

Departamento de Astronomía - Universidad de la República Astronomía Fundamental

Práctico 2: Esfera Celeste

1. Un bólido en movimiento rectílineo aparece en el cielo en un punto de azimut $A=90^{\circ}$ y altura $h=40^{\circ}$ y luego desaparece en el horizonte en un punto de azimut $A=220^{\circ}$ (sentido NOSE). Hallar la máxima altura en grados que alcanza la trayectoria observada.

Respuesta: $h_{max} = 47,6^{\circ}$

2. Si ψ es el menor de los dos ángulos que forma el horizonte con el paralelo celeste de una estrella de declinación δ , pruebe que a la salida o a la puesta de la estrella se cumple que:

$$\cos \psi = \sin |\phi| \sec \delta$$

- 3. Si la declinación δ de una estrella es del mismo signo que la latitud ϕ pero de mayor valor absoluto, pruebe que el mayor azimut, al Este ó al Oeste, cumple: $\sin A = \cos \delta \sec \phi$
- 4. Las coordenadas ecuatoriales absolutas de la estrella Capella son $\alpha = 5^h 11^m$ y $\delta = 45^{\circ}55'$. En el momento que culmina superiormente para un observador en Greenwich encontrar la altura y el azimut de la estrella en el Observatorio de la Universidad de Columbia en New York en latitud $\phi = +40^{\circ}49'$ y longitud $\lambda = 4^h 56^m$ W.

Respuesta: $h_{NY} = 37^{\circ}56', A_{NY} = -57^{\circ}59'$

5. Demuestre que el ángulo horario (H) de un astro cuando sale o se oculta tras el horizonte viene dado por:

$$\cos H = -\tan\phi\tan\delta$$

donde ϕ es la latitud del observador y δ la declinación del astro.

6. Si la latitud ϕ de un lugar y la declinación δ de una estrella son conocidas, demuestre que el error en el valor deducido del ángulo horario H debido a un error Δz en la medida de la distancia cenital z viene dado por:

$$\Delta H = \Delta z \csc A \sec \phi$$

donde A es el azimut de la estrella.

7. Si el observador incrementa su latitud en un monto $\Delta \phi$, mientras que el ángulo horario de una estrella es incrementado por ΔH , mostrar que el cambio en altura es

$$\Delta h = \Delta \phi \cos A - \Delta H \sin A \cos \phi$$

donde A es el azimut de la estrella.

8. Un gnomon vertical se utiliza como reloj de Sol en un lugar de latitud geográfica $\phi = -35^{\circ}$. Hallar el ángulo que forman entre sí las sombras del gnomon correspondientes a los ángulos horarios del Sol $H_1 = -2^h$ y $H_2 = 4^h$ en el día del solsticio de verano cuando la declinación del Sol es $\delta_{\odot} = -23.45^{\circ}$.

Respuesta: $159, 7^{\circ}$

9. Considere 12 objetos astronómicos ubicados a una misma declinación $\delta=-21.36^\circ$ y distribuidos uniformemente en ascención recta desde $\alpha=0^h$ hasta $\alpha=11^h$. Se les desea observar desde un observatorio ubicado en latitud geográfica $\phi=-35^\circ$ con la condición de que su masa de aire sea $\chi<1.15$. Suponga que la duración de la observación de cada objeto es de unos pocos segundos y es por lo tanto despreciable frente a la duración de la noche. Si la observación está planificada para una fecha en la que el crepúsculo astronómico comienza a las 19:00:00 de hora local cuando el tiempo sideral local es 06:30:00 y que el amanecer astronómico finaliza a las 07:00:00 de hora local:

Departamento de Astronomía - Universidad de la República Astronomía Fundamental

- (a) Dibuje la bóveda celeste indicando la posición de los objetos al momento del crepúsculo astronómico.
- (b) ¿A cuáles objetos se podrá observar durante la noche bajo esa condición de χ ?
- (c) ¿En qué orden los observaría?
- (d) ¿A qué hora observaría el primero de los objetos observables?
- (e) ¿A qué horas observaría a los restantes objetos observables?
- (f) ¿Cómo cambiarían sus respuestas anteriores si la duración de la observación de cada objeto fuera de 90 minutos?

Última actualización: 1 de abril de 2025