concept by Fisher (1930),
in which reproductive value refers to the relative importance (“value”) of an
individual’s contribution to the future generation. Fisher’s reproductive values
(symbol: VF;x) are weighted for population growth (r):

VF;x D

P!
yDx e�rylymy

e�rxlx
(9.6)

where ! is the oldest age class, r is the intrinsic growth rate, lx is survivorship for
age class x, ly and fecundity rate my refer to the remaining age classes. Fisher’s
reproductive value for age class 0 is 1.0 (Galindo 2008).

Equation 9.5 estimates the reproductive value in terms of absolute numbers of
offspring. Therefore this measure is referred to as absolute reproductive value in this
book. This measure is the same as Fisher’s reproductive value when the population
is stable in size (i.e. e�ry and e�rx in Eq. 9.6 are 1 when r D 0).

Figure 9.1 shows absolute (open dots) and Fisher’s reproductive values (closed
dots) for female snow leopards based on fecundity and mortality data during the
period 1983–2002. Reproductive values do initially increase as a result of reduced
mortality after the juvenile stage and increased fecundity. Although fecundity rates
are highest in age classes 6 and 7 (see Fig. 7.7b), the highest reproductive value is
observed in age class 3.

Since population size is decreasing (R0 < 1) there will be fewer breeders in
the future. Therefore, Fisher’s reproductive values of individuals in the (living)
population are higher than the absolute reproductive values.

Fisher’s reproductive values are used to calculate kinship values in selecting
genetically important individuals as part of population management (Ballou and
Lacy 1995). Both types of reproductive values can be considered as measures of
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Fig. 9.1 Fisher’s (�) and
absolute (ı) reproductive
values for female snow
leopards from 1983 to 2002
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fitness that can be used in comparative studies between groups/subpopulations.
Chapter 13 discusses the use of absolute reproductive values in detecting inbreeding
depression.

9.4 Stable Age Distribution

The age distribution of a population that is growing geometrically (discrete version
of exponential growth, see Chap. 6) with constant mortality and fecundity rates will
gradually approach a fixed or stable age distribution (Lotka 1922). The proportion
of the population per age class (Cx) can be estimated from the finite rate of increase
(�) and survivorship (lx) (Mertz 1970):

Cx D
��xlxP!

yD0 ��yly
(9.7)

where ! is the oldest age class; lx is survivorship for age class x; ly refers to the
remaining age classes.

The stable age distribution for the female snow leopard population, based on
1983–2002 life table data, is presented in Table 9.1. Some 8 % of the individuals in
the female population are (female) newborns; the proportions decline per age class.

Figure 9.2 presents the observed female age distribution at post–breeding census
and the stable age distribution (both in numbers of animals). The older age classes
of the observed age distribution represent a pyramid, indicating population growth
in the past. The younger classes more represent the bottom of a bell–shaped
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Fig. 9.2 Observed and stable age distribution in female snow leopards

distribution. The urn shape of the stable age distribution indicates a declining
population (see Chap. 7).

Chapter 11 will discuss effects of age distribution on actual population growth
versus estimated growth, and the gradual approach towards a stable age distribution.

9.5 Breeding Season

The equations as described above assume that all individuals at the start of each age
class produce the average number of offspring (fecundity rate) for that class. This
assumption holds for the birth–pulse breeding model in which the time of breeding
and the time individuals enter a higher age class are the same.

Reproduction in a birth–flow model is spread over the year (age class). This
means that some individuals will have died without producing offspring. The
number of births in that age class will be overestimated, resulting in higher values
for the measures mentioned, if this mortality is not taken into account.

A general approach to dealing with this is to consider the number of potential
breeders after 50 % of the mortality for that age class has occurred. The midpoint
survivorship (Lx, see Eq. 7.7) is used to estimate the proportional number of births
per age class i.e. Lxmx.
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9.6 Life Tables and Census

Imaginary cohorts that combine cohorts (in time) involve overlapping generations.
Survival and fecundity may differ between (genetic) generations, e.g. due to
inbreeding. Moreover, management procedures may have changed during the study
period, e.g. reducing reproduction when the studbook population is reaching the
carrying capacity.

Survival and fecundity rates in imaginary cohorts are averages1 of the combined
cohorts. This means that life tables may not necessarily represent the most recent
trends, as mentioned earlier. It is recommended to compare growth rates as
estimated from life tables with census data in the studied period. Although age
distribution is not considered in census, differences in (annual) growth and birth
rates provide information about trends in (annual) cohorts.

Figure 9.3a presents annual census data of the female snow leopard population
in captivity for the period 1983–2002. The female population increased during the
period 1983–1995 and then fluctuates around 300 individuals. The arithmetic mean
growth rate for the same period is 4.2 % ( N� D 1:042). This positive growth is to
be expected as the female population increased from 133 to around 300 individuals
within the studied period.

This positive N� from census data differs from the negative growth as estimated
from life table data over the same period. This discrepancy can be explained by the
use of an imaginary cohort that combines data of 20 real (annual) cohorts. The age
structure of the population has changed over time from a pyramid shape in 1983
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Fig. 9.3 (a) Annual census of female snow leopards during the period 1983–2002 (b) Female
births per female. The dotted line refers to the geometric mean

1Weighted for individuals at risk in sub–cohorts.
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to an ageing population in 2002 (see Fig. 7.2). Figure 9.3b shows that this change
could be the result of managing population size by reducing reproduction i.e. the
number of female births per female has declined. Since the population increased,
since 1983, the contribution of recent cohorts to the imaginary cohort outweighs the
smaller early cohorts. This means that mortality and fecundity rates, and the derived
growth rates, are more likely to reflect the recent period.

Annual cohorts in studbook populations are generally small. For example, the
annual number of female births (cohorts) in the snow leopard population ranges
from 19 to 50 during the period 1983–2002. Each of these cohorts is too small for
life table analysis. This means that creating an imaginary cohort for this studbook
population is unavoidable. The study period as used in this example is selected
to cover the lifespan of approximately 21 years in this species (see Table 7.3).
This relatively long period embeds the risk that the imaginary cohort consists of
cohorts with different mortality and/or fecundity rates. Therefore, it is recommended
to include information on trends observed in the census data when selecting an
appropriate study period.

Selection of a study period will undoubtedly be a compromise between observed
trends and available data to construct a sufficiently large cohort. Moreover, the
available studbook data may not cover the (potential) lifespan. For example,
restricting a study period for female snow leopards to the period 1995–2002, when
female population size is stable, only covers a third of the potential lifespan.
Although left truncation results in including snow leopards born before 1995 (and
thus older ages), it also introduces individuals that may have been exposed to
different conditions.
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Chapter 10
Survival Analysis

Abstract The problem of censored data is not unique to studbooks, but was already
recognised in medical trials, e.g. patients who withdraw from a study. The non–
parametric Kaplan–Meier Product Limit Estimator which estimates survivorship
(lx) in flexible intervals, i.e. each time a death occurs or an individual leaves the
population (alive), was developed. Since dates of death and lost to follow–up are
recorded in studbooks, the Kaplan–Meier estimator adds a finer detail to survival
analysis than age–class based methods. This method is used to study effects of
treatments and statistical tests have been developed to compare results. This means
that the Kaplan–Meier estimator can be used to study differences in subgroups, e.g.
inbred/non–inbred groups. Statistical tests can be sensitive to the shape of survival
curves i.e. early or late deaths. The Q-test to assist in selecting the appropriate
test is described. The semi–parametric Cox Proportional Hazard Regression model
is an extension of the Kaplan–Meier estimator that is particularly suitable for
studying the effects of numerical measures, e.g. inbreeding coefficients. Effects can
be predicted in terms of increase/decrease in survival per unit. The result of Cox’s
model is presented as a hazard ratio which can be transformed to the more intuitive
survivorship. This model can handle pseudoreplication (frailty), left truncated and
recurrent data. The Kaplan–Meier estimator is versatile and can be applied to any
one–time event. Its use in age at first breeding is demonstrated with data from the
snow leopard studbook.

10.1 Introduction

The problem of incomplete observations, either because individuals live beyond, or
are lost to follow–up during, the study period, is certainly not unique to studbook
data (see Sect. 7.5.3). The medical world is confronted with similar problems, for
example, in clinical trials of different treatments (Kaplan and Meier 1958). Some
patients may die during the study period, others live beyond the end, and some
patients may not return for further check–ups i.e. they are lost to follow–up.
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138 10 Survival Analysis

The Kaplan–Meier product limit estimator (Kaplan and Meier 1958) (shortened
to Kaplan–Meier estimator) is a non–parametric method that calculates survival in
the cohort at the time (age) when a member dies or is censored. It thus differs from
survival in fixed intervals (age classes) as discussed in Chap. 7.

The Kaplan–Meier estimator is a versatile method that was developed for any
study in which time until a (random) event occurs in a group of objects (products)
is measured, e.g. a manufacturer who studies the proportion of failing incubators
during the guarantee period; or the age at first breeding (see Sect. 10.5). Any time
unit that suits the study, from nanosecond to galactic year, can be used.

It may not be a surprise that the Kaplan–Meier estimator is also applied
in ecology and population biology, such as for survival studies using radio–
telemetry (Krebs 1989; Pollock et al. 1989b), or survival studies on zoo pop-
ulations (Debyser 1995; Nuss and Warneke 2009). Recent studbook analysis
software programs, e.g. PMx (Ballou et al. 2011), PopLink (Faust et al. 2012)
and PML/studbookR (Princée 2014a,b) have implemented this method to create
survivorship curves.

Survivorship curves in management of (zoo) populations tend to be used mainly
in population projections (see Chap. 11). However, several nonparametric statistical
tests, such as the Mantel–Haenszel or logrank test in Chap. 7, have been developed
to compare survival distributions (see Harrington and Fleming 1982; Martinez and
Naranjo 2010). The combination of these tests and survivorship curves based on
(daily) events opens a “wealth” of detailed comparative studies, e.g. effects of
husbandry practices on neonatal survival, differences between managed and non–
managed populations, or effect of age on survival time since transfer to a new
location.

The semi–parametric Cox proportional hazards regression model extends the
Kaplan–Meier estimator with regression analysis (Cox 1972). Whereas the Kaplan–
Meier estimator is restricted to hypothesis testing between categorical groups
(e.g. sex or type of rearing), Cox’s model can handle numerical variables (e.g.
inbreeding coefficients, age of dam) and, moreover, quantifies effects by estimating
proportional differences in hazard rates (see also discussion of hazard rates in
Sect. 8.6).

Survival data can be subject to pseudoreplication (Hurlbert 1984), e.g. the litter
effect in species with multiple births and institutional differences in husbandry
practices. Software implementations of the Cox’s regression model can handle
pseudoreplication (e.g. Therneau 2015a,b).

The Kaplan–Meier estimator and the Cox’s regression model are both imple-
mented as standard in various statistical software e.g. in the R package sur-
vival (Therneau 2015a) which is used in this book.
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10.2 Kaplan–Meier Product Limit Estimator

The Kaplan–Meier Product Limit Estimator is used as a standard tool estimating
survival at time t (symbol: St) in clinical trials (Klein and Moeschberger 1997):

St D
Y

ti�t

�
Ni � Di

Ni

�
(10.1)

where Ni and Di is the number at risk (of death) and number of (actual) deaths,
respectively, at time i (Kaplan and Meier 1958).

Survival in Kaplan–Meier estimator is similar to age–class based survivorship in
life tables (see Eq. 7.6), i.e. when the “study” starts at birth. The software programs
PMx (Ballou et al. 2011) and PopLink (Faust et al. 2012) can transform Kaplan–
Meier survival times to age–class based survivorship.

Figure 10.1 presents survivorship and its 95 % confidence intervals for female
Californian sea lions in the European studbook (data 1978–2007). Survivorship at
birth is per definition 1.0, as in age–class analysis. However, stillbirths and deaths
at date of birth are considered “events”, resulting in an l0 of less than 1.0.

Summary statistics for survivorship in female Californian sea lions are presented
in Table 10.1. The median life expectancy is 4,746 days (�13 years) with a
wide 95 % confidence interval from �9.5 to 19:2 years. The mean life expectancy
(3,461 days) and its standard error are estimates, as the oldest individual was still
living at the end of the study (see Therneau 2015a).

Fig. 10.1 Survivorship (lt)
curve (solid line) in female
Californian sea lions born in
the European studbook
population between 1978 and
2007 (Nf D 453; D D 197).
Right censoring has been
applied. The dotted lines
represent the 95 % confidence
intervals. The X axis is
re–scaled to years
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Table 10.1 Summary of Kaplan-Meier statistics on female survivorship in Californian sea lions
that were born in the European studbook population between 1978 and 2007 (Nf D 453; Df D
197). The data are right–censored

95 % Confidence interval of median

Median Lower Upper Meana SEmean

4,746 3,461 6,996 5,172 289

Nf number of females, Df female deaths, SE standard error of the mean
a Restricted mean with upper limit of 10,784 days (29.5 years)

Right–censored individuals are included in being at risk, either until the end of
the study period or until the day they are lost to follow–up. This means that prorating
(see Chap. 7) is not an issue in analysis based on the Kaplan–Meier estimator.

10.2.1 Statistical Tests

Kaplan–Meier survival curves for male and female blesbok born in the European
studbook population between 1970 and 2008 are presented in Fig. 10.2. The median
lifespan of females is 6 years and 9 months (2,467 days). This is more than twice
the median lifespan of 3 years and 2 months (1,154 days) in male blesbok. Given
the relatively large sample sizes, i.e. Nf D 430 and Nm D 451, one may expect that
this difference is significant.

The Mantel–Haenszel or logrank test, as described in Chap. 7, is also applied
in survival analysis (Klein and Moeschberger 1997). The result of this test applied
to the blesbok example is �2 D 24:6; p < 0:0001, which means that the null
hypothesis that survival in males and females is the same is rejected.

Several variations (and names) of rank tests have been developed (see Léton
and Zuluaga 2005). The Gehan–Wilcoxon test is also frequently used in survival
analysis (Martínez et al. 2005). The logrank test is an unweighted test and is more
sensitive for differences in distributions at older ages, while the Gehan–Wilcoxon
test is a weighted test that places more emphasis on differences in younger ages (see
Klein and Moeschberger 1997; Martinez and Naranjo 2010).

Figure 10.2 shows that differences between male and female survivorship are
larger at older ages (but not the oldest ages). This suggests that the logrank tests
would be appropriate. The Q test is a pretest that has been designed to assist in
the selection of either the logrank or Gehan–Wilcoxon test (Martinez and Naranjo
2010). The procedure is as follows:

1. Identify the lower survival curve (Sm); which is the male curve in the blesbok
example.

2. Determine the ages (time t) nearest to Sm.t/ D 0:2 and Sm.t/ D 0:6 from the
lower survival curve. For the (male) blesbok t.0:6/ D 704 and t.0:2/ D 3; 413

(in days).
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Fig. 10.2 Right censored survivorship curves for female (solid line) and male (dashed line)
blesbok, born in the European studbook population between 1970 and 2008 (Nf D 430; Df D
284I Nm D 451; Dm D 300). The dotted-dashed horizontal line is the median survivorship. The
dotted horizontal lines refer to survivorship of 0.2 and 0.6. The X axis is re–scaled to years

3. Determine the survival rates in the upper survival curves that correspond to
nearest ages as found for males in (2); for the female blesbok these are Sf .704/ D

0:71 and Sf .3; 413/ D 0:35.
4. Estimate:

Q D . Sf .704/ � Sm.704/ / � . Sf .3; 413/ � Sm.3; 413/ /

Q D .0:71 � 0:6/ � .0:35 � 0:2/

Q D �0:04.
5. The logrank test is used when Q < 0, otherwise the Gehan–Wilcoxon test is

used.

Since Q < 0 the logrank test is recommended for testing the hypothesis that
survival is the same in males and females. The dotted horizontal lines in Fig. 10.2,
which represent both survival rates 0.6 and 0.2, can be used to approximate Q.

10.3 Cox Proportional Hazards Regression

The rank tests discussed above evaluate differences in distribution patterns (shape
of curve) of survival between groups. This means that one cannot formally conclude
that values for the median lifespan differ. For example, survival between sexes may
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start to differ after the age of sexual maturity. In species with large litter sizes
and high early mortality, 50 % in both sexes may have died before reaching sexual
maturity.

Statistical tests for comparing medians of survival curves have been developed,
but they are sensitive to type I errors (Chen and Zhang 2016). Therefore, these tests
are not discussed in this book.

Quantifying differences between survival curves can be achieved with parametric
models as discussed in Chap. 7 or the semi–parametric Cox proportional hazards
regression model (Cox 1972) (shortened to Cox’s model).

Cox’s model is an extension of the Kaplan–Meier estimator and similar to a
multiple regression where the response is the hazard (symbol: h) (see Sect. 8.6).
This regression is written in the form:

loge
�
h.t/

�
D loge

�
h0.t/

�
C ˇ1x1 C ˇ2x2 : : : C ˇpxp (10.2)

where h.t/ is the hazard at time t; x1, x2 . . . xp are the explanatory variables, e.g. sex,
inbreeding coefficient, age of dam; and h0.t/ is the baseline hazard when all the
explanatory variables are zero; ˇ1, ˇ2 . . . ˇp are regression coefficients.

The Cox’s model does not assume an underlying distribution, such as the
Gompertz–Makeham or Weibull distribution, but estimates the hazard ratio (HR)
between categories (e.g. males and females) or per unit (e.g. age of dam, litter size)
without estimating the base line hazard (h0.t/).

The mathematics behind the Cox’s model are more complicated than those of
the Kaplan–Meier estimator. Therefore, we leave this aspect with the quote “The
coefficients are estimated from the data using a statistical package” (Bewick et al.
2004), and move on to the interpretation of results. See Klein and Moeschberger
(1997), Kleinbaum and Klein (2006) and Klein et al. (2013) for more in–depth
details on Cox’s model. This book uses the software implementation of Cox’s model
in the R package survival.

Table 10.2 presents results of Cox’s model on survivorship differences between
female and male blesbok. In R/survival the first group in alphabetical order or factor
levels within categorical data is used as the base–line.1 This means that only results
for the male group in relation to the base–line (female) group are provided.

Table 10.2 Summary of Cox proportional hazards regression model on differences in survivorship
between sexes in blesbok, born in the European studbook population between 1970 and 2008
(Nf D 430; Df D 284; Nm D 451; Dm D 300). The data are right–censored. Female survival is
used as base–line (see text)

Predictor ˇ SEˇ z p > jzj HR 95 % Confidence Model p

Male 0.325 0.075 4.347 0.000 1.385 [1.196, 1.603] 0.527

Nm males, Dm male deaths, Nf females, Df female deaths, ˇ regression coefficient, SEˇ standard
error of ˇ, z Wald statistic, p > jzj probability of z, HR hazard ratio, Model p Therneau–Grambsch
test

1The order can be changed by manually assigning levels to factors in R.
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The main value of interest is the hazard ratio (HR), which is estimated from the
regression coefficient (ˇ) as:

HR D eˇ (10.3)

The HR value of 1.385 in Table 10.2 means that males have a 1.385 times (38.5%)
higher risk of dying (hazard) at any time (age) than females of the same age. An
important assumption of the Cox’s model is that the hazard ratio between categories
is constant over time (age), hence the previous phrase “hazard at any time”.

The easiest way to check whether this assumption of constant hazard ratio is
met, is to compare survival curves of categories (in this case sex). Whenever two
or more categories cross, the assumption is not met. The survival curves of male
and female blesbok do not cross (Fig. 10.2). This means that a statistical test such
as a goodness–of–fit test (Kleinbaum and Klein 2006) or the Therneau–Grambsch
test (Grambsch and Therneau 1994) is required to test the assumption of constant
hazard ratio. The second test is implemented in R/survival (Therneau 2015a).

The null hypothesis is that the hazard ratio is constant over time (the proportional
hazards assumption or PH assumption). The test result can be somewhat counter–
intuitive as the (Cox) PH assumption is not met when p < 0:05. The hazard ratio
between male and female blesbok is considered constant i.e. p D 0:527 (Table 10.2).

A hazard ratio that is constant over time does not indicate whether the differences
between categories (e.g. male and female) – expressed as regression coefficient(s)
– is/are significant. The Wald test can be applied to test whether the regression
coefficient ˇ differs significantly from 0 (the null hypothesis). The result of this
test is z D 4:347; p < 0:0001, and therefore the null hypothesis is rejected.

A significant regression coefficient alone is not sufficient to accept the Cox’s
regression model. The confidence interval for the hazard ratio should not include 1
(as this would mean that male and female survivorship are not different).

The Kaplan–Meier estimator is not really suitable for analysing effects of
numerical variables, such as age of the parent(s), year of birth (cohort) and
inbreeding coefficients, on survival. For example, each observed cohort would be
considered as a separate category. The Cox model can handle numerical variables.
This section will use cohorts of Nepalese red pandas as an example.

Survival analyses in this chapter (and Chap. 7) are based on imaginary
cohorts (Caughley 1977). The choice of combining cohorts is a balance between
sufficient sample size and similar husbandry conditions (see discussion in Chap. 3).
Cox’s model can be applied to test for differences between cohorts e.g. to test
whether there is a trend of increased survival over time.

Table 10.3 presents results on survival differences in real cohorts of female
Nepalese red pandas from 1977 to 2012. The different “cluster” models are ignored
for the moment. Cox’s model estimates the hazard ratio of continuous variables per
unit, which is 1 year for red panda cohorts. The estimated hazard ratio of 0.98, which
is significant, means that the risk of females to die at any time, has declined with
�2 % per year since 1977.
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Table 10.3 Summary of Cox proportional hazard regression on cohort differences in survivorship
under different marginal (cluster) models in female Nepalese red pandas born between 1977 and
2012 (N D 926; D D 665). The data are right–censored

Cluster ˇ Robust SEˇ z p > jzj HR 95% Confidence Model p

�0.019 0.0048a �4.035 0.0001 0.981 [0.9719, 0.9902] 0.842

Litter �0.019 0.0049 �3.856 0.0001 0.981 [0.9718, 0.9907] 0.840

Dam �0.019 0.0051 �3.748 0.0002 0.981 [0.9716, 0.9910] 0.835

Siteb �0.019 0.0063 �3.037 0.0024 0.981 [0.9689, 0.9932] 0.791

N individuals, D deaths, ˇ regression coefficient, Robust SEˇ robust standard error, z Wald statistic,
p > jzj probability of z, HR hazard ratio, Model p Therneau–Grambsch test
aStandard error from default method
bLocation of birth

Fig. 10.3 Adjusted
survivorship curves for
female Nepalese red pandas
born in the years 1982, 1992,
2002 and 2012. The X axis is
re–scaled to years

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Age in years

S
ur

vi
vo

rs
hi

p

cohort
1982
1992
2002
2012

Hazards are not straightforward to interpret. The trend in survival can be better
observed by converting hazards into survival rates (see next section for method)
to plot adjusted survival curves (i.e. adjusted for variables (Kleinbaum and Klein
2006)). Figure 10.3 presents adjusted survival curves for the female cohorts 1982,
1992, 2002 and 2012 as predicted from Cox’s regression model. It shows the impact
of a 2 % decrease in hazards per year on survival. For example, female median
lifespan increased from �5 years (1,901 days) in 1982 to 10 years (3,690 days) in
2012.

It is important to realise that adjusted survival curves are predictions. Extrapola-
tions to values for variables that lie outside the original data are not recommended.
Such predictions, depending on the type of variable, may not even make sense.

Adjusted survival curves of categorical variables can be compared with those
estimated with the Kaplan–Meier estimator. This provides an idea of the extent to
which the predictions are reasonable. This will not work for numerical variables, as
discussed above.
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Fig. 10.4 Confidence limits
of adjusted survivorship
curves of female Nepalese red
pandas born in the years 1982
(solid line) and 2012 (dashed
line). The horizontal
(dash–dot) line refers to 50 %
survivorship. Shaded bands
are 95 % confidence intervals.
The X axis is re–scaled to
years
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Confidence intervals of survivorship can assist in assessing predictions.
Figure 10.4 shows the 95 % confidence bands for adjusted survival curves of red
pandas born in 1990 and 2012. Note that the confidence band for the 2012 data is
considerably wider than for the 1990 cohort. This means that the predictive value
for the 2012 cohort is low. Given that only 1 year of data on the 2012 cohort is
available, such a low prediction should not be a surprise.

10.3.1 Frailty

The observed variance of survival data can be greater (overdispersed) than expected
from a binomial distribution (see Eq. 8.1). This means that there is an additional
random variation on top of the basic random (binomial) variation. In survival
analysis, this additional random effect is named frailty (Vaupel et al. 1979), referring
to the effect that the most “frail” individuals, i.e. those that are affected more by
this random factor, may die early. Frailty models have been developed to handle
overdispersion in survival analysis (Hougaard 1995; Wienke 2010).

A special type of frailty model is the shared frailty model of the proportional
hazards regression (Cox’s) model (Klein and Moeschberger 1997). This model
refers to random effects that are shared by individuals in subgroups or clusters
e.g. litter, family, zoological garden or protected area. In other words, shared frailty
models can handle pseudoreplication (Hurlbert 1984) in survival data.

Shared frailty models estimate additional variance within identified subgroups,
e.g. litters, through random effects that follow an assumed statistical (error) distri-
bution such as gamma, Gaussian (normal) or negative binomial (Hougaard 2013).
Another method is to use generalized estimating equations (GEE), to estimate the
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additional variance due to differences between subgroups as observed in the data.
The first method is a frailty model, the second method is a so-called marginal model.
Both models are implemented in the R package survival.

Table 10.3 presents results of applying marginal models (“cluster”) for litters,
mothers (dam) and location of birth in survival analyses as described in the previous
section. The regression coefficient (ˇ) and consequently the hazard ratio do not
differ between “plain” and marginal models. The robust standard error, however,
has increased in marginal models compared to the plain model. Location of birth
has more impact on the total variance than maternal and litter effects, which results
in a wider confidence interval.

The results of analyses with marginal models do not change the conclusion that
the year of birth (cohort) has a positive effect on female survival in Nepalese red
pandas in captivity, i.e. p values are less than 0.005. However, this example shows
that pseudoreplication can increase variance, and therefore increases the risk that
the null hypothesis (no differences) is falsely rejected in the plain model.

The Cox’s regression model in the survival package facilitates the use of a single
variable in either the frailty model or the marginal model. However, there are cases
where one would like to include multiple random effects (which are not necessarily
associated with subgroups). Multiple random variables with Cox’s model can be
analysed, for example using the R package coxme (Therneau 2015b).

Note that categorical variables with large numbers of categories are unworkable
models, as a regression coefficient for each category needs to be estimated. An
example of an unworkable category would be the use of zoological institutions in
an international studbook.

10.3.2 From Hazard Ratio to Survivorship

Although most statistical software will create survival curves from hazard ratios, it
is important to understand some of the basic methods.

Hazard ratios for categorical variables are fixed values for each category
compared with the baseline hazard; see the hazard ratio for males compared to
females in Table 10.2 as an example. The hazard ratio for a continuous variable,
like cohorts, is generally presented for one (1) unit. In the case of cohorts this unit
is 1 year.

It can be confusing when the hazard ratio refers to one unit from a variable that
ranges from 0 to 1. For example, in the case of inbreeding coefficients, the hazard
ratio compares hazards between non inbred (F D 0) and fully inbred (F D 1)
individuals. This can lead to very large values, e.g. HR D 67:3 in inbreeding effects
on 6 month survival of Nepalese red pandas (see Chap. 13). In such cases it makes
more sense to recalculate HR for intervals that are within the observed range, e.g. 0
to maximum observed inbreeding coefficient.
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Equation 10.3 can be adjusted to facilitate the use of intervals other than 1
(including fractions):

HRi D eˇ�i (10.4)

where ˇ is the regression coefficient in the Cox model, and i is the interval from 0
(the baseline hazard).

The regression coefficient in the above example is loge.67:3/ D 4:21. The hazard
ratio for F D 0:25 would be e4:21�0:25 D e1:05 D 2:86. This means that the hazard
of dying at any time is 2.86 times higher in the inbred F D 0:25 group than in the
non–inbred group.

Knowing the hazard ratio allows the estimation of survival for interval i at any
time (age) using the following equation:

Si.t/ D S0.t/HRi (10.5)

where S0.t/ is the baseline survival and Si.t/ survival at interval i.
However, there is a caveat in this method as the Cox’s model calculates the

hazard ratio without “knowing” the exact distribution of the baseline hazards h0.t/.
Estimation of the empirical cumulative hazard H0.t/ is one of the methods to
estimate S0.t/ (Klein and Moeschberger 1997), which is based on the following
relation:

S.t/ D e�H.t/ (10.6)

Statistical software, such as R/survival (Therneau 2015a), is needed to estimate
the cumulative hazard, especially from larger sample sizes.

10.4 Left Truncated and Recurrent Data

The survival data in the previous section were right censored, but not left truncated.
The main reason is that versions of logrank tests that are implemented in basic
packages in statistical software, e.g. survival (Therneau 2015b) and SAS (Foreman
et al. 2008) are not valid under left truncation. This practical limitation also refers to
recurrent data, i.e. individuals that are not at risk during particular periods of time
e.g. during the time an individual is on loan outside the studied zoo region. Such an
individual will be considered at risk as soon as it returns. This means that differences
between Kaplan–Meier survival curves can not be tested with the standard packages.

Left truncated, right censored and/or recurrent survival data can be analysed
with the Cox’s model. This does not mean that the Kaplan–Meier estimator can
not be used for testing differences in these types of survival data. Logrank tests
that are adjusted for left truncated data have been developed (Pollock et al. 1989a).
Packages that can handle recurrent data also been developed, e.g. R package
survrec (González et al. 2013).
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10.5 Age at First Breeding

Although this chapter is dedicated to survival analysis, some other uses of the
above methods in the field of demography will be briefly introduced in this section.
The Kaplan–Meier estimator is, as mentioned in the introduction, not restricted to
estimating survivorship. In principle, any one–time event (per individual), such as
time until first breeding, can be studied. The original name product–limit estimator
is in that sense more appropriate. The measure in this analysis refers to the
proportion of individuals that have not reproduced (i.e. the “non–breeders”). Right
censoring in analysis of first age at reproduction applies to non–breeders in the
cohort which have died (they cannot reproduce), or are lost to follow–up during the
study period, or are living at the end of the study period.

Figure 10.5 presents the proportion of non–breeders in female (solid line) snow
leopards that are born in the period 1983–2003. Summary statistics for both sexes
are presented in Table 10.4. The proportion of non–breeders stays 1 until the first
birth has occurred around the age of 2 years (note that the analysis in Chap. 3
resulted in a younger age, i.e. 500 days, due to an outlier/artefact in the data).

Fifty percent of the females and males have reproduced at least once at the
(median) age of �7 and 8 years (2,571 and 2,869 days), respectively (Table 10.4).
The mean age at first reproduction is an estimate depending on whether individuals
living at the end of the study period reproduced or not.

The results of the logrank test imply that the age at first breeding curves of males
and females do not differ (�2 D 0; p D 0:92). This also means that the median age
at first breeding does not differ between sexes in snow leopards.

