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Techniques for systematically monitoring protein translation have lagged far behind methods for
measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is
based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide
investigation of translation with subcodon resolution. We used this technique to monitor
translation in budding yeast under both rich and starvation conditions. These studies defined the
protein sequences being translated and found extensive translational control in both determining
absolute protein abundance and responding to environmental stress. We also observed distinct
phases during translation that involve a large decrease in ribosome density going from early to late
peptide elongation as well as widespread regulated initiation at non–adenine-uracil-guanine (AUG)
codons. Ribosome profiling is readily adaptable to other organisms, making high-precision
investigation of protein translation experimentally accessible.

Theability tomonitor the identity and quantity
of proteins that a cell produceswould inform
nearly all aspects of biology. Microarray-

based measurements of mRNA abundance have
revolutionized the study of gene expression (1).
However, for several reasons there is a critical
need for techniques that directly monitor protein
synthesis. First, mRNA levels are an imperfect
proxy for protein production becausemRNA trans-
lation is subject to extensive regulation (2–4).
Second predicting the exact protein product from
the transcript sequence is not possible because of
effects such as internal ribosome entry sites, ini-
tiation at non-AUG codons, and nonsense read-
through (5, 6). Finally, programmed ribosomal
pausing during protein synthesis is thought to
aid the cotranslational folding and secretion of
some proteins (7–9).

Polysome profiling, in which mRNAs are
recovered from translating ribosomes for subse-
quent microarray analysis, can provide a useful
estimate of protein synthesis (10). However, this
approach suffers from limited resolution and
accuracy. Additionally, upstream open reading
frames (uORFs)—short translated sequences
found in the 5′ untranslated region (5′UTR) of
many genes—result in ribosomes that are bound
to an mRNA and yet are not translating the en-
coded gene (11). Advances in quantitative proteo-
mics circumvent some of these problems (2, 3),
but there currently are substantial limits on their

ability to independently determine protein se-
quences and measure low-abundance proteins.

The position of a translating ribosome can be
precisely determined by using the fact that a ribo-
some protects a discrete footprint [~30 nucleo-
tides (nt)] on its mRNA template from nuclease
digestion (12). We reasoned that advances in
deep-sequencing technology, which make it pos-
sible to read tens of millions of short (~35 base
pairs) DNA sequences in parallel (13), would al-
low the full analysis of ribosome footprints
from cells. Here, we present a ribosome-profiling
strategy that is based on the deep sequencing
of ribosome-protected fragments and provides
comprehensive high-precision measurements
of in vivo translation with subcodon precision.

Quantifying RNA with deep sequencing.
To establish ribosome profiling as a quantitative
tool for monitoring translation, we needed to im-
plement three steps: (i) robustly generate ribosome-
protected mRNA fragments (“footprints”) whose
sequences indicate the position of active ribo-
somes; (ii) convert these RNA footprints into a
library of DNA molecules in a form that is suit-
able for deep sequencing with minimal distortion;
and (iii) measure the abundance of different foot-
prints in this library by means of deep sequenc-
ing.We first established that counting the number
of times a sequence is read by a deep-sequencing
experiment provides a quantitative measurement
of its abundance in a complex library (fig. S1)
(14). We then optimized nuclease conditions for
obtaining ribosome footprints from in vivo trans-
lating ribosomes (fig. S2, A and B). Finally, we
tested various strategies for preparing sequencing
libraries from a pool of randomly fragmented
yeast mRNAs, reasoning that the abundance of
different fragments of the samemRNA should be
comparable. Using this benchmark, we optimized
a strategy, outlined in Fig. 1A, that avoided RNA

ligases that typically are used in previous ap-
proaches for converting small RNAs to DNA (15)
because they caused large distortions in the dis-
tribution of RNA species (figs. S3 and S4) (16).

We performed deep sequencing on a DNA
library that was generated from fragmented total
mRNA in order to measure abundances of dif-
ferent transcripts (table S1), focusing on 5295
genes that were relatively free of repetitive se-
quences and overlapping transcribed features
(14). We conceptually divided each coding se-
quence (CDS) into two regions of equal length.
The number of reads aligning to these two re-
gions thus represents independent measurements
of the abundance of the full-length mRNA be-
fore fragmentation. The error between these two
counts only slightly exceeded the theoretical min-
imum dictated by sampling statistics (Fig. 1B),
demonstrating the accuracy and sequence inde-
pendence of our library-generation strategy. The
mRNA density measurements were highly re-
producible [correlation coefficient (R2) = 0.98;
SD in log ratio between biological replicates cor-
responded to a 1.2-fold change] (fig. S5). Our
measurements also agreed well with previous
microarray-based measurements of mRNA abun-
dance (R2 = 0.66) (fig. S6) (17, 18). A particular
advantage of our strategy for quantitating mRNA
levels is that it retained strand information and,
by fragmenting messages to a small uniform size,
minimized distortions caused by RNA second-
ary structure, allowing accurate quantifications
of specific subregions (for example, individual
exons) of transcripts.

