DINAMICA ORBITAL - PRACTICO I

Movimiento Central y Atracción Newtoniana

- 1. Una partícula se mueve en un campo de fuerza μ/r^2 hacia el origen. Si la máxima y mínima velocidad en una órbita elíptica son v_1 y v_2 , encontrar los valores del semieje mayor, período y momento angular en función de v_1 , v_2 y μ . Piques: poner v_1 y v_2 en funcion de a y e y despejar.
- 2. Una partícula se mueve en un campo de fuerza μ/r^2 hacia el origen. Inicialmente es lanzada con velocidad V desde un punto a distancia R del origen, formando un ángulo β con el radio vector. Probar que su velocidad radial verifica:

$$\dot{r}^2 = V^2 - \frac{2\mu}{R} + \frac{2\mu}{r} - \frac{R^2 V^2 \sin^2 \beta}{r^2}$$

Piques: escribir V^2 como suma de radial y transversa en polares. Eliminar $\dot{\theta}$ sabiendo que $r^2\dot{\theta}=h$

- 3. Una partícula se mueve en un campo de fuerza μ/r^2 hacia el origen. Inicialmente tiene velocidad V formando ángulo recto con el radio vector de módulo R. Investigar los límites de V que dan lugar a los diferentes tipos de cónicas. En el caso elíptico hallar la excentricidad y semieje mayor y encontrar la condición en la velocidad para que el punto inicial sea el apocentro o el pericentro. Piques: poner la energia en funcion de V. Inicialmente esta en un apsis.
- 4. Si en un hipotético universo la ley de fuerza fuera μ/r⁵ hacia el origen, probar que las órbitas circulares serían una solución posible. ¿Cómo sería la tercera Ley de Kepler en este universo asumiendo órbitas circulares? Piques: plantear aceleracion radial y transversa en polares e igualar a la aceleracion dada. Orbita circular implica r constante. Calcular el periodo a partir de dθ/dt.
- 5. Una partícula se mueve en un campo de fuerza $\mu \dot{r}^2/r$ hacia el origen. Hallar la ecuación de movimiento para r. Utilizando Binet obtener la ecuacion para u=1/r. Resolver la ecuacion probando con una exponencial. Piques: la ecuacion de movimiento siempre sale planteando en polares aceleracion radial y transversa e igualando a la aceleracion dada.
- 6. Un cuerpo describe una elipse de excentricidad e bajo la acción de una fuerza newtoniana en la dirección del foco. Al pasar por el pericentro, el centro de fuerza es transferido al otro foco. Probar que la excentricidad de la nueva órbita es e(3+e)/(1-e). Piques: un instante antes y despues la velocidad es la misma pero la distancia pasa de a(1-e) a a(1+e) por lo que la orbita nueva tendra diferentes semieje y excentricidad.
- 7. Un asteroide se encuentra en órbita circular alrededor de una estrella. Abruptamente la estrella eyecta un uno por ciento de su masa hacia el infinito. Hallar la excentricidad de la nueva órbita del asteroide. Piques: un instante antes y despues la velocidad es la misma y la distancia al foco tambien y los vectores posicion y velocidad siguen siendo perpendiculares pero hubo un cambio en μ . Diferenciar $V(\mu, r, a)$. Resultado: $e \sim \Delta a/a = 0.01$
- 8. Un cometa que se encuentra en el afelio recibe un pequeño impulso en la dirección de su movimiento que incrementa su velocidad en un valor δV . Mostrar que la distancia mínima al Sol q será incrementada por la cantidad

$$\delta q = 4\delta V \sqrt{\frac{a^3}{\mu} \frac{1-e}{1+e}}$$

Piques: un instante antes y despues la velocidad cambio pero la distancia es la misma, sigue siendo el afelio (por que?). Cambio la energia orbital y por lo tanto el semieje.

9. • Un asteroide en órbita heliocéntrica debido a una colisión recibe un impulso que hace variar su velocidad en un δV . Probar que el cambio resultante en el período δT está dado por

$$\delta T = 3 \frac{T^{5/3}}{(2\pi\mu)^{2/3}} V \delta V$$

Piques:un instante antes y despues la velocidad cambio pero la distancia es la misma. Cambio la energia orbital... el semieje... el periodo.

