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Gene expression

e Multiple control levels
® Transcription initiation

® Post-transcriptional regulation
® Post-translational regulation
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Gene expression
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FIGURE 1 | Messenger RNAs associate with several RNP structures
that influence their translational state. (A) Polysomes, sites of
translation, contain RBEPs that activate (green spheres) or repress (red
spheres) translation. Following synthesis and processing, mRNA is
exported from the nucleus and transported throughout the cell along
microtubules via (B) RNA granules and (C) RNA particles. Repressor RBPs
(red spheres) are present within RNA particles to ensure that mRMAs are
not translated during transit. Messenger RMAs within RMA granules are

associated with translation initiation machinery (light blue spheres)
including ribosomes, suggesting that translation has commenced but is
halted during transit. The translational fate of mRMA is dictated in part by
the RBPs bound to them. H targeted by repressor RBPs or miRISCs (blue
squares), mRMNAs will associate with (D) stress granules, (E) processing
bodies, or (F) miRISC structures resulting in either degradation or
translational repression. Some RBPs present in neuronal RMP complexes
are listed.

Kapeli; Frontiers in Neuroscience (2012)



Protein Translation
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Study of polysomal RNA
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FIGURE 2 | Schematic of genome-wide methods to study
polysome-associated mRNAs in vitro and in vivo. (A) With polysome
profiling, cytoplasmic lysates from cells are layered onto a sucrose gradient
and undergo centrifugation to separate tRNAs, 40S, 60S, and 80S ribosomes,
and polysomes. Messenger RNAs from fractions corresponding to polysomes
(dashed blue box) are isolated and identified by various approaches.

(B) Engineered bacTRAP mice drive expression of EGFP-tagged L10a, a
ribosomal protein found in polysomes (green ribosomes), from promoters
that are activated in specific cells of the central nervous system.
EGFP-L10a-mRNA complexes are immunopurified from brain tissue from
bacTRAP mice, and associated mRNAs are identified by various technigues.
(C) The RiboTag mouse carries an Rpl22 allele with a floxed wild-type
C-terminal Exon4 followed by a HA-tagged Exon4. When the RiboTag mouse

is crossed with a mouse expressing Cre-recombinase in a cell-type specific
manner, Cre-recombinase activates expression of HA-tagged Rpl22, which
incorporates into polysomes (purple ribosomes). Homogenized tissues from
the offspring are subjected to co-immunoprecipitation using antibodies
against HA, and associated mRNAs are identified by various technigques.

(D) Using ribosome profiling to identify ribosome occupancy on mRNAs,
cycloheximide-treated lysates from cultured cells are digested by micrococcal
nucleases to remove mRNA sequences that are not bound by ribosomes
(left). The resulting monosome complexes are purified by ultracentrifugation
through a sucrose gradient or cushion. Ribosome-protected fragments are
recovered and deep sequenced. In parallel, total mMRNA from a similar
preparation of cycloheximide-treated lysate is fragmented and deep
sequenced (right), and serves as a normalizing control.

Kapeli; Frontiers in Neuroscience (2012)



Ribosome profiling

Published in final edited form as:
Science. 2009 April 10; 324(5924): 218-223. doi:10.1126/science.1168978.

Genome-Wide Analysis in Vivo of Translation with Nucleotide

Resolution Using Ribosome Profiling

Nicholas T. Ingolia*, Sina GhaemmaghamiT, John R. S. Newman, and Jonathan S. Weissman
Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University
of California, San Francisco, and California Institute for Quantitative Biosciences, San Francisco,
CA 94158, USA.



Ribosome profiling
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Ribosome profiling: Method

* Cell culture and ribosome stalling

3hr drug treatmentl
e  Cicloheximide

-Cycloheximide

* Harringtonine, lactimidomycin
* Rapid freeze
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Ribosome profiling: Method

* Cell culture and ribosome stalling
* Cicloheximide
. . .. . -Cycloheximide
*  Harringtonine, lactimidomycin -Lyse cells
e Rapid freeze

3hr drug treatmentl

Ribosome footprinting

* Lysis A
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Ribosome profiling: Method
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e  Total RNA extraction -
«  poly(A) mRNA purification 3hrdmgtreatmeml
*  Fragmentation Iy g ey
* Size selection (PAGE) 50-80nt \QMNA
o = MRNA
P W ]
Alkaliinel
fragmentation
T —
\_/'_/\ N



