Chapter 7

Weighted Averages

This chapter addresses the problem of combining two or more separate and indepen-
dent measurements of a single physical quantity. We will find that the best estimate
of that quantity, based on the several measurements, is an appropriate weighted
average of those measurements.

7.1 The Problem of Combining Separate Measurements

Often, a physical quantity is measured several times, perhaps in several separate
laboratories, and the question arises how these measurements can be combined to
give a single best estimate. Suppose, for example, that two students, A and B, mea-
sure a quantity x carefully and obtain these results:

Student A: x = x, = o, 7.1)
and
Student B: x = xz * 0p. (7.2)

Each result will probably itself be the result of several measurements, in which case
x, will be the mean of all A’s measurements and o, the standard deviation of that
mean (and similarly for x5 and o3). The question is how best to combine x, and xp
for a single best estimate of x.

Before examining this question, note that if the discrepancy |x, — xp| between
the two measurements is much greater than both uncertainties o, and oy, we should
suspect that something has gone wrong in at least one of the measurements. In this
situation, we would say that the two measurements are inconsistent, and we should
examine both measurements carefully to see whether either (or both) was subject to
unnoticed systematic errors.

Let us suppose, however, that the two measurements (7.1) and (7.2) are consis-
tent; that is, the discrepancy |x, — xp| is not significantly larger than both o, and
op. We can then sensibly ask what the best estimate x,. is of the true value X,
based on the two measurements. Your first impulse might be to use the average
(x4 + xp)/2 of the two measurements. Some reflection should suggest, however, that
this average is unsuitable if the two uncertainties o, and oy are unequal. The simple
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average (x, + xp)/2 gives equal importance to both measurements, whereas the more
precise reading should somehow be given more weight.

Throughout this chapter, I will assume all systematic errors have been identified
and reduced to a negligible level. Thus, all remaining errors are random, and the mea-
surements of x are distributed normally around the true value X.

7.2  The Weighted Average

We can solve our problem easily by using the principle of maximum likelihood,
much as we did in Section 5.5. We are assuming that both measurements are gov-
erned by the Gauss distribution and denote the unknown true value of x by X.
Therefore, the probability of Student A’s obtaining his particular value x, is

ProbX(xA) o o-ie—(xA—X)Z/ZaAz’ (73)
A

and that of B’s getting his observed xj is

Proby(xy) o« — e~ o X720, (7.4)

N
The subscript X indicates explicitly that these probabilities depend on the unknown
actual value.

The probability that A finds the value x, and B the value x; is just the product
of the two probabilities (7.3) and (7.4). In a way that should now be familiar, this
product will involve an exponential function whose exponent is the sum of the two
exponents in (7.3) and (7.4). We write this as

Proby(x,, xg) = Proby(x,) Proby(xg)

o

X2 7.5
UAUBe , (7.5)

where I have introduced the convenient shorthand x? (chi squared) for the exponent

- (3%‘)2 + (%)2 (7.6)

This important quantity is the sum of the squares of the deviations from X of the
two measurements, each divided by its corresponding uncertainty.

The principle of maximum likelihood asserts, just as before, that our best esti-
mate for the unknown true value X is that value for which the actual observations
x,, xg are most likely. That is, the best estimate for X is the value for which the
probability (7.5) is maximum or, equivalently, the exponent x? is minimum. (Be-
cause maximizing the probability entails minimizing the “sum of squares” x?, this
method for estimating X is sometimes called the “method of least squares.”) Thus,
to find the best estimate, we simply differentiate (7.6) with respect to X and set the
derivative equal to zero,

-X

X,
+2282-= =0
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The solution of this equation for X is our best estimate and is easily seen to be

(best estimate for X) = (x—"z + x—Bz) / (% + Lz) 7.7
Oy Op 04 Op

This rather ugly result can be made tidier if we define weights

1
Wy = ? and Wp = ;_? (7.8)

With this notation, we can rewrite (7.7) as the weighted average (denoted x,,,)

Wy Xy + WpXp

(best estimate for X) = x,,, = (7.9)

wy + wg

If the original two measurements are equally uncertain (o, = o and hence
w, = wp), this answer reduces to the simple average (x, + xz)/2. In general, when
w, #* wpg, the weighted average (7.9) is not the same as the ordinary average; it is
similar to the formula for the center of gravity of two bodies, where w, and wy are
the actual weights of the two bodies, and x, and xp their positions. In (7.9), the
“weights” are the inverse squares of the uncertainties in the original measurements,
as in (7.8). If A’s measurement is more precise than B’s, then ¢, < o and hence
w4 > wpg, so the best estimate x,., is closer to x, than to xg, just as it should be.