The proportions of non–breeders do not decline at the tail of the distribution as
individuals have reached the post–reproductive lifespan. Some 38 % and 30 % of

Fig. 10.5 Proportion of
non–breeders in female snow
leopards that are born
between 1983 and 2003; right
censoring is applied. The
dotted lines are the 95 %
confidence intervals. The
horizontal line represents the
median first age at birth. The
X axis is re–scaled to years
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Table 10.4 Summary of product–limit statistics for age at first reproduction (in days) in female
and male snow leopards that are born between 1983 and 2003

95 % confidence interval of median

Sex n Median Lower Upper Meana SEmean

Female 697 2,571 2,186 3,319 3,542 130

Male 674 2,869 2,544 3,306 3,451 133

n number of individuals, SEmean standard error of the mean
aRestricted means with upper limits of 6,104 and 5,785 days in females and males, respectively

female and male snow leopards in the cohort, respectively, have never reproduced.
This important information is not available from fecundity tables (Chap. 7).

However, one needs to be careful in interpreting the proportion of non–breeders
in an imaginary cohort. Individuals that have not reached sexual maturity by the end
of the study period, e.g. snow leopards born in 2002 and 2003 in the example, lead
to overestimation of the proportion of non–breeders. It is recommended to carry
out the analysis of first age at breeding twice, i.e. with younger cohorts to estimate
the youngest (social) breeding age, and without to estimate the proportion of non–
breeders.

Analysis of age at first breeding introduces a different type of censoring i.e.
left censoring. Left censoring refers to individuals to which the event, e.g. birth,
has occurred before the study period, whereas in left truncation the event has not
happened (which explains why left censoring, logically seen, can not be applied in
survival analysis).

The above means that one needs to ensure that left truncation in analysis of age at
first birth is not left censoring. This would either wrongly increase the proportion of
non–breeders or increase age at first birth by considering the second or later births
within the study period as first births.
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Chapter 11
Population Projections

Abstract Population projections based on observed growth trends are important
in captive animal management. Several methods, which require different levels
of detail in the data, are available. A projection based on the geometric mean of
population growth .�/ estimated from recent census data, optionally per sex, is
the simplest model. Ecological growth models, e.g. logistic growth that fits the
population data, can be used to project future development of the population. Census
data from the blesbok studbook are used to illustrate these census–based methods.
The Leslie matrix is applied to project population development of age– and stage–
structured populations. Application of this method is described for birth–pulse and
birth–flow reproduction. Damping of � and convergence to a stable age distribution
are also described. Since studbook software handles projections, managers are
generally not exposed to matrix algebra, so a brief introduction to matrix algebra
is presented as this method is often applied in ecological studies. Matrix calculus
provides methods for testing the effects of changing individual survival and
fecundity rates on �. Changes can be estimated as absolute values (sensitivity) or
proportional values (elasticity). The standard Leslie matrix is a deterministic model.
A stochastic version of this matrix model is used to show the effects of demographic
uncertainty on population development. The differences between projection and
prediction are discussed. A retrospective study in which projections are compared
with actual population development is presented. The advantages and disadvantages
of applying stage–based models to studbook populations are discussed.

11.1 Introduction

Chapters 4, 5, 6, 7, 8, 9 and 10 focus on methods and techniques to assess historical
and current trends in studbook(–like) populations. Knowledge and understanding of
population dynamics are essential in order to adapt and improve management for
maintaining demographically viable populations. Being able to make population
projections is an intrinsic part of this management.

The Leslie matrix (Leslie 1945, 1948) can be considered as the “standard”
method for population projections using studbook software (see Chap. 2). The Leslie
matrix not only projects population size, but projects age distribution, separately for
males and females, as well.
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152 11 Population Projections

This method requires data on age–specific fecundity and mortality, and on age
distribution. These data are not necessarily available for all studbook species. For
example, age–specific fecundity rates can not be estimated when parentages are
incomplete, such as in species that live in herds or colonies. The alternative method
is to project population size based on census data (see Chaps. 4 and 6).

Small sample sizes result in high variances in age–specific fecundity and
mortality rates (Chap. 7), which consequently can affect the quality of population
projections. Comparison with projections based on other methods, such as annual
growth rates in census data, is recommended to detect flaws in life tables.

11.2 Census Data

Chapters 4 and 6 described methods to estimate population growth rates from census
data. These growth rates can be used to project population size.

The finite rate of increase .�/, in practice often expressed as the annual growth
rate, provides a straightforward measure to project population size:

NtC1 D �Nt (11.1)

where Nt and NtC1 are the population sizes at times t and t C 1, respectively.
Since � can fluctuate greatly per year, using the most recent value is not the best

option for population projections. The geometric mean .�G/ is a better measure to
reflect a trend in population growth (see method in Chap. 4).

Figure 11.1a presents census data for the period 1997–2007, and a 25 year
projection of the European studbook of blesbok. The geometric means for male,
female and total population for this census period, i.e. 1.023, 0.998 and 1.009
respectively, were used.

The projected population develops as would be expected from the �GŒ1997;2007�

values. However, this does not mean that the projections are correct. The projected
male population increases and surpasses the female population. That is very
unlikely, given that the female population is declining, blesbok produce singletons,
and the overall sex–ratio at birth in the studbook population is equal (binomial test,
p D 0:278). This means that the male population will decline sooner rather than
later. The population projection in Fig. 11.1a does not reflect the reality.

The projection of total population size based on �GŒ1997;2007� reflects the trend as
observed in male blesbok during the last 8–9 years, but less well in females, where
the declining trend in the female population starts around 2001 (see Fig. 11.1a). It
would therefore be more realistic to project the female population size based on this
decline. Figure 11.1b presents the projected female population size based on �G for
females in the period 2001–2007.

The female population is declining much faster than projected with �GŒ2001;2007�

(for the above reasons). These projections can be extended by extrapolation from
the 95 % confidence interval for the geometric mean (Norris 1940). The projections
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Fig. 11.1 (a) Census of blesbok population for the period 1997–2007 and 25 years projected size
based on the geometric mean of � for this census period. dot–hashed line: females; hashed line:
males; solid line: males, females and unknown sex. (b) Female census for the period 2001–2007
and 25 years projected size based on the geometric mean of � for this census period. The dotted
horizontal lines refer to projections based on the 95 % confidence interval of the geometric mean

based on the upper and lower limits of the confidence interval for �GŒ2001;2007� (0.96
and 1.01) show that the female population can also decrease more rapidly or even
increase (see Fig. 11.1b). Given these differences one may wonder whether this
projection has any value other than indicating the limitations of projections.

Fecundity and mortality rates are assumed to remain the same in the previous
example. This means that the annual growth rate in the above model is assumed
to remain constant during the projected period of time. Such an assumption is
not likely to hold given the limited space that is available per species for captive
breeding (Princée 1998).

Chapter 6 showed that a logistic growth model fits development of the female
blesbok population during the period 1970–2007 .�2 D 23:97; p D 0:95; df D 37/.
Projections can be made on the basis of this growth model. Figure 11.2 presents a
25 years projection of the female blesbok population.

This population grows until it has reached a size of 145 (as estimated by the
model). This size would be the carrying capacity of the habitat for a free–ranging
population which is subject to density–dependent growth. It may well be that the
European studbook population of blesbok is reaching its carrying capacity, i.e.
available zoo space, and that management measures are taken to control population
growth. However, it would be naive to make such a conclusion based purely on
the data without consulting studbook keepers. In the end, even a well–fitted logistic
growth model is still a model.



154 11 Population Projections

Fig. 11.2 Logistic growth
model for the female blesbok
population in the period
1970–2007 and 25 year
projection (solid line). Open
circles are census data for the
period 1970–2007
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11.3 Leslie Matrix

Population projections based on census counts and (annual) growth rates do not
reveal the effects of unstable age distributions on population size. For example, the
age distribution of the female snow leopard population in 2002 has more individuals
in the older reproductive classes than in younger age classes (see Chap. 9). This
implies that population size can decline, at least initially, instead of remaining more
or less stationary in size, as indicated by the net reproductive rate of 1:009.

It is important to use age distribution and life table data, whenever available, in
population projections and to study the effects of age distribution on population
growth. The Leslie matrix (Leslie 1945, 1948) was developed to project age
distribution and population size using these data. The projection (time) interval for
age–structured populations is equal to the class–width.

The underlying matrix algebra of the Leslie model can be somewhat “intimidat-
ing”, but the basic principles are straightforward: (1) individuals pass from one class
to the next with the survival probability Px; and (2) each individual in class x that
survives until the start of the breeding season, is expected to produce mx offspring,
of which a proportion of P0 are alive at the start of the next projection interval. This
measure is named fecundity rate (symbol: Fx) (Caswell 2001). These “principles”
can be written mathematically as:

Nx;tC1 D Px�1Nx�1;t x > 0 (11.2a)

N0;tC1 D

!X

0

FxNx;t (11.2b)
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Fig. 11.3 Projection of the
female snow leopard
population in northern
hemisphere zoos. The solid
dots represent the results of a
Leslie matrix projection; the
dashed line represents the
projected population size
based on � D 0:96 as
estimated from life table data
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where Nx is the number of individuals in age class x; t and t C 1 are intervals; ! is
the oldest age class. Note that the initial age class is 0, conforming to the original
paper by P.H. Leslie (1945).

The fecundity rate .mx/, which refers to mean number of offspring per individual
(of the same sex), in fecundity tables (Chap. 7) is named maternity function within
the context of Leslie matrices (Caswell 2001). This convention is followed in this
chapter in order to avoid confusion between Fx and mx.

The exact methods used to estimate Fx and Px depend on the type of birth season
i.e. birth–flow or birth–pulse; and the timing of census i.e. pre–breeding or post–
breeding for birth–pulse reproduction. Details of these methods and their use in the
Leslie matrix will be discussed in Sects. 11.3.1 and 11.4, respectively.

Source code for matrix population models that were originally written in
MATLAB (Caswell 2001) have been “translated” to R script. The R package
popbio (Stubben and Milligan 2007) is used in this chapter.

Figure 11.3 shows the Leslie matrix projection of the female snow leopard pop-
ulation in northern hemisphere zoo regions. The dashed line refers to a projection
based on the annual growth rate .�/ estimated from the life table data without taking
the age distribution into account. The northern hemisphere subset of the studbook
data has been used, as the breeding season differs between north and south. This
allows the selection of a birth–pulse (post–breeding) model for this species. Life
table data estimated over the period 1983–2002 for this subpopulation are similar
to those presented in Tables 7.3 and 7.4. The age distribution on 30 August 2002
(post–breeding) is used.

The female population is declining by about 4 % a year, i.e. � D 0:96. However,
the Leslie matrix projection shows the decline is less than expected from � during
the first 10 years. After that period of time the population will gradually decrease,
conforming to the estimated �.
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Fig. 11.4 Leslie matrix
projection of female snow
leopards in the northern
hemisphere zoo region. The
Y–axis represents the total
population size. The coloured
bars refer to age groups that
correspond with life stages
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Fig. 11.5 Damping in annual
population growth .�/ of
female snow leopard
population. The dotted line
refers to � D 0:964
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A better insight into these different phases of population development can be
obtained by including the individual age classes (see Fig. 11.4). Plotting some 20
classes results in a “cluttered” image that hardly allows the detection of trends.
Therefore, age classes have been grouped in juvenile (0–1), subadult (2–3), adult
(4–14) and senescence (15C) stages.

The number of births initially increases as juveniles and subadults become
sexually mature. However, reproduction is not sufficient to replace the adult and
the senescence groups, and population decline is faster until convergence to a stable
age distribution (see Fig 9.2) has been reached. The population then declines as
expected from �. This effect is named damping.

Figure 11.5 shows damping in annual population growth .�/ in female snow
leopards. Converging of � starts, as would be expected from Figs. 11.3 and 11.4,
around year 10. This convergence time conforms to the value (10.1 years) as
calculated from the Leslie matrix.
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Information about convergence time is important for population management
because measures that change population growth do not necessarily have an
immediate effect.

11.3.1 Birth–Pulse

Birth–pulse means that all births of the season occur at the same time. The timing
of census therefore affects which age classes can be counted.

11.3.1.1 Post–breeding

A post–breeding census immediately after the birth–pulse will include all newborn
individuals at the start of age class 0. The survival rate Px in this case is equal to the
px in the life table (Chap 7):

Px D lxC1=lx (11.3)

where lx and lxC1 are survivorship values for classes x and x C 1, respectively.
The earliest breeding season after a post–breeding census is just before the next

census. This means that individuals must have survived an entire interval before
reproducing. The fecundity rate .Fx/ in post–breeding is calculated as:

Fx D Pxmx (11.4)

where Px is the survival probability and mx is the maternity function for age class x.

11.3.1.2 Pre–breeding

The age distribution at pre–breeding census starts with survivors of the previous
birth season that have reached class 1. These individuals become the first age class
in the projection matrix, i.e. P0 is the survival rate of individuals in the age interval
1–2 in this model. The survival rate is then calculated as:

Px D lxC2=lxC1 (11.5)

where lxC1 and lxC2 are survivorship values for classes x C1 and x C2, respectively.
Since breeding takes place (immediately) after the pre–breeding census, only

offspring that have survived to the first census will be counted in the fecundity rate
of parents in class .Fx/:

Fx D l0mx (11.6)

where l0 is the survival rate of newborns and mx is the maternity function for age
class x.
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11.3.2 Birth–Flow

Individuals in birth–flow reproduction can be born at any time within a projection
interval. This means individuals belonging to the same age class have different
ages. Unfortunately this information is “lost” in an age–structured population. The
solution is to approximate Px by calculating its midpoint value:

Px � LxC1=Lx (11.7)

where LxC1 and Lx are midpoint survivorship values for classes x C 1 and x,
respectively. See Eq. 7.7 for estimation of Lx.

The fecundity rate .Fx/ is approximated in a similar way:

Fx � L0

�
mx C PxmxC1

2

�
(11.8)

where L0 is the midpoint survivorship of age class 0, Px is the midpoint survival
rate, and mx and mxC1 fecundity rates in classes x and x C 1.

11.4 Some Matrix Algebra

Matrix algebra is the original methodology for population projections based on age–
specific fecundity and mortality data i.e. the Leslie matrix (Leslie 1945, 1948).
Since studbook software such as PMx (Ballou et al. 2011) automate the process
of constructing life tables and population projections, it is not a strict requirement
to understand matrix algebra in detail. Moreover, software has also been developed
for Leslie matrices, e.g. the R package popbio (Stubben and Milligan 2007).

There are clear advantages, though, in being familiar with matrix notations, as
population matrix methods are used in ecological studies (which could involve
“studbook” species). Equations 11.2(a) and (b) can be expressed as a matrix
equation. The following example is for four age classes (with the first class
numbered “0”):

2

664

N0

N1

N2

N2

3

775 .t C 1/ D

2

664

F0 F1 F2 F3

P0 0 0 0

0 P1 0 0

0 0 P2 0

3

775 �

2

664

N0

N1

N2

N3

3

775 .t/ (11.9)

which can be concisely written as:

N.t C 1/ D AN.t/ (11.10)

where A is the projection matrix or Leslie matrix.
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The top row of the matrix holds values for fecundity rates .Fx/. Survival
rates .Px/ are placed on the diagonal starting from row 2 of the first column.
Growth rates, generation time, reproductive values and stable age distribution, as
presented in Chap. 9, can be calculated from population matrices. In principle, a
basic understanding of matrices, i.e. constructing a valid Leslie matrix, is required
to use the available software.

11.5 Sensitivity and Elasticity

The results of population projections can indicate that management measures are
required to (temporarily) increase or decrease the growth rate. Populations that reach
carrying capacity require a decrease in growth rate (assuming that carrying capacity
cannot be increased). Such a decrease is usually achieved by reducing reproduction.
Populations that are declining or are growing too slowly, require measures that focus
on increasing survival and/or reproduction.

Species’ biology and knowledge of husbandry determine which measures to
change population growth are feasible. For example, weaning age will determine
the minimum inter–birth interval, and thus affects the number of females that
can reproduce each breeding season. Husbandry may already have resulted in low
(juvenile) mortality compared to the wild and/or past.

Measures to change population growth should not only be feasible to implement,
but should be effective as well. One could experimentally test effects or sensitivity
by manipulating individual fecundity and mortality rates in a table. Matrix calculus,
however, offers methods to calculate the effect of a change in each individual rate
in the matrix on �.

This effect is expressed as the sensitivity coefficient (symbol: sij), which is the
rate of increase in � for an infinitesimal change of matrix element aij:

sij D
ı�

ıaij
(11.11)

where i and j are the row and column number of a matrix element, respec-
tively (Caswell 2001).1

The result of sensitivity analysis is a matrix .S/. Equation 11.12 presents a Leslie
matrix .A/ and a sensitivity matrix .S/ for age classes 0 to 3 of female snow leopards
in the northern hemisphere zoo region. The matrix cells for survival and fecundity
(in italicised style), are the same as presented in Eq. 11.9.

Although only four age classes are shown, analysis involved 16 age classes, i.e.
data are truncated after the last reproductive age class .� D 0:96/. Sensitivity

1It is easy to see the confusion with age classes starting at 0, whereas row and column numbers of
a matrix start at 1.
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analysis calculates the sensitivity coefficient for all matrix elements. Only matrix
elements that represent survival or fecundity rates are of interest for population
growth. These are indicated in bold font.

A D

2

664

0 0 0.011 0.156
0:686 0 0 0

0 0:981 0 0

0 0 0:985 0

3

775 S D

2

664

0.118 0.084 0.085 0.087
0:165 0:118 0:120 0:122

0:162 0:115 0:118 0:120

0:157 0:112 0:114 0:117

3

775 (11.12)

Large sensitivity coefficients have more effect on � than small ones. Matrix S
shows that population growth is more sensitive to mortality changes in age class
0 than to age class 1, i.e. sensitivity coefficients s21 and s32 are 0.165 and 0.115,
respectively. The survival rate of newborns .P0/ is 0.686. The effect of increasing
the survival rate P0 with 0.1 on � can be calculated as follows:


� D s21 � 
P0 D 0:165 � 0:1 D 0:0165 (11.13a)

� D 0:726 C 0:0165 D 0:7425 (11.13b)

Sensitivity coefficients for survival rates are higher than those for fecundity rates
(0.084 and 0.085 in matrix S). However, effects between these groups of rates can
be difficult to compare as the range for survival rates is bound by the range 0 to 1,
while fecundity rates can be larger than 1. A solution to this problem is to calculate
the proportional effect, named elasticity (symbol: eij):

eij D
aij

�
sij (11.14)

where aij is a Leslie matrix element and sij a sensitivity coefficient, at row i and
column j.

A D

2

664

0 0 0.011 0.156
0:686 0 0 0

0 0:981 0 0

0 0 0:985 0

3

775 E D

2

664

0 0.001 0.007 0.014
0:117 0 0 0

0 0:117 0 0

0 0 0:117 0

3

775

(11.15)
Equation 11.15 presents the results of elasticity analysis of matrix A in a new

matrix E. The elasticity coefficients e21, e32 and e43 of survival in classes 0, 1 and
2, respectively, are 0.117. This means that changes to these survival rates will have
the same proportional effect on �. Elasticity coefficients for young reproductive
age classes are very low (i.e. 0.001, 0.007 and 0.014). This means that improving
fecundity in the young age classes has hardly any effect on �.

Sensitivity analysis can be used in demographic management to determine how
an increase in population growth can be achieved effectively. In the example of snow
leopards, the focus would be to improve survival in the young age classes. However,
sensitivity analysis does not tell us whether measures are feasible.
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For example, the mean (and median) litter size in snow leopards is 2. This means
that the fecundity rate is expected to be 2 when all females in an age class reproduce.
Increasing neonatal and juvenile survival rates may require human interventions,
such as hand–rearing, that may affect socialisation and behaviour that are not
necessarily beneficial for species to be reintroduced or for future reproduction.

11.6 Simulations

Fecundity and mortality are subject to demographic stochasticity due to the
sampling process (Shaffer 1981). The results of bootstrap techniques/analyses
on fecundity and mortality rates in Chap. 8 illustrate this type of uncertainty in
population growth.

Demographic stochasticity is one of the four broader groups of uncertainties
(environmental stochasticity, natural catastrophes and genetic stochasticity) that
are considered in species conservation (Shaffer 1981). These four groups of
uncertainties can be modelled for studbook populations with the software program
VORTEX (Lacy and Pollak 2014; Lacy et al. 2014).

Projection models of studbook populations include demographic stochasticity
e.g. ZooRisk (Earnhardt et al. 2008) and PMx. The R package popbio (Stubben and
Milligan 2007) also supports demographic stochasticity through simulation and is
used in this section. This software assumes a binomial and Poisson distribution for
mortality and fecundity, respectively.

Figure 11.6 presents the results of a stochastic Leslie matrix model with 100
runs for the female snow leopard population. The 95 % projection interval for year
2027 is between 89 and 169 females. This wide interval illustrates that demographic
stochasticity needs to be taken into account in the management of small populations.

Fig. 11.6 Stochastic
population projection of
female snow leopard
population (100 runs). Dotted
lines are individual runs; the
solid line is the mean female
population size. Dashed lines
represent the 2.5 and 97.5
percentiles
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The Poisson distribution is not necessarily the optimal random model for
fecundity (see Chap. 8). Nevertheless, even simple stochastic models show how
population development can deviate from deterministic models that are based on
fixed growth rates.

11.7 Projection or Prediction

Population projections as presented above are often interpreted as forecasts or
predictions. However, this interpretation is not correct. Projection refers to what
would happen with the population if the current fecundity and mortality schemes
do not change. Forecast or prediction refers to what will happen to a population
with a certain probability (Caswell 2001; Keyfitz 1972).

Fecundity and survival rates are not likely to stay constant in the future.
Management measures to reduce breeding will be taken whenever the population is
growing towards filling the available space (carrying capacity), e.g. logistic growth
in the European blesbok population (Fig. 11.2). Husbandry continuously improves
and can result in lower mortality and/or higher fecundity. This particularly applies
to species that were not maintained in captivity until recently, e.g. species that are
rescued as the response to the amphibian crisis caused by the chytrid fungus (Cheng
et al. 2011) and global warming (climate change) (Raxworthy and Nussbaum 1996).
Inbreeding is another factor that can (negatively) affect fecundity and mortality over
time (see Chap. 13).

The simulation version of the Leslie matrix as presented in the previous section
provides percentiles in expected population size (Fig 11.6). This may wrongly
suggest that this stochastic model provides a prediction. The result, however, is still
a projection as only demographic stochasticity is considered. Software programs
that model the major categories of uncertainties, e.g. VORTEX (Lacy and Pollak
2014; Lacy et al. 2014), come close to predicting population development.

11.8 Back to the Future

Stochastic models are useful, whether qualified as prediction or projection, to give
an idea of the potential range of future population size. More interesting, however,
is to know whether the selected model parameters are correct, and hence whether
the real population size will be within the projected range. Part of this knowledge
can be achieved through retrospective studies in which projections of the population
in the past are compared with census data (e.g. Brook et al. 1997).

Figure 11.7a shows a logistic growth model that includes a projection for the
period 1995–2001 for the 1995 female snow leopard population. The logistic growth
model matches 1985–1995 census data .�2 D 1:76; p D 1:0; df D 12/. The
population is projected, retrospectively, to grow between 1995 and 2001 up to a
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Fig. 11.7 (a) Logistic growth projection of the 1995 female snow leopard population (solid line)
based on 1985–1995 census data. Open circles are actual census data. See text for details. (b)
Stochastic matrix projection based on 1985–1995 life tables. Dotted lines are individual runs; the
line with closed circles represents actual post–breeding census data; the solid line is the mean
projected female population size

carrying capacity of 390 (solid line). In reality, however, the female population
slowly declined (open circles).

The stochastic matrix model based on life tables over the period 1985–1995
shows a similar pattern (Fig. 11.7b). Even simulation runs at the lower spectrum of
the range are higher than the real census data. The discrepancy between projection
and reality can be explained by using the 1985–1995 trend which resembles a period
of linear growth. However, the female population was at a turning point in 1994
when it started to decline (Fig. 11.7a). Annual growth rates are 1.0 and 0.97 for the
years 1994 and 1995, respectively.

These opposite trends illustrate a dilemma in selecting the correct time period.
Growth rates derived from census analysis or life tables based on two years may
have low validity. Yet, the results from this retrospective analysis show that the
1994–1995 trend actually would have been a better indicator for population growth.
Life tables based on imaginary cohorts are, in effect, averages, and consequently the
growth rates calculated from these tables are averages. In this example, the average
� is larger than 1.

Census–like analyses such as crude birth and crude death rates are useful as
indicators of changing trends. For example, the annual birth rate in snow leopard
females in the global studbook population was declining within the 1985–1995
period (Fig. 9.3b). This trend was the result of a management measure to reduce
population growth by keeping offspring with their mother longer (L. Blomqvist,
personal communication). This measure is reflected in the median inter–birth
interval which increased from 423 days in the period 1974–1984 .n D 79/ to 717
days in the period 1985–1995 .n D 111/.
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Population projections assume that mean fecundity and mortality rates do
not change during the projected period of time. The above example shows that
management measures can drastically change these vital rates in order to control
population size. There is no real remedy, other than adapting population projections
based on real population size on a regular basis.

11.9 Stage–Based Models

Life tables of studbook populations are age–based. This model is meaningful for
species where individual survival and reproduction (vital rates) are age related. For
example, snow leopards reach sexual maturity at the age of two years in captivity
(see Table 7.4). However, vital rates are not necessarily directly related to age, but
can depend on environmental and/or social conditions (e.g. Caswell 2001).

Ambient temperature and/or food quality can have impact on somatic growth in
ectotherms, resulting in individuals reaching sexual maturity at different ages, e.g.
Atlantic salmon (Salmo salar) (Jonsson et al. 2013). A study on captive green turtles
(Chelonia mydas) revealed the difficulty of estimating age at sexual maturity, but
showed that carapace length seems to approach a threshold for maturity (Bjorndal
et al. 2013); thus carapace length, instead of age, needs to be used to determine
whether a green turtle is (likely to be) sexually mature.

Pheromonal signals of dominant females in common marmosets (Callithrix
jacchus) can suppress ovulation of subordinate females (daughters) (Barrett et al.
1990). Reproductive suppression has been observed in various social mammalian
species (Beehner and Lu 2013; Clutton–Brock and Huchard 2013; Wasser and
Barash 1983). This means that age–specific fecundity rates are also determined by
social settings.

Stage–based models are more appropriate for population projections of species
in which vital rates are largely determined by external conditions (Caswell
2001). Common categories such as neonate, juvenile, subadult and adult in
mammals (Kunz et al. 1996) or eggs, larvae, pupae and adults in insects (Lefkovitch
1965), can be used in stage models. Stage categories are not limited to
developmental stages. Other categories such as reproductive status or management
category can be used as well (Faust et al. 2003). Stage–models can also be an
alternative to age–based models when the exact age of individuals can not be
assessed (Lefkovitch 1965).

When age is not a reliable indicator of the developmental stage (state) of
individuals, other methods are required. Physical features, such as carapace length
in marine turtles (Crouse et al. 1987) and tortoises (Doak et al. 1994), or the peaked
sagittal crest in adult silverback gorillas (Gorilla spp.) (Breuer et al. 2009), are
examples of markers that can be used to identify stages. Behavioural features can
also be used, e.g. weaning to identify the start of the juvenile stage (Kunz et al.
1996).
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Projections of stage–structured populations are similar to those described for
age–structured populations. The Lefkovitch matrix (Lefkovitch 1965) is a generali-
sation of the Leslie matrix (Leslie 1945, 1948) that was developed for stage–based
models. Major differences with age–based models are that stages can differ in their
duration and that individuals may remain in the same stage during a projection
interval (Crouse et al. 1987). This means that the probabilities of surviving to the
next stage and of then entering the next stage, during a single time step, are required.
The symbols Pi for survival and remaining in stage i, and Gi for survival and entering
the next stage .i C 1/, are commonly used.

Stage–based models have not been implemented, so far, in studbook management
software. The reason(s) may be historical. The first managed programmes involved
species such as the red panda and the snow leopard, whose life cycles can be
described by an age–based model. Furthermore, the strength of studbooks is the
availability of data on dates of birth and death, i.e. age, which makes it relatively
easy to automate construction of age–based life tables.

Practical reasons for studbook management may favour stage over age–based
models. Managers are more likely to think in terms of numbers of infants or adults
than in numbers of one–year–olds or eight–year–olds. This does not necessarily
imply that stage–based models need to be used. For example, age distributions can
be presented as stage distributions by grouping age classes (see Fig. 11.4).

Grouping age classes into biological stages has the advantage of reducing
problems associated with small sample sizes (Faust et al. 2003). Age–class models
with flexible class widths could be implemented in studbook software to facilitate
the use of stages. Since the stage of an individual is directly related to its age, it
should be relatively easy to implement “age–stage” models in age distribution and
life table analysis.

Stage–based population projections require information on the transition prob-
ability .Gi/ that an individual which survives, changes stage during a projection
interval (e.g. one year). This probability is clear when stages are related to age, i.e.
Gi D 0 when an individual is too young, and Gi D 1 (100 %) when an individual
has reached the age of the next stage.

Each individual within a stage, regardless of its age, has the same probability
of surviving .Pi/ during a projection interval. However, the Leslie matrix does not
“follow” individuals. This means that ages of surviving individuals at the end of a
projection interval, and thus the transition to the next stage, are not “known”. Matrix
projections require making assumptions regarding the age distribution and survival
within each stage (Caswell 2001; Crouse et al. 1987).

The transition probability adds an extra (stochastic) uncertainty to population
projections when applying stage models to age–structured populations in matrix
calculus. This uncertainty can be avoided by “tracking” individuals in simulation
models that implement pedigrees, e.g. VORTEX (Lacy and Pollak 2014).

Species’ biology and available data determine which model is most appropriate
for demography and for population projections in particular. Cooperative breeding
programmes in zoos include taxa for which the life–cycle may be better described
by stage than by age structure e.g. crocodiles and tortoises (European Association
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of Zoos and Aquaria 2016). Furthermore, these stage models are useful for
including management measures that are not (completely) age dependent e.g. use
of contraceptives. This requires that stage transitions are registered in studbooks
(similar to periods of contraception in SPARKS (Scobie and Bingaman Lackey
1997–2012)), and that studbook software can handle stage–based models.
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Genetic Analyses



Chapter 12
Genetic Variation and Generations

Abstract Maintenance of the original (wild) genetic variation is an important
objective in the management of small populations of wild species. Several measures
to quantify genetic variation exist. These measures are polymorphism or propor-
tion of polymorphic loci, average number of allelic variants per locus, observed
heterozygosity and average expected heterozygosity or gene diversity. Methods to
calculate these measures are presented. An introduction to genetic loss in small
populations due to consanguineous matings (inbreeding), genetic drift and selection
(intentional and unintentional) is provided. Genetic loss is expressed as loss per
generation. It is common practice to assign generation 0 to the founder group.
There are various rules to calculate generation number when generations overlap.
The rule used by the Convention on International Trade in Endangered Species
of Wild Fauna and Flora (CITES) and rules used in different fields of species
management are described. These include maternal generation, genetic generation
and average generation. A hypothetical pedigree example is used to illustrate
differences between these rules. Long–term effects of the captive environment
on species characteristics can be measured by comparing generation groups. The
season of birth in maternal generation groups within Nepalese red pandas in the
northern hemisphere is used as an example. The pairwise Wilcoxon rank test is
applied to test for differences between seven generations.