DINAMICA ORBITAL - PRACTICO II

Distribución Continua de Materia

- 1. Desde un punto P de la superficie terrestre se lanza un proyectil con velocidad 9 km/s formando un ángulo de 45 grados respecto a la horizontal. Asumiendo la Tierra esférica con densidad radial de centro C y despreciando la fricción atmosférica y la rotación terrestre calcular el angulo PCI siendo I el punto de impacto. Hallar el ángulo que forma la velocidad de impacto con la superficie terrestre. Piques: hay que hallar el angulo θ en el impacto (o en la partida?). Algo de geometria hay aqui. Angulo PCI= 123°
- 2. Recientes estudios indicarían que la tierra es circular y plana. a) Bajo esta hipótesis calcule la ley de la gravedad a lo largo del eje de revolución del disco. b) ¿Cómo sería el curso de los ríos en este planeta? Piques: integrando calcular la aceleracion en el eje de simetria. Comparar cualitativamente la aceleracion superficial en el centro con la de los bordes.
- 3. Se practica un túnel según un diámetro de la Tierra homogénea, esférica y en reposo. Se suelta una partícula. Hallar su movimiento. ¿Qué pasa si el túnel (sin rozamiento) se practica en cualquier otra dirección? Piques: considerar que la aceleracion es generada solo por la masa interior a la posicion de la particula
- 4. Sea una galaxia plana en forma de disco de radio R con densidad de masa por unidad de área, ρ, uniforme. Una estrella se encuentra en el eje de simetría a una distancia D del centro con velocidad nula. Hallar la velocidad cuando esté pasando por el centro. Piques: calcular potencial, energia, conservacion de la energia...
- 5. Un planeta esférico de radio R y densidad uniforme ρ tiene en su interior una cavidad hueca esférica de radio r cuyo centro se encuentra a una distancia a del centro del planeta. Hallar la aceleración gravitacional resultante en un punto genérico del espacio exterior al planeta. Piques: a la aceleración generada por un planeta completo se le resta la del agujero
- 6. La ecuación del movimiento de un rígido referida a un sistema no inercial xyz definido según sus ejes principales de inercia es:

$$\frac{d\vec{L}}{dt} + \vec{\omega} \wedge \vec{L} = \vec{M}$$

donde $\vec{L} = (A\omega_x, B\omega_y, C\omega_z)$ es el momento angular del rígido, $\vec{\omega}$ su vector rotación y $\vec{M} = (M_x, M_y, M_z)$ es el momento respecto al baricentro que las fuerzas externas ejercen sobre el rígido. El eje \vec{z} tiene la dirección del eje principal de inercia cuyo momento es C.

- (a) Hallar el sistema de Ecuaciones Dinámicas de Euler que determinan la evolucion de $\vec{\omega}$ respecto al sistema solidario xyz.
- (b) Usando la fórmula de MacCullagh para el potencial terrestre hallar la fuerza que ejerce la Tierra sobre una masa puntual m localizada en $\vec{r}=(x,y,z)$. Verificar que esta fuerza no apunta hacia el baricentro terrestre.
 - (c) Hallar la fuerza que m ejerce sobre la Tierra. ¿Dónde estaría aplicada?

Para el caso de la Tierra es razonable suponer B = A, cosa que asumiremos de aquí en más.

- (d) Hallar el par \vec{M} que la masa m ejerce sobre la Tierra.
- (e) Movimiento Libre Euleriano y periodo de Chandler. Suponiendo $\vec{M}=0$ hallar el movimiento del vector $\vec{\omega}$ respecto a la figura de la Tierra (sistema xyz). Probar que el eje \vec{z} , $\vec{\omega}$ y \vec{L} son coplanares.
- (f) Comentar cómo podría estudiarse el movimiento conocido como Precesión y Nutación debido a la acción del Sol y la Luna sobre la Tierra. Ver Notas de Ciencias Planetarias cap 6.6 y video sobre disco de Euler.

