Traductomica como herramienta para comprender mecanismos regulatorios

Dr. José Sotelo

Gene expression

- Multiple control levels
 - Transcription initiation
 - Post-transcriptional regulation
 - Post-translational regulation

Gene expression

FIGURE 1 | Messenger RNAs associate with several RNP structures that influence their translational state. (A) Polysomes, sites of translation, contain RBPs that activate (green spheres) or repress (red spheres) translation. Following synthesis and processing, mRNA is exported from the nucleus and transported throughout the cell along microtubules via (B) RNA granules and (C) RNA particles. Repressor RBPs (red spheres) are present within RNA particles to ensure that mRNAs are not translated during transit. Messenger RNAs within RNA granules are associated with translation initiation machinery (light blue spheres) including ribosomes, suggesting that translation has commenced but is halted during transit. The translational fate of mRNA is dictated in part by the RBPs bound to them. If targeted by repressor RBPs or miRISCs (blue squares), mRNAs will associate with **(D)** stress granules, **(E)** processing bodies, or **(F)** miRISC structures resulting in either degradation or translational repression. Some RBPs present in neuronal RNP complexes are listed.

Protein Translation

Regulatory elements

Study of polysomal RNA

FIGURE 2 | Schematic of genome-wide methods to study polysome-associated mRNAs *in vitro* and *in vivo*. (A) With polysome profiling, cytoplasmic lysates from cells are layered onto a sucrose gradient and undergo centrifugation to separate tRNAs, 40S, 60S, and 80S ribosomes, and polysomes. Messenger RNAs from fractions corresponding to polysomes (dashed blue box) are isolated and identified by various approaches.
(B) Engineered bacTRAP mice drive expression of EGFP-tagged L10a, a ribosomal protein found in polysomes (green ribosomes), from promoters that are activated in specific cells of the central nervous system.
EGFP-L10a-mRNA complexes are immunopurified from brain tissue from bacTRAP mice, and associated mRNAs are identified by various techniques.
(C) The RiboTag mouse carries an RpI22 allele with a floxed wild-type C-terminal Exon4 followed by a HA-tagged Exon4. When the RiboTag mouse

is crossed with a mouse expressing Cre-recombinase in a cell-type specific manner, Cre-recombinase activates expression of HA-tagged Rpl22, which incorporates into polysomes (purple ribosomes). Homogenized tissues from the offspring are subjected to co-immunoprecipitation using antibodies against HA, and associated mRNAs are identified by various techniques. **(D)** Using ribosome profiling to identify ribosome occupancy on mRNAs, cycloheximide-treated lysates from cultured cells are digested by micrococcal nucleases to remove mRNA sequences that are not bound by ribosomes (left). The resulting monosome complexes are purified by ultracentrifugation through a sucrose gradient or cushion. Ribosome-protected fragments are recovered and deep sequenced. In parallel, total mRNA from a similar preparation of cycloheximide-treated lysate is fragmented and deep sequenced (right), and serves as a normalizing control.

Ribosome profiling

Published in final edited form as: *Science*. 2009 April 10; 324(5924): 218–223. doi:10.1126/science.1168978.

Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling

Nicholas T. Ingolia^{*}, **Sina Ghaemmaghami[†]**, **John R. S. Newman**, and **Jonathan S. Weissman** Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, and California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.

Ribosome profiling

• Cell culture and ribosome stalling

- Cicloheximide
- Harringtonine, lactimidomycin
- Rapid freeze

• Cell culture and ribosome stalling

- Cicloheximide
- Harringtonine, lactimidomycin
- Rapid freeze
- Lysis

Cell culture and ribosome stalling

- Cicloheximide
- Harringtonine, lactimidomycin
- Rapid freeze
- Lysis
- Ribosome Footprinting
 - RNAse treatment
 - Sucrose gradient utracentrifugation
 - RNA extraction
 - Size selection (PAGE 15% + urea) 28-34nt

• mRNA-Seq

- Total RNA extraction
- poly(A) mRNA purification
- Fragmentation
- Size selection (PAGE) 50-80nt

- mRNA-Seq
 - Total RNA extraction
 - poly(A) mRNA purification
 - Fragmentation
 - Size selection (PAGE) 50-80nt
- Library generation
 - T4 dephosphorilation
 - Adapter linking and purification
 - (for RFPs: rRNA depletion)
 - Reverse transcription
 - PCR amplification
- Sequencing and analysis

Ribosome profiling: Results

- Allows
 - Precise quantification of the proportion of mRNA actually bound to polysomes
 - The study of ribosome dynamics during translation

Analysis pipeline

- Similar to RNA-seq, so many standard tools can be used
- Additional information and issues
 - %rRNA removal
 - Footprint periodicity
 - Mapping coordinates
 - Size range

Specific software

Software available to analyze, interpret and visualize RP-derived data.

A list of some of the software used to analyze RP data is briefly described, indicating its main features and the adequate environment to use it.