12.1 Introduction

Genetic variation is considered an important requirement for both short–term and
long–term survival of species, as it provides the “resource” to cope with changing
environments. The negative effects of inbreeding and the importance of genetic
variation in zoo populations were recognised in the late 1970s (e.g. Flesness 1977;
Ralls et al. 1979). This changed studbooks from being merely a register into coop-
erative management programmes in which population genetics can be considered
the “backbone”. Maintenance of genetic variation and avoidance of inbreeding have
become important objectives in management of small populations (e.g. Lacy et al.
1995; Princée 1998). Several measures to quantify genetic variation are used in the
management of captive populations (e.g. Lacy 1995). The next section provides a
short overview of the most common ones.
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12.2 Genetic Measures

A relatively crude measure of genetic variation is polymorphism (symbol: P), which
is the proportion of polymorphic loci in a population:

P D 1 �
rp

r
(12.1)

where r is the number of loci, and rp is the number of polymorphic loci (Nei et al.
1975).

Technically speaking, any locus with two or more allelic variants is polymorphic.
However, a rare allele may not be observed in a population sample. Therefore, a
more practical definition – a frequency of less than 99 % of the most common allele
in the population – is generally applied (Nei et al. 1975). This frequency is arbitrary
and other levels, e.g. 95 %, can be found in the literature.

The average number of alleles per locus (symbol: n) in a population provides
more detail on genetic variation than polymorphism:

n D
1

r

rX

jD1

nj (12.2)

where r is the number of loci and nj the number of (observed) alleles at the jth locus.
Polymorphism and (average) number of alleles do not provide complete informa-

tion on genetic variation in diploid species, as the heterozygous or homozygous state
of individuals is not considered. Two (slightly) different measures of heterozygosity
are used.

The observed heterozygosity (symbol: Ho) is estimated from observed heterozy-
gous loci in individuals:

Ho D

PN
xD1 hx

Nr
(12.3)

where N is the number of individuals, r is the number of loci and hx is the number
of heterozygous loci of individual x (Nei et al. 1975).

The average expected heterozygosity (symbol: He) estimates the expected pro-
portion of heterozygous loci from allele frequencies.

The expected heterozygosity at a single locus .he/ is estimated as:

he D 1 �

nX

iD1

p2
i (12.4)

where n is the number of alleles and pi is the frequency of the ith allele (Nei et al.
1975).
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The average expected heterozygosity .He/ is estimated as:

He D

Pr
jD1 hej

r
(12.5)

where r is the number of loci and hej is the gene diversity at the jth locus (Nei et al.
1975).

In the literature, the term heterozygosity is often used without the adjectives
observed or expected. Both measures have the same value under random mating
conditions, but can differ under inbreeding and/or assortative mating (see Chap. 14).
The alternative name gene diversity is preferred when referring to heterozygosity
based on allele frequencies.

Small populations are affected by demographic and genetic processes that can
result in loss of genetic variation, i.e. increase in homozygosity and loss of allelic
variants. Populations of endangered species, whether in captivity or in the wild, are
in general small in size and, therefore, subject to genetic loss. Three major causes
of genetic loss can be identified:

1. Inbreeding, due to matings between related individuals (consanguineous mat-
ings), which results in increased homozygosity and expression of recessive
deleterious alleles.

2. Genetic drift, a random change in allele frequencies from generation to genera-
tion that results in increased homozygosity and loss of allelic variation.

3. Selection, either intentional or unintentional, whether in favour of or against
specific genotypes and phenotypes, results a priori in loss of genetic variation.

The next chapters in the genetic section present and explore techniques to detect
inbreeding depression and to estimate genetic loss in studbook populations. This
section also explores the use of life history traits that can be extracted directly from
studbooks for quantitative genetic studies and detection of (phenotypic) selection.

12.3 Generation

Genetic loss in populations is generally expressed in terms of loss in genetic
variation per generation. But what is a generation? Generation refers to “in a line
of descent, individuals that share a common ancestor and are all the same number
of broods away from that ancestor” (Lawrence 2008). The “ancestor” in captive
populations refers to a wild–caught individual which reproduced (founder).

The method for calculating generation (number) seems to be relatively easy.
Offspring have a generation number of one higher than their parents. Thus, offspring
of, for example, wild–caught parents .P0/, belong to the first generation .F1/.
Offspring of F1 parents (also denoted as P1) belong to generation F2, and so on.
This seems straightforward, yet it ignores the fact that generations can overlap.
Generation overlap can occur in any species with a reproductive lifespan that is
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longer than the age at sexual maturity. This means that both parental and new
generation groups are reproductive and, thus, can breed together.

Zoo populations can show extreme generation overlap (see e.g. Princée 1988).
First, many zoo populations have a long history, sometimes going back to the early
1900s, e.g. European bison (Princée 1998), where some zoos were successful in
breeding, and other zoos depended on import from the wild. Second, reproductive
lifespan of individuals in zoos can be extended, compared to the wild, as a result of
stable food resources, veterinary care and the absence of predation, thus increasing
the chances that generation overlap occurs.

Different rules for computing generation number exist (Brinks et al. 1961;
Princée 1988; Schwitzer and Kaumanns 2009; Wijnstekers 2011). They will be
discussed in the next section.

12.3.1 Calculating Generations

The Convention on International Trade in Endangered Species of Wild Fauna and
Flora (CITES) requires the generation number of individuals to determine whether,
or under which conditions, permits for import and export will be issued. CITES
applies the so-called “shortest link” in line of descent to calculate the generation
number of captive-born offspring (Wijnstekers 2011). The two major rules in the
CITES approach – Resolution Conf. 10.16 (Rev.) – are:

“first–generation offspring (F1)” are specimens produced in a controlled environment from
parents at least one of which was conceived in or taken from the wild;
“offspring of second generation (F2) or subsequent generation (F3, F4, etc.)” are specimens
produced in a controlled environment from parents that were also produced in a controlled
environment;

This means that an individual which has one wild–caught parent is, according to
CITES, also considered to be F1, regardless of the generation number of the other
parent. The calculation rule in cases of generation overlap beyond the F2 generation
is described in the CITES Resolution 10.16 (rev) (Wijnstekers 2011). However, in
general the “shortest link” is also applied in these cases. For example, offspring of
an F1 � F9 mating will be assigned F2 (C. Schürmann, personal communication).

The implications of this rule for obtaining permits is beyond the scope of this
book. However, generation numbers calculated according to CITES may not be
biologically sound when used in studies to evaluate the environmental effects of
captivity, such as shifts in birth season between generation groups. It would be better
to calculate generation number of captive–born offspring following the maternal
line of descent (which ignores the generation of the male) (Schwitzer and Kaumanns
2009). The generation number of offspring is the generation of the dam plus one.

Note that the “maternal” rule should not be used in population genetic studies
where genetic variation in captive generation groups is to be assessed, as the male
contribution to generation number is ignored.
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Table 12.1 Generation
number of captive–born
individuals in the pedigree
example (Fig. 12.1) according
to different calculation rules

Individual FCITES Fmaternal Fgenetic NF

7 1 1 1 1

8 1 1 1 1

9 2 2 2 2

10 1 3 3 2

11 1 1 4 2

FCITES CITES generation number, Fmaternal maternal
generation number, Fgenetic “genetic” generation number,
NF average generation number

A third rule, genetic generation, based on the “longest link of descent” is used
in the genetic simulation model GeneFlow (Princée 1988). Offspring are assigned a
generation number one higher than the parent with the highest generation number.
This means that offspring have by definition a higher generation number than their
parents.

A fourth rule, average generation (Brinks et al. 1961), is recommended for use
when generations overlap (Calboli et al. 2008). Average generation is calculated
according to the following “rule”:

NFoffspring D
NFsire C NFdam

2
C 1 (12.6)

Generation numbers calculated from either CITES, genetic generation or average
generation can be used in genetic studies that assess genetic variation in generation
groups or genetic loss between generation groups. However, each rule can lead to
different results when generations overlap, which need to be interpreted accordingly.

Table 12.1 summarises the differences between these rules based on the pedigree
in Fig. 12.1. This hypothetical pedigree includes six wild–caught individuals (num-
bers 1 to 6), which consequently belong to the P0 group. The differences between
these rules appear in individuals 10 and 11. They both belong to the F1 generation
according CITES, as one of their parents is wild–caught. The difference between
using “maternal” and “genetic” rules is illustrated with individual 11. Since the dam
(6) is wild–caught, it belongs to the F1 generation following the “maternal” rule and
the F4 generation following the “genetic” rule.

12.3.2 Effects of the Captive Environment: An Example

Effects of the captive environment on biological features, such as seasonality in
birth, can be evaluated using generation groups. Generation numbers of individuals,
especially based on the maternal rule (see Sect. 12.3.1), indicate the time–span a
species – or better lineage – has been in captivity.
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Fig. 12.1 Pedigree example
of “genetic” generation
groups. P0 is founder group;
F1 and F2 are captive
generations
� D males; � D females

Since the ancestors may have been imported and reproduced during different
periods of time in the history of the captive population, individuals that were born
in different periods of time can belong to the same generation overlap. This means
that results of analyses on generation groups can be affected whenever husbandry
changes over time. See for example differences in mortality in Sect. 3.2.4.

Seasonality in litter dates in Nepalese red pandas in the Northern hemisphere is
used as an example to illustrate differences between generation groups, thus time in
captivity. This species shows a strong seasonality in birth with 26 June as mean day
(see Table 3.8). Since the birth season in the Northern hemisphere starts and ends
within a calendar year, “conventional” statistical methods such as ANOVA and the
Wilcoxon rank test can be applied (see Chap 19).

The time–span selected for this analysis includes the period that the international
studbook was established (in 1977) so as to include births from wild–caught
females. Generation groups were calculated according to the maternal rule (see
Sect. 12.3.1).

Figure 12.2 shows box and whisker plots of seasonality in birth per generation
group. Following the median (thick) lines in these boxes, one can see a tendency for
a shift in mean day of parturition in females belonging to generations 3, 4 and 5.
Mean day in generation 6 and 7 returns to the date of the early captive generations.
However, statistical tests need to be carried out to determine whether the observed
differences are significant.

Table 12.2 shows the results of an ANOVA on seasonality in birth and generation
number. Since p < 0:001, it can be concluded that seasonality in birth differs
significantly between generation groups. However, this statistic does not inform us
which groups differ. This requires pairwise testing of each group. This could be the
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Fig. 12.2 Box–and–whisker
plots showing shift in season
of birth (litter date) in captive
generations of Nepalese red
pandas in the Northern
hemisphere (period
1977–2007), n D 559. Thick
horizontal line: median,
bottom and top of box are
first and third quartiles,
“whiskers” are
minimum/maximum (or
roughly 2 standard
deviations), empty circles are
outliers
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Table 12.2 ANOVA on
seasonality in birth (litters)
and captive generations of
Nepalese red pandas in the
Northern hemisphere (period
1977–2007). n D 857

Df SS MS F PŒF�

Generation 7 9,109 1,301.28 5.9019 < 0:001

Residuals 849 187,191 220.48

Df degrees of freedom, SS sum of squares, MS mean
squares, F F–statistic, PŒF� probability of F

Table 12.3 Pairwise Wilcoxon rank test (p–values) on seasonality in litter dates between founder
and captive maternal generations .F/ of Nepalese red pandas in the Northern hemisphere during
the period 1977–2007 .n D 857/

F 0 1 2 3 4 5 6

1 1.00000

2 1.00000 1.00000

3 0.00432 0.00016 6.6e-05

4 0.03419 0.00354 0.00362 1.00000

5 1.00000 1.00000 1.00000 0.08031 0.46163

6 1.00000 1.00000 1.00000 0.05477 0.20447 1.00000

7 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

pairwise t test or the non–parametric pairwise Wilcoxon rank test (R Core Team
2015). Since it is not known whether the birth data are distributed normally, it is
safer to use the non–parametric test.

Table 12.3 presents the p–values for each generation pair, corrected with Holm’s
method for multiple comparisons as implemented in the R software (R Core
Team 2015). Values of p < 0:05 indicate significant differences between groups.
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Parturition date in generation groups F3 and F4 females differ significantly from
those in groups F0 (founders), F1 and F2.

Generation groups can also be used to study effects of time in captivity on
differences in litter size and infant mortality (e.g Schwitzer and Kaumanns 2009).
However, note that inbreeding can also affect infant mortality and may “interfere”
with results for generation groups F2 and higher. Inbreeding depression is discussed
in the next chapter.
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Chapter 13
Inbreeding

Abstract Studies at the end of the 1970s, on the negative effects of matings
between related individuals (consanguineous matings) in zoo populations, can be
considered as one of the main driving forces that resulted in introducing genetic
management to cooperative breeding programmes. Calculation and interpretation
of inbreeding coefficients is discussed. The main focus of this chapter is to detect
inbreeding depression in the population directly from life history data in the
studbook. The Nepalese red panda studbook population is used as an example.
Methods to detect inbreeding depression in different stages of life are presented.
Two–way contingency tables are used to test for differences in neonatal and
juvenile mortality between inbred and non–inbred individuals. The Donner’s test
which adjusts for litter effect is applied. The Kaplan–Meier product limit estimator
and Cox proportional hazards regression models are used to detect differences in
lifespan in inbred and non–inbred individuals. Different methods to estimate lethal
equivalents are presented. These include linear and generalised linear regression,
the generalised equation estimator (to adjust for pseudoreplication) and maximum
likelihood estimation. Logrank tests are used to detect differences in age–specific
fecundity between inbred and non–inbred individuals. The same test is also applied
to age–specific unweighted reproductive values, which can be considered as a
measure of fitness.

13.1 Introduction

Breeders of domestic animal and plant species knew about the negative effects
of matings between related individuals (or consanguineous matings) long before
inheritance and Mendelian laws were common knowledge.1 For example, Darwin
(1876) referred to the detrimental effects of consanguineous matings, such as
reduced fecundity, in his study on variation in domestic animals and plants.

1Although Gregor Mendel published the results on inheritance in 1866, this work remained
unknown until 1900 when Hugo de Vries published his work and referred in a footnote to Mendel’s
work.
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Mating between related individuals is known as inbreeding and its negative effect
on fitness is known as inbreeding depression (symbol: ı). The result of inbreeding is
an increase in homozygosity in offspring because they possess alleles that originate
from the same ancestor i.e. identical by descent or autozygous. This increases the
probability that deleterious alleles are expressed in the homozygous state.

This definition of the term inbreeding is generally used in the context of breeding
animals and plants, whether domestic or wild (such as species in zoological
gardens), for which pedigrees are available. However, different definitions of
inbreeding exist which can lead to confusion (Allendorf et al. 2013; Keller and
Waller 2002). These definitions will be discussed in Chap. 14. The definition as
described above, also named pedigree inbreeding by Keller and Waller (2002), will
be used in this chapter.

One of the mechanisms behind inbreeding depression can be described as
follows: as a result of mutation, individuals can carry unique deleterious recessive
alleles in the heterozygous state. This may not affect their overall fitness and,
therefore, carriers of such alleles would be able to produce viable offspring. These
recessive alleles can only be expressed when descendants of the same ancestor(s)
mate with each other, leading to a homozygous state.

The fitness of offspring of consanguineous matings can consequently be compro-
mised – varying from still–births, physical abnormalities to infertility and lower life
expectancy (see Sect. 13.3). Since the first studies on inbreeding depression in zoo
populations (Flesness 1977; Ralls and Ballou 1983; Ralls et al. 1979), many studies
on this subject have followed (see e.g. Allendorf et al. 2013; Frankham et al. 2010).

Now, nearly 40 years after the first publications on inbreeding in zoo populations,
it is generally accepted that inbreeding depression can jeopardise conservation of
small populations, both in captivity and in the wild (see overviews in Allendorf
et al. 2013; Frankham et al. 2010). Avoidance of or minimising inbreeding has
been one of the main fundamental goals of the cooperative breeding programmes
of international and regional zoo organisations, since their establishment in the
early 1980s. Therefore, this chapter will focus on methods of detecting inbreeding
depression in studbook populations.

13.2 Inbreeding Coefficients

The inbreeding coefficient (symbol: f ) refers to the probability that a diploid
individual inherits the same ancestral alleles at a given locus (Wright 1922). This
probability can be computed from pedigree data, either by hand for small pedigrees
or using computer software for larger populations. Figure 13.1 shows a pedigree
of a full–sibling (brother and sister) mating. The ancestors, male 1 and female 2,
are assumed to be unrelated and have genotypes A1A2 and A3A4, respectively. The
probability that individual 5 is autozygous for allele A1 is estimated as follows:
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Fig. 13.1 Pedigree of
full–sib mating. The small
numbered circles are
(hypothetical) IDs of
individuals. Squares are
males and (large) circles are
females. The codes A1 to A4
refer to allelic variants at the
same locus

1. The probability that either male 3 or female 4 inherits allele A1 from ancestor 1
is 1

2
.

2. The probability that both male 3 and female 4 inherit allele A1 is 1
2

� 1
2

D 1
4
.

3. The probability that individual 5 inherits allele A1 from one of its parents is
1
2

� 1
2

D 1
4
.

4. The probability that individual 5 is homozygous for allele A1 is 1
4

� 1
4

D 1
16

.

The inbreeding coefficient .f / is the total probability that an individual is
homozygous for one of the four ancestral alleles at a locus. For individual 5 in
this example, it is 4 � 1

16
D 1

4
or 0.25 (see Wright 1922). The inbreeding coefficient

increases when inbreeding in subsequent generations continues.
Calculation of inbreeding coefficients, as illustrated in the previous example, can

be a tedious and time–consuming job for complex pedigrees. Various techniques
like path analysis or chain-counting technique and the additive relationship matrix
method have been developed to calculate inbreeding coefficients of individuals
in complex pedigrees (see Allendorf et al. 2013; Ballou 1983; Frankham et al.
2010). The additive relationship matrix method provides a straightforward method
to calculate inbreeding coefficients regardless of the complexity of the pedigree.

However, whenever pedigree data are computerised (as in zoo managed stud-
books), it is much more efficient to calculate inbreeding coefficients of individuals
using software. For example, the Quaas–Henderson computer algorithms are based
on the additive relationship matrix method (Henderson 1976; Quaas 1976, 1989).
Meanwhile faster computer algorithms, especially those to manage large livestock
pedigrees, have been designed (Colleau 2002; Sargolzaei et al. 2005).

It is important to realise that inbreeding coefficients are probabilities. Offspring
of full–sib matings, in this example with four different ancestral alleles, actually
have a probability of 0.75 to be heterozygous at this locus. However, inbreeding
depression is not just a matter of expression of deleterious recessive alleles at a
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single locus. Genomes of higher organisms contain somewhere between 4,000 and
50,000 structural loci (Nei 1987). This means that the genome of an ancestor may
contain recessive deleterious alleles at several loci, and, therefore, the probability
of inbreeding effects increases. Sensitivity to inbreeding depression may vary with
species or even with populations (Shields 1987). While the potential effects of
inbreeding depression are known, it is difficult to predict which species or which
population will be affected. Computerised studbook data offer the possibility of
analysing potential inbreeding depression in the (studbook) population.

13.3 Measuring Inbreeding Depression

Inbreeding depression affects the fitness of individuals. Since fitness refers to the
ability to produce viable offspring, it encompasses the whole life history of an
individual, from as early as a zygote, embryo, to reproduction and successful rearing
of offspring, until death. This means that inbreeding depression can act at different
life stages. For example, an inbred embryo may not develop (and die); an inbred
individual may not be fertile, an inbred female of a mammalian species may not be
able to lactate and, therefore, will not be able to raise her offspring (maternal effect);
or inbred individuals may have a lower life expectancy and, therefore, produce fewer
offspring during their life–time than non-inbred individuals.

Unfortunately, detection of inbreeding depression in the prenatal stages may
not be feasible, or at least not straightforward, in studbook populations. Studbooks
generally only include individuals that were born or hatched (including premature
births and stillbirths) (Thompson et al. 1997). This means that lethal inbreeding
effects in the prenatal stages (including the period of incubation in egg–laying
species) cannot be detected directly at the level of inbred individuals. Instead,
indirect methods, such as assessing fecundity in the parent(s), are used to reveal
such inbreeding effects.

Inbreeding depression in the prenatal stages can be detected in egg–laying
(oviparous) species whenever data on clutch size, number of fertile eggs and
hatching success are recorded in studbooks. It is important to study data from
artificial incubation and incubation by the parents, separately. Artificial incubation
introduces controlled environmental conditions (temperature and humidity) that
may differ from parental incubation conditions.

The demographic tools that are available to analyse studbooks provide a wide
range of options to detect inbreeding depression during the different life stages.
These options include comparing infant mortality, survivorship, fecundity and
overall fitness. Life table analyses provide data on age specific fecundity and
mortality rates (Chap. 7). The distribution of these rates can be compared between
inbred and non–inbred groups. Inbreeding depression does not necessarily act at
a specific stage in life, such as the neonate or juvenile stages. The effects may
be subtle, such as a slightly reduced fecundity in combination with a shorter life
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expectancy in inbred individuals. These effects could potentially be detected by
studying reproductive values (see Chap. 7).

Application of statistical methods to detect inbreeding depression depends on
the sample sizes of inbred and non–inbred groups. For example, the study of Ralls
and Ballou (1983) on effects of inbreeding on infant mortality in species held at
the National Zoo Washington, had to group all inbred individuals in one category,
due to the small sample sizes at this single zoo collection. Analysing mortality in
neonates or juveniles grouped in a single inbred category, provides the best method
of detecting inbreeding depression in smaller studbooks. The sample sizes of these
age (stage) groups are generally much larger than in older age groups (see Chap. 7).
Sample sizes that are required for life table analyses have been discussed in Chap. 8.

Larger studbooks – read sample sizes – allow the inclusion of different levels of
inbreeding in analyses. A study on the international studbook of Goeldi’s monkeys
(Callimico goeldii) compared infant survival with inbreeding coefficients. The study
was based on 790 captive–born animals of which 111 were inbred (Lacy et al. 1993).
The method to estimate lethal equivalents (Templeton and Read 1983) has a similar
approach and can easily be applied to the same data set. These types of analyses are
useful for deciding which levels of inbreeding – within the context that inbreeding
cannot be completely avoided in small populations – can be tolerated. For example,
inbreeding depression, measured as 30–day survival, in female Goeldi’s monkeys
was not only significant in offspring of full-sib matings .f D 0:25/, but even in
matings between first cousins .f D 0:0625/ and pairings of less closely related
individuals (Lacy et al. 1993).

13.4 Neonatal and Juvenile Mortality

Comparing infant mortality between inbred and non–inbred groups has proven to
be an adequate method to detect inbreeding depression, even in relatively small
data sets such as individual zoo collections (Ralls and Ballou 1983; Ralls et al.
1979). The definition of the “infant stage” depends on the life history of the species
concerned. Ralls and Ballou (1983) used 180 days for ungulates and primates, and
half the age of sexual maturity in small mammals. Results from analyses on lifespan
and reproduction as presented in Chaps. 3 and 7 can be used to determine infant and
other life stages.

First month (30 days) survival is often used in studies of inbreeding depression
in zoo populations (e.g. Cassinello 2005; Lacy et al. 1993; Templeton and Read
1983).2 The biological significance of this criterion largely depends on the natural
history of a species (such as longevity and reproductive life–span). For example,

2Annual zoo inventories include 30 day survival of the newborns for each species. This “tradition”
could be the basis for using this survival criterion.
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studies on inbreeding depression in deer mice (Peromyscus) used survival rates until
weaning at 20 days (Brewer et al. 1990).

A measure of inbreeding depression .ı/ is the proportionate decline in fitness due
to a certain amount of inbreeding (Frankham 2010):

ı D 1 �
fitness of inbred group

fitness of non � inbred group
(13.1)

where fitness in general refers to neonatal or juvenile survival rates as discussed in
the previous section.

13.4.1 Two–Way Contingency Table

The validity of ı is determined by the sample sizes of both groups. Differences in
fitness (survival) between non-inbred and inbred groups can be tested by construct-
ing two–way contingency tables and, depending on the sample size, applying the
Fisher’s exact test or Pearson’s chi–square test (Siegel and Castellan 1988). The
first comparative studies on inbreeding depression in zoo populations used the chi–
square statistic (Ralls and Ballou 1983; Ralls et al. 1979).

Table 13.1 presents a contingency table for 6 months (juvenile) survival in inbred
and non–inbred Nepalese red pandas born between the years 1977 and 2012. Both
inbred and non–inbred parents are included in this analysis. The mean inbreeding
coefficient . NF/ in the inbred group is 0.047, which is between the level of first cousin
once removed and first cousin matings.

The sample sizes are sufficiently large to apply the Pearson’s chi–square
test (Siegel and Castellan 1988). The null hypothesis is that 6 month survival
does not differ between inbred and non–inbred groups. This test rejects the null
hypothesis .�2 D 7:1; p D 0:008/, which means that juvenile survival in inbred
Nepalese red pandas is lower than in non–inbred ones. Inbreeding depression .ı/

for juvenile survival in offspring of non–inbred parents is 0.096 (Table 13.1). This

Table 13.1 Two–way contingency table to test for differences in 6 month survival in non–inbred
and inbred . NF D 0:047/ Nepalese red pandas born from 1977 to 2012

Offspring group Litters Survived Died Total P180

Inbred 922 966 597 1,563 0.618

Non–inbred 305 369 171 540 0.683

Total 1,227 1,335 768 2,103

P180 is the survival rate after 180 days
Inbreeding depression ıŒNFD0:047� D 1 � 0:618

0:683
D 0:096

Pearson’s chi–square test with Yates’ continuity correction: �2 D 7:1; df D 1; p D 0:0077

Donner’s adjustment: �2
D D 5:2; df D 1; p D 0:022
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means that fitness has been reduced by 9.6 % in inbred offspring due to an average
inbreeding coefficient of NF D 0:047.

13.4.2 Litter Effect

The calculation of juvenile survival of red pandas can be subject to the litter effect
i.e. pseudoreplication (Hurlbert 1984). This means that results of the Pearson’s
chi–squared test may not be valid. Several adjusted chi–squared tests for clustered
binary data (e.g. survival in litters) have been developed (Song and Ahn 2003).
The Donner’s test is an adjusted Mantel–Haenszel test (Donner 1989, 1993) and
implemented in the R package aods3 (Lesnoff and Lancelot 2013). This test is
applied to analysis of the red panda data.

The clustered binary tests estimate the variance within litters. This means that
the data need to be provided as survivors and deaths per litter. The number of litters
in inbred and non–inbred groups are 922 and 305, respectively. The adjusted chi–
square for Donner’s test .�2

D/ is 5.2 (Table 13.1). The null hypothesis that survival
in both groups does not differ is rejected as pŒ5:2� D 0:022 < 0:05. This is the same
conclusion as drawn from the Pearson chi–squared test .�2 D 7:1; p D 0:008/.

The lower �2
D in Donner’s test compared to Pearson’s �2 shows that the litter

data in red pandas is subject to pseudoreplication. In this example, both tests result
in the same conclusion at a significance level .˛/ of 0.05. However, the effect of
pseudoreplication on hypothesis testing can be illustrated by lowering ˛ to 0.01
(99 % confidence level). The null hypothesis will not be rejected by Donner’s test
but will be rejected by Pearson’s chi–squared test. This shows the importance of
using adjusted chi–square tests for species with litters to avoid wrongly rejecting
the null hypothesis (“there are no differences”).

13.4.3 Inbred and Non–Inbred Parents

Analysis of inbreeding depression in the previous section did not distinguish
between inbred and non–inbred parents. This offspring–based analysis may only
reveal a part of inbreeding depression, as ancestral inbreeding effects in parents can
play a role in survival (and fecundity) of offspring too (Ballou 1997; Lacy et al.
1996). For example, inbreeding depression may affect lactation in inbred females,
and, therefore affect survivorship and even fecundity in their offspring.

A persistent misunderstanding is that offspring of inbred parents are inbred,
and offspring of non–inbred parents are not inbred. Inbreeding can only occur in
offspring of parents that are related, regardless of whether the parents themselves
are inbred or not. For example, individuals 1 and 2 in Fig. 13.1 are unrelated and,
therefore their offspring 3 and 4 are non–inbred. However, offspring of non–inbred
parents 3 and 4, which are siblings, will result in inbred offspring.
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Table 13.2 Effects of inbreeding in parents on 6 months survival in inbred and non–inbred
Nepalese red pandas born from 1977 to 2012

Non-inbred Inbred

Parents Litters Survived Died P180 Survived Died P180 ı padj

None inbred 540 307 141 0.685 289 195 0.597 0.128 0.022

Dam inbreda 687 62 29 0.681 677 403 0.627 0.08 0.363

P180 is the survival rate after 180 days, ı inbreeding depression, padj probability of adjusted �2 in
Donner’s adjusted Mantel–Haenszel test
aSire is non–inbred

Table 13.2 presents the results of two–way contingency tables and the Donner’s
test for non–inbred parents and inbred dams with non-inbred sires. The difference
in 6 months survival rate .P180/ between inbred and non–inbred offspring of non–
inbred parents is significant .padj D 0:022/.

The inbreeding depression in inbred offspring of non–inbred, but related, parents
is ı D 0:128 (Table 13.2). This is higher than ı D 0:096 in inbred offspring
of the parental group in which both inbred and non–inbred parents are combined
(Table 13.1).

The Donner’s test on offspring from inbred dams (and non–inbred sires) does
not reject the hypothesis that survival rates in inbred and non–inbred offspring are
the same. However, not rejecting is different from accepting a null hypothesis. The
sample size of non–inbred offspring .N D 62/ is only 8.4 % of inbred offspring
.N D 677/, which may be too small for rejecting the null hypothesis.

The above does not fully explain the results. If inbreeding has negative effects
on females raising offspring then the survival rate in non–inbred offspring of inbred
dams is expected to be lower than in non–inbred offspring of non–inbred parents.
However, the differences between these groups are marginal in the red panda.
Moreover, the survival rate in inbred offspring of inbred dams (0.627) is actually
higher than inbred offspring of non–inbred parents (0.597) (see Table 13.2).

Various factors can play a role in the observed survival rates of inbred offspring
of inbred dams. Since this is a chapter on inbreeding, it is tempting to look in the
direction of (unintended) purging, i.e. deleterious recessive alleles are eliminated
from the population through inbreeding, which increases homozygosity and thus
exposure to selection (Frankham et al. 2010). Elimination of, particularly, lethal
recessive alleles through purging is expected to improve survival in the next
generation. This is reflected in survival of inbred offspring of inbred dams. But that
explanation would be too simple.