- 7. Un asteroide se encuentra rotando con velocidad constante en torno a uno de sus ejes principales de inercia, digamos, $\vec{\omega} = \omega \hat{z}$. Si sus momentos principales son A, B y C probar que la rotación es inestable ante pequeñas perturbaciones a menos que C sea el máximo o el mínimo momento de inercia. Ver video sobre el eje intermedio. Piques: plantear pequeñas oscilaciones entorno a los puntos de equilibrio y estudiar estabilidad.
- 8. Asumiendo una Tierra con simetría axial (B=A) y a partir de la fórmula de MacCullagh hallar expresiones para J_2 y J_3 . Piques: igualar terminos segun dependencia con r
- 9. a) Comparar la magnitud del efecto de mareas que Júpiter y Mercurio ejercen sobre el Sol. b) Comparar la magnitud del efecto de mareas que la Luna y el Sol ejercen sobre la Tierra.
- 10. Estimar la distancia Tierra-Luna cuando el sistema alcance la rotación sincrónica debido a la transferencia de momento angular. Hallar el período de esa rotación. ¿Estará la Luna aún ligada a la Tierra? Piques: considerar momento angular rotacional terrestre y orbital del sistema, despreciar el momento angular rotacional de la Luna. En todo momento la orbita lunar sigue las leyes de Kepler. La distancia es cerca de 100 radios terrestres.
- 11. Durante el día el Sol está sobre nuestras cabezas y durante la noche está a nuestros pies. ¿Cuánto debería variar el peso de una persona a lo largo del día? Seguramente su respuesta está equivocada. Piques: pensar en que cosas acelera el Sol.

DINAMICA ORBITAL - PRACTICO III

Problema de Dos Cuerpos (a)

- 1. Sea un sistema binario constituído por dos masas M_A y M_B .
 - a) Hallar la ecuación del movimiento de A respecto de B. Idem de B respecto de A. De cada uno de ellos respecto al baricentro.
 - b) Probar que las órbitas resultantes son cónicas de igual excentricidad.
 - c) Hallar la relación entre los semiejes mayores y probar que son colineales.
 - d) Probar que el momento angular del sistema es $\vec{L} = \frac{M_A M_B}{M_A + M_B} \vec{r} \wedge \vec{v}$ siendo \vec{r}, \vec{v} la posicion y velocidad relativas.

Piques: recordar definicion de baricentro y ver que los vectores posicion son colineales pero diferente modulo.

- 2. Se considera el sistema binario constituído por el Sol y Júpiter. Se suponen conocidos los siguientes elementos de la órbita heliocéntrica de Júpiter: a=5.2 ua , e=0.05 y además $M_{Sol}/M_{Jup}=1047$ siendo k=0.01720209895.
 - a) Calcular a, e y período orbital del Sol respecto al baricentro.
 - b) Hallar la velocidad máxima del Sol en su órbita respecto al baricentro.

Piques: resolver el problema de dos cuerpos relativo y luego considerar el movimiento geometrico del Sol en torno al baricentro. Respuesta: a=0.00495 ua, vel maxima 13 m/seg

- 3. La estrella Procyon es una binaria visual con un período de 40.33 años. La órbita de la componente B respecto al baricentro tiene un semieje mayor de 4.26", mientras que el semieje de la componente A respecto del baricentro es 1.02".
 - a) Hallar el cociente entre las masas
 - b) Sabiendo que la paralaje es 0.289" hallar la distancia al sistema, las masas de las componentes respecto al Sol y las dimensiones físicas de las órbitas.

Piques: definicion de baricentro y luego conociendo la distancia mutua y periodo orbital deducir masas. Respuesta: $m_B/m_A = 1.02/4.26$, semieje orbita relativa a = 18.27 ua, $m_A + m_B = 3.75$ masas solares

4. Hallar el semieje mayor a de la órbita de una partícula P que se encuentra a una distancia r del Sol y viaja a una velocidad v. Discutir según r y v. Llamando ϕ al ángulo que forma el radio vector con el vector velocidad, expresar la excentricidad e de la órbita en función de r, ϕ y v.

Piques: con la energia obtenemos a y para obtener e necesitamos el momento angular orbital.