Monitoring ribosome position with single-
codon resolution with deep sequencing. We se-
quenced 42 million fragments that were generated
by using the ribosome protection assay on the
budding yeast Saccharomyces cerevisiae (14).
7.0 million (16%) of sequencing reads aligned
to CDSs, whereas most of the remainder were
derived from ribosomal RNA (rRNA) (table S1).
Because most contaminating rRNA is derived
from a few specific sites, it should be straight-
forward to remove them by means of subtrac-
tive hybridization before sequencing.

Along a given message, we found that the
positions of the 5′ ends of the footprint frag-
ments started abruptly 12 to 13 nt upstream of
the start codon, ended 18 nt upstream from the
stop codon, and showed a strong 3-nt periodicity
(Fig. 2, A and B). Thus, coverage by ribosome
footprints defines the sequence being translated.
The high precision of ribosome positions al-
lowed us to monitor the reading frame being
translated. For example, 75% of the 28-nt oligomer
ribosome-protected fragments started on the first
nucleotide of a codon (Fig. 2C). Although each
individual footprint provides imperfect statistical
evidence of the ribosome position, averaging mul-
tiple codons allows unambiguous determination of
the reading frame. This should enable genome-
wide studies of programmed frameshifting and
readthrough of stop codons (5).
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Genome-wide measurements of translation.
We next sought to use ribosome profiling data
to quantify the rate of protein synthesis. We
estimated protein expression from the density
of ribosome footprints (14), although further
improvements could incorporate variations in
the speed of translation along a message (see
below). From 7.0 million footprint sequences,
we were able to measure the translation of 4648
of 5295 genes with a precision (fig. S7) and re-
producibility comparable with our mRNA abun-
dance measure (R2 = 0.98; ~20% error between
biological replicates) (Fig. 2D).

Comparing the rate of translation with mRNA
abundance from the same samples revealed a
roughly 100-fold range of translation efficiency
(as measured by the ratio of ribosome footprints
to mRNA fragments) between different yeast
genes, in addition to a subset of transcripts that
were translationally inactive (Fig. 2E and fig.
S8A). Thus, differences in translational efficiency,

which are invisible to mRNA abundance mea-
surements, contribute substantially to the dynamic
range of gene expression (table S2).

The rate of protein synthesis is expected to be
a better predictor of protein abundance than mea-
surements of mRNA levels. Indeed, estimates
of the absolute abundance of proteins from
proteome-wide mass spectrometry had a correla-
tion coefficient of R2 = 0.42 with our translation-
rate measurements versus R2 = 0.17 with our
mRNA abundance (fig. S9) (19). Differences in
protein stability contribute to the imperfect cor-
relation between the rate of a protein’s synthesis
and its steady-state levels. Thus, comparison be-
tween changes in synthesis measured by ribo-
some profiling and abundance measured by mass
spectrometry should reveal examples of the
regulated degradation of proteins (19).

Ribosome profiling reveals different phases
of translation. Previous polysome studies found
that shorter genes tended to have a higher ribo-

some density (10). We saw a similar, though
weaker, trend and an overall agreement between
ribosome profiling and polysome profiling (figs.
S8B and S10). This phenomenon was surprising
because it suggested that the rate of translation
initiation was sensitive to the total length of the
gene, thus causing shorter messages to be better
translated. Alternatively, there may be a higher
ribosome density in a region of constant length
at the start of each gene, which would contribute
a larger fraction of the total ribosome occupancy
for shorter genes. However, a previous study
found no evidence for higher ribosome density
at the 5′ end of six individual mRNAs (20).