Name	Functions/description	Enviroment	Ref.
riboSeqR	Parsing data, align reads, plotting functions, frameshift detection and inferring alternative ORFs.	R	[101]
RiboProfiling	Quality assessment, read start position recalibration, counting of reads on CDS, 3'UTR, and 5'UTR, plotting of count data: pairs, log	R	[102]
	fold-change, codon frequency and coverage assessment, principal component analysis on codon coverage.		
RiboGalaxy	On-line tools for the analysis and visualization of ribo-seq data (some of them use riboSeqR)	Galaxy webserver	[103]
Plastid	A handful of scripts for common high-throughput sequencing and ribosome profiling analyses, like: determining P-sites offsets	Python Library	[104]
Ribomap	Generates isoform-level ribosome profiles from ribosome profiling data	Unix	[105]
RiboTraper	Identifies translated regions	Unix	[106]
Rfoot	Identifies RNA regions protected by non-ribosomal protein complex present in Ribo-Seq data	Perl	[107]
anota	Analysis of differential translation and results visualization	R	[108]
RiboDiff	An statistical tool to detect changes in protein translation efficiency	Unix	[109]
Xtail	An analysis pipeline that identifies differentially translated genes in pairwise comparisons	R	[110]
RiboTools	Detection of translational ambiguities, stop codon readthrough events and codon occupancy. Provides plots for the visualization	Galaxy webserver	[111]
	of these events.		
Proteoformer	Genome-wide visualization of ribosome occupancy and a translation initiation site calling algorithm. A protein database can be	Galaxy webserver	[112]
	incorporated to increase protein identification		
ORFscore	Small ORF identification	In SPECTtre [106];	[75]
		python	
ORF-RATER	Coding sequence annotation	Python	[113]
FLOSS	A metric for distinguishing between 80S footprints and nonribosomal sources using footprint size distributions	In SPECTtre [106];	[61]
		python	
tRanslatome	Analysis of transcriptome, translatome and proteome data: Differentially expressed genes detection, gene ontology enrichment	R	[114]
	comparison and analysis of regulatory elements		
TranslatomeDB	Differential gene expression, translation ratio, elongation velocity index and translational efficiency. Also comparision with other	Online	[115]
	RP experiments can be done		
systemPipeR	Filter/trim sequences, quality control, alignments, counting, peak detection, differentially expressed genes detection, enrichment,	R	[116]
	classification, several reports and graphs		

Footprint periodicity

Footprint periodicity

Frameshift detection

Michel, et al. 2012 Genome Research

Alternative Reading frames

Ingolia, 2014 Nature Reviews Genetics

Initiation site determination and uORFs detection

Initiation site determination and uORFs detection

Ingolia, Cell 2011

Correlations with proteome

Correlations with proteome

Authors	Journal	Year	Organism	Correlation score
Ingolia	Science	2009	Yeast	R ²
Smircich	BMC Genomics	2015	Trypanosoma cruzi	Pearson R ²
Cenik	Genome Research	2015	Lymphoblastoid cell lines	Spearman p
Wang & Sun	Genome Biol Evol	2015	Yeast	Pearson R ²
Miranda-CasoLuengo & Staunton	BMC Genomics	2016	Mycobacterium abscessus	Pearson R ²

Translation regulation

Translation regulation

- Translation regulation is a major contributor of gene expression levels
 - Most important for rapid response to environmental signals

Translation regulation: RiboDiff and Riborex

https://public.bmi.inf.ethz.ch/user/zhongy/RiboDiff/

https://github.com/smithlabcode/riborex/blob/master/DESCRIPTION A. Bartholomäus, et al. 2015

Translation regulation: uORFs

McGeachy, EMBO J 2016

Translation regulation: uORFs

b

Non-coding RNA tranlslation

Article

- lincRNAs have ribosome occupancies similar to CDS
- Other specific characteristics of translation are not present
 - Some exceptions

Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes

Ingolia Cell 2011 Guttman Cell 2013 Ingolia Cell 2014

Non-coding RNA tranlslation

Resource

Cell

The Translational Landscape of the Human Heart

Graphical Abstract

Authors

Sebastiaan van Heesch, Franziska Witte, Valentin Schneider-Lunitz, Jana F. Schulz ..., Uwe Ohler, Stuart A. Cook, Norbert Hubner

Correspondence

sebastiaanvanheesch@gmail.com (S.v.H.), nhuebner@mdc-berlin.de (N.H.)

In Brief

Translational profiling in a primary human tissue reveals frequent translation downstream of predicted diseasecausing variants as well as translation of hundreds of microproteins from long noncoding RNAs and circular RNAs.