The red panda studbook used in the analyses comprises 35 years of data,
during which time husbandry practices improved. However, the Nepalese red panda
pedigree is complex with inbreeding in the early years, and genetic management
since 1977 (Princée 1988). This means that inbred offspring of non–inbred parents
might refer to the early years, whereas non–inbred offspring of inbred parents to
more recent periods.



13.5 Lifespan 187

Table 13.3 Effects of age groups and survival in inbred and non–inbred Nepalese red panda born
to non–inbred parents from 1977 to 2012

Non-inbred Inbred

Age group (days) Litters Survived Died Px Survived Died Px ı pa
adj

0–30 540 340 108 0.759 346 138 0.715 0.054 0.216

1–30 520 340 76 0.817 346 119 0.741 0.085 0.035

1–7 520 363 53 0.873 400 65 0.860 0.010 0.656

Px survival rate, padj probability of �2
D from Donner’s adjusted Mantel–Haenszel test

13.4.4 Age Groups

Inbreeding depression may play a role at different stages in life and/or its effect can
be overshadowed by other factors. Table 13.3 presents results of adjusted Mantel-
Haenszel tests between inbred and non–inbred offspring of non–inbred parents for
different age groups (in days).

Survival rates do not differ between inbred and non–inbred offspring when the
survival age is changed from 180 to 30 days .padj D 0:216/. However, these rates
are statistically different .padj D 0:035/ when deaths at date of birth (which includes
stillbirths) are excluded from the sample (ages 1–30 days). Survival in the first week
(days 1–7) does not show significant differences .padj D 0:656/ between inbred
and non–inbred offspring. This does not necessarily mean that inbreeding has no
effect. Other factors, such as maternal care and husbandry practices, may prevail
over inbreeding effects in the first week.

13.5 Lifespan

The previous section illustrated that inbreeding depression either has no effect in
the early life of red pandas or can not be detected. Survival curves can provide
more detail on inbreeding depression during different life stages than the two-way
contingency tables.

The Kaplan–Meier product limit estimator (Kaplan and Meier 1958) and the
Cox proportional hazards regression (Cox 1972) can be applied to test for differ-
ences between inbred and non–inbred groups. The Cox’s model supports cluster
(marginal) and frailty models, and is therefore preferred over the Kaplan–Meier
estimator and logrank tests when testing for inbreeding effects in species with
litters. Furthermore, this method can analyse both categorical data (“inbred” and
“non-inbred”) and numerical data. The latter means that the effect of increase in
inbreeding coefficient on survival can be quantified. See Chap. 10 for more details
on both methods.

Figure 13.2a presents Kaplan–Meier survival curves of inbred and non–inbred
Nepalese red pandas born to non–inbred parents between 1977 and 2012. Stillbirths
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Fig. 13.2 (a) Kaplan–Meier survival curves of inbred and non–inbred Nepalese red pandas born
to non–inbred parents between 1977 and 2012. Scale is years. (b) Predicted first year survival
curves from Cox regression for inbreeding coefficients of 0, 0.0625 and 0.125 in the age group
1–180 days. The marginal (cluster) model is applied. Scale is weeks

and deaths at day of birth are excluded in this and further analyses in this section.
Mortality in inbred red pandas during the early (juvenile) life stage is higher than in
non–inbred red pandas. Survivorship in inbred individuals is slightly higher than in
non–inbred individuals in the older ages (above 12 years).

The litter effect in red pandas does not allow the application of the logrank test on
Kaplan–Meier survival curves (see Chap. 10). Therefore, Cox’s model is preferred.
Since major differences in survival between inbred and non–inbred groups occur in
the juvenile period, it makes sense to continue with the 6 month period in analyses.
As the results of two–way contingency tables show that inbreeding has an effect
on survival (Table 13.2), the Cox regression model is used to predict the effects of
different inbreeding coefficients.

Figure 13.2b presents survival curves for different inbreeding coefficients in the
age group 1–180 days (�25 weeks). The predicted survival of red pandas is lower
in more inbred offspring. The marginal model in which litters are considered as
clusters is applied (see Chap. 10). These curves are predictions that are based on
the estimated hazard ratio .HR/ with the Cox regression model. The hazard ratio
in this model is 67.3 .p < 0:001/. This result can be accepted as the proportional
hazard assumption is not violated i.e. p D 0:103 (see Chap. 10 for details on Cox
regression).

The hazard ratio presented in the results of statistical software refers to a
“one–unit” increase, which equals the maximum inbreeding coefficient of 1.0. The
hazard ratios and particularly survival rates for the observed range of inbreeding
coefficients are of more interest. These values can be estimated with Eqs. 10.3
and 10.5 (see Chap. 10). It is obviously more convenient to have statistical software
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which estimates (predicts) survival rates. For example, the survival rates for non–
inbred and F D 0:125 groups at the end of the 180 day period are 0.714 and 0.565,
respectively. This means that survival in non–inbred Nepalese red pandas is some
26 % higher than in the inbred group.

Cox’s model has been used to test for inbreeding depression (e.g. Fredrickson
et al. 2007; Ross–Gillespie et al. 2007; Sherwin et al. 2000). However, this method
does not seem to be in common use and clearly deserves more attention, as it can not
only handle pseudoreplication, but also provides detailed information on the effects
of increase in inbreeding as well.

13.6 Lethal Equivalents

Lethal effects of inbreeding are not necessarily caused by expression of lethal
recessive alleles at a single gene. They can be the result of a combination of
detrimental alleles, named lethal equivalents:

A lethal equivalent is a group of mutant genes of such number that, if dispersed in different
individuals, they would cause on the average one death, e.g., one lethal mutant, or two
mutants each with 50 per cent probability of causing death, etc. (Morton et al. 1956).

Lethal equivalents are estimated from survivorship to a given age, e.g. first month
or first year, in groups of individuals with different levels of inbreeding (including
non–inbred). Only individuals with parents that are both non–inbred are included in
the analysis in order to exclude potential effects of inbreeding depression that act at
the level of reproduction and parental care. The relation between survivorship and
inbreeding is estimated according:

Si D e�.ACBfi/ (13.2)

where Si is the survivorship of individuals with inbreeding coefficient of fi, to a
specified age, A is the survivorship of non-inbred individuals, and B is the rate of
decline of survivorship with inbreeding (Morton et al. 1956).

Parameter A is often denoted as S0. Parameter B is approximately equal to the
number of lethal equivalents in a haploid genome (gamete) (Morton et al. 1956).
The lethal equivalents in a diploid genome (zygote) are 2B.

Equation 13.2 can be rewritten into a logarithmic format (Morton et al. 1956):

� ln Si D ln A C Bfi (13.3)

This equation has the similar form of linear regression as described for expo-
nential growth (see Eq. 6.2). This means that linear regression can be applied to
estimate A and B (the slope). Since survivorship is a rate, its significance depends on
the number of births (sample size) in each inbreeding category. Therefore, weighted
least–square regression is applied (Morton et al. 1956; Templeton and Read 1983).
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Table 13.4 Lethal equivalents .2B/ in 30–day survival of Nepalese red pandas born to non–
inbred parents from 1977 to 2012 using different methods. Confidence limits are between brackets.
LM: weighted log–linear regression, MLE: maximum likelihood, GLM: generalised linear model,
Robust: generalised linear model with robust (sandwich) variance estimator. See text for details

Method Group S0 2B p Dispersion

LMa F groups 0.80 [1.15, 1.37] 2.92 [�0.22, 6.08] 0:0675b

MLE F groups 0.81 [0.78, 0.84] 2.78 [0.94, 4.86]

GLM F groups 0.81 [0.77, 0.83] 3.02 [0.68, 4.06] 0:004c 2.35

Robust Litters 0.81 [0.77, 0.84] 3.10 [1.0, 4.12] 0:003c 0.95

S0 survival in non–inbred, 2B lethal equivalents, p probability of Students’ or Wald’s statistic
aAdjustment restricted to inbreeding categories with no survivors
bStudents’ test on regression coefficient B
cWald’s test on regression coefficient B

Groups with no survivors cause a problem in log transformation. Templeton and
Read (1983) “bypassed” this problem by applying a small adjustment by increasing
the number of survivors Ni with 1 and the number of births Bi with 2, for each
inbreeding category (i):

Si D
Ni C 1

Bi C 2
(13.4)

This adjustment to the logarithmic model has been applied by other authors (e.g.
Ralls et al. 1988). This method raised extensive discussion because of the bias that
it creates in the estimated lethal equivalents (Kalinowski and Hedrick 1998; Lacy
1997; Templeton and Read 1998; Willis and Wiese 1997). However, this bias can be
small, especially when the adjustment is restricted to inbreeding categories without
survivors (Kalinowski and Hedrick 1998). The log–linear regression is weighted for
the number of births per inbreeding category.

The results of the linear regression (LM) on 30–day survival in Nepalese red
pandas are presented in Table 13.4. The number of lethal equivalents .2B/ is 2.92.
This linear model is not a good fit .p > 0:05/, as indicated by the large confidence
interval, and needs to be rejected.

Non–linear maximum likelihood estimation (MLE) to fit data to the untrans-
formed model (Eq.13.2) has been recommended instead of linear regression (Kali-
nowski and Hedrick 1998). The data are not weighted. Figure 13.3 presents 30–day
survivorship and level of inbreeding in Nepalese red pandas as estimated using
MLE. The dashed line refers to the maximum likelihood fit. The results are
presented in Table 13.4. The estimated number of lethal equivalents is 2.78. The
confidence interval of 0.94–4.86 indicates that the MLE model is also far from a
perfect fit.

Linear regression assumes that response variables are distributed normally, while
survival/mortality is distributed binomially (see Chap. 7). Generalised linear models
(GLM) support, among others, the binomial distribution and are applied to estimate
lethal equivalents (e.g. Armstrong and Cassey 2007; Brekke et al. 2010; Jamieson
et al. 2007).
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Fig. 13.3 Thirty day survival
rates and levels of inbreeding
(F) in Nepalese red pandas
(1977–2012). Deaths at date
of birth are excluded. The
size of the circles is
proportional to the number of
births. The dashed line refers
to the maximum likelihood fit
.B D 1:39; S0 D 0:81/
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The survival data are presented in numbers of survivors and deaths per inbreeding
category. The GLM model implemented in R (R Core Team 2015) carries out
a weighted regression with sample sizes as weights (Crawley 2007). Table 13.4
presents the results of a binomial (GLM) regression on the same red panda data set
as used in the LM and MLE analyses. The estimated values for S0 and 2B are similar
to those estimated by MLE methods, and coefficient B is significant .p D 0:004/.

The significance level of the regression coefficient does not automatically mean
that the GLM model should be “accepted”. The dispersion parameter is 2.35, which
means that the variation is larger than expected from the binomial model. This
overdispersion can be due to pseudoreplication caused by, for example, litter or
maternal effects.

Robust variance estimators, similar to the Donner’ test and the marginal model
(see Sects. 13.4.2 and 13.5), have been developed for generalised regression
analyses.

The R package robust (Wang et al. 2014) is used in this section for estimating
robust variance in a binomial regression model. The survival data are presented as
survivors and deaths per litter. The results of the “Robust GLM” are in line with
the MLE and GLM/F group model (Table 13.4). The Wald test .p D 0:003/ and
the dispersion parameter of 0.95 give this model preference over the others. The
number of lethal equivalents associated to 30–day survivorship in the Nepalese red
panda studbook population is 2B D 3:10, following the robust model.

The GLM (binomial) regression is not restricted to grouped data, but can handle
individual data as well (e.g. Brekke et al. 2010). The survival data are presented
as binary data (yes/no), i.e. an individual died or survived. This means that details
that refer to individuals can be included as variables. The generalised linear mixed
models (GLMM) is an extension to the GLM model which supports random factors,
such as litter or location of birth, to be included in the regression model (e.g. Hoeck
et al. 2015).
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Fig. 13.4 Thirty day survival
rates of offspring born to
inbred female Nepalese red
pandas. Deaths at date of
birth are excluded. The size
of the circles is proportional
to the number of births
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13.7 Maternal Inbreeding

The analyses that have been presented in the previous section focus on offspring
that are inbred. This may only reveal a part of inbreeding depression, as ancestral
inbreeding effects can play a role in survival and fecundity too (Ballou 1997; Lacy
et al. 1996). For example, inbreeding depression may affect lactation in inbred
females, and, therefore affect fitness of their offspring. However, the opposite effect
occurs too as purging can reduce inbreeding depression affecting offspring (Ballou
1997).

Figure 13.4 presents 30–day survival rates of offspring born to inbred female
Nepalese red pandas (offspring that died at date of birth are excluded). Robust
regression analyses did not reject the null hypothesis i.e. no inbreeding depression
in females that affected neonatal survival could be detected.

13.8 Fecundity

Inbreeding depression is not restricted to mortality, but can affect reproductive suc-
cess as well. For example, cryptorchidism (undescended testes) has been observed
in inbred Florida panthers (Puma concolor coryi) (Mansfield and Land 2002) and
in inbred Scandinavian grey wolves (Canis lupus) (Räikkönen et al. 2013). Poor
sperm quality due to inbreeding has been observed in the Mexican grey wolf (Canis
lupus baileyi) (Asa et al. 2007). A comparative study of 20 outbred (non–inbred)
populations of endangered and non–endangered species showed a negative relation-
ship between sperm quality and decreasing levels of heterozygosity (Fitzpatrick and
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Fig. 13.5 Fecundity rates
.mx/ in inbred .�/ and
non–inbred .ı/ female
Nepalese red pandas (data
from 1977 to 2012)
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Evans 2009). Reduced litter size was observed in inbreeding experiments on white–
footed mice (Peromyscus leucopus) (Brewer et al. 1990; Lacy et al. 1996).

Age–structured fecundity tables (Chap. 7) can be used to analyse fecundity in
inbred and non–inbred adults. The logrank test (Eq. 7.9) is used to test the (null)
hypothesis that both groups are the same.

Figure 13.5 presents fecundity rates in inbred and non–inbred female Nepalese
red pandas. Fecundity rates in adult non–inbred females are almost twice those
in inbred females. These differences are significant, i.e. the null hypothesis is
rejected .�2 D 93:5; p D 0; df D 1/ However, one should be cautious with
the interpretation of results, as reproduction of animals in captivity is managed by
humans. See Sect. 13.10 for potential data artefacts.

13.9 Reproductive Value

Age specific reproductive values .Vx/ predict the number of offspring that an
individual at a given age is expected to produce until the end of its life (see
Sect. 9.3). They can be considered as a measure of fitness (e.g. Caswell 2001).
Reproductive values have been used to detect inbreeding depression in the Nepalese
red panda (Glatston and Princée 1993).

Absolute reproductive values are preferred as they refer to expected numbers of
offspring. Furthermore, the value for age class 0 equals the net reproductive growth
.R0/. Figure 13.6 shows absolute reproductive values for inbred and non–inbred
female Nepalese red pandas estimated from class–based life tables (data 1977–
2012).



194 13 Inbreeding

Fig. 13.6 Absolute
reproductive value in inbred
.�/ and non–inbred .ı/

female Nepalese red pandas
(data from 1977 to 2012)
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Non–inbred females have a higher fitness (roughly twice) than inbred females
until both reach the post reproductive age. The effect of inbreeding can be
considered dramatic when the net reproductive rates are taken into consideration:
the non–inbred group has the potential to increase by 55 % per generation time
.R0 D 1:55/, whereas the inbred group would decline by 26 % .R0 D 0:74/. The
generation time for both groups is around 5 years and 3 months. However, the
same caution in interpretation of results as mentioned for fecundity rates applies
to differences in reproductive values between groups.

13.10 Data Artefacts

Life expectancy of individuals in zoos can increase over time as a result of improved
husbandry (see Sect. 3.2). Developing husbandry guidelines is a fundamental part
of cooperative breeding programmes. It may be anticipated that life expectancy
would increase after such a programme started. This may lead to a situation in
which juvenile mortality in the group of non–inbred individuals, but which were
born in the initial years of the programme’s establishment, is higher than in inbred
individuals born later. However, the opposite situation can occur too, as early data
may only include individuals which survived and which were relevant for the current
population. This means that the period of time included in analyses of viability
should be carefully selected. The date (year) that the first inbred individual was
born could be used as the start of the “time window”.

Improved husbandry is expected to have the same impact on reproductive success
as discussed above for life expectancy. However, fecundity rates are also affected by
breeding management. Mating opportunities under captive conditions are managed
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by humans. This may have affected reproductive success of inbred animals as the
risks associated with inbreeding were interpreted by some zoo staff as if inbred
animals were “inferior”. This is a misconception, as being homozygous for a
deleterious recessive allele is a matter of probability, as explained in Sect. 13.2.
Population management programmes, as well as population genetic courses for zoo
staff, have clearly changed this attitude. However, this misconception is persistent
and may still affect inbred individuals belonging to species that are not managed.

If inbred animals were excluded from reproduction then it is likely this artefact
occurred at the onset of population management programmes in zoos in the 1980s,
as a reaction to the first publications of inbreeding effects several years earlier (e.g.
Flesness 1977). Therefore it is recommended to examine studbooks to see whether
both inbred and non–inbred animals reproduced during the early 1980s.

Reduced reproduction is a management tool to maintain populations within the
available space (carrying capacity). Clearly fecundity rates and reproductive values
will decline and can not be used in tests for inbreeding depression.

It should be clear that occurrence of inbreeding depression in populations,
especially of endangered species, can jeopardise their conservation. Thus the
general management approach in cooperative breeding programmes is to avoid or
minimise inbreeding in captive populations (Ballou and Lacy 1995; Princée 1995).
This can actually lead to a situation where studbooks do not have sufficient data on
inbred individuals to test for inbreeding depression (Kalinowski and Hedrick 1999).
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Chapter 14
Genetic Drift and Simulations

Abstract Genetic drift is a random process that can lead to the fixation of alleles,
but at the cost of losing alleles, especially those with low frequencies, and to
increased homozygosity in the population. This process is described for an idealised
population and its effect illustrated on different population sizes. The founder
effect, a similar random process, is also described. The conditions of the idealised
population are rarely met in real populations. Therefore, in order to estimate genetic
drift it is necessary to make adjustments, for example by estimating effective
population size .Ne/. Methods to estimate Ne in populations with unequal sex–ratio
in breeders, e.g. herd species, and with unequal family sizes, are provided. Problems
in estimating genetic drift due to generation overlap are also discussed. Effective
population size can also be estimated from pedigrees. This method is illustrated with
the Nepalese red panda as example. Computer programs that simulate Mendelian
segregation in pedigrees (gene dropping) estimate the expected genetic drift and are
not hindered by unequal sex–ratio, unequal family size or generation overlap. The
general methodology of gene dropping is described. Software implementations can
differ in complexity, e.g. from single locus (two alleles) to multiple loci (multiple
alleles) on chromosomes and crossing over. The effects of simple and complex
models on genetic loss in the wolverine population were evaluated in the context
of model selection. Effective population sizes are estimated in Nepalese red pandas
from expected genetic drift between census intervals.

14.1 Introduction

Observed and expected heterozygosity are important measures for the genetic
management of small populations (see Chap. 12). An increase in homozygosity
is considered as a loss in genetic variation. Consanguineous matings increase the
probability that an individual is homozygous by descent, and, consequently, results
in an increase in homozygosity in the population.

Individuals can also be homozygous for alleles which do not originate from the
same ancestor i.e. homozygous by kind or state. A random process named genetic
drift can lead to fixation of alleles, and this also increases the probability that an
individual is homozygous (for a non–ancestral allele).
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It can be confusing that increase in homozygosity due to consanguineous matings
and genetic drift are both named “inbreeding”, but they are interpreted differently.
The first type of inbreeding originates from the practice of livestock breeding in
which it is considered important to asses the probability that an individual inherits
recessive alleles (either deleterious or advantageous) from ancestors (Wright 1922).

Increase in homozygosity in a population can be due to genetic drift i.e. fixation
of alleles. Inbreeding in this context is defined as matings between individuals who
are more closely related than they would be if they had been chosen at random
from a population (Crow and Kimura 1970). This means that inbreeding refers to
the increase in homozygosity in the population relative to random mating (Hardy–
Weinberg) proportions.

14.2 Genetic Drift and Founder Effect

Population genetic models often assume an idealised population. The main charac-
teristics of this hypothetical population are (1) the number of breeding individuals is
constant in each generation; (2) there is no generation overlap; (3) there is random
mating; and (4) family size (number of offspring) follows a Poisson distribution (i.e.
mean D variance D 2) (Frankham et al. 2010). This means that each individual in
the ideal population has an equal chance of mating (twice) and passing its genes to
the next generation. However, this also means that individuals have equal chances
of not mating, or of producing only a single offspring, and thus none or only half
of its genes are passed to the next generation. Allele frequencies in the offspring
generation may therefore differ from the parental generation. This random sampling
error of gametes per generation is called genetic drift.

The effect of genetic drift on genetic variation can be estimated by considering
an ideal population of N individuals (of a diploid species) as a zygote pool of 2N
gametes from which 2N gametes are sampled (with replacement). Gene diversity
(symbol: He) at generation t C 1 is expected to be:

HeŒtC1� D .1 �
1

2N
/HeŒt� (14.1)

where N is the population size (Wright 1931).
Genetic drift is the proportional loss of 1=.2N/ in gene diversity per generation.

Gene diversity is also lost when establishing a new population, due to a similar
sampling error to that causing genetic drift. A founder group of N individuals
represents a fraction of 1 � 1=.2N/ of the gene diversity in the original population.
This process is named the founder effect.

Figure 14.1 shows the combined effect of population size on founder effect and
genetic drift in small (ideal) populations. Values of gene diversity are presented
as proportional to the original (wild) gene diversity. This figure illustrates the
problems of maintaining small populations of endangered species. The smaller
populations not only start with less gene diversity, but also lose more gene diversity
per generation than large populations.
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Fig. 14.1 Effect of
population size .N/ on
founder effect and genetic
drift in ideal populations
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14.3 Effective Population Size

Real populations, especially of species with complex social systems, usually do
not meet the assumptions of idealised populations. Unequal sex–ratio reduces the
number of individuals (of the sex with the lowest number) that contributes genes
to the next generation. This results in a genetic loss that is larger than predicted by
genetic drift based on population size (Eq. 14.1).

Wright (1931) introduced the concept of effective population size (symbol: Ne)
to estimate genetic drift in populations that deviate from the ideal population. This
measure can be described as the number of individuals in an idealised population
that would have the same genetic drift as an actual population.

14.3.1 Unequal Sex–Ratio

Sex–ratio in the breeding population is not necessarily equal, e.g. in species that
live in harem groups. The effective population size .Ne/ for unequal sex–ratio is
calculated as:

Ne D
4NmNf

Nm C Nf
(14.2)

where Nm and Nf , are the numbers of sexually mature males and females, respec-
tively (Wright 1931).
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14.3.2 Unequal Family Size

The model in Eq. 14.2 is based on the assumptions that family size follows a
Poisson distribution, and that population size is constant. In reality, however, the
variance in family size can differ; for example some individuals may never be in a
breeding condition; or the population is growing i.e. mean family size is increasing.
Furthermore, management to equalise reproductive success in captive populations
can result in near zero variance in family size.

The variance effective population size (symbol: Ne.v/) (Kimura and Crow 1963)
adjusts for both unequal sex–ratio and distribution of family size that deviates
from a Poisson distribution. The variance effective size is calculated in two steps.
First the effective number is calculated for the sexes separately (here illustrated for
males Nme):

Nme D
Nm Nkm � 1

Nkm C .�2
km

= Nkm/ � 1
(14.3)

where Nm is the number of males, Nkm and �2
km

are the mean number and variance in
offspring (both sexes) among sexually mature males (Kimura and Crow 1963).

The female variance effective population .Nfe/ is calculated by substituting
the appropriate female parameters in Eq. 14.3. The variance effective size is then
calculated by substituting male and female numbers in Eq. 14.2 for the respective
effective numbers.

14.3.3 Generation Overlap

Generation overlap is not taken into account in either of the models described
above. Demographic models to adjust for generation overlap incorporate generation
time (e.g. Engen et al. 2005; Felsenstein 1971; Lande and Barrowclough 1987).
Practical application of these mathematical models to wild populations is subject to
discussion, in favour of the use of computer simulation models in which population
development and genetic change over time are combined (Allendorf et al. 2013;
Frankham et al. 2010).

This discussion of generation overlap models also applies to captive populations,
as generations are defined in relation to the founders (see Chap. 12). Therefore, gen-
eration overlap is not only caused by overlap in reproductive life of (grand)parents
and offspring, but by imports of founders over longer periods of time as well.
Section 14.5 presents genetic simulation models that can estimate genetic drift
between captive–born generations and census intervals from pedigree data (e.g.
Princée 1988, 1998). Effective population size can be estimated from simulation
results following Eq.14.1.
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14.4 Estimating Ne from Pedigrees

The number of offspring that has been produced by an individual over its lifetime
can be extracted from pedigree data. This means that variance effective size can
be calculated for any group of individuals, e.g. captive–born generation group,
individuals that reproduced during one generation time interval, or the living
population (e.g. Ballou et al. 2010; Princée 1988). These estimates provide an
insight into the effects of demographic processes on genetic variation and thus into
the feasibility of management measures to increase Ne=N ratios in order to minimise
genetic loss.

A relatively simple method of estimating variance effective size of the living
population is to estimate Nk from the number of offspring born to (living) males and
females that have reproduced and to assume a Poisson distribution of family sizes
(i.e. �2

k D Nk). This demographic method is implemented in the program PMx (R.
Lacy, personal communication). The advantage of this method is that Ne.v/ can be
estimated without detailed pedigree data, which otherwise would be necessary to
estimate �2

k .
A further refinement to this method is to include non–breeders that have reached

sexual maturity at census. Offspring that died before reaching sexual maturity are
excluded from birth counts; and variance family size is estimated from pedigree
data (see Ballou and Foose 1996; Lande and Barrowclough 1987). Table 14.1
presents variance effective size for the living population of Nepalese red pandas
(31 Dec 2012) based on this refined method. Age at sexual maturity is �2 years.
The values between brackets refer to breeders only i.e. N D Nbreeder.

The effective population size of 151 results in a genetic drift of 0.33 % per
generation (time). Whether this loss is acceptable depends on management goals
with respect to the minimal amount of original (wild) genetic variation to retain,
the time–frame and carrying capacity (zoo space). The total living population .N/

is 402 individuals, resulting in an Ne=N ratio of 0.38.
Excluding non–breeders from the living population has only marginal effects

on effective numbers per sex, and none on total Nev . This means that identifying
breeders (and their offspring) seems to be sufficient to estimate effective size.

Table 14.1 Variance effective population size of living sexually mature Nepalese red pandas on
31 December 2012. Age at sexual maturity is 2 years for both sexes. Values between brackets refer
to variance effective size in living breeders

Sex N Nbreeder k Nk �2
k Ne.v/ Ne=N

Male 201 86 313 1.56 (3.64) 6.09 (6.66) 69.85 (69.82) 0.35 (0.81)

Female 201 91 326 1.62 (3.58) 5.42 (4.93) 82.04 (82.07) 0.41 (0.90)

Total 402 177 150.91 (150.91) 0.38 (0.84)

N number of sexually mature individuals, Nbreeder number of breeders, k total number of sexually
mature offspring, Nk mean number of sexually mature offspring per individual, �2

k variance in family
size, Ne.v/ variance effective size, Ne=N (variance) effective size/population size ratio
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However, including non–breeders provides a more realistic Ne=N ratio to determine
the required population size and/or to evaluate whether reproductive success needs
to be improved.

Although effective size can be adjusted for generation overlap, demographic
methods are likely to result in overestimates due to effects of non–random mating
and, in the case of captive populations, overlap in captive–born generations.
Comparing estimated values with results of genetic simulation models is therefore
recommended.

14.5 Genetic Simulation Models

Genetic drift in populations with unequal sex–ratio, non–random distribution of
family size and generation overlap can be estimated with various mathematical
models of effective population size. These models, however, assume that mating
in these (real) populations is random. Furthermore, genetic drift estimated from
Ne values can be inaccurate due to overlap in captive–born generations (see
Sect. 14.2).

The random nature of Mendelian segregation makes it suitable for applying
Monte Carlo methods to study processes such as genetic drift in pedigreed (stud-
book) populations. This technique is named gene dropping and does not have the
limitations of mathematical models in estimating genetic drift as mentioned above.

The first computer programs to analyse genetic structure of pedigreed pop-
ulations were already developed in the 1960s (e.g. Gilbert and Hammel 1966;
MacCluer 1967). However, the introduction of personal computers in the 1980s
provided a wider access to software, and initiated development of simulation models
for studbook populations (e.g. MacCluer et al. 1986; Princée 1988).

The basic methodology of gene dropping can be described in the following
steps:

1. Assign genotypes to founders, either from a pre-determined list or sample from
allele distributions using Monte Carlo methods.

2. Assign genotypes to descendants of founders in the pedigree using Monte Carlo
methods to simulate Mendelian segregation.

3. Compute measures of genetic variation from genotypes in groups of descendants
e.g. generation groups and living population.

4. Iterate these steps e.g. in the order of 1,000–10,000 times.
5. Compute mean, variance, percentiles etc. over measures obtained per iteration

(run).

The original gene dropping model (“gene drop”) (MacCluer et al. 1986) assumes
a single neutral locus and assigns two unique allelic variants to each founder. Since
each founder has two unique alleles, the (observed) heterozygosity in the founder
group is 1.0. Gene diversity in the founder population is estimated using Eq. 12.4.
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The gene drop model is implemented in the pedigree analysis program
GENES (Lacy 1993). More recent versions of this simulation program are embedded
in the population analyses program PMx (Ballou et al. 2011). Both programs are
generally associated with studbooks that have been created in SPARKS (Scobie and
Flesness 1989). The gene drop model is therefore widely used in management of
zoo populations.

Genome models implemented in gene dropping software can be more complex
than a single locus. For example, the program GeneFlow (Princée 1988) was
designed to handle multiple independent autosomal loci. Monte Carlo methods are
used to draw random genotypes of founders from hypothetical and/or empirical
allele frequencies in an infinitely large (wild) population, at the start of each iteration
(run). This means that GeneFlow also simulates the stochastic nature of the founder
effect.

The program ChromoFlow (Princée 1998) is the successor of GeneFlow. This
program simulates transmission of multiple autosomal chromosomes on which
various linked genes can be located. Numbers of loci, numbers of allelic variants and
their frequencies can be manipulated as described for the GeneFlow model. Monte
Carlo methods are used to sample homologues for descendants of founders based
upon Mendelian segregation of the parental homologues, in each simulation run.

ChromoFlow accommodates recombination by crossing over during meiosis,
following Haldane’s model (Haldane 1919; Stam 1979). Therefore, the location of
each locus in the genome is defined, i.e. chromosome number and map distance
in centi–Morgans from either centromeric or telomeric end. Genetic crossing over
is applied prior to Mendelian segregation of the parental homologues for each
descendant and in each simulation run. Genome and genetic composition models
can be hypothetical and/or based on empirical data.