Our genome-wide position-specific measure-
ments of ribosome occupancy let us test this pos-
sibility more broadly. An averaging over hundreds
of well-translated genes revealed considerably
greater (approximately threefold) ribosome den-
sity for the first 30 to 40 codons (Fig. 2F), which
after 100 to 200 codons relaxed to a uniform

Fig. 1. Quantifying mRNA
abundance and ribosome
footprints by means of deep
sequencing. (A) Schematic
of the protocol for convert-
ing ribosome footprints or
randomly fragmentedmRNA
into a deep-sequencing li-
brary. (B) Internal reprodu-
cibility of mRNA-abundance
measurements. CDSs were
conceptually divided as
shown, and the mRNA
counts on the two regions
are plotted. The error esti-
mate is based on the c2

statistic.
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density that persisted until translation termi-
nation (fig. S11A). The excess of ribosomes at
the start of genes explained the higher ribosome
density on shorter genes and was not an arti-
fact of immobilizing ribosomes with cyclohex-
imide treatment or stalled ribosomes on the 5′
end of genes (fig. S12). Elevated 5′ ribosome
density appears to be a general feature of trans-
lation that is independent of the length of the
CDS, its translation level, and the presence of an
N-terminal signal sequence (fig. S11, B to D).
Correcting the estimate of protein-synthesis rates
for this effect substantially improved the corre-
lation with protein abundance (R2 = 0.60 versus
R2 = 0.42) (fig. S13). This argues that the de-

crease in ribosome density along a transcript
results from either increases in the rate of trans-
lation elongation and/or premature translation
termination.

Codon-specific measurements of ribosome
positions. Ribosome profiling reports on the pre-
cise positions of ribosomes, making it possible
to delineate what parts of a transcript are being
decoded. Almost all (98.8%) of the ribosome
footprints in our data set mapped to protein-
coding regions. Nonetheless, this left 56,105 un-
explained footprints, which probably represent
true translation events because they copurified
with the 80S ribosomes. Furthermore, they were
far more common in the 5′UTRs (Fig. 3A), where-

as we expect background resulting from the
spurious capture of RNAs to be evenly distrib-
uted across transcripts. Introns and 3′UTRs, in
particular, typically had less than 1% of the
ribosome density seen in a CDS (fig. S14), and
most had no observed footprints. The absence
of reads in unspliced introns indicates that the
intronic regions detected from mRNA sequenc-
ing experiments (21) are rarely translationally
active; thus, ribosome profiling can simplify the
analysis of expression of spliced genes.

In contrast, about one quarter of the 5′UTRs
showed substantial translational activity, in many
cases comparable to that of CDSs (Fig. 3B). One
source of translation in 5′UTRs is the presence

Fig. 2. Ribosome footprints provide a codon-specific measurement of trans-
lation. (A) Total number of ribosome footprints falling near the beginning or
end of CDSs. (B) The offset between the start of the footprint and the P- and
A-site codons at translation initiation and termination (34). (C) Position of 28-nt
ribosome footprints relative to the reading frame. (D) Ribosome footprint
densities in two complete biological replicates. Density in terms of reads per
kilobase per million (rpkM) is corrected for total reads and CDS length (21).
(Inset) Histogram of log2 ratios between replicates for genes with low counting
statistics error (fig. S7) along with the normal error curve (mean = 0.084, SD =
0.291 in log2 units; s is SD expressed as a fold change). (E) Histogram of
translational efficiency, the ratio of ribosome footprint density to mRNA density.
The error shows actual ratios between biological replicates (SD = 0.367 in log2
units). (F) Read density as a function of position. Well-expressed genes were
each individually normalized and then averaged with equal weight (14).
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of uORFs, short translated reading frames up-
stream of the CDS that can play an important
role in translational regulation (11). We identi-
fied 1048 candidate uORFs in the yeast genome
on the basis of the presence of an upstream AUG
codon (table S3) (22, 23). We focused on the 86
upstream AUG codons in the most abundant
messages (14), in which we could reliably quan-
tify even low levels of translation. Among this
set, only 20 of the uORFs were well-translated,
a prominent example being ICY1 (Fig. 3C and
table S4). More broadly, among all annotated
5′UTRs we found evidence for the translation

of 153 uORFs (table S5), fewer than 30 of which
had previously been experimentally evaluated.

Nonetheless, these uORFs account for only a
fraction of the 706 genes in which we found
substantial translation in the 5′UTR. Some genes,
such as PRE2 and PDR5, had a discrete region
of ribosome density that was terminated by a
stop codon but lacked an AUG codon (Fig. 3D
and fig. S15). In both cases, the translated re-
gion could be accounted for by initiation at a
UUG codon. There are two known examples in
which translation initiates at a non-AUG codon
in yeast, the tRNA synthetases GRS1 (24) and

ALA1 (25), and both are apparent in our data (fig.
S16). Initiation at non-AUG codons is strongly
dependent on the surrounding sequence context
(26), in contrast to canonical initiation in yeast
(27), and the non-AUG initiation sites in PRE2
and PDR5 both match an experimentally verified
strong initiation sequence (26).