Translation of small ORFs (micropeptides)

- •Less than 100AA
- Translated in the cytoplasm (non membrane bound ribosomes)
- Evolutionary conserved

Translation of small ORFs (micropeptides)

Translation of small ORFs (micropeptides)

RESEARCH

MOLECULAR BIOLOGY

Pervasive functional translation of noncanonical human open reading frames

Jin Chen^{1,2}, Andreas-David Brunner³, J. Zachery Cogan^{1,2}, James K. Nuñez^{1,2}, Alexander P. Fields^{1,2}*, Britt Adamson^{1,2}†, Daniel N. Itzhak⁴, Jason Y. Li⁴, Matthias Mann^{3,5}, Manuel D. Leonetti⁴, Jonathan S. Weissman^{1,2}‡

Ribosome profiling has revealed pervasive but largely uncharacterized translation outside of canonical coding sequences (CDSs). Here, we exploit a systematic CRISPR-based screening strategy to identify hundreds of non-canonical CDSs that are essential for cellular growth and whose disruption elicit specific, robust transcriptomic and phenotypic changes in human cells. Functional characterization of the encoded microproteins reveals distinct cellular localizations, specific protein binding partners, and hundreds that are presented by the HLA system. Interestingly, we find multiple microproteins encoded in upstream open reading frames, which form stable complexes with the main, canonical protein encoded on the same mRNA, thus revealing the diverse use of functional bicistronic operons in mammals. Together, but Scientifes 2020

Stop codon read-through

Several hundred Drosophila genes express C terminal extensions

Stop codon read-through

RESEARCH ARTICLE

Stop-codon read-through arises largely from molecular errors and is generally nonadaptive

Chuan Lim", Jianzhi Zhang *

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America

Current address: Department of Biology, Stanford University, Stanford, CA, United States of America
 <u>iianzhi@umich.edu</u>

sity. Here we propose and test a competing hypothesis that stop-codon read-through arises mostly from molecular errors and is largely nonadaptive. The error hypothesis makes distinct predictions about the probability of read-through, frequency of sequence motifs for read-through, and conservation of the read-through region, each of which is supported by genome-scale data from yeasts and fruit flies. Thus, except for the few cases with demonstrated functions, stop-codon read-through is generally nonadaptive. This finding, along with other molecular errors recently quantified, reveals a much less precise or orderly cellular life than is commonly thought.

Translation dynamics

Ingolia Cell 2011

Ribo-seq variations

Eastman, et al. Comput Struct Biotechnol J. 2018

Ribo-seq variations

Ingolia, Nature Reviews Genetics 2014 Ingolia, Cell 2016

Proximity-specific ribosome profiling

other

Check for updates

Kristopher W. Brannan^{1,2,3}, Isaac A. Chaim^{1,2,3}, Ryan J. Marina^{1,2,3}, Brian A. Yee^{1,2,3}, Eric R. Kofman^{1,2,3}, Daniel A. Lorenz^{1,2,3}, Pratibha Jagannatha^{1,2,3}, Kevin D. Dong^{1,2,3}, Assael A. Madrigal^{1,2,3}, Jason G. Underwood⁴ and Gene W. Yeo^{1,2,3}

Translatomics goes single cell...

Results

STAMP identifies RBP binding sites without immunoprecipitation. Our strategy for IP-free detection of RBP targets involves fusing full-length RBPs of interest to the cytidine deaminase enzyme APOBEC1, which is known to catalyze C-to-U editing on single-stranded RNA targets (Fig. 1a). Upon expression of an RBP-APOBEC1 fusion protein (RBP-STAMP), RBPs direct the

Translatomics goes single cell...

Ribosome-subunit STAMP edits are enriched in highly translated coding sequences and are responsive to mTOR inhibition. Since ribosomes have extensive association with mRNAs during translation, we reasoned that ribosomal subunits fused to APOBEC1 (Ribo-STAMP) have the potential to edit mRNAs in a manner that reflects ribosome association. We generated independent HEK293T cell lines expressing APOBEC1 fusions to ribosomal subunits RPS2 and RPS3. For RPS2-STAMP and RPS3-STAMP, we observed that edits were enriched relative to control-STAMP on exons of protein-coding genes that are highly translated in HEK293T cells, such as ATP5PB³⁶, coincident with RPS3 eCLIP signal enrichment over size-matched input control (Fig. 2a). In comparison, RPS2-STAMP and RPS3-STAMP signals were minimally detected on highly expressed noncoding genes such as the long noncoding RNA MALAT1, which is localized to the cytoplasm in mitotic cell lines³⁷ (Fig. 2b). We performed replicate RPS2–STAMP

Translatomics goes single cell...

10x Standard Single-cell RNA-seq

044 KDFOA2-51AWP cens and 5,242 control-51AWP cens.

Comparison of bulk and single-cell edit fractions for control-STAMP and RBFOX2–STAMP experiments across the top 200 expressed genes (ranked by transcripts per million (TPM) from bulk RBFOX2–STAMP RNA-seq) revealed nearly identical edit enrichment profiles of RBFOX2 samples above controls and further uncovered a spectrum of editing frequencies across individual cells (Fig. 4a). To illustrate, we next ranked individual control–STAMP

Ribo-STAMP reveals translational landscapes at single-cell resolution

We performed stable 72-h high-induction control–STAMP and RPS2–STAMP and conducted scRNA-seq

