Ejercicios - Números complejos.

1. Notación binomial y generalidades

- 1. Determinar los valores de i^k para todo k entero.
- 2. Expresar los siguientes números complejos en forma binómica (a + bi con a, b reales)

a) $(1+i)^2$ b) $\frac{1}{i}$ c) $\frac{1}{1+i}$ d) (2+3i)(3-4i) e) (1+i)(1-2i) f) i^5+i^{16}

g) -1 h) -3i i) $1+i+i^2+i^3$ j) $\frac{1}{2}(1+i)(1-i^{-8})$ k) $\frac{1+i}{\sqrt{2}}$ l) $\frac{1}{(1+i)^2}$

3. Probar que para todo par de números complejos z_1 y z_2

a) $|z_1| = |\bar{z}_1|$ b) $|z_1 z_2| = |z_1| |z_2|$ c) $|z_1 + z_2| \le |z_1| + |z_2|$ d) $|z_1 z_2| = 1$

4. Hallar y bosquejar, en cada caso, el lugar geométrico de los números complejos que satisfacen

a) Re(z) = 5 b) $Im(z) \le -2$ c) $z\overline{z} = 25$ d) $z - \overline{z} = i$ e) |z - i| = |z + i| f) $|2z - \overline{z}| = 1$

g) $|z-\overline{z}|=2Re(z-1)$

5. Recordar que el producto de dos números reales es cero si y sólo si alguno de estos números es cero. Investigar si esto sigue siendo cierto para números complejos.

2. Notación polar y exponencial

- 6. Expresar los números complejos del ejercicio 2 en notación exponencial ($re^{i\theta}$ con r > 0 y θ real).
- 7. Expresar en notación binómica:

a) $e^{i\frac{\pi}{2}}$ b) $3e^{\pi i}$ c) $\frac{1-e^{\frac{\pi}{2}i}}{1+e^{\frac{\pi}{2}i}}$ d) $(i+1)^{100}$

8. Hallar y bosquejar, en cada caso, el lugar geométrico de los números complejos que satisfacen

a) |z| > 1 b) $2 < |z| \le 5$ c) $\frac{\pi}{2} \le Arg(z) \le \frac{5\pi}{4}$

9. Probar la fórmula de De Moivre:

 $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$

10. Sea $A = \left\{ \left(\cos\left(\frac{\pi}{7}\right) + i \operatorname{sen}\left(\frac{\pi}{7}\right)\right)^n / n \in \mathbb{N} \right\}$. ¿Cuántos elementos tiene este conjunto de números complejos?

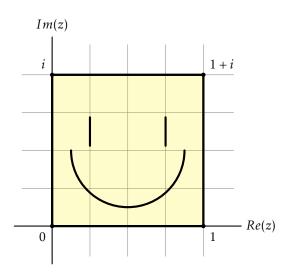
1

3. Raices complejas y logarítmo

- 11. a) Probar que la ecuación $z^n = 1$ tiene n soluciones complejas, a estos números se los llama raíces de la unidad.
 - b) Deducir que para todo $\omega \in \mathbb{C} \setminus \{0\}$ la ecuación $z^n = \omega$ tiene n soluciones complejas.
 - c) Bosquejar en el plano las raices de la unidad para n = 6 y n = 9
- 12. Representar geométricamente los complejos:
 - a) $(1+i)^n (1-i)^n$ para algunos valores naturales n.
 - b) Las raíces quintas de 1 (es decir, los complejos z tales que $z^5 = 1$)
 - c) Las raíces décimas de 1
 - d) Los complejos z tales que $z^6 = 8(\sqrt{3} i)$
- 13. En \mathbb{C} , se consideran $\{z_1, \dots, z_8\}$ las raíces octavas de 2^8 , es decir aquellas que cumplen $z_k^8 = 2^8$ para cada $k = 1, \dots, 8$. Determinar, justificando, cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas:
 - a) $z_i = 2$ para todo $i = 1, \dots, 8$.
 - b) Existen al menos dos raíces z_i , z_k tales que $z_i = -z_k$.
 - c) Existen al menos dos raíces z_l , z_m tales que $\bar{z}_l = z_m$.
 - *d*) Se cumple $z_1 z_2 z_3 z_4 z_5 z_6 z_7 z_8 = 2^8$.
- 14. Sea P(z) un polinomio con coeficientes reales.
 - a) Probar que $P(\overline{z}) = \overline{P(z)}$ para todo $z \in \mathbb{C}$.
 - b) Probar que si $z_0 = a + ib$ es raíz de P(z), entonces $\overline{z_0} = a ib$ también es raíz de P(z).
- 15. Considere el polinomio $P(z) = z^4 2z^3 + 6z^2 8z + 8$. Sabiendo que P(z) tiene una raíz imaginaria pura halle todas sus raíces.
- 16. Calcular y dibujar log(z) para los siguientes valores de z
 - a) z = i b) z = e c) z = -1
- 17. Probar que log(z) sólo contiene números imaginarios puros si y sólo si |z|=1.

4. Complementarios

18. Bosquejar el resultado de aplicarle a la figura las siguientes funciones:



- a) f(z) = z + (1 + i).
- b) f(z) = (1+i)z.
- 19. Probar que la fórmula de Bhaskara es válida para polinomios de segundo grado con coeficientes complejos.
- 20. Se define el seno y coseno complejos mediante las fórmulas

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$
, $\operatorname{sen}(z) = \frac{e^{iz} - e^{-iz}}{2i}$, $\forall z \in \mathbb{C}$.

- a) Probar que las funciones seno y coseno complejas extienden a las funciones seno y coseno reales, en el sentido de que coinciden para $z \in \mathbb{R}$.
- *b*) Probar que sen $^2z + \cos^2 z = 1$, $\forall z \in \mathbb{C}$.
- c) Probar que sen $(-z) = -\operatorname{sen} z$ y $\cos(-z) = \cos z$, $\forall z \in \mathbb{C}$.
- d) Hallar los ceros en el plano complejo de las funciones seno y coseno.