Ribosome profiling: Method

* mRNA-Seq

Total RNA extraction

poly(A) mRNA purification
Fragmentation

Size selection (PAGE) 50-80nt

e Library generation
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e Sequencing and analysis
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Ribosome profiling: Results
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e Allows
— Precise quantification of the proportion of mRNA actually bound to polysomes

— The study of ribosome dynamics during translation
Ingolia, 2014 Nature Reviews



Analysis pipeline

Raw sequencing data

|

* Similar to RNA-seq, so many standard tools can be used Quality control .
Optional:
* Additional information and issues || rRNA mappin
| Mapping |
*  %rRNA removal L 1
*  Footprint periodicity I Calibftion |
«  Mapping coordinates | Read counting | | Read counting |
* Sizerange [ Normalization ] Normalization
Differential [ Pausing/codon/
expression additional
analysis analysis

A. Bartholomaus, et al. 2015



Specific software

Software available to analyze, interpret and visualize RP-derived data.
A list of some of the software used to analyze RP data is briefly described, indicating its main features and the adequate environment to use it.

Name Functions/description Enviroment Ref.

riboSeqR Parsing data, align reads, plotting functions, frameshift detection and inferring alternative ORFs. R [101]

RiboProfiling Quality assessment, read start position recalibration, counting of reads on CDS, 3’UTR, and 5’UTR, plotting of count data: pairs, log R [102]
fold-change, codon frequency and coverage assessment, principal component analysis on codon coverage.

RiboGalaxy On-line tools for the analysis and visualization of ribo-seq data (some of them use riboSeqR) Galaxy webserver [103]

Plastid A handful of scripts for common high-throughput sequencing and ribosome profiling analyses, like: determining P-sites offsets ~ Python Library [104]

Ribomap Generates isoform-level ribosome profiles from ribosome profiling data Unix [105]

RiboTraper Identifies translated regions Unix [106]

Rfoot Identifies RNA regions protected by non-ribosomal protein complex present in Ribo-Seq data Perl [107]

anota Analysis of differential translation and results visualization R [108]

RiboDiff An statistical tool to detect changes in protein translation efficiency Unix [109]

Xtail An analysis pipeline that identifies differentially translated genes in pairwise comparisons R [110]

RiboTools Detection of translational ambiguities, stop codon readthrough events and codon occupancy. Provides plots for the visualization = Galaxy webserver [111]
of these events.

Proteoformer  Genome-wide visualization of ribosome occupancy and a translation initiation site calling algorithm. A protein database can be  Galaxy webserver [112]
incorporated to increase protein identification

ORFscore Small ORF identification In SPECTtre [106];  [75]

python
ORF-RATER Coding sequence annotation Python [113]
FLOSS A metric for distinguishing between 80S footprints and nonribosomal sources using footprint size distributions In SPECTtre [106]; [61]
python

tRanslatome Analysis of transcriptome, translatome and proteome data: Differentially expressed genes detection, gene ontology enrichment R [114]
comparison and analysis of regulatory elements

TranslatomeDB Differential gene expression, translation ratio, elongation velocity index and translational efficiency. Also comparision with other Online [115]
RP experiments can be done

systemPipeR Filter/trim sequences, quality control, alignments, counting, peak detection, differentially expressed genes detection, enrichment, R [116]

classification, several reports and graphs

G. Eastman, et al. 2018



Footprint periodicity
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Footprint periodicity
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Alternative Reading frames
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Initiation site determination and uORFs detection
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Initiation site determination and uORFs detection
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Correlations with proteome

Protein abundance
[de Godoy et al.; arb. units]
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Correlations with proteome
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‘ Authors Journal Year Organism Correlation score
Ingolia Science 2009 |Yeast R’
Smircich BMC Genomics 2015|Trypanosoma cruzi Pearson R
Wang & Sun Genome Biol Evol 2015|Yeast Pearson R
Miranda-CasoLuengo & Staunton BMC Genomics 2016 Mycobacterium abscessus Pearson R®

Eastman, et al. 2018



Translation regulation
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Translation regulation
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e Translation regulation is a major contributor of gene expression levels
® Most important for rapid response to environmental signals

Tebaldi BMC Genomics 2012



Translation regulation: RiboDiff and Riborex

They take into account the dependence of translatome leveles on transcriptome levels