14.5.1 Which Model?

The difference in complexity of gene dropping models triggers the question “Which
model would be best to use?”. Complex models are not necessarily better than
simpler ones, depending on the goal (see e.g. Starfield and Bleloch 1991). The
model ChromoFlow was designed by Princée (1998) to study the impact of
assumptions regarding genome and genetic composition models. Results from that
study showed that mean values of genetic variation computed over iterations are
similar between models, but that variances can differ greatly, especially when rare
alleles are involved.

Simulation experiments with the ChromoFlow program (Princée 1998) on
the wolverine EEP population have been carried out to illustrate the effects of
assumptions regarding allele frequencies in a “single locus” model. Mean and
variance of gene diversity were estimated over 10,000 runs. The living population
in 2000 represents descendants of eight founders.
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Fig. 14.2 (a) Density probability plot of gene diversity in the living wolverine EEP population
among 10,000 simulation runs. The genome/genetic composition model involves a single–locus,
two–equal–alleles model. The dotted vertical line is the mean value ( NHe D 0:84). (b) Density
probability plot of gene diversity with single–locus, rare–allele .p D 0:04/ model and 10,000
simulation runs. The dotted vertical line is the mean value ( NHe D 0:87)

Table 14.2 Effect of “wild” allele frequencies (p1 to p16) in a single locus model in simulations on
mean and sample variances in gene diversity .He/ in the wolverine population (31 December 2000).
The values are presented as proportion of the original (“wild”) genetic variation. Experiments A to
E follow the ChromoFlow/GeneFlow model, experiment F is a gene drop model. The number of
simulation runs in all experiments is 10,000

Wild Proportional to wild

No. Wild allele frequencies He He �He

A p1�2 D 0:500 0.500 0.84 0.034

B p1�4 D 0:250 0.750 0.84 0.012

C p1�8 D 0:125 0.875 0.84 0.006

D p1�16 D 0:0625 0.9375 0.84 0.003

E p1 D 0:96; p2 D 0:04 0.0768 0.87 (0.83)b 2.290 (2.13)b

F p1�16 D 0:0625a 1.000 0.78c 0.000c

He gene diversity or expected heterozygosity, �He variance in gene diversity
aUnique alleles are assigned to the eight founders
b100,000 iterations
cLiving wild–born individuals are not included

Figure 14.2a, b present density distributions of the proportion of original gene
diversity over 10,000 runs, in the living population for models with equal allele
frequencies and a rare allele .p D 0:04/, respectively. Mean and variance for gene
diversity in both simulation experiments are presented in Table 14.2 (experiments A
and E).
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The density plots are created in R (R Core Team 2015) and used in this section
for illustration purposes only, i.e. to show the shape of the distributions of gene
diversity under different genome/genetic models.

The “rare allele” simulation experiment shows a wide range in simulation values,
but also a density distribution that is skewed to the left, indicating a high probability
that the rare allele in this population has been lost, either due to founder effect
or genetic drift (see Fig. 14.2b). The variance in this model is high, as expected
from the density distribution, compared to experiment A, i.e. 2.290 and 0.034,
respectively (see Table 14.2).

The mean value of gene diversity in the rare allele model (experiment E) differs
from the results of experiments A to D. This indicates that 10,000 iterations is not
sufficient for this particular model. A re–run with 100,000 iterations results in a
more similar mean value (value between brackets in Table 14.2).

Table 14.2 shows that variances in genetic variation decline for increasing levels
of original gene diversity. Experiment D with 16 equally distributed alleles results in
the lowest variance for He in the living population in the group experiments A to E.
This result means that a simulation with a single locus model that assumes several
equally distributed alleles is adequate, even with modest numbers of iterations, to
estimate the expected proportion of original (wild) gene diversity that has been
retained.

The conclusion above also applies to the (single locus) gene drop model as
implemented in GENES and PMx (Ballou et al. 2010; Lacy 1993). Experiment F
is based on this model. An important difference with the ChromoFlow/GeneFlow
model is that the founder effect is not simulated, as unique alleles are directly
assigned to the founders.

GENES assesses success of the transmittance of original (wild) genetic variation
into the captive population (also the default option in PMx). This means that
(living) wild–born individuals are not considered as part of the living population.
This explains the lower value for gene diversity in experiment F compared to
ChromoFlow/GeneFlow experiments in which all living individuals are included.

14.5.2 Effective Size

Section 14.3 presented demographic models to estimate effective population size.
Extreme generation overlap and non–random mating have an impact on the validity
of these estimates. Gene dropping models can be used to estimate Ne from expected
genetic loss between census intervals of a generation time. This allows the study of
the effects of demographic trends on genetic variation.

A simulation experiment with the ChromoFlow program with a “single locus
and two equal alleles” model and 1,000 simulation runs on the Nepalese red panda
population was carried out. Figure 14.3 presents the expected proportion of original
(“wild”) gene diversity retained at census dates between 1980 and 2005.
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Fig. 14.3 Expected gene
diversity at census dates in
the Nepalese red panda
population from 1980 to
2005. Vertical bars refer to
generation intervals of
5 years. A “single locus and
two equal alleles” model and
1,000 simulation runs were
used
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Table 14.3 Effective
population size estimated
from genetic loss between
census intervals of 5 years in
Nepalese red pandas. A
“single locus and two equal
allele” model and 1,000
simulation runs was used

Year N He 
He Ne Ne=N

1980 151 0.978 NA 29.4 0.19

1985 155 0.961 0.017 71.4 0.46

1990 173 0.954 0.007 100 0.58

1995 260 0.949 0.005 250 0.96

2000 380 0.947 0.002 1a

2005 458 0.947 0.000 NA NA

N census size, He gene diversity, 
He propor-
tional loss in gene diversity, Ne effective popula-
tion size, Ne=N effective size/population size ratio
aEffective size cannot be estimated as 
He D 0:0

The interval between vertical lines in this figure roughly corresponds to a
generation time of 5 years in this population. The decline in gene diversity eases
off over the years, with almost no loss between the 2000 and 2005 census dates.
Table 14.3 presents levels of genetic variation .He/ at these 5 year census intervals.

The effective population size Ne in this table is estimated from the “observed”
proportional loss in genetic variation within a single interval 
He. For example, the
Ne in 1980 is estimated from the loss of 0.017 between 1980 and 1985 (see Eq. 14.1).
In addition, census size .N/ and Ne=N ratios are presented. Effective population size
is increasing (as genetic loss per interval decreases) over the period 1980 to 2005 as
a result of a growing population. The increase in Ne=N ratio indicates that a higher
proportion of red pandas reproduced.

No loss in gene diversity .
He D 0:000/ is observed between 2000 and 2005.
This means that Ne is infinitely large (Table 14.3). The zero loss could be an artefact
due to sampling errors in the simulation and/or rounding errors of He and 
He to
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three digits (as the number of runs is 1,000). For example, in the case that 
He was
0.0005, the corresponding effective size would then be 0:5=0:0005 D 1;000.

Generation overlap due to the definition of captive–born generation (see
Chap. 12) can also result in minimal differences in genetic variation. This
particularly applies to imports from the wild (whose genes are included in
ChromoFlow estimations of census groups) and/or F1 offspring born in the period
2000–2005. These individuals will “add” genetic variation to a population which is
mainly composed of older captive–born generations (see Princée 1988, 1989).

Simulation models using pedigree data enable the estimation of genetic variation
(in neutral loci) that is expected to have been retained in the living population and
they provide information on historic patterns of genetic loss in the population. This
information can be used to evaluate which management measures need to be taken
in order to maintain sufficient levels of genetic variation in the managed population.

Gene drop simulations on real–time pedigrees enable us to study the
effects of complex population dynamic processes on genetic variation. In
addition, chromosome–based models that involve crossing–over, such as
ChromoFlow (Princée 1998), can provide a detailed insight into genetic processes.
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Chapter 15
Avoidance of Selection

Abstract Avoidance of selection in captive populations of wild species is discussed
in the context of maintenance of original genetic variation. The complexity of
identifying advantageous and disadvantageous alleles is illustrated with sickle
cell haemoglobin in humans and clutch size in great tits. Consistent artificial
selection for preferred wild phenotypes that may have occurred in the past is
described. Unconscious selection as a result of the captive environment is also
discussed. The chapter presents methods that are used in species management to
minimise unconscious selection. The concept of founder representation in detecting
under–represented lineages in the (living) population and identifying genetically
important individuals is described. Founder representation in the European studbook
population of wolverines is used as an example. It illustrates difficulties associated
with over-representation in a population that was established with a small number
of founders. The concept of estimating mean kinship of individuals from kinship
coefficients is described. The procedure used to identify genetically important
individuals is illustrated with mean kinship in male and female wolverines.

15.1 Good or Bad Genes?

Maintenance of (natural) genetic variation in captive populations of wild species
is important, whether the population is part of a reintroduction programme or is
to be managed long–term in captivity. These populations need to have sufficient
levels of genetic variation to be able to cope with changing environments (as
does any population). Environmental changes may already have occurred in the
original habitat during the period in captivity. For example, the reintroduction of
Przewalski’s horses (Equus przewalskii) started in 1992, almost a century after the
first founders arrived in zoos and some 30 years after the species was assumed to
be extinct in the wild (van Dierendonck and Wallis de Vries 1996). Climate data
for the period 1940–2006 show that the mean annual temperature in Mongolia has
increased by 2:14 ıC, with noticeably increased summer temperatures (Dagvadorj
et al. 2009).

An underlying thought with regard to maintaining genetic variation is that
original (wild) alleles in the founder population cannot simply be labelled in
terms of being “advantageous” or “disadvantageous”. The captive environment will
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almost certainly differ from the natural environment, and, therefore, alleles that
are advantageous in the wild can be disadvantageous under captive conditions,
and vice versa. Moreover, it is difficult to assess which alleles in a genome (with
4,000–50,000 structural loci (Nei 1987)) are advantageous, and especially to predict
their natural state at time of reintroduction. Even recessive deleterious alleles
can be advantageous in the heterozygous state. A “classic” example is protection
against malaria in humans who are heterozygous for the sickle haemoglobin (HbS).
Although homozygous individuals for HbS will not reach adulthood, a balanced
polymorphism exists in malaria infected areas (Eridani 2011).

A more important reason not to think in terms of advantage of alleles, is the
fact that natural environments are not constant, but fluctuate from season to season,
and from year to year. Selective forces will consequently fluctuate accordingly.
Furthermore, selection acts at the level of phenotypes, which are the result of
genotypes, maternal effects and environmental factors. Thus phenotype does not
even refer to a single gene, but often to traits that involve tens to hundreds of genes.
Methods to estimate genetic and environmental components in traits are discussed
in Chap. 16.

Clutch sizes in wild bird populations have been relatively well studied and have
a clear genetic component (Postma and van Noordwijk 2005; van Noordwijk et al.
1981). This trait is a good example with which to illustrate the complexity of
natural selection. One would expect that selective forces would act in favour of
larger clutch sizes, but long–term studies have not found such evidence (Postma and
van Noordwijk 2005). For example, survival of young in large clutches of great tits
(Parus major) is lower in “bad” years than survival of those in small clutches (Boyce
and Perrins 1987). Fluctuation in environmental factors that affect food abundance
is a mechanism that explains maintenance of genetic variability in clutch size in the
great tit.

15.2 Selection

Captive populations are also subject to selection. Two base types of selective forces
that occur in captive populations were identified by Darwin (1875):

1. Methodical artificial selection that favours specific genotypes or phenotypes
(traits).

2. Unconscious selection due to selective forces of the captive environment, which
includes local environmental conditions.

Methodical artificial selection is generally associated with breeding domesticated
species. This type of selection favours traits that are either beneficial, e.g. milk
production in dairy cattle, or perceived in terms of aesthetics, e.g. coat patterns
or morphological shape in pets. Inbreeding schemes are often applied in order to
increase the chance that offspring inherit the desired trait. Such breeding schemes
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are also applied by breeders of albino morphs of lions and tigers (AZA Welfare
Committee 2011).

Artificial selection has most likely taken place in zoo populations established
before population genetics was introduced in management programmes. For exam-
ple, wild Sumatran tigers (Panthera tigris sumatrae) which were imported to The
Netherlands in the 1950s were selected in favour of larger size for zoological
gardens (L. de Boer, personal communication). Phenotypic selection may have taken
place in a wide range of species, such as for antlers in deer or manes in African lions
(Panthera leo). Some of these individuals may have become founders of recent zoo
populations. However, this type of historical selection cannot easily be reversed.

Unconscious selection favours genotypes and phenotypes that are “adapted” to
the captive environment. Since this type of selection is unnoticed it can lead to
changes in allele frequencies and loss of alleles that may jeopardise success of future
reintroduction programmes (Arnold 1995; Frankham 2008; Williams and Hoffman
2009).

Equalising founder representation in the population, and arranging mating
combinations based on mean kinship values of individuals, are methods that are
used in the management of studbook populations to minimise selection (Leus et al.
2011). These methods are discussed in the following sections.

15.3 Founder Representation

A founder is defined as an individual with no known genetic relationship to any other
individual in the pedigree except for its descendants (Lacy 1989). In the context of
captive management, founders refer to wild–born individuals and individuals with
unknown parentages from other captive sources.

Equalising family sizes among founders and their descendants in subsequent
generations will not only reduce random genetic drift (see Chap. 14), but will
also minimise selection through equal distribution of founder genomes in the
population. However, this condition is rarely met in populations of wild animals.
The real distribution of founder genomes can be calculated by summation of founder
representation in living individuals (Foose 1983). The additive relationship matrix
method, as used to calculate inbreeding coefficients, is also applied to calculate
founder representation in individuals (see Ballou 1983).

The European zoo population of wolverines in December 2000 consisted of 55
living individuals. The total number of founders is eight, of which four were alive in
December 2000. Figure 15.1 presents the founder representation in the captive–born
individuals. The horizontal line represents the equal founder representation in this
population (which with eight founders is 0.125).

Wolverines did breed in zoos before an EEP was established in 1994. The starting
EEP population was small and based on a few founders. This made it difficult
immediately to correct effects such as unequal founder representation. For example,
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Fig. 15.1 Founder
representation in the
European zoo population of
wolverines on 31 December
2000. Studbook IDs of
individuals are on the X–axis.
The dashed horizontal line
represents equal founder
representation (0.125)
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three founders represent almost 95 % of the founder genomes in the year 2000
population (Fig. 15.1).

Breeding recommendations in the early years of population management would
focus on equalising founder representation. This can be a complex process, depend-
ing on the previous history. For example, all living captive–born wolverine individu-
als in 2000 were related to the overrepresented female 130. This makes it impossible
to breed any of these individuals without increasing founder representation of this
founder female.

Three wild–born wolverines reproduced for the first time, increasing the genetic
variation in the captive population, in 2000 (Blomqvist 2001). However, these
wild–born individuals were paired with captive–born individuals. This means that
their offspring represent both rare and common founder lineages. These mating
combinations are not optimal from a genetic perspective, as equalising founder
representation for the new founder lineage automatically increases representation
of the common lineages. Combinations between the wild–born wolverines would
have been preferred, but in practice this may not have been a feasible option, e.g.
due to unequal sex–ratio (1 male and 2 females) or different (distant) locations.

15.4 Mean Kinship

Choosing which individuals to breed can be very complex when founder lineages
are, almost inevitably, mixed over the generations. The mean kinship (symbol:
mk) method was developed to select individuals that are genetically important
for the population (Ballou and Lacy 1995). The concept is based on identifying
those individuals that are least related to the others in the population. The genetic
relatedness between two individuals i and j can be expressed as the kinship
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Table 15.1 Mean kinship table of 10 male and female wolverines in the European zoo population
(in 2000) ranked by lowest mean kinship values

Males ID Sire Dam F mk Females ID Sire Dam F mk

210 WILD WILD 0 0.005 220 WILD WILD 0 0

235 202 203 0 0.1241 211 WILD WILD 0 0.005

240 152 210 0 0.1288 202 WILD WILD 0 0.01

157 139 118 0 0.195 185 134 132 0 0.0508

146 139 118 0 0.2025 234 211 144 0 0.1159

166 139 118 0 0.205 236 202 203 0 0.1241

226 170 166 0.1875 0.2195 130 WILD WILD 0 0.1656

212 161 143 0.3125 0.2198 167 139 118 0 0.195

213 161 143 0.3125 0.2198 153 139 118 0 0.195

ID studbook ID, F inbreeding coefficient, mk mean kinship

coefficient .kij/, which is the inbreeding coefficient of their (hypothetical) off-
spring. Kinship coefficients are also computed with the additive relationship matrix
method (Henderson 1976; Quaas 1976).

Mean kinship .mk/ is the mean of kinship coefficients between individual i and
all living non–founder individuals (including itself i.e. if not a founder):

mki D

PN
jD1 kij

N
(15.1)

where N is the number of living individuals (Ballou and Lacy 1995).
The general procedure is to rank males and females according to mk value (lowest

first). Individuals that are unrelated to the others, such as wild–born individuals that
have not reproduced, will have an mk D 0 and will be listed at the top.

Table 15.1 presents ranked mean kinship tables for male and female wolverines
in the European zoo population in the year 2000. Wild–born female 220 had not
yet reproduced in 2000 and is therefore listed at the top. Female 130, who is
overrepresented, has an mk value of 0.1656. Offspring of the wild–born individuals
202, 210 and 211 have high mk values due to an overrepresented parent e.g. male
240 has a value of 0.1288.

The individuals at the top of the mean kinship list are the first to “select” for
breeding. It depends on demographic management how many males and females
from the list are allowed to breed. The best mating combinations are not necessarily
between individuals of the same rank as they could be related e.g. siblings. Wild–
born wolverine individuals can belong to the same litter (den) (Blomqvist 2012).
The MateRx model is used by studbook keepers and population managers to
create a list of recommended combinations in which inbreeding coefficients of
potential offspring are taken into account (Ballou et al. 2001; Traylor–Holzer
2011).

Age structure of the population is not considered in mean kinship calcula-
tions (Ballou and Lacy 1995). This means that post–reproductive individuals, who
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can no longer contribute genes to future generations, inflate mean kinship values of
their descendants.

The solution to this problem is the kinship value, which is the mean kinship
weighted for the reproductive values of each living individual (Ballou and Lacy
1995). Implementation of kinship values depends on the reliability of reproductive
values, and thus depends on available sample sizes within a studbook (see Chaps. 7
and 9).

Mating schemes based on equalising founder representation and/or mean kinship
values can (partly) prevent selection by ensuring that potential founders and descen-
dants of underrepresented founder lineages reproduce successfully. Chapter 16 will
discuss further avoidance of selection by taking quantitative traits into account.
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Chapter 16
Quantitative Genetics

Abstract Monitoring phenotypic variation in natural history traits that can be
directly obtained from studbook data is explored in this chapter. Phenotypic
variances in lifespan, age at first breeding, inter–birth interval, litter size, breeding
season and fitness, as observed in the captive populations of Chinese and Nepalese
red pandas, are explored. The components of phenotypic variance and concepts of
heritability and repeatability are described. Repeatability in different traits of red
crowned cranes, red pandas and snow leopards is presented and discussed. Mid–
parent and single parent regressions to estimate heritability .h2/ are described and
illustrated with parturition date in red panda subspecies. Methods to handle unequal
family sizes in regression and to adjust for assortative matings are explained and
illustrated with the trait “fitness” in red pandas. Assumptions in linear regression
regarding independent data and normal distribution of trait data are discussed, as
are effects of outliers on results. The Residual or Restricted Maximum Likelihood
(REML) and Markov chain Monte Carlo (MCMC) implementations of the “animal
model” to estimate heritability are briefly described. Parturition date in Nepalese
red pandas is used to demonstrate these methods. The last section explores the use
of estimated breeding values (EBVs) in monitoring phenotypic variation. Litter size
in maternal generation groups of African wild dogs is used as an example.

16.1 Phenotypic Traits

Genetic management of captive populations of wild species is predominantly based
on the neutral–mutation–random–drift theory of molecular evolution (see Crow
and Kimura 1970; Kimura 1968). Mutation does not result in allelic variants that
are more beneficial than others, according to the neutral theory. Fixation of alleles
(loss of genetic variation) is entirely due to random genetic drift in an idealised
population.

Minimising genetic drift by increasing effective population size will, in effect,
primarily maintain genetic variation in (selectively) neutral genes. However, this
does not mean that genetic variation at loci involved in selection directed to
adaptation to captivity is lost. Identification of genetically important individuals
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based on mean kinship values minimises (unconscious) selection between families
(see Chap. 15). However, (unconscious) selection among siblings within families
remains (e.g. Frankham 2008).

Selection acts at phenotypes of traits, which are the combined product of geno-
types on single or often multiple genes (polygenic), of maternal effects, interaction
between alleles and genes, and environmental factors. The genes involved in these
traits are unknown, more often than not. This complexity makes it almost impossible
to assess genetic variation at the level of individual loci that are involved in a
specific trait. In other words, the genetic composition of a trait is often a “black
box”.

The field of quantitative genetics describes and unravels the “black box” of traits.
It is likely that animal and plant breeders, in the era before Darwin and Mendel, used
concepts of quantitative genetics; for example, by selecting specific bulls and/or
cows to improve meat and milk production in herds. However, a more fundamental
approach, describing responses to natural selection, refers to the work of R.A. Fisher
and S. Wright in the early 1900s (Fisher 1918; Wright 1921b). Understanding the
process of selection on traits is essential in order to minimise selection in captive
populations of endangered species.

Although the importance of quantitative genetics for (genetic) management
of zoo populations is recognised (e.g. Arnold 1995; Frankham 1999; Lande
1995; McDougall et al. 2006), this field of genetics is, so far, only sporadically
used in species management programmes. Examples include the trait juvenile
survival in Cuvier’s gazelle (Gazella cuvieri) (Ibáñez et al. 2014) and the traits
courtship display, ejaculate size, clutch size and body mass per year in Houbara
bustard (Chlamydotis undulata) (Chargé et al. 2014). However, the potential for
research in quantitative genetics on captive populations is realised (Pelletier et al.
2009). For example, the ISIS database was used to study heritability of longevity in
14 mammal and 8 bird species (Ricklefs and Cadena 2008).

Data on morphological and physiological traits are not registered as standard in
studbooks. However, various life history traits can readily be studied without the
need for additional data collection. Chapter 3 showed how basic studbook data,
i.e. sex, parentages and dates of birth and death, are used to analyse life history
traits. The sample variance of the mean as estimated in these traits is the phenotypic
variance (symbol: VP).

Lifespan, age at first breeding, litter size, birth season and inter–birth interval
are used as examples of traits in this chapter. Additionally the trait “fitness”,
measured as the total number of offspring produced during an individual’s life–time,
is included as an example (Kruuk et al. 2000).

This chapter provides an introduction to the role quantitative genetics can play in
(genetic) management of studbook populations. The red panda studbook is used as
the main example to illustrate methods to estimate heritability.
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16.2 Phenotypic Variance

Phenotypic variances .VP/ of life history traits in studbook populations are, as
mentioned in the previous section, sample variances of the mean trait values. For
example, the phenotypic variance of the trait “litter size” is the variance of mean
litter size, or the phenotypic variance of “reproductive lifespan” is the variance of
mean age at reproduction.

Interpretation of sample variances, for example whether small or large, is not that
straightforward, especially when comparing populations or different traits (mea-
sures of unit). Coefficients of variation, which are named phenotypic coefficients
of variation (symbol: CVP), are unit–free and dimension–free, and thus provide a
measure of relative variability (Houle 1992).

Table 16.1 presents VP and CVP values (in %) for life history traits in Nepalese
(fulgens) and Chinese (styani) red panda subspecies. This table illustrates the
differences in magnitude of phenotypic variances between traits. For example,
variances of litter size and female age at first breeding in Nepalese red pandas
are 0.3983 and 379,237, respectively; yet, the CVP values of both traits are rather

Table 16.1 Phenotypic variance of life history traits in the global studbook population of red
panda subspecies

Taxon Sex Trait Unit Nobs Mean VP CVP

Fulgens Male Lifespan Day 658 1,791 4,085,186 112.9

Fulgens Female Lifespan Day 683 2,039 3,952,307 97.5

Styani Male Lifespan Day 224 2,513 6,076,186 98.2

Styani Female Lifespan Day 210 2,424 6,195,756 102.8

Fulgens Male Age at first breeding Day 304 1,473 699,948 56.9

Fulgens Female Age at first breeding Day 349 1,275 379,237 48.7

Styani Male Age at first breeding Day 101 1,709 841,626 53.8

Styani Female Age at first breeding Day 117 1,281 269,533 40.6

Fulgens N/A Inter–birth interval Day 238 459.5 56,642 51.8

Styani N/A Inter–birth interval Day 102 508.1 86,997 58.1

Fulgensa N/A Parturition date Day number 1026 177 197.6 7.9

Styani N/A Parturition date Day number 468 180.4 235.9 8.5

Fulgens N/A Litter size Offspring 1228 1.714 0.3983 36.8

Styani N/A Litter size Offspring 276 1.686 0.4381 39.3

Fulgens Male Fitness Offspring 685 2.261 18.56 192.4

Fulgens Female Fitness Offspring 683 2.261 15.35 173.4

Styani Male Fitness Offspring 224 1.451 11.56 234.6

Styani Female Fitness Offspring 210 1.643 11.66 208.1

Nobs number of observations, VP phenotypic variance, CVP phenotypic coefficient of variation
(in %)
aNorthern hemisphere locations in Europe and North America
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similar. Furthermore, these data illustrate the differences in phenotypic variances
between sexes and populations (in this case subspecies).

Phenotypic variances of parturition, expressed as “day of the year”, in both
Chinese and Nepalese red pandas at northern hemisphere zoo locations, are
relatively low compared to life-history traits i.e. CVPs are around 8 %.

Variances of lifespan and fitness are high in both subspecies and sexes. For
example, CVP values of fitness of over 200 % (which means that the standard
deviation is more than twice the mean value) can be observed for Chinese red pandas
(see Table 16.1).

16.3 Variance Components

The phenotypic variance .VP/ can be partitioned in variance components (Falconer
1960). Since we are interested in the genetic contribution to phenotypic variance,
the basic partition is in the genetic variance (symbol: VG) and the environmental
variance (symbol: VE) (Falconer 1960):

VP D VG C VE (16.1)

Genetic variance .VG/ reflects genetic differences between individuals which are
the end result of multiple loci, including interactions between loci. This variance
should not be confused with measures of genetic variation such as gene diversity.
Genetic variance is difficult to estimate from observations, and is partitioned into
additive genetic variance (symbol: VA); dominance variance (symbol: VD), which
results from interactions between alleles; and epistatic variance (symbol: VI), which
results from interactions between loci (Falconer 1960):

VG D VA C VD C VI (16.2)

Both dominance .VD/ and epistatic .VI/ variances are difficult to estimate without
specific breeding experiments. Therefore animal breeders and ecologists focus on
estimating the additive genetic variance .VA/ (Wilson et al. 2010).

When repeated measurements of the same individual are available, e.g. litter
sizes and inter–birth intervals, the environmental variation can be partitioned into
the general or permanent environmental variance (symbol: VEg) and the specialised
environmental variance (symbol: VEs) which is localised (Falconer 1960):

VE D VEg C VEs (16.3)

The permanent environmental variance .VEg/ is the between–individual variance
component that is permanent across repeated measures. The specialised envi-
ronmental variance .VEs/ is the within–individual variance due to temporary or
localised circumstances (Falconer 1960).



16.5 Repeatability 223

Several components that make up phenotypic variance .VP/ have been introduced
in this section. Equation16.4 presents the main components:

VP D VA C VD C VI C VEg C VEs (16.4)

The environmental variance can be further partitioned into random factors that
have been identified e.g. latitude or year of birth. These phenotypic variance models
are discussed in Sect. 16.9.

16.4 Heritability

The genetic contribution to phenotypic variance can be expressed as a proportion
named broad–sense heritability (symbol: H2). This proportion is estimated as:

H2 D
VG

VP
(16.5)

where VG is the genetic variance and VP the (total) phenotypic variance.
Broad–sense heritability .H2/ is not of great practical use as VG cannot be easily

estimated. Instead a measure of resemblance between related individuals, e.g. parent
and offspring, named narrow–sense heritability (symbol: h2) is more commonly
estimated:

h2 D
VA

VP
(16.6)

where VA is the additional genetic variance and VP the (total) phenotypic variance.
The term heritability generally refers to narrow–sense heritability .h2/, and this is
how it will be used here.

16.5 Repeatability

The upper limit of broad–sense heritability .H2/ can be obtained by estimating
repeatability (symbol: rP) between repeated measures of the same individual (Fal-
coner 1960):

rP D
VG C VEg

VP
(16.7)

where VG is the genetic variance, VEg is the permanent environmental variance
(see 16.3) and VP is the phenotypic variance.
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Table 16.2 Repeatability of life history traits in females, in the International studbook populations
of red pandas and snow leopards, and the European population of red cranes

Taxon Trait N k rP 95 % CI

A. f. fulgens Inter–birth interval 263 2.8 0.20 [0.12, 0.28]

A. f. styani Inter–birth interval 102 2.6 0.34 [0.21, 0.48]

U. uncia Inter–birth interval 124 1.7 0.29 [0.08, 0.47]

G. japonensis Inter–clutch interval 55 4.7 0.30 [0.18, 0.44]

A. f. fulgensa Parturition date 302 3.4 0.35 [0.29, 0.42]

A. f. styani Parturition date 146 3.2 0.53 [0.44, 0.62]

U. unciaa Parturition date 266 2.5 0.00 [�0.09,0.10]

G. japonensis Hatch date 72 4.5 0.04 [�0.03,0.15]

A. f. fulgens Litter size 370 3.3 0.17 [0.11, 0.24]

A. f. styani Litter size 146 3.2 0.13 [0.03, 0.23]

U. uncia Litter size 272 2.5 0.06 [�0.03,0.15]

G. japonensis Clutch size 147 4.5 0.06 [0.00, 0.14]

N number of individuals, k mean observations per individual, rP repeatability, CI confidence
interval
aNorth America and Europe

Repeatability is the proportion of total variance in multiple measurements of a
trait, e.g. litter size, that is due to differences between individuals (Dohm 2002). The
range of rP is 0–1. Repeatability (rP) is the intra–class correlation coefficient that
is estimated from between–individual and within–individual variances in one–way
ANOVAs (Lessells and Boag 1987; Sokal and Rohlf 2012).

ANOVAs can be carried out separately on each sex. This method requires
minimal pedigree data when the trait is related to reproduction (as in the following
examples), e.g. dates of birth of offspring (clutches/litters) are required when
analysing seasonality and inter–birth interval.

Table 16.2 presents repeatability values for inter–birth interval, day of
birth/hatching and litter size in red pandas, snow leopards and red crowned cranes.
The analyses were restricted to observations in females. The R package ICC (Wolak
et al. 2012) was used to estimate rP and 95 % confidence intervals.

Values for repeatabilities in Table 16.2 range from 0.00 to 0.53, see parturition
date for snow leopards and Chinese red pandas. The lower confidence limit for snow
leopards is negative, which can occur in ANOVA–based repeatabilities. Negative
values are considered as zero (Nakagawa and Schielzeth 2010). An rP of zero, e.g.
parturition date in snow leopards, means that the variance between individuals does
not contribute to the total phenotypic variance (Eq. 16.7). A value of rP D 0:53

means that the variance among individuals contributes 53 % to the total phenotypic
variance.