5. • Parcial 2003. Suponiendo que la Luna se frenara completamente en su órbita geocéntrica calcular tiempo transcurrido hasta la colisión con la Tierra y la velocidad de colisión. Datos: $\Delta_{TL} = 2.56 \times 10^{-3}$ ua, $R_L = 0.272 R_{\oplus}$, $R_{\oplus} = 4.25 \times 10^{-5}$ ua, $m_L = 1.23 \times 10^{-2} m_{\oplus}$, $m_{\oplus} = 3 \times 10^{-6} M_{\odot}$

Piques: que tipo de orbita tendra la Luna al frenarse? y su nuevo periodo orbital? La colision ocurre cuando la distancia entre los centros es igual a la suma de los radios. Respuesta: t = 4.8 dias, vel = 9.9 km/seg

- 6. Parcial 2009. Un cometa se encuentra en una posición heliocéntrica dada por el radio vector $\overrightarrow{r}=(1,1,0)$ ua y con una velocidad heliocéntrica dada por $\overrightarrow{v}=(0.01,0.02,0.02)$ ua/dia respecto a un sistema de coordenadas rectangulares eclípticas. Hallar los elementos orbitales a,e,i,Ω . Piques: cuentas. Respuesta: (-0.614585,2.43897,70.53,45)
- 7. Para el caso elíptico hallar el valor medio de la distancia heliocéntrica y del cuadrado de la velocidad, tomando las medias respecto de
 - a) la anomalía media
 - b) la anomalía excéntrica
 - c) la anomalía verdadera.

Piques: se pide $< r > y < v^2 >$ pero respecto a variables diferentes. Plantear las integrales y hacer cambios de variable de integracion apropiados.

8. El cometa Encke se mueve en una órbita con distancia perihélica q = 0.34 ua y excentricidad e = 0.847. Calcular la cantidad promedio de energía que recibe del Sol por unidad de tiempo y de área durante una revolución orbital.

Piques: de qué variable depende la energia recibida? El resultado es $(c/q^2)\sqrt{(1-e)^3/(1+e)}$ donde c es la constante solar.

9. Parcial 2016. Un satélite fuera de control impacta la superficie terrestre a una velocidad $v_i = 10 \text{ km/s}$. La velocidad de impacto forma un ángulo de 30 grados con la vertical. Hallar la distancia de apogeo de esa órbita. Piques: tenemos los vectores posicion y velocidad por lo tanto tenemos todos los detalles de la orbita. Respuesta: Q = 31380 km

DINAMICA ORBITAL - PRACTICO IV

Problema de Dos Cuerpos (b)

- 1. Resolución de la ecuación de Kepler. Una ecuación de la forma x = Y(x) puede resolverse por un algoritmo de iteración del tipo $x_{i+1} = Y(x_i)$ sólo si se cumple la condición |Y'(X)| < 1 siendo x = X la solución. Si la condición no se cumple la iteración no convergerá.
 - a) Idear un algoritmo de iteración para resolver la ecuación de Kepler para el caso elíptico: $E e \sin E M = 0$. Aplicación: hallar E siendo e = 0.5 y M = 2 rads. Solucion: E = 2.354 rads.
 - b) Idem para el caso hiperbólico: $e \sinh F - F - M = 0$. Aplicación: hallar F siendo e = 3 y M = 1 rad. Solucion: F = 0.473.

Piques: el caso eliptico es inmediato y en el hiperbolico hay que masticar un poco la ecuacion que relaciona F y M.

2. Un cometa tiene una distancia perihélica q=1 ua. Hallar la distancia heliocéntrica y la anomalía verdadera que tendría 10 dias después del pasaje por el perihelio para tres diferentes modelos de órbitas con excentricidades e=0.9, e=1 y e=1.1.

Piques: hay que resolver iterativamente ecuacion de Kepler eliptica e hiperbolica. En el caso parabolico hay solucion explicita. Resultados para elipse, parabola e hiperbola: (1.0132, 0.235046), (1.01465, 0.24092), (1.01611, 0.246633)

3. • Parcial 2012. Satélite Molniya. Un satélite artificial geocéntrico tiene un período orbital de 12 horas y un perigeo $q=1.1R_{\oplus}$. Calcule durante cuanto tiempo permanece con anomalía verdadera entre 120° y 240°.

Piques: hay que obtener las anomalias medias correspondientes. el resultado es 10.08 horas.

4. • Dos estrellas de masas m y M se encuentran separadas a gran distancia (esto significa distancia infinita). La estrella m tiene una velocidad \vec{V} relativa a M en una dirección que pasa a una distancia mínima σ (parámetro de impacto) de M. Probar que después del encuentro, cuando se han vuelto a separar a gran distancia, M ha cambiado su velocidad en

$$\frac{2mVG}{\sqrt{G^2(M+m)^2 + \sigma^2V^4}}$$

respecto a un sistema inercial.