Quick Check 7.1. Workers from two laboratories report the lifetime of a cer-
tain particle as 10.0 = 0.5 and 12 + 1, both in nanoseconds. If they decide to
combine the two results, what will be their respective weights as given by (7.8)
and their weighted average as given by (7.9)?

Our analysis of two measurements can be generalized to cover any number of
measurements. Suppose we have N separate measurements of a quantity x,

Xp X0, XX o0y..., Xy oy

with their corresponding uncertainties o, 0, . . ., oy. Arguing much as before, we
find that the best estimate based on these measurements is the weighted average

7xwav" = - E;lt’ o (710)
where the sums are over all N measurements, i = 1,..., N, and the weight w; of
each measurement is the reciprocal square of the corresponding uncertainty,

W = L e 11
i _q_iz S (7.11)
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Because the weight w;, = 1/0;? associated with each measurement involves the
square of the corresponding uncertainty ¢;, any measurement that is much less pre-
cise than the others contributes very much less to the final answer (7.10). For exam-
ple, if one measurement is four times less precise than the rest, its weight is 16
times less than the other weights, and for many purposes this measurement could
simply be ignored.

Because the weighted average x,,,,, is a function of the original measured values
X1, X5 - . - Xy, the uncertainty in x,,, can be calculated using error propagation. As
you can easily check (Problem 7.8), the uncertainty in x,, is

(7.12)

This rather ugly result is perhaps a little easier to remember if we rewrite (7.11) as

o = L. (7.13)

Paraphrasing Equation (7.13), we can say that the uncertainty in each measurement
is the reciprocal square root of its weight. Returning to Equation (7.12), we can
paraphrase it similarly to say that the uncertainty in the grand answer x,,, is the
reciprocal square root of the sum of all the individual weights; in other words, the
total weight of the final answer is the sum of the individual weights w;.

Quick Check 7.2. What is the uncertainty in your final answer for Quick
Check 7.17

7.3 An Example

Here is an example involving three separate measurements of the same resistance.

Example: Three Measurements of a Resistance

Each of three students measures the same resistance several times, and their three
final answers are (all in ohms):

Student 1: R = 11 £1

Student 2: R = 12 =1

Student 3: R = 10 = 3
Given these three results, what is the best estimate for the resistance R?

The three uncertainties oy, 0,, 03 are 1, 1, and 3. Therefore, the corresponding
weights w; = 1/0; are

— — — 1
Wl'—l, Wz'—l, W3—§.



Principal Definitions and Equations of Chapter 7

The best estimate for R is the weighted average, which according to (7.10) is

Yw.R,;
R — iV
wav Zwl
1 X11)+ (1 X + (5 X
= ) * ( 12)1 X190 _ 1142 ohms.
1+1+ 35
The uncertainty in this answer is given by (7.12) as
Oway . L = 0.69.

NEw, AT+ 1+%
Thus, our final conclusion (properly rounded) is

R = 11.4 = 0.7 ohms.

For interest, let us see what answer we would get if we were to ignore com-
pletely the third student’s measurement, which is three times less accurate and hence
nine times less important. Here, a simple calculation gives R, ., = 11.50 (compared
with 11.42) with an uncertainty of 0.71 (compared with 0.69). Obviously, the third
measurement does not have a big effect.

Principal Definitions and Equations of Chapter 7

If x;, x,, . . ., xy are measurements of a single quantity x, with known uncertain-
ties oy, 0y, ..., Oy, then the best estimate for the true value of x is the weighted
average

x = 2WX;
way >w;’ [See (7.10)]
where the sums are over all N measurements, i = 1,..., N, and the weights w,
are the reciprocal squares of the corresponding uncertainties,
1
w; = F

The uncertainty in x,,,, is

T T rw [See (7.12)]

where, again, the sum runs over all of the measurements i = 1,2,..., N.
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