Repeatability is a rough upper limit of broad–sense (and therefore narrow–sense)
heritability, and it can be an underestimate, e.g. in the case of interaction between
genotype and environment or maternal/paternal effects (Dohm 2002).
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The “standard” ANOVA, as used in this section, is based on a linear model
in which it is assumed that the (phenotypic) data follow a normal (Gaussian)
distribution. This assumption does not hold for many traits, such as those with
discrete data e.g. litter size or day of birth (see Nakagawa and Schielzeth 2010).
Furthermore, pseudoreplication such as litter, maternal and paternal effects, are not
considered in the basic linear model.

ANOVAs that are based on generalised linear mixed models (GLMM) can be
used to estimate repeatability for non–Gaussian traits and/or traits that are subject to
pseudoreplication (Nakagawa and Schielzeth 2010). The R package rptR provides
different methods, including GLMM, for estimating repeatability (Schielzeth and
Nakagawa 2013). These methods will be discussed, in conjunction with heritability,
in a later section.

16.6 Parent–Offspring Regression

Heritability can be estimated from the regression of trait values of offspring on
parents. It is the regression coefficient .b/ when mid–parent values (i.e. the mean
of values for sire and dam) are used, or 2 � b when regression is based on single
parents e.g. mother–daughter (Falconer 1960). The data on offspring are grouped
per family/single parent.

The use of mid–parent values is not strictly valid when variances between the
sexes differ. Single parent regressions, i.e. mother–daughter and father–son, are
preferred (Falconer 1960). This section presents both mid–parent and single parent
regressions to illustrate potential differences.

16.6.1 Example: Parturition Date

The relatively high values for repeatability .rp/ of parturition date in both red panda
subspecies, compared to other traits/species (Table 16.2), make this trait/species a
good candidate to explore methods to assess heritability.

Table 16.3 presents the results of mid–parent and single parent regression for
parturition date in both red panda subspecies. The regression coefficient .b/ with
standard error .se/, results of the t-test on the regression coefficient (degrees of
freedom .df /, probability .p/, and heritability .h2/ are presented in this table. The
adjusted heritability .h2

adj/ will be discussed in Sect. 16.6.4.
The regression coefficients .b/ in parent–offspring and father–son regression in

the Nepalese red pandas (fulgens) do not differ from zero (null hypothesis), i.e.
p > 0:05 (Table 16.3). The “zero” heritability is interpreted that the additive genetic
variance .VA/ does not contribute to the phenotypic variance in parturition date (see
Eq. 16.6).
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Table 16.3 Heritability of parturition date in the International studbook population of red panda
subspecies based on linear regression with grouped offspring data and weighted for family size.
Fulgens: North America and Europe

Taxon Regression model b se df p h2 h2
adj

a

Fulgens Parent–offspring 0.10 0.06 206 0.073 N/A

Styani Parent–offspring 0.42 0.07 98 < 0:001 0.42

Fulgens Mother–daughter 0.18 0.07 155 0.011 0.36 0.06

Styani Mother–daughter 0.44 0.09 62 < 0:001 0.88 0.11

Fulgens Father–son �0.07 0.08 143 0.37 N/A

Styani Father–son 0.32 0.12 65 0.0091 0.62 0.08

b regression coefficient, se standard error, df degrees of freedom, p probability of t test statistic, h2

heritability, h2
adj heritability adjusted for phenotypic correlation

aPhenotypic correlations in A. f. fulgens and A. f. styani are 0.83 and 0.88, respectively

However the null hypothesis that the regression coefficient does not differ from
zero, is rejected in mother–daughter regression in the fulgens subspecies .b D

0:18; p D 0:011/. Heritability .h2/ is 0.36, which is not much different from the
estimated repeatability .rp/ for this trait/subpecies (see Table 16.2). This means that
36 % of the observed phenotypic variance in this trait is caused by additive genetic
variance (see Eq. 16.6).

Linear regression models indicate that heritability for parturition date in the
styani subspecies is high, i.e. between 0.42 and 0.88 (Table 16.3). This means that
up to 88 % of the phenotypic variance is attributed to additive genetic variance,
according to the mother–daughter linear regression model.

Standard errors and critical values of the Student’s t distribution can be used
to estimate confidence limits to regression coefficients, and thus heritability. For
example, 95 % confidence limits for mother–daughter regression in styani, with
t0:05Œ62� � 2:0 and se D 0:09, are 0:44 ˙ 0:18. This means that confidence limits
for heritability, which is 2b in single parent regression, are 0.52 and 1.0 (the upper
boundary for h2).

Visualising data by plotting phenotypes of offspring (either grouped or not)
against parents is recommended, as it can be helpful in evaluating regression results.
Figure 16.1a presents results of a weighted mid–parent–offspring regression on
parturition date (in days) in the International studbook population of Chinese red
pandas. Mean values of offspring are regressed against mid–parent values. The
visible trend is supported with a statistically significant .p < 0:001/ regression
coefficient, and heritability .h2/ of 0.42 (Table 16.3).

Interpretation of heritability is subject to several misconceptions (Postma 2014;
Visscher et al. 2008). An important misconception is to interpret h2 as the proportion
of a trait that is determined genetically. That is incorrect. A value of h2 > 0 means
that the trait has a genetic component, but does not provide information about the
number of genes involved or which proportion of the trait is genetically determined.
A heritability of zero .h2 D 0/ does not mean that a trait has no genetic component.
It only indicates that the phenotypic variance is not caused by genetic variance.
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Fig. 16.1 (a) Weighted mid–parent–offspring regression of the trait “parturition date” in the
International studbook population of Chinese red pandas. Offspring are grouped. (b) Father–son
regression of the trait “parturition date” in the Nepalese red pandas. Offspring are not grouped

Figure 16.1b shows phenotypic data of parturition date in Nepalese red pandas
between (ungrouped) father–son pairs. The distribution pattern of the data does not
provide a strong feel for a linear relation, which is supported by linear regression,
i.e. p D 0:37 (see Table 16.3).

Heritability of parturition date in the Chinese red panda is higher in mother–
daughter regression analyses than in father–son and mid–parent regression. A
preliminary conclusion is that variance in parturition date has a genetic compo-
nent. However, the results require more detailed interpretation e.g. to explain the
difference between single–parent and mid–parent regression (see Sect. 16.6.4).

16.6.2 Example: Fitness

Fitness is not only an important life history trait, but it shows high levels of
phenotypic coefficients of variance .CVP/ compared to other traits in red pandas
as well (see Table 16.1). This makes it an interesting trait for studying heritability.
Table16.4 presents results of mid–parent and single parent regressions in Nepalese
red pandas. The adjusted heritability (symbol: h2

adj) in this table is explained in
Sect. 16.6.4.

Regression analyses involving female offspring, i.e. parent–daughter, mother–
daughter and father–daughter, did not result in statistically significant heritabilities
(p > 0:05; Table 16.4). Fitness in male offspring, however, more resembles fitness
in the mother than in the father, i.e. h2 is 0.30 and 0.14, respectively.
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Table 16.4 Heritability of fitness in the International studbook population of Nepalese red pandas
based on linear regression with grouped offspring data and weighted for family size

Regression model b se df p h2 h2
adj

a

Parent–offspring 0.09 0.03 263 0.001 0.09

Parent–daughter 0.03 0.04 187 0.873 N/A

Parent–son 0.13 0.04 200 0.002 0.26

Mother–daughter 0.01 0.04 220 0.871 N/A

Mother–son 0.15 0.04 228 < 0:001 0.30 0.11

Father–son 0.07 0.03 223 0.026 0.14 0.05

Father–daughter 0.06 0.03 210 0.072 N/A

b regression coefficient, se standard error, df degrees of freedom, p probability of t test statistic, h2

heritability, h2
adj heritability adjusted for phenotypic correlation

aPhenotypic correlation between parents is 0.62
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Fig. 16.2 (a) Weighted mid–parent–offspring regression of the trait “fitness” in the International
studbook population of Nepalese red pandas. Offspring are grouped. (b) Theoretical and actual
standardised residuals

Figure 16.2a presents results of mid–parent–offspring regression on fitness in
Nepalese red pandas. The regression line reflects the low (but significant) heritability
.h2 D b D 0:09; p D 0:001/ for this trait.

Interpretation of the differences in heritability of fitness between females and
males is complex as it encompasses an entire individual’s lifespan. Again, a non–
significant regression coefficient (and heritability) does not mean that a trait has no
genetic component. Non–genetic factors seem to determine most of the phenotypic
variance in fitness of females. Fitness in these analyses refers to total number of
progeny produced during an individual’s lifespan. One could imagine that non–
genetic factors related to “giving birth” can affect survival and further reproduction
in females.
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16.6.3 Weighted Regression

Parents with a single offspring provide less information on (cor)relations in pheno-
types between parents and offspring than parents with large numbers of progeny.
This section presents results of parent–offspring regression that is weighted against
family size.

Although this is not the best weighting method, it has the advantage that a
basic linear model can be applied. The preferred weighting method is based on
the regression coefficient itself (Kempthorne and Tandon 1953; Reeve 1955), and
requires an iterative re–weighting procedure. When using weighted family size it is
recommended to at least compare results with unweighted regression, as the “true”
value will be somewhere in between (Arnold 1994). For example, heritability of
parturition date in Chinese red pandas is 0.38 and 0.42 for unweighted and weighted
mid–parent offspring regression, respectively. This means that between 38 % and
42 % of the observed variance in parturition date is caused by additive genetic
variance.

16.6.4 Assortative Mating and Artefacts

Assortative matings, i.e. matings between partners with similar phenotypes that
occur more frequently than expected from random mating, increase the regression
coefficient .b/ in single–parent–offspring regression with a factor .1 C rpp/ (Wright
1921a). The parameter rpp is the phenotypic correlation between parents (mates).
This suggests that the heritability estimated from this regression model as h2 D 2b
is an overestimate (i.e. when the correlation is statistically significant). Artificial
selection by pairing animals with the same phenotype has the same effect on
heritability.

The phenotypic correlation is estimated as the Pearson product–moment cor-
relation between phenotypes of the parents. The adjusted heritability h2

adj is then
estimated as (Weis 2005):

h2
adj D 2b.1 � rpp/ (16.8)

Table 16.3 includes adjusted values for heritability for single–parent–offspring
regression of the trait “parturition date”. The phenotypic correlation between parents
in the Chinese and Nepalese red panda populations are 0.88 and 0.83, respectively
(both correlations are statistically significant, i.e. p D 0). These high correlations
reduce the heritability considerably, e.g. from 0.88 to 0.11 in mother–daughter
regression in the Chinese red panda (Table 16.3).

It is not surprising that breeding partners share the same parturition date more
often than would be expected under random mating, especially in the context of
species management programmes. First, red pandas in zoos are managed according
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to mean kinship values and avoidance of inbreeding. This means that the high
phenotypic correlation can not be explained by assortative mating or artificial
selection. Some 80 % of established breeding pairs in red pandas do not change
year on year, and are in effect monogamous. Partners in these pairs share the same
litters and, consequently, have the same phenotypic value (mean parturition date).
The fact that the phenotypic correlation for this specific trait is a kind of artefact,
does not change the implication that heritability needs to be adjusted.

Second, the phenotypic trait “fitness” also embeds an artefact as partners in
monogamous breeding pairs share the same number of offspring produced during
their life–time. This explains the relatively high phenotypic correlation observed
in the trait fitness in Nepalese red pandas .rpp D 0:62; p D 0/. This means
that heritability of fitness .h2/ in single–parent regressions are overestimates and
need to be adjusted accordingly (Eq. 16.8). These adjustments result in reducing
heritabilities from 0.30 to 0.11 and 0.14 to 0.05 in mother–son and father–son
regressions, respectively (see Table 16.4).

Section 16.9 will present the animal model in which the results are not biased by
effects of assortative mating or selection (Kruuk 2004).

16.7 Assumptions of Linear Regression

The previous section presented heritability values for the traits parturition date
and fitness, as estimated from standard linear parent–offspring regression. The
underlying assumptions of linear regression (see Sokal and Rohlf 2012) were “con-
veniently” ignored. Violation of these assumptions, however, can lead to incorrect
results. Statistical software, e.g. the R package car (Fox and Weisberg 2011),
provides tools to test whether parent–offspring regression meets these assumptions.
Here we focus on two important assumptions concerning the dependent variable
“phenotype of offspring”: that the data are (1) independent and (2) normally
distributed for any given (mid–)parent phenotype.

16.7.1 Independent Data

The first assumption is related to pseudoreplication (Hurlbert 1984). The maternal
effect, which refers to the phenotype of the mother affecting the phenotype of her
offspring, and the brood or litter effect, a combination of maternal and litter–specific
environmental effects, are examples (Kruuk and Hadfield 2007; McAdam et al.
2014). These effects are avoided in parent–offspring regression by using the mean
trait values of offspring (Åkesson et al. 2008). Linear mixed regression .LMM/ and
generalised estimating equations .GEE/ can be used to model maternal and litter
effects as a random effect (see also Chaps. 10 and 13).



16.7 Assumptions of Linear Regression 231

16.7.2 Normal Distribution

The second assumption refers to the distribution of errors or residuals, i.e. the dif-
ferences between original and fitted values, in linear regression. Figure 16.2a shows
weighted mid–parent–offspring regression of the trait fitness in Nepalese red pan-
das. Although the regression coefficient is significant .b D 0:09; p D 0:001/, the
phenotypic data of offspring per mid–parent value are “widely” spread. Figure 16.2b
presents a Q–Q plot between the theoretical (normal distribution) and actual
(standarised) residuals for this regression. The points would lie on the dashed line
when the actual residuals are distributed normally. The right half of this plot clearly
shows that fitness errors are not normally distributed. In addition (e.g. when in
doubt), the Shapiro–Wilk normality test could be applied to the residual data (Sokal
and Rohlf 2012). The default implementation in R (R Core Team 2015) of this test
was used, and confirms the conclusion from the Q–Q plot, that the residuals are not
normally distributed .W D 0:76; p < 0:001/.

Results of parent–offspring regressions based on the (standard) linear model are
not valid when the residuals are not normally distributed, as in the case of the
trait “fitness”. Potential solutions to the problem of non–normality are to transform
phenotypic data, for example to logarithmic or square root, to approximate a
normal distribution (of the residuals) in standard linear regression (Sokal and Rohlf
2012). Alternatively one can apply a generalised linear model .GLM/ on data
that (are assumed to) follow other known distributions e.g. binomial or Poisson.
Generalised linear mixed models .GLMM/ support random effects and thus can
combine non–normality and pseudoreplication. These more advanced regression
models are discussed in the following section.

Transformation may be necessary when the data do not fit one of the (known)
distributions. Trying different transformations until the most “significant” regression
coefficient is found, is not a sound method. Instead, select a transformation that
is known to be appropriate for the data, in advance (McComb et al. 2010).
Alternatively, the Box–Cox power transformation (Box and Cox 1964) can be
applied to select an appropriate transformation (see also Sokal and Rohlf 2012).

Non–normal distribution of phenotypic data can affect results of linear regres-
sion, potentially leading to wrongly accepting or rejecting the null hypothesis that
the regression coefficient (thus heritability) is zero. Transformation of data or using
generalised regression models need to be applied when non–normality is expected.

16.7.3 Outliers

Linear regression is sensitive to outliers. Outlying observations can have a large
effect on the regression coefficient and inflate its variance (Vittinghoff et al. 2005).
For example, the top–left data point in Fig. 16.2a refers to a mid–parent fitness of
0 and a mean fitness of their offspring of 12. The Q–Q plot as implemented in
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R (R Core Team 2015) marks the three most extreme residuals with labels that refer
to the original data. Figure 16.2b presents three outliers in the fitness data.

Outliers that affect the regression coefficient are considered influential. It is good
practice to check whether these data points are errors of measurement. Removal of
erroneous data would be justified (see e.g. Keller et al. 2001). Whenever extreme
data show to be valid observations, one needs to test whether they should be
considered as influential outliers (see Crawley 2007; Fox and Weisberg 2011).

16.8 Estimated Breeding Values

Livestock and plant breeders ideally select individuals for breeding on the basis of
expected phenotypes that are above the population average for a given trait in future
offspring. The measure Estimated Breeding Value (EBV) of an individual is used in
this selection process. Although selection is to be avoided in captive populations of
wild species, the underlying method(s) to estimate breeding values are of interest.
This is particularly true of methods that have been developed to estimate heritability
.h2/ in livestock breeding.

This section briefly introduces the concept of estimated breeding values, while
related methods to estimate heritability will be discussed in the next section.
Section 16.10 returns to estimated breeding values as a tool to monitor phenotypic
variation and to detect unconscious selection.

The method used to estimate breeding values depends on the available informa-
tion on phenotypes. The basic method is based on a single record per individual:

EBVi D h2.Phi � NPh/ (16.9)

where h2 is the heritability; Phi is the individuals’s phenotypic value; and NPh is the
mean phenotypic value in the population (based on Mrode 2000).

The predictive value of EBVi depends on the available information on an
individual’s phenotype and the accuracy of the estimated h2 for a trait. Accuracy
increases when the phenotype is based on the average of repeated records. This
increase slows down after 4–5 records (Mrode 2000).

In the case that a trait can only be measured in one of the sexes, breeding values of
the opposite sex are based on the mean phenotypes of progeny. A classical livestock
example is selection of a bull based on the milk production in his daughters. But
what if the bull has not yet reproduced? It would seem impossible to estimate its
breeding value. This problem of missing phenotypic data applies to any trait. In
such cases the breeding value is estimated as the mean value of both parents (the
bull’s parents in this case) (Mrode 2000).
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16.9 Animal Model

The accuracy of breeding values and heritability can be improved by using all
available information in a pedigree. C.R. Henderson developed a linear mixed model
using Best Linear Unbiased Prediction (BLUP) to predict breeding values and
simultaneously to estimate heritability from pedigree data (Henderson 1973, 1976).
This model has become known as the animal model. The use of breeding values will
be discussed in more detail in Sect. 16.10. This section returns to heritability and its
estimation using the animal model.

The additive genetic variance of an individual animal is modelled as a random
effect in the (linear mixed) animal model. This means that this effect needs to be
fitted for each individual (see Kruuk et al. 2014). The main methods for the animal
model are the Residual or Restricted Maximum Likelihood (REML) and Markov
chain Monte Carlo (MCMC) (Thompson et al. 2005; Wilson et al. 2010). Both
methods are supported in the statistical software program R (R Core Team 2015),
and will be presented in the next sections.

Assortative mating, selection and inbreeding do not result in biased estimates of
variances in the animal model, unlike in parent–offspring regression (Kruuk 2004).
Moreover, this model does not require breeding experiments, e.g. foster–parents, to
estimate parental effects. The animal model “replaced” parent–offspring regression
in ecological–evolutionary studies on wild populations by the end of the 1990s (see
overview in Postma 2014).

The additive relationship (kinship) matrix is an important part of the animal
model. The algorithms that were developed to calculate large kinship matrices (Hen-
derson 1976; Quaas 1976) are used in studbook software to calculate inbreeding
coefficients, founder representation and mean kinship values.1 It is somewhat
surprising that the animal model itself has not been explored as a tool to estimate
heritability of wild traits in studbook populations, until recently (e.g. Pelletier et al.
2009).

16.9.1 REML

The R package pedigreemm (Bates and Vazquez 2014) is an extension to the linear
mixed models in the R package lme4 (Bates et al. 2014), and approximates the
REML method in estimating variances. Gaussian (normal), binary (binomial) and
count data (Poisson) are supported (Vazquez et al. 2010).

The phenotypic data in the animal model are linked to pedigree data through IDs
that are unique for each individual (as in studbooks). The data field in the phenotypic
data is generally named id or animal (which it is in this chapter). The animal model

1The modified algorithm by R. L. Quaas is used to compute inbreeding coefficients only.
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Table 16.5 Heritability of parturition date in Nepalese red pandas in Europe and North America
estimated with the REML animal model. Number of observed litters is 2,051, the number of
breeding combinations (families) is 571

Model VA Vlat VR VP h2 AIC 
AIC

Naive 62.2 151.6 213.8 0.29 16,473 115

Latitude 25.6 45.3 141.4 212.4 0.12 16,358 0

VA additive genetic variance, Vlat variance due to latitude at location of birth, VR residual variance,
VP total phenotypic variance, h2 heritability, AIC Akaike Information Criterion, 
AIC difference
with model with lowest AIC

partitions the phenotypic trait of an individual in fixed or predictable effects and
random effects (Kruuk et al. 2014). Sex and age are examples of fixed effects, while
the effect of zoo locations on a trait could be considered as a random effect.

Correct interpretation of results of the animal model can be complex, as will be
illustrated in this section. Therefore, it is recommend to start analysis with a “naive”
(univariate) model in which only individuals are modelled as random effects. This
model will therefore only estimate the additive genetic variance .VA/ and the
residual variance .VR/, which together total the phenotypic variance .VP/. The
residual variance .VR/ is the total of dominance variance .VD/, epistatic variance
.VI/ and environmental variance .VE/.

Heritability in the animal model is estimated according to Eq. 16.6. See Vazquez
et al. (2010) for details on the use of the pedigreemm software.

Table 16.5 presents results of analyses on the trait “parturition date” in Nepalese
red pandas (restricted to locations in Europe and North America). Heritability
estimated with the “naive” model is 0.29. This value is somewhere in the range
of the (unadjusted) h2 D 0:36 as estimated with mother–daughter regression (see
Table 16.3).

Differences in results between the animal model and parent–offspring regression
occur, especially when environmental effects are not modelled (de Villemereuil et al.
2013; Kruuk and Hadfield 2007). Spatial effects, such as sharing the same nest site
or same home range as the parents, result in shared environmental conditions. This
can result in non–genetic resemblance between relatives leading to overestimation
of heritability (Stopher et al. 2012; van der Jeugd and McCleery 2002).

Nepalese red pandas adjust the birth season to the summer period in both northern
and southern hemispheres (Table 3.8).Abiotic conditions related to latitude, e.g.
photoperiod, may also adjust parturition date within hemispheres. This would mean
that offspring which stay at the parental location or are moved to locations at a close
distance share the same parturition date. This spatial environmental effect can be
studied by modelling latitude as a random effect in the animal model.

When latitude is modelled, the additive genetic variation has been reduced by
more than 50 %, resulting in a heritability of 0.12 (Table 16.5). This means that
resemblance in this trait is partly caused by shared environmental conditions at a
given latitude across generations (transgenerational effects).
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Model selection can be based on the Akaike Information Criterion (AIC). The
“latitude” model has the lowest AIC value, and is considered as the “better” of the
two models. The difference 
AIC between each model is compared and evaluated.
Models with a 
AIC of about 9–11 have little support, and those models with

AIC > 20 have no empirical support (Burnham et al. 2011). Since 
AICnaive D

AICnaive � AIClatitude D 16; 473 � 16; 358 D 115, the “naive” model is considered
implausible.

16.9.2 MCMC

The R package MCMCglmm (Hadfield 2010) implements the MCMC method and
follows Bayesian inference to estimate variances (and heritability). The strength
of this method is its flexibility in analysing traits that do not follow the normal
distribution (de Villemereuil et al. 2013; Morrisey et al. 2014).

Table 16.6 presents results of MCMC analysis for the same two models “naive”
and “latitude” as used in the previous REML analyses. The additional model
“permanent” includes the permanent environmental variance .VEg/ and repeatability
for the trait “parturition date”.

A characteristic of Bayesian analysis is to use prior information. A “weak” prior
is recommended for the animal model (Wilson et al. 2010), and is used for the
analyses in this section. The number of iterations (runs) was set to 110,000 with the
first 10,000 as burn–in period to ensure convergence. A thinning of 50 showed to be
sufficient to reduce autocorrelation between runs (see Hadfield 2010; Wilson et al.
2011).

The pedigreemm package does not provide confidence intervals for heritability.
In the Bayesian approach, a 95 % credible interval is provided. This interval is
interpreted as the 95 % probability that a value is within the given range. For
example, heritability in the “naive” model is between 0.21 and 0.37 (Table 16.6).

The results of the “naive” and “latitude” models do not differ from those using
REML (Table 16.5). The Deviance Information Criterion (DIC) can, like AIC, be
used to select the “better” model.

Table 16.6 Heritability of parturition date in Nepalese red pandas in Europe and North America,
estimated with the MCMC animal model. Model parameters were 110,000 runs, a burn–in period
of 10,000 and thinning of 50

Model VA Vlat VEg VR VP h2 rP DIC

Naive 62.8 152.0 214.8 0.29 [0.21, 0.37] 16,346

Latitude 25.7 46.0 141.7 213.4 0.12 [0.07, 0.17] 16,201

Permanent 13.5 48.0 135.7 197.2 0.07 [0.02, 0.12] 0.31 [0.26,0.36] 16,203

VA additive genetic variance, VEg permanent environmental variance, Vlat variance due to latitude at
location of birth, VR residual variance, VP total phenotypic variance, h2 heritability (95 % credible
interval in brackets), rP repeatability (95 % credible interval in brackets) DIC Deviance Information
Criterion
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The third model “permanent” separates the between–individual variance into
permanent environment and additive genetic variances (Wilson et al. 2010, 2011).
Both heritability and repeatability can be estimated with this model. Heritability is
considerably lower in the permanent model compared to the model with latitude
as random effect i.e. h2 is 0.07 and 0.12, respectively. The difference between DIC
values of the “latitude” and “permanent” models, however, is low and there is no
reason to select one of them as being “better”.

The results of the “permanent” model are of the same order as estimated
with parent–offspring (though significant at ˛ D 0:1), and adjusted single–parent
regression analyses (see Table 16.3). This supports the findings of simulation
experiments in which parent–offspring regression performs better than “naive”
animal models (de Villemereuil et al. 2013).

16.9.2.1 Diagnostics of MCMC

It is important to check that the MCMC chains (iterations) converge properly and
that successive iterations are not correlated. Poor convergence and autocorrelation
lead to invalid posterior distributions of the fixed and random effects. The R package
coda (Plummer et al. 2006) provides diagnostic tools to evaluate MCMC results (see
Hadfield 2010; Wilson et al. 2010, 2011).

A graph with the density of the (posterior) distribution of heritability can already
be useful for indicating potential problems. For example, a prior which is too weak
may result in MCMC getting “stuck” in zero variances which will be visible when
the density is concentrated near zero. Diagnosis of the different fixed and random
effects is still recommended, even when the distribution of h2 seems to be without
problems.

Figure 16.3 shows the density distribution of heritability in the “permanent
model”. Since thinning is set to 50, the results of each 50th iteration after the
burn-in of 10,000 is used. This means that density is effectively based on 2,000
iterations, which may explain why the distribution is not completely symmetrical.
Nevertheless, values for the mean, median and mode heritability are very similar. In
principle, the 95 % credible interval shows the accuracy of the “permanent model”:
heritability is expected to be between 0.02 and 0.12.

16.10 Monitoring Phenotypic Variation

Monitoring genetic variation in studbook populations through gene drop simulation,
protein electrophoresis or microsatellites (DNA) provides information, whether
actual or theoretical, on maintenance of variation in neutral genes. Arnold (1995)
argued that maintenance of genetic variation in genes that are subject to selection is
more important for the population than maintenance of neutral genes. Monitoring
genetic variation in phenotypic traits which involve multiple genes is recommended
as part of management of captive populations (e.g. Arnold 1995). This section
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Fig. 16.3 Density
distribution of heritability
estimates in the “permanent”
model. Model parameters
were 110,000 runs, a burn–in
period of 10,000 and thinning
of 50. Density is plotted on
the Y–axis
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discusses techniques to monitor phenotypic traits in studbooks. Litter size in the
European studbook population of African wild dogs (data period: 1986–2011) is
used as an example.

It is logical that a monitoring scheme for pedigreed populations is based on
(captive–born) generations (Chargé et al. 2014). The first step is to compare
phenotypic variances per generation group. Box–and–whisker plots of trait values
provide a graphic representation of Tukey five number summary (Tukey 1977) of
phenotypic values within and between generation groups.

Figure 16.4a presents box–and–whisker plots of litter size among maternal
generation groups in African wild dogs. Differences in the median and 25 % and
75 % quantiles (i.e. bottom and top of “the box”) between generation groups
can be observed in this figure. However, the major interest is to know whether
(phenotypic) variances in litter size differ among generation groups. Levene’s test
for homogeneity of variances (Sokal and Rohlf 2012) can be used to test whether
variances in litter size among generation groups are equal. This hypothesis is
rejected .F D 2:47; df D 6; p D 0:023/.

Although phenotypic variance of litter size differs among generations, no clear
trend can be observed (Fig. 16.4a). This does not mean that no genetic trend exists.
Genotypic change over time can be detected by comparing mean breeding values
per year and/or generation (e.g. Chargé et al. 2014; Réale et al. 2003; Wilson et al.
2007). The animal model is the preferred method for estimating breeding values
when (full) pedigree data are available, as discussed in Sect. 16.9.

The use of breeding values in ecological studies has been subject to critique. One
of the criticisms is that overly simple models do not properly separate genetic and
non–genetic phenotypic resemblance (Postma 2006), such as the effect of latitude
on parturition date in red pandas. Non–genetic resemblance leads to overestimation
of heritability and thus breeding values.
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Fig. 16.4 (a) Box and whisker plots for litter size in maternal generation groups of African wild
dogs (period 1986–2011). (b) Breeding values in maternal generation groups of African wild dogs
(period 1986–2011)

Three models were analysed with the animal model to determine the appropriate
model to use for estimating heritability and breeding values for litter size in
African wild dogs. The “naive” model did not include extra random effects (other
than “animal”); the “permanent” model estimates the effect of the permanent
environmental variance .VEg/ on heritability; the “extended” model also includes
parental age .Vage/ and litter year .Vyear/ as random effects. Sex and maternal
generation were modelled as fixed effects in all three models.

The first model revealed that vague priors did not converge properly, i.e. “stuck
at zero”, when modelling permanent environmental variance. Therefore, a slightly
informative prior was used, i.e. the observed phenotypic variance was equally
distributed over the random (including residual) effects with a low degree of belief
.nu D 1/ (Chargé et al. 2014). Furthermore, the number of iterations was set to
350,000 with a burn–in of 50,000 and thinning of 50 in order to pass the various
diagnostic tests for the extended model. These settings were applied to all three
analyses.