Piques: don 't panic! pararse en el baricentro, conservacion de momento, obtener la variacion de la velocidad de M en funcion de la variacion de la velocidad mutua, deberia ser igual a $-\Delta \vec{V} m/(M+m)$. Y la vel mutua antes y despues del encuentro sale de resolver la hiperbola.

- 5. Dos estrellas de masas M y m están a gran distancia y se mueven una respecto a la otra con velocidad relativa \vec{V} . Sea σ la distancia mínima a la que pasarían si no hubiera atracción gravitacional.
 - a) Mostrar que debido a dicha atracción la distancia mínima d entre ambas verifica

$$1/d = G(M+m) \frac{1 + \sqrt{1 + \frac{\sigma^2 V^4}{G^2 (M+m)^2}}}{\sigma^2 V^2}$$

b) Mostrar que el ángulo ϕ que gira la velocidad relativa luego del encuentro cumple:

$$\tan\frac{\phi}{2} = \frac{G(M+m)}{\sigma V^2}$$

Piques: resolver la hiperbola del movimiento relativo. El angulo esta definido por las asintotas.

- 6. Una partícula es lanzada desde gran distancia hacia una estrella de masa M y radio R con velocidad V tal que despreciando la atracción de la estrella se aproximaría hasta una distancia mínima σ de la misma.
 - a) Escribir las ecuaciones de la energía y momento angular.
 - b) Encontrar σ tal que la partícula pase rasante a la estrella.

Piques: en la parte b hay que imponer que la distancia de periastro sea igual al radio de la estrella.

7. Velocidad de acreción de Eddington. Una estrella de radio R se mueve a través de una nube de partículas de densidad ρ (partículas por unidad de volumen) con una velocidad relativa a la nube igual a V. Suponiendo que las partículas no tienen velocidad relativa a la nube, algunas de ellas, las que están dentro de un túnel de radio σ , serán acretadas por la estrella. Mostrar que la velocidad de acreción es:

$$A = \pi R^2 \rho (V + \frac{2MG}{RV})$$

expresada en partículas por unidad de tiempo.

Piques: tiene que ver con el ejercicio anterior.

DINAMICA ORBITAL - PRACTICO V

Dinámica de Vuelos Espaciales

- 1. Asumiendo que la estación espacial circular de 2001: Odisea del Espacio tiene un diámetro exterior de 300 metros.
 - a) ¿Qué velocidad de rotación debe tener para crear una gravedad artificial similar a la de la superficie terrestre?
 - b) Comentar las diferencias entre esta gravedad artificial y la natural terrestre.

Piques: pensar el las diferencias entre las aceleraciones generadas por un campo y por un movimiento circular.

- 2. Se lanza un cohete en dirección vertical con un ritmo de consumo f = -dm/dt y velocidad de escape de gases v_e . Se supone g = cte.
 - a) Hallar la expresión para la aceleración del cohete respecto a la Tierra.
 - b) ¿En qué momento del consumo del combustible la aceleración es maxima?
 - c) En ese instante, ¿qué "peso" experimentaría un astronauta que en la superficie de la Tierra "pesa" $100~\rm kg$?
 - d) Si en t=0 se encienden los motores y 10 segundos despues comienza a despegar, expresar v_e en función de f y la masa inicial m_o .

Piques: se pide aceleracion como cambio de velocidad relativo al suelo. A que se debe la sensacion de peso?

- 3. Se lanza verticalmente un cohete de 2 etapas con $M_1 = M_2 = 2 \times 10^6$ gramos, $m_1 = m_2 = 8 \times 10^6$ gramos, $f = 1.3 \times 10^5$ gr/seg, $v_e = 2$ km/seg y g = 981 cm/seg². Al acabarse la primer etapa se enciende la segunda luego de eyectar M_1 .
 - a) Hallar velocidad al consumirse la segunda etapa.
 - b) Hallar altura en ese instante.

Piques: la parte a) es facil pero la b) es engorrosa en cuentas, tipo 91 km.