On the basis of this finding, we searched for
other candidate non-AUG initiation sites where
a codon with a single mismatch against AUG
had a favorable initiation context (14). Most of
these start sites would lead to short uORFs, as
seen in PRE2 and PDR5, although there was

Fig. 3. Ribosome occu-
pancy of upstream open-
reading frames and other
sequences. (A) Density
of mRNA fragments and
ribosome footprints on
non–protein-coding se-
quences relative to the
associated CDS. (B) His-
togram of translational
efficiencies for different
classes of sequences. (C)
Ribosome and mRNA den-
sity showing the uORF in
the ICY1 5′UTR. (D) Ribo-
some and mRNA density
showing non-AUG uORFs
in the PRE2 5′ UTR. The
proposed AAAUUG trans-
lational initiation site is
shown along with the
subsequent open reading
frame and stop codon
(indicated by a vertical
line).

Fig. 4. Translational response to starvation. (A) Changes in mRNA abun-
dance and translational efficiency in response to starvation. (B) Distribution
of translational efficiency changes in response to starvation. Measurement

error was estimated from the actual distribution of ratios between biological
replicates. A false discovery rate threshold of 10% corresponds to a twofold
change in translational efficiency.
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evidence for N-terminal extensions in a few
genes, including the cyclin CLB1 (fig. S17). In
aggregate, these 1615 predicted uORFs had a
much greater (approximately threefold) trans-
lational efficiency than other regions of 5′UTRs,
particularly when the start codon differed from
AUG at the first position (approximately six-
fold; see below). We found a strong bias for 28-
nucleotide oligomer footprints to align with the
predicted reading frame just downstream of these
non-AUG initiation sites, which is similar to the
effect we saw in protein-coding genes (fig S18).

Furthermore, when elongation was not in-
hibited, ribosome footprints were depleted from

5′UTRs just as they were from the beginning of
protein-coding genes, indicating that they were
active ribosomes capable of runoff elongation (fig.
S19). Overall, we found 143 non-AUG uORFs
with evidence of translation (table S6), which
account for 20% of 5′UTR ribosome footprints.
Thus, there is pervasive initiation at specific, fa-
vorable, non-AUG sites.

Translational responses to starvation. The
ability to evaluate rates of translation as well as
mRNA abundance with high precision enables
quantitative measurements of translational reg-
ulation. Acute amino acid starvation in yeast
produces substantial transcriptional and transla-

tional changes (28), including a global decrease
in translational initiation (29). We subjected yeast
to 20 min of amino acid deprivation and made
ribosome-footprint and mRNA-abundance mea-
surements (fig. S20). We then compared starva-
tion and log-phase growth measurements for the
3769 genes for which statistical counting error
did not compromise our ability to detect transla-
tional regulation (Fig. 4A and fig. S7). One-third
of the genes showed changes in relative transla-
tional efficiency upon starvation (fig. S21), with
291 strongly affected (greater than twofold) genes
(Fig. 4B and table S7). Forty-three of the 111
down-regulated genes (P < 10−40) are involved in

Fig. 5. Changes in 5′UTR
translation during starva-
tion. (A) Ribosome and
mRNA densities in the
GCN4 5′UTR in repressive
and inducing conditions.
The four known uORFs
are indicated along with
the proposed initiation
sites for upstream trans-
lation. (B) Non-AUG uORF
upstream of GCN4. Shown
is an enlargement of the
gray boxed area in (A).
(C) Ribosome occupancy
of noncoding sequences.
The number of ribosome
footprints mapping to dif-
ferent classes of regions
is shown relative to the
number of CDS reads. (D)
Aggregate translational
efficiency of uORFs (14).
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ribosome biogenesis (Fig. 4A and table S8), a
process that is repressed at many different levels
in response to stresses such as starvation (30, 31).