Table 16.7 summarises the results of the three models. The heritability .h2/ of
litter size in the African wild dog population is 0.13 in the “naive” model. However,
this value is reduced to 0.06 when the permanent environmental variance .VEg/ is
modelled. Thus, some 50 % of the additive genetic variance .VA/ in the “naive”
model should be attributed to the permanent environment. This non–genetic factor
also explains a part of the residual variance .VR/ which reduced from 11.68 in the
“naive” model to 10.22 in the “permanent” model. The random effects age of parents
.Vage/ and annual effects .Vyear/ do not have effect on heritability, but explain half
the residual variance.
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Table 16.7 Heritability of litter size in African wild dogs estimated with the MCMC animal
model

Model VP VA VEg Vage Vyear VR h2

Naive 13.29 1.61 11.68 0.13 [0.05,0.20]

Permanent 13.23 0.79 2.23 10.22 0.06 [0.02,0.11]

Extended 13.30 0.74 2.20 4.46 1.21 4.69 0.06 [0.01,0.11]

VP phenotypic variance, VA additive genetic variance, VEg permanent environmental variance, Vage

variance due to parental age, Vyear variance due to year of litter, VR residual variance, h2 heritability
[95 % credible interval in brackets]

The results in Table 16.7 re–emphasise the importance of using an appropriate
model (Postma 2006): excluding the permanent environment results in overestimat-
ing heritability and breeding values.

The average breeding value for each individual was estimated from each run
(after burn–in and thinning) in the extended model. Figure 16.4b shows box–and–
whisker plots for these breeding values per generation. An upward trend in breeding
values for litter size can be observed. Linear regression shows that this (linear) trend
is statistically significant .b D 0:085; se D 0:0088; pt < 0:001/. These results
indicate that (unconscious) selection for larger litter size has occurred in the captive
population of African wild dogs.

It is not difficult to envision a scenario in the early history of the captive
population when new packs started as a single pair, reproductive success was
low and genetic management was not applied. Offspring of a few packs which
successfully reared large litters, would quickly distribute the “large litter genes”
through the population.

16.10.1 Reliability of Breeding Values

One needs to be cautious in drawing immediate conclusions without first assessing
the accuracy of the estimated breeding values. The accuracy of estimated breeding
values is defined as the correlation between variances in estimated and true breeding
values (Postma 2006). The variance in true breeding values is the same as the
additive genetic variance. The correlation .r/ is estimated as:

r D

s
VEBV

VA
(16.10)

where VEBV and VA are the variances in estimated and true breeding values,
respectively (Postma 2006).

The values for VEBV and VA in the extended model are 0.12 and 0.74, respectively.
This means that the accuracy of EBV is

p
.0:12=0:74/ D 0:40. The interpretation
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of accuracy is easier when expressed as reliability, which is the squared correlation
r2. This value equals the proportion of additive genetic variance that is accounted
for by EBVs .VEBV=VA/ (Postma 2006).

Reliability of estimated breeding values for litter size in the African wild dog
population is 0:12=0:74 D 0:16. Given this low value one needs to be careful in
drawing conclusions from estimated breeding values regarding a selection gradient.
In other words, unconscious selection for large litter size may not have taken place.

Reliability is high when heritability is high,2 and, furthermore, increases when
more phenotypic information (including on close relatives) on individuals is avail-
able. Low heritability in litter size and the fact that nearly 40 % of the reproducing
individuals produced a single litter explains the low reliability of estimated breeding
values for this trait in the African wild dog population.

16.11 Remarks

Heritabilities of life history traits are, across species, the lowest compared to physio-
logical, behavioural and morphological traits (Postma 2014). The results of analyses
in this chapter involving the traits “fitness”, “litter size” and “parturition date” are
in line with these findings. The low heritabilities may make life history traits less
attractive to apply in standard monitoring schemes of phenotypic variance than,
for example, morphological traits with mean heritability of 0:56 ˙ 0:035 (Postma
2014). However, the disadvantage of low heritability needs to be balanced with the
fact that pedigree and phenotypic data can be directly accessed from computerised
studbooks. Monitoring schemes involving morphological traits require extra data
collection per studbook and most likely lack historical data, e.g. on wild–born and
early generations.

Studbooks on threatened species are small compared to pedigrees maintained
for livestock. However, various studbooks started some 25–30 years ago, when
regional zoo associations initiated cooperative management programmes, and are
gradually becoming large enough for quantitative genetic analysis. Maybe the
biggest challenge is modelling the right effects on phenotypic variance, as zoo
species are distributed all over the globe with different environments, while at
the same time in–depth knowledge of life history for many species is still a
mystery.

2The minimum reliability equals heritability when only a single record for an individual is
available.
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Chapter 17
Conservation

Abstract Natural history data are important in conservation of endangered species.
The public databases AnAge (animal longevity) and COMADRE (matrix popu-
lation models) were analysed for the origin of data sources. The results show
that information on natural history elements, including longevity, for most wild
species are actually derived from captive populations. The availability of life tables
based on wild populations is still limited. The analyses show that the average
time to obtain life history data on wild populations is 16 years. Therefore, captive
populations are important sources for base–line data on endangered wild species.
The differences between captive and wild environments and potential effects on
natural history elements are discussed. A Population Viability Analysis (PVA) that
was conducted on wild lowland bongo (antelope) in Dzanga Sangha Protected
Areas, Central African Republic serves as an example to illustrate applicability
of captive data to field conservation decisions. Sensitivity analysis to evaluate
assumptions resulted in more realistic scenarios to assess population viability. The
chapter ends with a section justifying the (proper) use of captive data in conservation
of wild populations.

17.1 Wild Data

The primary contribution of studbooks to conservation of endangered species is
providing data for scientific management of captive and semi–wild populations,
whether maintained for educational purposes, research or reintroduction. The same
data can also be valuable resources for management of wild populations, especially
when natural history data on these populations are incomplete.

Chapter 3 presented analyses to “extract” natural history elements, such as
(reproductive) lifespan, seasonality and litter size, from studbook data, that could
potentially be used in management of wild populations. Since captive and wild
environments do differ, it is a valid question to ask whether such an approach is
justified.

Field data are missing or incomplete for many species, depending on the
taxonomic group. This makes it difficult to provide a straightforward answer to the
above question. The AnAge database contains data on longevity and other natural
history elements on more than 4,000 vertebrate species (de Magalhães and Costa
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Table 17.1 Origin of data sources for vertebrate species in the AnAge (Tacutu et al. 2013) and
COMADRE (Salguero–Gómez et al. 2016) databases. The data are grouped per animal class

Class Anage databasea COMADRE database

Scientific name English name Wild Captive Wild Captive

Cephalaspidomorphi Lampreys 15 – – –

Chondrichthyes Sharks, skates and rays 112 1 – –

Osteichthyesb Bony fish 759 34 49 6

Amphibia Amphibians 28 125 9 –

Reptilia Reptiles 15 490 24 –

Aves Birds 720 335 60 –

Mammalia Mammals 80 922 92 3
a Data sources refer to those used for longevity records
b Comprises subclasses Actinopterygii and Sarcopterygii

2009; Tacutu et al. 2013). Data quality and sample size are assessed as well as the
origin of specimens in longevity records (i.e. captive, wild or unknown). Table 17.1
presents an overview by vertebrate class of the origin of longevity records. Records
based on specimens of unknown origin are not included in this overview.

Table 17.1 shows the differences between vertebrate classes in the contribution of
field (wild) and captive data to longevity records. Field data are the primary source
(i.e. 96 %) in the three “fish” classes. A striking difference is the contribution of
the field data for birds (68 %), especially through banding studies, compared to
amphibians, reptiles and mammals i.e. 18, 3 and 8 %, respectively.

Longevity can be used as an indicator of viability in conservation of endangered
species. The detailed information embedded in age–specific life tables, among
other data such as age distribution, are preferred for assessing population viability.
However, the number of available data-sets from field studies is low compared
to the number of longevity records (and the number of endangered species). The
COMADRE Animal Matrix Database includes Matrix Population Models (MPMs)
on some 267 animal taxa collated from different sources (Salguero–Gómez et al.
2016). Table 17.1 shows that the life tables in this database are almost all based on
field data.

Life tables are preferably constructed from longitudinal studies (Nussey et al.
2008). It is very likely that life table data on most wild populations are not available.
For example, field data on only 27 carnivore taxa were available for a study on
population dynamics (van de Kerk et al. 2013). This is less than 10 % of the 288
extant carnivore species (IUCN 2016). Some 25 % of the taxa .n D 7/ in these
population studies were listed in one of the threatened categories of the IUCN Red
List.

Long–term studies are not always practical or feasible when species are threat-
ened with extinction, as mentioned previously. For example, the mean duration of
field studies in the COMADRE database is 16 years. Management measures that
require results from long–term studies may simply come too late. Life tables based
on captive populations, i.e. from international and regional (zoo) studbooks and/or
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ISIS data, need to be considered as alternative data sources when field data are not
available. The next sections will discuss the extent to which captive and wild data
are likely to differ, and how to handle these differences.

17.2 Captive and Wild Environments

Captive and wild environments obviously differ. Animals in captivity are expected,
in the absence of predators, with stable food and water supply, and veterinary care, to
live longer than their wild conspecifics. A comparative study on longevity in species
for which both captive and wild sources were available supports this expectation (de
Magalhães et al. 2007). Studies in which captive and wild populations were
compared also showed higher (adult) survivorship in captivity (Lynch et al. 2010;
Ricklefs and Scheuerlein 2001).

It is important to evaluate captive data per species (or studbook population).
Incomplete information on natural history and/or limited experience with holding
a specific species in captivity can result in suboptimal husbandry. This situation
tended to occur in the period of time before intensive cooperation between
zoological institutions was initiated. For example, a comparative study in Sumatran
orang utans (Pongo abelii) showed that survivorship of captive orang utans in
the period 1946–1965 was lower than in the wild. However, no differences were
found when more recent studbook data (i.e. 1986–2005) were used (Wich et al.
2009).

Management measures can have an impact on life history of zoo populations. For
example, cooperative management programmes in which contraception is applied
will (temporarily) result in reduced fecundity rates. This means that an appropriate
date span needs to be selected whenever results of studbook analyses are applied to
wild populations.

The fact that natural history elements can differ between captive and wild
populations does not mean that these data cannot be used. Natural history data
can also differ between wild populations, e.g. survivorship in wild chimpanzee
(Pan troglodytes) populations (Hill et al. 2001). Moreover, wild populations of
endangered species can be compromised and not necessarily represent the original
“natural” state. For example, severe poaching in a population of African elephants
(Loxodonta africana) resulted in a shift in mean age of females at first reproduction
from 16 years to 11.3 years (Owens and Owens 2009). Small wild populations can
be subject to inbreeding and inbreeding depression (e.g. Keller and Waller 2002).
Therefore, the issue is not “whether” but “how” captive data should be used in
conservation management.

The next section uses a population viability study on lowland bongo (Trage-
laphus eurycerus eurycerus) in Dzanga Sangha Protected Areas, Central African
Republic (Princée 2011), to illustrate the combined use of captive and wild data.
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17.3 Population Viability Analysis

Population Viability Analysis (PVA) is a model used to assess risks that popula-
tions go extinct during a specified period of time. The model generally includes
stochastic processes that have impact on populations: demographic, genetic, and
environmental processes and catastrophes. The interactions between these processes
are complex and computer software is required to apply a PVA (see Brook
et al. 2000). The computer program VORTEX which is used by the IUCN/SSC
Conservation Breeding Specialist Group implements the PVA model (Lacy 2000;
Lacy et al. 2014). VORTEX data and descriptions in this section refer to the older
VORTEX version 9.99b (Lacy et al. 2009) that was used in the bongo PVA (Princée
2011).

Although the bongo (Tragelaphus eurycerus) is a large antelope, with males
weighing from 250 to 400 kg (Kingdon 2015), its secretive lifestyle means that many
of the natural history elements, such as gestation length, inter–birth interval and
life history, are known only from information on the mountain bongo (Tragelaphus
eurycerus isaaci) subspecies in captivity (Bosley 2010).

Data from daily sightings of lowland bongo in Dzanga Baie (Turkalo and Klaus-
Hügi 1999; Turkalo unpublished data) and life history data from the mountain bongo
studbook were compared and combined to create a base–line data set for the PVA.

17.3.1 Studbook Data

Computerised data of the International studbook on Eastern/Mountain Bongo,
updated until 31 December 2010, contained 2,305 records (Bosley 2011) and was
used for the bongo PVA. Analyses included only individuals that were born in
the period 1970–2010 or living on 1 January 1970. Table 17.2 presents the use of
studbook life history data in VORTEX. These data are not directly entered as life
tables, but need some transformation (and decision–making).

17.3.1.1 Reproduction

The maximum age of reproduction can be based on the oldest fecundity class with
a sufficient sample size, or on a percentile of observed ages at birth. The VORTEX
model assumes that individuals die once reaching the post–reproductive age, i.e.
class 15C.

Fecundity is not entered as age specific fecundity rates .mx/ in VORTEX but
as a combination of the maximum progeny per female per year, i.e. litter size and
number of litters per year, and the proportion of adult females breeding per year.

Studies on lowland bongo in Dzanga Sangha PA and the adjacent Nouabali-
Ndoki National Park (Republic of Congo) suggest that this species mates during
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Table 17.2 Studbook life history data used the basic scenario .A1/ of the lowland bongo PVA.
Data source: Princée (2011). The data entry sequence of VORTEX 9.99b is followed. See text for
details

VORTEX data Value Remarks

Reproductive system
Age at first offspring females 3 years

�
Median age at first reproduction

Age at first offspring males 4 years

Maximum age of reproduction 14 years Based on 97.5 % percentile of age at birth

Maximum number of litters per year 1 Indicated by a single breeding season in
the wild

Maximum number of progeny per year 1 Studbook: monotocous

Sex–ratio at birth in % males 45 Significantly different from an equal sex-
ratio .p < 0:001/

Reproductive rates
% adult female breeding 0.55 Census annual births/adult female

SD in % breeding due to EV 0.07 Standard deviation annual births/adult
female rate

Distribution of litters: litter 1 100 %

Mortality rates
Mortality of females as %

Mortality from age 0 to 1 21.6
9
=

;Studbook mortality ratesMortality from age 1 to 2 6.1

Mortality from age 2 to 3 6.3

Annual mortality after 3 7.6 Geometric mean classes 3–14

Mortality of males as %

Mortality from age 0 to 1 27.3
9
>>=

>>;
Studbook mortality rates

Mortality from age 1 to 2 11.1

Mortality from age 2 to 3 9.50

Mortality from age 3 to 4 10.5

Annual mortality after 4 13.3 Geometric mean classes 4–14

the major dry season (December–February) (Turkalo and Klaus-Hügi 1999). The
calving season is during the major rainy season (September–November) (Elkan et al.
2009). Thus females in the natural habitat are expected to give birth once a year.

The bongo is clearly a monotocous species: only 10 twins and 1 triplet out of
1,945 births have been observed in the studbook population. It is assumed that the
same applies to the wild population. This means that with a single birth season, the
maximum number of progeny per year is 1.

Sex-ratio at birth .M=.M C F// is 0.45 .n D 2; 166/ which differs significantly
from an equal sex-ratio .�2 D 19:97; p < 0:001/ (see Table 17.2).

The percentage of adult females breeding per year can be derived from the
mean inter–birth interval (Miller and Lacy 2005). For example, the mean inter–birth
interval in the bongo studbook is 517 days (�16 1

2
months). This means that only
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Fig. 17.1 Season of birth in
mountain bongo in northern
hemisphere zoos. Stacked
points refer to births per day
of year; the area sectors in the
rose diagram represents
relative frequencies of births
per month Jan
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a proportion of 12=16:5 D 0:72 (72 %) of the adult females breed per year. This
percentage, however, is likely to be an overestimate as it refers to females that have
reproduced at least twice! Adult females which have not reproduced are clearly not
included in inter–birth analyses.

A better approach is to estimate the annual percentage of breeding females from
census data (see Chap. 5). Since bongo in (northern hemisphere) zoos breed all
year round (see Fig. 17.1), the census date is set to 1 January. The number of adult
females, i.e. the reproductive age group from 3 to 14 years, are “counted” at each
census date. Since bongo are monotocous, the rate “births per year/adult females”
directly refers to the proportion of females that are breeding in a given year.

The arithmetic mean, weighted for number of adult females, over the annual rates
in the period 1970–2010 is 0.55 .SD D 0:07/. This means that on average 55 % of
the adult females are expected to reproduce in a given year (Table 17.2). This value
is close to the breeding ratio of 58 % as estimated from data from the natural clearing
Dzanga Baie (Turkalo and Klaus-Hügi 1999).

17.3.1.2 Mortality

Age specific mortality rates are entered for the pre–reproductive age classes in
VORTEX (see Table 17.2). A constant mortality rate .qadult/ is assumed in the
reproductive age classes (same for both sexes). Mortality in the last reproductive
age class is 1.0 (VORTEX models reproduction before death).

The constant qadult in the bongo PVA was estimated as the geometric mean
of mortality rates in the reproductive age classes, weighted against sizes of age
classes (Princée 2011). An alternative method to calculate this constant is described
in Chap. 19.
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17.3.1.3 Inbreeding Depression

VORTEX can model inbreeding depression through lethal equivalents (see
Chap. 13). Lethal equivalents for 6–month survival in the bongo studbook
population was estimated as 0.88 with maximum likelihood methods (Princée
2011). This value is used in the basic scenario.

17.3.2 Sensitivity Analysis

The VORTEX model includes a large range of parameters that can impact pop-
ulation viability. Since the focus of this section is on parameters obtained from
studbooks, other simulation parameters are not considered. The number of VOR-
TEX runs in the bongo PVA was 100 over 100 years; initial population size was
assumed to be 300 animals with a stable age distribution; the carrying capacity was
set to the arbitrary number of 750 in order to illustrate exponential growth.

Figure 17.2 presents the results of the basic bongo scenario A1. The population
grows within 15 years to the (arbitrary) carrying capacity. This fast growth is not
that surprising given that the life history data are based on a studbook population
which grew from 29 to 630 animals in the period 1970–2010.

Daily sightings of lowland bongo in Dzanga Baie have been registered since 1991
(Turkalo and Klaus-Hügi 1999; Turkalo unpublished data). Figure 17.3 shows the
largest observed daily count for each year. These data suggest that the population
started to increase in 2008 (the year after trophy hunting was stopped in an adjacent
forest reserve). However, it not clear whether trends in the baie can be fully
extrapolated to the entire population (Princée 2011).

Fig. 17.2 VORTEX
simulation results for mean
census size under bongo PVA
scenarios A1, A2, B1 and B2.
See text for further details
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Fig. 17.3 Maximum
observed daily counts of
bongo per year in Dzanga
Baie between 1991 and 2011
(Data: Andrea Turkalo)
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A scenario that projects growth seems to be a realistic model. The main question
is to determine how fast the population will grow. An important aspect of population
modelling is sensitivity analysis to assess the impact of individual parameters.

The maximum age at reproduction in scenario A2 is changed from 14 to 12 years
(which is the 95 percentile in male bongo). The simulation results are presented in
Fig. 17.2. The population is still fast growing, but reaches carrying capacity some 5
years later than under scenario A1. Since maximum lifespan in captivity is longer
than in the wild population (de Magalhães et al. 2007), reducing the maximum
reproductive lifespan seems to be justified.

Juvenile (first year) mortality rates of 0.22 and 0.27 in the captive bongo
population are in the range of observed rates in captive hoofstock (Kohler et al.
2006). The rates for captive bongo are considerably lower than those estimated for
wild populations of hoofstock. For example, juvenile mortality rates estimated for
African ungulates in Kruger National Park (KNP), South Africa are in the order of
0.4–0.6 (Owen–Smith and Mason 2005). The leopard (Panthera pardus) is assumed
to be the main predator on calves in Dzanga Sangha PA (Turkalo and Klaus-Hügi
1999). Therefore, juvenile mortality that better reflects natural rates was deemed
necessary in the bongo PVA (Princée 2011).

A general problem in field studies on life history is to assess neonatal and early
mortality. For example, juveniles in the KNP study were already 6–12 months
old when the annual surveys took place (Owen–Smith and Mason 2005). Lowland
bongo have a hiding strategy for calves, which thus may not be observed until a few
weeks old (Elkan 2003). However, most first year mortality in captive bongo occurs
in the first week of life i.e. qweek1 D 0:18. This mortality needs to be included in any
juvenile mortality rate.
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Differences between calf/adult female ratios since the birth (D major rainy)
season could not be applied, as it was unknown whether increase of females without
calves in the minor dry season, when the number of sightings also increases, referred
to non–reproductive females or females which lost their calves (see Princée 2011).
In the end, juvenile mortality was increased to 0.35 and 0.5 in scenarios B1 and B2,
respectively.

Figure 17.2 presents the simulation results of all scenarios. The high juvenile
mortality in scenario B2 results in a rapid decline of the population. Since annual
sightings were increasing, a population increase seems to be more likely (see
Fig. 17.3). Scenario B1 seems better to represent life history of the wild bongo
population than the other three scenarios.

This example shows the importance of sensitivity analysis in adjusting param-
eters obtained from other populations (whether captive or wild) in order better
to reflect local population dynamics. Although no detailed (wild) life tables were
available on any lowland bongo population, the combined studbook data from
mountain bongo and Dzanga Baie observations on lowland bongo provided a more
realistic scenario.

Life tables are not the only factors that impact on the viability of bongo. However,
most of the other data, such as initial population size (and carrying capacity) and
poaching rates, need to be obtained from the wild.

17.4 Justification

Studbook data are often the only available life history data for conservation of
endangered species. Ignoring these data because they can differ from an unknown
wild population seems not to be justified, but nor is blindly applying them.
It is important to understand the effect of the captive environment (including
management measures) on natural history elements in order to make appropriate
adjustments before applying them to wild populations.

The captive environment is not a single environment but a collection of zoo-
logical institutions in different climate zones and at different latitudes with dif-
ferent husbandry regimes. Although endangered species are certainly not part of
experiments, the diversity in captive environments could be exploited to reveal
features that otherwise could not be observed in the wild. For example, season-
ality analysis of studbook data shows that mountain bongo have the potential
to breed all year round (see Fig. 17.1). This suggests that the mating and birth
season in the wild is largely determined by environmental factors. This would
mean that bongo can adjust to shifts in seasons, e.g. a delayed dry (Dmating)
season.

Studbooks that cover zoological institutions in different climate zones provide
data to study effects of temperature and/or precipitation on life history. For example,
neonatal survival in captive red pandas is compromised in warmer climates (Princée
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and Glatston 2016). Results of such studies are not only important for husbandry,
but can also serve as indicators of a species’ vulnerability to climate change in the
natural habitat.

Although there is sufficient empirical evidence that inbreeding depression occurs
in (small) wild populations (Allendorf et al. 2013; Frankham et al. 2010) studies on
captive populations will continue to contribute to the knowledge on this subject.
This could, for example, include methods to detect inbreeding effects that manifest
during an individual’s lifetime (see Chap. 13).

In–depth understanding of the effects of the captive environment on natural
history elements is not only important for management of captive populations, but
also important to determine proper use of these data in wildlife conservation. Studies
that partition the captive environment into specific features (e.g. location, nutrition,
group size) and that assess their individual effects would be required. This may mean
more exploring of studbook data and available tools in modern statistical software.
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Chapter 18
Incomplete and Missing Data

Abstract Studbook data on wild animal species are generally of high quality.
However, studbooks are not exempt from inaccuracies due to incomplete and
missing historical records and/or difficulties in obtaining data, e.g. date of birth of
young born in a den or parents in social groups. Information that is often missing
includes sex, dates of birth/death and parentages. Data validation and guidelines
for tracing information sources can reduce some inaccuracies, but not necessarily
all. This chapter discusses the effect of incomplete and missing data on results
of demographic and genetic analyses. Two–way contingency tables are applied to
test whether observed sex–ratios in which unknown sex individuals are excluded
differ from sex–ratios in which it is assumed that all unknown sex are either male
or female. Incomplete dates in (SPARKS) studbooks refer to estimated by day,
month or year or a quantified range around an expected date. Studbook guidelines
recommend using the mid–point of date estimates: mid–month, mid–year or middle
of breeding season. Effects of these estimates on seasonal analysis, median lifespan,
age–class based mortality and fecundity and census analyses are discussed. The
handling of unknown parentages in genetic analyses and the use of natural history
data to trace potential parents are also covered.

18.1 Introduction

Wild animals in captivity are, in general, closely monitored on a daily basis. As a
result, the data quality tends to be high. Moreover, animal record keeping systems,
used widely in the zoo world since the 1980s (Flesness and Mace 1988), not only
properly register data, but also provide tools to validate data. However, this does not
mean that studbooks are exempt from inaccuracies. For example, a study involving
ISIS data sets on 51 species, covering different taxonomic groups, showed that
on average some 4 % of the dates of birth were not accurate (Kohler et al. 2006).
However, it should be mentioned that this mainly referred to animals from unknown
or wild origin.

This chapter uses the term incomplete to refer to partly available data, e.g. date
of birth accurate by month, and missing to mean “unknown”, e.g. unknown date or
unknown sex. However, incomplete data can also be similar to missing data, e.g. a
date accurate by month does not provide information for neonatal analyses.
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Zoo organisations provide guidelines for improving the quality of studbook
data (see Thompson et al. 1997; Wilcken and Lees 2012). These guidelines are
helpful in solving problems relating to incomplete and missing data. In spite of
having access to guidelines and (electronic) validation tools, population managers
still have to deal with studbooks where the data are only partly available. This may
apply not only to older historical data, but also to (future) studbook data on wild,
reintroduced or semi–wild populations, where monitoring of all individuals on a
daily basis may not be feasible.

The main data that can be incomplete or missing and can have an impact
on analysis results are sex, dates (birth, death, moves), parents and location of
birth. This chapter focusses on handling these data, rather than solving their
lack. Handling ranges from excluding unknown data, reducing the level of detail
by including partial data, to making assumptions regarding unknown data (and
including them). Each of these approaches has disadvantages. Excluding data
reduces sample sizes and, thus, potentially also validity of analysis results. A lower
level of detail may not allow the application of a required analysis, e.g. seasonality
in the case that dates are estimated only by year. Assumptions regarding unknown
data may be incorrect e.g. assuming an equal sex–ratio.

18.2 Unknown Sex

Various demographic analyses are usually applied to males and females separately,
as species–specific differences between sexes often exist. This approach implies that
the sex of individuals can be determined. This is obviously not the case in species
with asexual reproduction. Sex–determination is also hindered in species without
obvious external sexual dimorphism, whether during the juvenile stages or during
the entire life–time.

Sex–ratio itself is obviously subject to effects of unknown sex. Excluding
unknown sex reduces sample size, while the assumption that sex in the unknown
group is distributed according to the observed sex–ratio may not be valid. One way
to test the robustness of these data is by comparing the observed sex–ratio with the
ratio based on the assumption that all unknowns are of the same sex.

Table 18.1 presents a two–way contingency table with males and females in
a hypothetical sample of 100 births with ten individuals of unknown sex. The
observed sex–ratio is equal. The Fisher’s exact test (or Pearson’s chi–square test) can

Table 18.1 Two–way contingency table with observed and assumed sex–ratio in sample of 100
births and 10 individuals of unknown sex. Fisher’s exact test on sex–ratio: p D 0:561

Males Females Total

Observed 45 45 90

Unknown D male 55 45 100
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be applied to test whether the sex–ratio differs significantly when these unknowns
are all assumed to be males. The null hypothesis that both samples have the same
sex–ratio is not rejected .p D 0:561/. In addition, the probability that ten individuals
in which sex cannot be determined, are either all males or all females is low, in an
equal sex–ratio model, i.e. 2 � . 1

2
/10 � 0:002.

The age at which sex can be determined has a large impact on interpretation
of mortality rates in neonate/juvenile age classes when computed per sex group.
Excluding offspring which have been counted in a nest or den, but die and
“disappear” before sex can be determined, results in underestimating mortality in
the youngest age class. Consequently, only males and females which survived long
enough to have their sex determined would be included in those analyses.

Fecundity rates are generally based on the number of births of the same sex as
the parental group (see Chap. 7). Excluding offspring of unknown sex would result
in underestimating fecundity rates in both male and female groups.

A common approach in studbook analysis is to assume equal sex–ratio and
to partially count individuals of unknown sex as 0.5 in both males and females
at risk of mortality, and in age distribution; and as a 0.5 male and female birth
in fecundity (Faust et al. 2012b; Traylor–Holzer 2011). However, when binomial
tests show that sex–ratios are unequal (see Chap. 5), the partial counts should be
proportional. Binomial tests in polytocous species should only include litters with
individuals of known sex.

Sex–ratio in the unknown sex group does not necessarily follow the observed
sex–ratio. For example, sex–biased siblicide, as observed in spotted hyaenas
(Crocuta crocuta) (Hofer and East 1997), can result in different sex–ratios among
those that died and those that survived. Neonatal siblicide in this species has been
observed in the den directly after birth (Frank et al. 1991), increasing the chance
that the sex of the dead sibling remains unknown.

18.3 Incomplete Dates

Dates are required in analyses of natural history features such as seasonality and
inter–birth interval, but above all in demographic analyses. This group of analyses is
all about age, whether first age at reproduction, oldest observed age, age distribution
or age–specific life tables. It is obvious that all of these analyses will be affected by
inaccuracies in dates of birth and death.

Missing, i.e. unknown, dates do not provide any information for age–based anal-
yses and are generally excluded from analyses. Fecundity tables are an exception, as
parents of unknown age are treated as unknown parents (see next section). Unknown
dates are likely to be found in historical zoo records, especially those prior to the
introduction of computerised animal registration, and for individuals that have been
obtained from the wild.

Incomplete calendar dates are those that are estimated by (nearest) day, month
or year. Nearest day is generally not used (Wilcken and Lees 2012), but technically
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speaking occurs whenever a birth is not witnessed during the “out of zoo hours”
period, i.e. between staff leaving and returning. Studbook guidelines recommend
using the mid–point of date estimates: mid–month (day 15 or 16) and mid–year
(1 July) or the mid–point of the breeding season for births (Thompson et al. 1997;
Wilcken and Lees 2012).

To what extent incomplete data can be used in analyses depends on the type of
analysis, level of resolution, and the species’ biology. For example, using a monthly
mid-point (e.g. 15 July) as the estimate for a birth known to have occurred in a
particular month (July), means that the actual birthdate can at most be only 15/16
days from the mid-point. This is negligible when estimating longevity in species
that live beyond five years – the error is <1 %. However, studies on perinatal and
neonatal mortality require a resolution of one day, and so require accurate dates of
birth and deaths.

Circular statistics as used in seasonality, can be applied to both individual dates
and dates grouped by month (Zar 1984). The advantage of individual data is that
the mean date can point to a potentially relevant date, e.g. mean birth around 21
June (summer solstice in Northern hemisphere). Although this resolution is lost
when analysing grouped data, the advantage is that dates estimated by month can be
included in the circular statistics, e.g. data from offspring that are not observed until
they emerge from a den.

The probability that the true date of birth or death occurred on any day within the
estimated interval is equal in the absence of seasonality. It is like random sampling
from a pool of 30 or 365 day numbers. The mean of the sample will approximate
the mid–point date (ignoring differences between months or even/uneven years).

However, the use of estimated dates comes at a cost by introducing additional
stochastic uncertainty, i.e. the mean or median among true dates deviates from the
mid–point date. Chapter 19 presents results of simulation experiments that illustrate
these stochastic effects.

The effect of incomplete dates on age–class based life tables is illustrated with
two individuals with estimated mid–year birth dates, which died on 1 May and
1 September of the next year, respectively. The ages of these individuals would
be estimated as 304 and 427 days, respectively. Since true birth dates of these
individuals can be anywhere between 1 January and 31 December in a birth–
flow model, their true ages at death could range from 121 � 486 and 244 � 609,
respectively.

