

Práctico 10: Evolución post-secuencia principal: Rama horizontal y asintótica de las gigantes

- 1. Estime la escala temporal de pérdida de masa τ_m de una estrella de masa M y compárela con el tiempo térmico τ_{ter} . Demuestre que la tasa de energía requerida para que la estrella pierda masa a una tasa \dot{M} es mucho menor que la luminosidad L de la estrella. Encuentre una relación entre la escala temporal de pérdida de masa τ_m y la escala temporal nuclear de la estrella τ_{nuc} y muestre que $\tau_m << \tau_{nuc}$. (Versión del ejercicio 8.4 de An Introduction to the Stellar Structure and Evolution de Dina Prialnik)
- 2. Asumiendo que la perdida de masa de una estrella puede ser parametrizada según la ecuación:

$$\dot{M} \sim 10^{-13} \frac{L}{L_{\odot}} \frac{R}{R_{\odot}} \frac{M}{M_{\odot}} [M_{\odot}/a\tilde{n}o]$$

muestre que para una estrella de la secuencia principal $\dot{M} \propto L^{\alpha}$ y evalúe el valor de α . (Versión del ejercicio 8.5 de An Introduction to the Stellar Structure and Evolution de Dina Prialnik)