RiboDiff | Detecting Changes of mRNA Translation

V Efficiency from Ribosome Footprints

p = Galaxy / Ratsch Lab

https://public.bmi.inf.ethz.ch/user/zhongy/RiboDiff/

Raw sequencing data

[ Quality control

Optional:
rRNA mapping

| Mapping |
1

]
Calibration

| Read counting |

| Read counting |

A4
| Normalization | | Normalization |

Differential Pausing/codon/
expression additional
analysis analysis

Riborex: fast and flexible identification of
differential translation from Ribo-seq data

Wenzheng Li", Weili Wang”, Philip J. Uren', Luiz O. F. Penalva®® and
Andrew D. Smith'*

* edgeR
Studio * DESeq2
. Voom Y. Zhong, etal. 2017

W. Li, et al. 2017

https://github.com/smithlabcode/riborex/blob/master/DESCRIPTION A Bartholomaus, et al. 2015



Translation regulation: uORFs
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Translation regulation: uORFs
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Non-coding RNA tranlslation
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Non-coding RNA tranlslation
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The Translational Landscape of the Human Heart
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In Brief
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tissue reveals frequent translation
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causing variants as well as translation of
hundreds of microproteins from long
noncoding RNAs and circular RNAs.

Heesch, Cell 2019



Translation of small ORFs (micropeptides)
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Translation of small ORFs (micropeptides)

a Regulation of larger protein activity b Antigens
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Translation of small ORFs (micropeptides)

RESEARCH

MOLECULAR BIOLOGY

Pervasive functional translation of noncanonical
human open reading frames

Jin Chen'?, Andreas-David Brunner?, J. Zachery Cogan?, James K. Nufiez2, Alexander P. Fields'2*,
Britt Adamson'2t, Daniel N. Itzhak*, Jason Y. Li*, Matthias Mann®?,
Manuel D. Leonetti?, Jonathan S. Weissman'4+

Ribosome profiling has revealed pervasive but largely uncharacterized translation outside of canonical

coding sequences (CDSs). Here, we exploit a systematic CRISPR-based screening strategy to identify

hundreds of non-canonical CDSs that are essential for cellular growth and whose disruption elicit specific,
robust transcriptomic and phenotypic changes in human cells. Functional characterization of the encoded
microproteins reveals distinct cellular localizations, _s, and hundreds that are
presented by the HLA system. Interestingly, we find multiple microproteins encoded in upstream open
reading frames, which form stable complexes with the main, canonical protein encoded on the same

MRNA, thus revealing the diverse use of functional bicistronic operons in mammals. Togethé?t‘%nurSFé%rﬂﬂ%zozo




Stop codon read-through

RN-tre
B doppelganger von brummer C RanBPM D
" 2
- - K
Do 30 | 1.0 kb B ‘ X
015§ (I 6
‘ N . | | oL
ol | b 0 I [ 14 ‘ e oA i
o ok Z (
0.05 L vl L ! : T N“ i “ K 0> E | i
.00 L i A MJ-J! ! ; 00 - Lt J'J ‘ wl ' : E 01 Ed bl Ml ki t ' ii
0.2 P T T A e 2
015 500 bp i i A ( : 1 = iAnnotated stop codon _ .~
010} Lo : R b ! P
:r]-‘ : : S § il _llﬂﬂ.lﬁi‘lm: :
0. =T i

Normalized footprints
. E
1
.
]
| E
1 I3
)

]
]
1 -
v E
. 3
| E
I.l =
\
| r
11
1
\
Normalized footprints
]
i
|
I|
\
|
‘l =
e~
(=2
]
o
T
|
\
|
]
|
1
]
1
]
Normalized footprints
_.t______
2
o
o
o

l.m.,l.m.ﬂ e

- Hu L.thl.lj.é | -Lll o

Next in-frame stop codon Next in-frame stop codon | 1Second in-frame stop codon

Annotated stop codon Annotated stop codon

\First in-frame stop codon

e Several hundred Drosophila genes express C terminal extensions

Dunn elLife 2013



Stop codon read-through

@'PLOS ‘ GENETICS

RESEARCH ARTICLE
Stop-codon read-through arises largely from
molecular errors and is generally nonadaptive

Chuan Li", Jianzhi Zhang *

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of
America

o Current address: Department of Biology, Stanford University, Stanford, CA, United States of America
* jilanzhi @ umich.edu

sity. Here we propose and test a competing hypothesis that stop-codon read-through arises
mostly from molecular errors and is largely nonadaptive. The error hypothesis makes dis-
tinct predictions about the probability of read-through, frequency of sequence motifs for
read-through, and conservation of the read-through region, each of which is supported by
genome-scale data from yeasts and fruit flies. Thus, except for the few cases with demon-
strated functions, stop-codon read-through is generally nonadaptive. This finding, along
with other molecular errors recently quantified, reveals a much less precise or orderly cellu-
lar life than is commonly thought.