Age class values are truncated to the lowest. The age ranges are not evenly
distributed around the 365 days. This means that the probability of entering class
1 is not equal between (random) dates of birth. Figure 18.1 shows ages at death of
both individuals for different dates of birth. The bottom line represents death on 1
May, the top line death on 1 September. The age is presented in years in order to
visualise the class number i.e. age less than 1 year (dotted horizontal line) is class 0.

The area left and above the intercept between age and the 1.0 year line represents
the probability of having died in age class 1; right and below refers to class 0.
Unequal areas imply unequal probabilities. These probabilities depend on date of
death, and are equal at the mid–point.
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Fig. 18.1 Ages at 1 May and
1 September in the next year
for each date of birth. The
vertical dotted line refers to
mid–year birth date
(estimated)
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The above example was based on estimated dates of birth. However, the same
effects also apply to estimated dates of death or, in fecundity, to estimated dates of
birth of offspring. The total effect of estimated dates on life tables requires further
studies on real populations.

Census counts do not depend on exact dates as long as individuals were
born/arrived or died/left the population within the census interval. This means that
mid–year date estimates can be included in “end–of–year” census, which is often
applied to birth–flow populations. However, pre– and post–breeding census of birth–
pulse populations are affected by mid–year date estimates. Since breeding seasons
do not necessarily start in January, the census interval is not the same as a Gregorian
calendar year. Therefore, mid–year estimates are not the same as mid–points of the
census interval. The effect is similar to that discussed for age–class based life tables.

18.3.1 Unknown Parents

Age at first breeding, inter–birth interval and reproductive lifespan analyses (see
Chap. 3) only include individuals listed in the studbook that have reproduced.
Fecundity tables, however, can distribute offspring of unknown parents according
to the observed distribution of fecundity rates .mx/ (Faust et al. 2012a).

Missing parentages mostly impact genetic analyses: inbreeding coefficients,
founder representation, kinship values and estimates of genetic loss all depend on
information on parentages in the studbook pedigree. Three categories of unknown
parents can be recognised:
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1. Parents of wild–born individuals.
2. Parents of individuals born at unknown locations.
3. Unknown parents of captive–born individuals of known location.

The convention is to assume that wild–born individuals are unrelated to each
other i.e. they are randomly selected from an infinitely large population. That
assumption will not easily hold for small endangered populations, where many
individuals may already be related. Furthermore, imports of wild individuals of
species with clutches or litters can involve siblings – information which was not
always provided in the past. Molecular genetics are required for information on
relatedness between wild–born individuals, especially when they are potentially
siblings.

Individuals born at unknown locations have almost by definition unknown
parents. These are the “real” unknown parents, as they might be wild parents
or captive–born parents. These individuals can be considered as founders if they
entered the studbook population in the period before regular breeding started in
captivity. Otherwise, molecular genetics are required to assess their relatedness to
other individuals.

Studbooks indicate whether individuals with wild or unknown parents are known
to be (half–)siblings, by adding a unique number to the WILD or UNK IDs of
the parent(s). The unique coding of parents of (potential) founders can be used in
studbook software, such as PMx (Ballou et al. 2010), to provide better estimates
of relatedness between individuals (and thus of inbreeding coefficients, founder
representation, gene diversity, etc.).

Individuals which are captive–born but have unknown parents affect the results
of genetic analyses, especially when they have reproduced. The earlier GENES
program included the option of omitting individuals with unknown parents or of
considering them as founders (Lacy 1993). However, treating these individuals as
founders is not acceptable if it is clear that they are captive–born and their potential
parents are known e.g. males in multi–male groups or females in herds. Multiple
possible parents are generally coded as MULT with an optional unique number to
distinguish between social groups or herds.

Multiple parents were interpreted as single unknown parents in genetic analyses.
However, this has changed with the release of the PMx program which can include
multiple possible parents in the kinship calculations (Ballou et al. 2011; Lacy 2012).
The SPARKS program v1.6 offers the option of specifying multiple potential parents
with (optional) their probabilities of being “the” parent (ISIS 2012).

A recent development is genetic management based on pedigree analysis of
group–living organisms using the features of PMx to handle unknown and multiple
parents (Jiménez-Mena et al. 2016). This type of management can handle irregular
pedigrees and has, therefore, great advantage over Maximal Avoidance of Inbreeding
(MAI) schemes, which require structured patterns to exchange individuals between
social groups (Princée 1995, 1998).

Natural history data, such as reproductive lifespan, gestation length, inter–birth
interval, in combination with reproductive history of individuals, can be used to
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determine which individuals are possible parents. This approach was applied to
trace potential parents of individuals in a herd of Przewalski’s horses (Equus
przewalskii) (Princée 1998).

Tracing potential parents can be tedious in larger studbooks with a high propor-
tion of older historical records or in studbooks of species living in social groups. The
PML software traces potential parents at location of birth using results from natural
history analyses (Princée 2014). However, natural history data are species–specific
and can not be fully implemented in software. For example, females may give birth
outside the breeding season after stillbirth or neonatal death in the zoo environment.
This means that human judgement is required to make reasonable choices.

Molecular genetic methods such as DNA fingerprinting and mitochondrial DNA
analyses are useful in detecting errors in registered parentages and in solving
unknown parents in pedigrees (e.g. Bowling et al. 2003; Morin and Ryder 1991).
However, these techniques are not a guarantee that all problems are solved.
Genetic material of founders and individuals in previous generations are not always
available, particularly for older studbook populations. For example, a genetic study
involving 51 loci of blood type and DNA markers could only partly solve the
unknown parentages in the Przewalski’s horse herd as described above (Bowling
et al. 2003). This means that even in “complete” studbooks one may have to accept
a certain number of unknown parentages.
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Chapter 19
Statistical Topics

Abstract Background information and experiments involving some mathematical/
statistical topics that were only briefly touched on in previous book chapters are
presented. The first topic covers the use of circular statistics in seasonality analysis
e.g. detecting the peak in births. The estimated mean day or month based on the
numbering sequence of the human calendar can be incorrect when seasons continue
into the next year. This requires adjusting the sequence of months/days so that the
start of season has the lowest number. Circular statistics do not require a true zero
point and are therefore suitable for seasonality analysis. The breeding season of
Nepalese red pandas in the southern hemisphere is used as an example to compare
circular statistics with calendar–based analysis. The topic of pseudoreplication in
life history analysis has not received much attention in studbook management.
Experiments with bootstrapping show the impact of litter, maternal and spatial
(location at birth) effects on variance in 30–day mortality in snow leopards.
Estimated dates of birth and death are entered as mid–points of the interval (month,
year). Simulation experiments are used to study the effects of different proportions
of estimated ages on the median lifespan. These effects result in wider variances,
thus higher uncertainty, in median lifespan. The last topic presents a method to
transform age–class specific mortality rates from studbook data into a constant
(adult) mortality rate, which is used in the VORTEX simulation model. The chapter
ends with some remarks on using statistics in studbook analyses.

19.1 Introduction

Exploring in the context of this book not only refers to revealing biological
information which is embedded in studbook data, but to statistical methods and
techniques to validate this information as well. The open source program (and
language) R (R Core Team 2015) provides a wealth of statistical tests and graphic
tools to explore data. Access to nearly 9,000 contributed packages (on 1 August
2016) can be overwhelming, and may make it hard to decide which tests are
appropriate.

Statistical issues with data that do not follow a “known” distribution (e.g.
normal or Poisson) or which are not independent, have been discussed in the
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relevant chapters. This chapter will provide background information and experi-
ments involving some mathematical/statistical topics that were only briefly touched
on in previous book chapters.

Circular statistics are preferred in analysis of seasonality in births and deaths. The
potential pitfall of applying the well known Pearson’s chi–square test on seasonal
data is discussed in Sect. 19.2.

Studbooks are collections of data from different locations (zoos) and covering
several years, or even decades. Therefore it is unsurprising that studbook data do
not necessarily represent a random sample. Section 19.3 illustrates the effects of
dependent data, which is a type of pseudoreplication (Hurlbert 1984), on neonatal
mortality using bootstrap methods.

A simulation study to show effects of assumptions regarding estimated (incom-
plete) dates of birth or death on life tables is presented in Sect. 19.4. The last topic
in this chapter shows how to estimate a constant mortality rate from multiple age
classes as used in the VORTEX software (Lacy and Pollak 2014) (see Sect. 19.5).

19.2 Circular Statistics

Seasonality data can be graphically represented in a histogram. Figure 19.1a
presents a histogram of 119 litter dates grouped by month in Nepalese red pandas in
southern hemisphere zoos during the period 1977–2012. This figure shows that the
season is November to January, with December being the peak month.
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Fig. 19.1 (a) Histogram of litters grouped per month in Nepalese red pandas in the southern
hemisphere from 1977 to 2012. (b) Circular graphics of the same data. Stacked points refer to
litters per day of year of the same data; the area sectors in the rose diagram represent relative
frequencies of litters per month; and the arrow indicates the mean litter date (21 December)
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Calculation of mean season from day of year (1–365) or month numbers (1–12)
can yield erroneous results when the season starts in one year and end in the next. In
this example, mean day would be 273 (29 September) and the mean month is 9.46
(mid–September). However, there are no observations in September (Fig. 19.1a). A
solution to this problem is to re–code day and month numbers to the start of the
season e.g. 1 November is the first day of the “year”. A better approach is to use
statistics that have been developed to handle data with no true zero points.

Circular statistics can be applied when the interval scale of measurement does
not have a true zero point, and where the designation of high and low values are
arbitrary (Zar 1984). Seasonality, especially in the case when events continue after
the start of a new (astronomic or human) calendar year, is a good example of the
application of this method.

Dates, whether numbered in day, week or month of the year, are converted to
an angular direction .a/ in degrees or radians, on a circular scale of 360ı (or 2�),
which is divided into equal time intervals (Zar 1984). For example, data grouped
per month1 will be k D 12 when dates are converted to intervals, in this case of 30ı,
corresponding to the month of the year.

Circular data are often presented in circular (data) plots and rose dia-
grams (Pewsey et al. 2013). Figure 19.1b presents the red panda data in circular
data plots with stacked bars as frequency counts of litters per day. The area sectors
of the rose diagram represent relative frequencies of monthly data. The mean angle
Na and the length of the mean (resultant) vector r are calculated from these data. The
mean day or month can be obtained by converting Na back to the appropriate time
units.

The significance of Na can be tested with the Rayleigh test (see Zar 1984). The null
hypothesis H0 of this test is: “The sampled data are distributed uniformly around the
circle”. When this hypothesis is rejected, the data are not uniformly distributed, and
the mean angle Na refers to the mean day or month. Circular statistics on the red
panda data result in 21 December being the mean day of birth .Na D 350:1ı/. The
arrow in Fig. 19.1b represents the mean date.

The Rayleigh test rejects the null hypothesis (r D 0:98, p < 0:0001, n D 119).
Alternative tests are the Kuiper’s one sample test and the Watson one sample
test (Zar 1984). The Watson two–sample test is used to test whether two samples
are from the same population (Zar 1984).

The Rayleigh, Kuiper’s and Watson tests for uniformity do not reveal multiple
seasons. For example, the length of the vector (r) will be small in the case of
seasons with a 6 month interval, so graphic presentations of the data are important
for visually detecting multiple seasons.

The PMx program applies the chi–square to test whether births and deaths,
grouped per month, are distributed uniformly over the year (Lacy et al. 2012). Since

1The conversion of months to 12 equal intervals assumes that the number of days is 30 days in
each month.
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this method does not estimate the mean month, re–coding of month numbers is not
required in the case the season continues in the next year.

19.3 Pseudoreplication

Pseudoreplication is defined as the use of inferential statistics to test for treatment effects
with data from experiments where either treatments are not replicated (though samples may
be) or replicates are not statistically independent (Hurlbert 1984).

The issue of pseudoreplication in zoo research was not addressed until a literature
study was carried out a decade ago (Kuhar 2006). The problem of small sample
sizes, e.g. a single pair or group per zoological institution, “forces” researchers to
pool sample data from different institutions. However, there is a “danger” attached
to pooling, as individuals from the same zoological institution share the same fate
by sharing the same environment (e.g. enclosure, local climate) or treatment (e.g.
diet). This means that the pooled data are not statistically independent.

The total (pooled) sample size in this type of pseudoreplication is smaller
than the sum of the zoo samples, from a statistical point of view. This results in
underestimation of the variance (which should be estimated using the pooled sample
size), which can lead to finding statistically significant differences in a study when
no differences actually exist (i.e. Type I error).

International and regional studbooks of endangered species in zoos are, de facto,
pooled data and therefore subject to underestimation of variances. Statistics to
model demographics and genetics were not included in Kuhar’s (2006) study. This
does not mean that these models are not prone to pseudoreplication.

Pseudoreplication in mortality occurs when litter mates, siblings (from multiple
litters) or individuals born at the same location, share the same fate, i.e. the chance
of dying is higher or lower than would be expected from the mortality rate in the
studbook population. Examples include litter mates that die due to a disease, a
female who neglects her offspring (multiple litters), or a sub–optimal enclosure.

Bootstrap experiments on 30–day mortality .q30/ in snow leopards are used to
illustrate the effect of pseudoreplication. This resampling technique was introduced
in Chap. 8 to estimate variance in age–specific life tables. The method implemented
in the PML software samples individuals at risk of dying (Princée 2014). The
bootstrap experiments in this section also sample litters, mothers (dam) and
locations at birth. The individuals in these sample units form the pooled mortality
data. Since bootstrap sampling is with replacement, units can occur more than
once. If mortality within units is random, one would not expect differences in
variance between bootstrap of individuals (also observed data) and litter, dam or
location.

Table 19.1 presents the q30, variance, standard error (SE), confidence interval
(percentiles) and coefficient of variation (CV) in observed data and bootstrap
experiments. The observed q30 and mean q30 values in bootstrap experiments
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Table 19.1 Observed data and bootstrap experiments on 30 day mortality in snow leopards. Data
are right censored. Number of runs is 999

Confidence intervala

Group (N) q30 Variance SE Lower Upper CV (%)

Observed (1,451)b 0.286 0.0001 0.0119 0.263 0.309 4.15

Individuals (1,451) 0.285 0.0001 0.0116 0.263 0.308 4.05

Litter (671) 0.286 0.0002 0.0148 0.256 0.313 5.19

Dam (268) 0.285 0.0004 0.0191 0.247 0.322 6.70

Birthsite (155) 0.286 0.0004 0.0199 0.248 0.325 6.94

N number of “elements” in group, q30 30 day mortality (mean in bootstrap), SE standard error of
mean, CV coefficient of variation
aConfidence intervals are expected 95 % values in a binomial distribution for observed data and
2.5–97.5 percentiles in bootstrap experiments
bVariance, standard error and coefficient of variation are expected values of the binomial
distribution

do not differ. However, the variance, and consequently standard error (SE) and
coefficient of variation increases with larger but fewer “units”, i.e. individual,
litter, dam and location. The consequence of larger variances, is wider confidence
intervals. The coefficients of variation are a good indicator of the effects of
pseudoreplication.

Statistical software programs that have been developed since Stuart Hurlbert
published his paper on pseudoreplication in 1984 include various techniques to han-
dle dependent data. This particularly refers to generalised linear regression models
(GLMs) which can handle dependent data as random effects. The use of marginal
(cluster) and frailty (random) models in survival analysis is an example (Wienke
2010). See also Chap. 8.

19.4 Estimated Age

Monte Carlo simulation experiments are useful to assess effects of dates of birth
and/or death that are estimated as “mid–month” or “mid–year”. This section
describes an experiment to assess the effect of estimated ages on median lifespan.
The experiment involves five populations with different proportions of age at death
that are based on estimated dates of birth.

The base population contains accurate ages at death of snow leopards in the
international studbook that survived the first month .n D 877/. Four populations
.A � D/ are based on the same data, but respectively 5, 10, 25 and 50 % of the
death–ages above 30 days are assumed to be estimates based on mid–month dates
of birth. The fifth population .E/ is a single random sample without replacement of
100 records from the base population in which 50 % of the ages above 30 days are
assumed to be an estimate.
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Table 19.2 Simulation experiment on effects of estimated dates on median lifespan of snow
leopards that survived the first 30 days .N D 877/. Population E is a random sample of 100
of the original population. Number of runs is 9,999

Median lifespan (in days)

ID % Nest Observed data Estimates excluded Simulationa s2

A 5 43 3,085 3,131 3,085 0.43

B 10 86 3,085 3,123 3,086 50.44

C 25 216 3,085 2,966 3,086 54.03

D 50 433 3,085 3,094 3,085 2.47

Eb 50 50 3,281 3,206 3,281 2.95

ID population ID, % percentage of records with estimated age at death > 30 days, Nest number
of records with estimated ages, Observed data median lifespan as observed in the population,
Estimates excluded median lifespan in the population when estimated ages are excluded from the
calculation, Simulation median of simulation values for median lifespan, s2 variance in median
lifespan among 9,999 runs
aMedian of medians over 9,999 runs
bPopulation is random sample of 100 from group that died after 30 days

Random sampling without replacement was applied to draw the group of
individuals with assumed estimated ages for each population .A � E/. As this
sampling process was carried out once, the distribution of estimated dates within
each population is unknown.

The real age calculated from a mid–month date of birth can range, with equal
chance, from age � 15 to age C 15 days (depending on days per month). Monte
Carlo methods were used to determine the “real” age by drawing the number of
days to adjust from the range Œ�15; 15� for each estimated age. The median lifespan
was estimated after these new ages were drawn. This process was repeated during
each of the 9,999 runs. The median and the variance for lifespan were calculated at
the end of the simulation.

Table 19.2 presents the results of these simulation experiments. The median
lifespan in the original (accurate) data is 3,085 days. The medians of simulation
values for median lifespan do not differ from the observed value(s). This result is
to be expected given the equal chance that the actual age is less or more than the
estimated age.

Excluding estimated ages from calculations results in median values that are
different from including them. These differences are not only due to the proportion
of estimated ages, but also to the distribution of estimates over different age groups.
The populations are single random samples for each “proportion” group. This
explains why excluding estimates in population C results in a lower median lifespan
than in D. The important message, however, is that excluding estimated dates by
month has more effect on the median lifespan than including them.

Variance in median lifespan is expected to be higher in populations with large
proportions of estimated dates and/or smaller population sizes. However, the distri-
bution pattern of estimated dates also contributes to the variance in median lifespan,
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as illustrated in populations B, C and D. More detailed simulation experiments are
required to assess the contribution of both variance components.

19.5 Constant Adult Mortality

The simulation program VORTEX that was used in the lowland bongo PVA
(see Chap. 17) uses a constant, age–bound, mortality class for adult reproductive
individuals .qadult/. However, studbook software generally calculates mortality
rates for each age class separately. A method to estimate constant mortality from
individual age classes is presented in this section.

A constant adult mortality results in geometric change (decrease) in numbers of
individuals at risk of dying per age class. The following equation applies:

NxCn D Nx.1 � qadult/
n (19.1)

where n is the number of classes, Nx and NxCn are numbers of individuals at risk for
classes x and x Cn, respectively, and qadult is a constant mortality rate. Note that this
equation can be simplified by using the constant survival rate .padult/.

Values for individuals at risk .Nx/ can be directly obtained from life tables when
all individuals belong to the same cohort (i.e. born at the same time). Equation 19.1
is not valid when life tables are based on staggered data entry (see Chap. 7).
The remedy to this problem is to estimate the constant survival rate padult from
survivorship .lx/:

lxCn D lx.padult/
n (19.2)

where n is the number of classes, lx and lxCn are survivorship for age classes x and
x C n, respectively. Solving Eq. 19.2 requires a log transformation:

log lxCn D log lx C n.log padult/ (19.3a)

log padult D .log lxCn � log lx/=n (19.3b)

padult D antilog
	
.log lxCn � log lx/=n



(19.3c)

For example, survivorship for l5 and l15 are 0.473 and 0.050. The number of
classes n is 10. The natural logarithm (loge or ln) is used in the log transformation
in this example. The constant mortality rate .qadult/ for classes 5–15 is calculated
following Eq. 19.3:

1. ln padult D .ln 0:050 � ln 0:473/=10 D �0:223

2. padult D e�0:223 D 0:799

3. qadult D 1 � 0:799 D 0:201.

Thus, the constant mortality rate in (adult) age classes 5–15 is 0.20 (20 %).
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19.6 Remarks

The statistical analyses in this book vary from descriptive statistics such as Tukey’s
five number summary (Tukey 1977) to advanced (inferential) statistics such as Cox’s
regression model (Cox 1972) and the animal model (see Hadfield 2010; Vazquez
et al. 2010).

Exploring studbook data with descriptive statistics, particularly graphic represen-
tations, is recommended. The power of these statistics is to provide understanding
of characteristics and/or trends in studbook data, free from assumptions regarding
the distribution of the data. However, descriptive statistics do not replace inferential
statistics as one needs to know whether the observed trend is a “true” trend or can
be explained by random chance alone.

Conditions and interpretation of results from advanced inferential statistics
can be a challenge, e.g. Cox’s regression model (Cox 1972). Therefore, it is
recommended to first apply less advanced models in order to gain understanding
of realistic values.

Last but not least, understanding of the (biological) features and environmental
factors that can affect studbook data is essential for deciding which analyses are
appropriate to apply.
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Appendix A
Software

This appendix contains overviews of commands and functions that are available in
the Population Management Library and the studbookR package. Analyses in this
book have been carried out with this software.

A.1 Population Management Library

The Population Management Library consist of modules for demographic and
genetic analyses of studbook populations, written in C++11.1 The library imports
SPARKS studbooks that have been converted to SQLite3 databases.

This section contains the basic commands (and syntax) of the PML script
language that were used to carry out the analyses in this book.

A.1.1 Commands

Single line comments in PML scripts are preceded by a hash (#) or double slashes
(//).

set verbose on // Display messages

# Load project configuration (which includes name and format

# of studbook). This procedure can be skipped if the project

# name is passed to as command-line parameter

1ISO C++ standard ratified in 2011.
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load project "studbook" // Load project data

load studbook // Load studbook data

# Date settings

set date format to iso8601 // Date format: YYYY-MM-DD

set begin date to 1977-01-01 // Begin of time window

set end date to 2012-12-31 // End of time window

set monitor date to 2012-06-30 // Last date of monitoring

set census day to 30 // Census day: 30

set census month to 6 // Census month: June

set census interval to annual // Annual census

set date accuracy all to day // All dates:

// accuracy by day

# Compute generation and inbreeding

compute generation // Captive--born generation

compute inbreeding // Inbreeding coefficients

set neonatal age to 30.0 days // End of neonatal period

include neonates // Include neonates

export pedigree // Export pedigree for use

// in R

# Set location view

clear location view // Clear location list

init location view // Initialise new list

# Geographic regions in northern hemisphere

set population to ’Europe’

set population to ’North America’

set population to ’Asia’

# Natural history data analyses

set sex to all // Or: male, female, unknown

compute longevity // Longevity and

// median lifespan

compute birth season stillbirth // Seasonality in births

// includes stillbirths

compute litter season // Seasonality in litters

compute death season // Seasonality in death
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set sex to male // Or: female

compute first breeding // Age at first breeding

compute reproductive life // Reproductive lifespan

# Crude demographic analyses

set sex to all // Or: male, female, unknown

set date accuracy all to month // Allow estimates by month

compute census // Living at census date

compute births // Births in census interval

compute deaths // Deaths

compute neonatal deaths // Neonatal deaths

compute immigration all // Immigration (import)

compute immigration wild // Import from wild

# Demographics

set date accuracy all to day

set class width to 1.0 years // 365.25 days

set max classes to 20 // Pool >= 20 classes

# Data censoring and prorating settings

set bootstrap off // default: on

set resamples 1999 // default: 999

set left truncated off // default: on

set right censored off // default: on

set prorating on // default: off

set handle unknown to ignore // default: equal

set handle parent to ignore // default: ratio

set sex to male // Alter for female, unknown

compute age distribution // Age distribution at

// monitoring date

compute mortality // Age-specific mortality

set sex to male // or: female

compute fecundity // Age-specific fecundity

compute lifetable // Full lifetable

// e.g. Vx, Cx

# Data export for external Kaplan-Meier or

# Cox proportional hazard regression
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set sex to male // or: female

export survival alive // Survival data

// excluding stillbirths

set sex to female

set rearing to parent // Include parent-reared

exclude neonates // Exclude neonates

set origin to all // Origin are all groups

compute interbirth interval // Inter-birth interval

# reset

set origin to captive // Origin is captive-born

set rearing to all // Rearing is all types

include neonates // Include neonates

compute littersize // Litter size

set sex to all

compute founder group // Founder representation

compute mean kinship // Mean kinship

gene drop

# Lethal equivalents

set sex to all // or: male, female,

// unknown offspring

compute viability 180.0 noninbred // Survival to 180 days

// both parents noninbred

A.2 studbookR

The R package studbookR contains functions for statistical analyses and graphic
display of demographic and genetic data that have been exported by the Population
Management Library (PML). The following section contains an overview of the
main functions, with their default settings, that have been used to analyse and
produce graphic figures for this book.
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A.2.1 Functions

Short information on functions is provided as comments (behind #).

library(studbookR) # Load package studbookR

studbook() # Select studbook project

# Natural history analyses

# Functions in this group analyse the distribution of raw data

studbook.lifespan() # Age at death

studbook.longevity() # Longevity

studbook.firstBreeding() # Age at first breeding

studbook.breeding() # Offspring per age group

studbook.birthInterval() # Inter-birth interval

studbook.litterSize() # Litter size

# Circular statistics is applied in seasonality analyses.

studbook.season(’birth’) # Seasonality in births

studbook.season(’litter’) # Seasonality in litters

studbook.season(’death’) # Seasonality in deaths

# Crude demographic analyses

# Graphic representation of census and census-style analyses;

# Calculation of growth, birth, death and migration rates

studbook.census() # Annual census

studbook.births() # Births between census dates

studbook.deaths() # Deaths between census dates

studbook.neonatalDeaths() # Neonatal deaths between

# census dates

studbook.immigration() # Annual immigration (import)

studbook.emigration() # Annual emigration (export)

studbook.ecology() # Fit logistic/exponential

# model

# Life tables

studbook.age() # Age distribution last date

studbook.mortality() # Age specific mortality

studbook.fecundity() # Age specific fecundity

studbook.lifetableFull() # Full life tables

# (e.g. Vx, R0, r)
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# Kaplan-Meier estimator and Cox proportional hazard regression

studbook.survival(method=’kap’) # Kaplan--Meier survival

studbook.survival(method=’cox’) # Cox regression

# Genetics

studbook.founders() # Plot founder representation

studbook.inbreeding() # Various inbreeding tests

studbook.genedrop() # Distribution gene drop data

# Quantitative genetics

phenotype() # Select life history trait

phenotype.repeatability() # Repeatability in trait

# Parent-offspring regression

phenotype.regression () # mid-parent offspring

phenotype.regression (parent=’dam’,offspring=’female’)

# Animal model

pedigree.read() # Read pedigree file

# pedigreemm REML method

# default model: animal as random effect (1|animal)

animalmodel.reml()

# additional sex as fixed effect, litter as random effect

animalmodel.reml( "(1|animal) + SEX + (1|LITTER_ID)" )

# MCMCglmm Markov chain Monte Carlo method

# default model: animal as random effect

# improper prior

# default values for iterations, burnin, thinning

animalmodel.mcmc()

animalmodel.setFixed("SEX") # sex as fixed effect

animalmodel.setPrior("observed") # observed variance

animalmodel.setRandom("animal + LOCATION") # animal and location
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# iterations, thinning and burnin’ period

animalmodel.setRuns(25000,25,5000)

animalmodel.mcmc() # new model/settings

A.3 Availability

The Population Management Library and the studbookR package can be
downloaded under an open source license from the software download area at
http://www.princee.com.

http://www.princee.com.


Index

Symbol
Ne=N ratio, 203, 208

A
Accuracy, 239
Additive relationship matrix, 181, 213, 215,

233
Adjusted survival curve, 144
African buffalo, 60
African elephant, 31, 34, 60, 249
African lion, 213
African wild dog, 17, 43, 51, 75, 76, 115, 237,

238, 240
Agamidae, 74
Age at death, 93, 94
Age class, 91
Age pyramid, 8, 91, 92, 131
Age–based model, 164
Age–structure, 215
Ailurus fulgens, see Red panda
Ailurus fulgens fulgens, see Red panda
Ailurus fulgens styani, see Red panda
Akaike information criterion (AIC), 235
Allele

ancestral, 180
deleterious recessive, 180, 181, 195, 212
lethal recessive, 186, 189

Allelic variants, 172
Amphibians, 74, 162
Amphibolurus muricatus, see Jacky dragon
AnAge database, 247
Annual growth rate, see Finite rate of increase
Artefact, 31, 42, 54, 195, 208, 230
Asian elephant, 31, 34, 90

Assortative mating, 229, 230
Atlantic salmon, 164
Australasian Species Management Programs

(ASMP), 5
Autozygous, 180
Average number of alleles, 172

B
Best linear unbiased prediction (BLUP), 233
Bias, 44, 48, 105
Birds, 75
Birth control, 54
Birth season, 52
Births per female, 72
Bison bonasus, see European bison
Blesbok, 19, 46, 48, 61–63, 65, 70, 71, 73, 77,

79, 80, 84–87, 103, 115, 140, 142,
152

Bongo, 19, 250–252
lowland, 19, 75, 249, 253
mountain, 19

Breeding system
birth–flow, 46, 55, 61, 91, 97, 106, 107,

127, 132, 155, 158, 265
birth–pulse, 45, 46, 55, 61, 70, 91, 106,

132, 155, 157, 265

C
Californian sea lion, 19, 48, 50, 115, 139
Callimico goeldii, see Goeldi’s monkey
Callithrix jacchus, see Common marmoset
Canis lupus, see Grey wolf
Canis lupus baileyi, see Grey wolf
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Captive environment, 175, 211, 213, 255, 256
Carrying capacity, 84, 86, 159
Census, 20, 35, 59, 60, 107

birth, 70
count, 8, 61–64, 69, 80, 152, 252, 265
death, 70, 77
event, 8, 69
imports, 79
migration, 70
post–breeding, 61, 70, 155, 157, 265
pre–breeding, 61, 155, 157, 265

Chelonia mydas, see Green turtle
Chimpanzee, 249
Chlamydotis undulata, see Houbara bustard
CITES, 4, 174
Climate, 255
Clutch, 45, 52
Clutch size, 55, 212
Cohort, 90, 134, 143

imaginary, 90, 99, 116, 133, 149
COMADRE database, 248
Common marmoset, 164
Confidence interval, 152
Consanguineous mating, 173, 179, 199
Conservation genetics, 5, 10
Convergence time, 156
Cox proportional hazards regression, 138, 142,
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Ursus maritimus, see Polar bear

W
Waterfowl, 51
Weaning, 37, 48
Weibull model, 123, 124, 142
Welfare, 6
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