The fraction of each gene’s mRNA that is
associated with polysomes had previously been
used to provide a semiquantitative measurement
of translational efficiency (32). Many ribosome
biogenesis transcripts leave the polysome frac-
tion in response to starvation, in agreement with
our observations, and changes in polysome asso-
ciation were significantly correlated with changes
in translation that were measured with ribosome
profiling (up-regulated genes, P < 10−12 and down-
regulated genes, P < 10−6) (fig. S22). Ribosome
profiling also allowed us to detect the sevenfold
translational induction of GCN4, a well-studied
and translationally regulated gene (29) whose re-
sponse to starvation was not detected by the earlier
polysome studies (32).

The regulation of GCN4 translation results
from four uORFs in its 5′UTR [reviewed in (29)].
During log-phase growth, we saw translation of
GCN4 uORF 1, along with some translation of
uORFs 2 to 4, but very little translation of the
main GCN4 CDS (Fig. 5A). This pattern of ribo-
some occupancy is consistent with the standard
model of GCN4 5′UTR function, in which uORF
1 is constitutively translated but permissive for
downstream reinitiation. In log-phase growth, re-
initiation occurs at uORFs 2 to 4 rather than at
GCN4 itself. Upon starvation, however, reinitia-
tion bypasses uORFs 2 to 4 and reaches the main
CDS, thereby relieving the translational repres-
sion of GCN4. Indeed, we saw a decrease in
ribosome occupancy of the repressive uORFs as
well as an increase in translation of the protein-
coding region upon starvation. Unexpectedly,
we also observed additional translation in the
5′UTR upstream of the characterized uORFs. This
region was detectably translated even in log-phase
growth, and its translation was greatly enhanced
under starvation (Fig. 5B). Most translation in
this region started from a noncanonical AAAAUA
site, although there was also initiation from an
upstream in-frame noncanonical UUUUUG site.
Sequences overlapping this region are required
for proper translational regulation by uORF 1 (33),
which supports the idea of these non-AUG uORFs
having a functional role.

More broadly, during starvation we found a
large (sixfold) increase in the fraction of ribo-
some footprints derived from 5′UTRs but little
change in introns (Fig. 5C). There was also a
less pronounced increase in ribosome occupancy
of 3′UTRs, although the overall density remained
low. The non-AUG uORFs showed a particu-
larly dramatic increase in ribosome occupancy
during starvation, apparently exceeding the trans-
lation not only of canonical AUG uORFs but of
the CDSs themselves (Fig. 5D). Non-AUG uORFs
upstream of genes such as GLN1 and PRE9,
which were marginally translated during log-
phase growth, had much higher ribosome densi-
ties after starvation (figs. S23 and S24). However,
even in the case of GLN1, it is clear that no single

uORF can account for the entire distribution of
ribosomes on the 5′UTR. Instead, there is a more
general change in the stringency of initiation codon
selection that favors certain noncanonical start
sites but has broader effects as well (fig. S25).
The initiation factor eIF2a, whose phosphoryl-
ation mediates the effect of starvation on trans-
lation (29), also has a prominent role in initiator
codon selection (34) and thus may contribute to
this relaxation.

Perspective. Ribosome profiling greatly in-
creases our ability to quantitatively monitor protein
production, as is underscored by our consider-
ably improved predictions of protein abundance.
This technique should become a central tool in
the repertoire available for studying the internal
state of cells. The basic strategy is readily adapt-
able to other organisms, including mammals, and
it can allow tissue-specific translational profil-
ing by using the restricted expression of epitope-
tagged ribosomes (35). Immediate applications
of ribosome profiling include studies of the trans-
lational control of gene expression and molec-
ular characterization of disease states such as
cancer, in which associated cellular stress will
probably directly affect translation (36). Addi-
tionally, the ability to determine precisely what
regions of a message are being decoded should
greatly aid efforts to experimentally define the
full proteome of complex organisms such as
humans.

Our approach also allows in-depth analysis
of the process of translation in vivo. For exam-
ple, ribosome profiling revealed an unanticipated
complexity to translation that leads to differences
in ribosome density along the length of CDSs.
This presumably reflects differences in the func-
tional states of the ribosome that affect its rate of
elongation or processivity. The switch from the
early to the late elongation phase begins with
the first emergence of the nascent peptide from
the ribosome, allowing interactions between the
nascent chain and molecular chaperones (37).
Measurements of the effects of starvation on
translational activity also revealed widespread
and regulated initiation at non-AUG codons, sug-
gesting a new effect of the well-studied eIF2a-
mediated stress response. Finally, high-resolution
gene-specific ribosome density profiles will
enable efforts to explore how variations in the
rate of translation, as well as effects such as ribo-
somal pausing, modulate protein synthesis and
folding.
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