Li Plos Genetics 2019



Translation dynamics
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Ribo-seq variations

PROTOCOL VARIANTS d
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Ribo-seq variations
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Proximity-specific ribosome profiling

A
BirA
Detects translation occurring close to the
wochonara_ rRTSE mitochondrial membrane
outer membrane éééé éééé
Om45
B
e B
16l « mitop2 (564) ]
« otherMitoEvidence (508) =
14} 1] . noMitoEvidence (4005) { & 4-
.g 12} § : { E
, TR e
© 06} | ? 0
O '
6\* g:. [J[{J uﬂ; :ﬂﬁw 5
2} : L o3 pd
/ % 0.0 ot "J{‘J\m.‘;’hA L
2 -1 0 1 2 3 4 , . , , :
log, OM45 enrichment IM IMS matrix OM other

Williams, Science 2014



Translatomics goes single cell...
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Results

STAMP identifies RBP binding sites without immunoprecipi- a
tation. Our strategy for IP-free detection of RBP targets involves

fusing full-length RBPs of interest to the cytidine deaminase

enzyme APOBECI, which is known to catalyze C-to-U editing

on single-stranded RNA targets (Fig. 1a). Upon expression of an
RBP-APOBECI fusion protein (RBP-STAMP), RBPs direct the

STAMP
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Translatomics goes single cell...

Ribosome-subunit STAMP edits are enriched in highly trans-
lated coding sequences and are responsive to mTOR inhibi-
tion. Since ribosomes have extensive association with mRNAs
during translation, we reasoned that ribosomal subunits fused to
APOBEC1 (Ribo-STAMP) have the potential to edit mRNAs in a
manner that reflects ribosome association. We generated indepen-
dent HEK293T cell lines expressing APOBECI fusions to ribosomal
subunits RPS2 and RPS3. For RPS2-STAMP and RPS3-STAMP,
we observed that edits were enriched relative to control-STAMP
on exons of protein-coding genes that are highly translated in
HEK293T cells, such as ATP5PB*®, coincident with RPS3 eCLIP sig-
nal enrichment over size-matched input control (Fig. 2a). In com-
parison, RPS2-STAMP and RPS3-STAMP signals were minimally
detected on highly expressed noncoding genes such as the long
noncoding RNA MALATI, which is localized to the cytoplasm in
mitotic cell lines”” (Fig. 2b). We performed replicate RPS2-STAMP

a 1 kb
ATP5PB
i+ i | L]
RPS3—-eCLIP-input 16 -
RPS3-eCLIP-rep1 | § 1 . . . LA ]
RPS3-eCLIP-rep2 j , F L 4 . 167
Control-STAMP-no dox 10
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O94d RNDOVIAZ—I LAIVIE CCLLS dIld 2,294 COLILIOI—d 1T ALIVIE CCLLS.
Comparison of bulk and single-cell edit fractions for control-
STAMP and RBFOX2-STAMP experiments across the top 200
expressed genes (ranked by transcripts per million (TPM) from
bulk RBFOX2-STAMP RNA-seq) revealed nearly identical edit
enrichment profiles of RBFOX2 samples above controls and further
uncovered a spectrum of editing frequencies across individual cells‘
(Fio 4a) Ta illnetrate we nevt ranked individnal cantral -.STAMDP

EE RBFOX2-STAMP bulk
08 Top 200 expressed genes (RBFOX2-STAMP bulk) Bl RBFOX2-STAMP single-cell aggregate

07 ® RBFOX2-STAMP individual cells
0.6 Control-STAMP bulk

;!f 05 Contro-STAMP single-cell aggregate
‘/\ /\ /M A /\\ N\ /\ /\
/\/ N WP VA LAVVAS N \/\ /\\/\/\ B\

°; /\/\ \\/A IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

§ HHELG §§,§ H R “s




Translatomics goes single cell...

Ribo—STAMP reveals translational landscapes at single-cell
resolution

We performed stable 72-h high-induction control-STAMP and RPS2-STAMP
and conducted scRNA-seq

EPKM
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