- 4. Se consideran dos órbitas circulares heliocéntricas de radios 1 ua y 3 ua. La inclinación mutua entre las órbitas es de 5 grados. Mediante una trayectoria elíptica se desea transferir una nave en la órbita exterior a la interior aplicando dos incrementos de velocidad con el mínimo consumo de combustible.
 - a) ¿Dónde deben ser aplicados?
 - b) Si se desea ahorrar combustible, ¿el cambio de inclinación debe ser hecho en el punto interior o exterior de transferencia?

Piques: pensar en los ΔV necesarios. En el exterior el impulso total es $k \times 0.3991$ y en el interior $k \times 0.4137$.

- 5. Desde una órbita circular de $a_1 = 1$ ua (Tierra) se quiere transferir una sonda con velocidad V_1 a una órbita circular de $a_2 = 1.5$ ua (Marte) aplicándole un $\delta V_1 = \frac{2}{5}V_1$ en la dirección del movimiento.
 - a) Hallar a y e de la órbita de transferencia.
 - b) Hallar tiempo empleado para llegar a la órbita de Marte.
 - c) Hallar δV_2 en módulo y dirección necesario para que entre en órbita circular.

Piques: la orbita luego del impulso esta bien definida. Para definir el tiempo se necesita la anomalia verdadera (debe dar f = 71.37 grados y el tiempo 0.19 años).

- 6. Un sátelite geocéntrico se encuentra en una órbita de aparcamiento rasante circular de radio R_{\oplus} . Se le suministra un impulso tal que adquiere una velocidad $V_h = \frac{6}{5}V_e$, siendo $V_e = 11.2$ km/seg la velocidad de escape de la Tierra en la superficie.
 - a) Hallar a y e de la órbita geocéntrica resultante.
 - b) Hallar velocidad al infinito o exceso hiperbólico de alejamiento de la Tierra.
 - c) Despreciando las dimensiones de la órbita geocéntrica del satélite hallar el ángulo satélite-Tierra-Sol en el instante en que se aplica el impulso de escape para obtener la máxima velocidad heliocéntrica final.
 - d) Hallar dicha velocidad.
 - e) Hallar a, e y distancia afélica de la órbita heliocéntrica adquirida.

Piques: a y b son inmediatos. En c lo que se busca es que la velocidad geocentrica al infinito tenga direccion y sentido igual a la velocidad heliocentrica de la Tierra (da unos 147.8 grados). Con los valores heliocentricos de posicion y velocidad (37.2 km/s) se determina la orbita heliocentrica (afelio 3.55 ua).

7. • Parcial 1999. Un cometa en órbita parabólica de i=0 respecto a la órbita de Júpiter al llegar al perihelio entra en la esfera de influencia de este planeta y luego experimenta un vuelo rasante (velocidad al infinito del cometa paralela a la velocidad de Júpiter al inicio del encuentro). Hallar el semieje mayor de la nueva órbita heliocéntrica que adquiere el cometa una vez finalizado el encuentro. Asumir que Júpiter se mueve en órbita circular con $a_J=5.2$ ua. Datos: $M_J=1\times 10^{-3}M_{\odot}$, $R_J=4.8\times 10^{-4}$ ua.

Piques: calcular velocidad jovicentrica al infinito del encuentro y asintotas de la hiperbola jovicentrica. De ahi sale la velocidad heliocentrica luego del encuentro y se deduce el semieje heliocentrico. Resultado: 3.24 ua

- 8. Mediante una órbita de transferencia cotangencial la sonda Galileo es transferida desde la órbita de la Tierra a la de Venus. Al llegar tiene un vuelo rasante sobre Venus.
 - a) Hallar la velocidad heliocéntrica luego del encuentro.
 - b) Hallar distancia afélica de la sonda.

Piques: velocidad al infinito de encuentro con Venus, asintotas, velocidad final heliocentrica, semieje, excentricidad y luego afelio.

9. Parcial 2012. Calcular el mínimo Δv en km/seg que es necesario aplicarle a un satélite en una órbita de parking rasante con la Tierra para que sea eyectado del Sistema Solar.

Piques: la velocidad al infinito geocentrica mas la velocidad de la Tierra debe ser la de escape del sistema. Respuesta 8.77 km/seg

DINAMICA ORBITAL - PRACTICO VI

Problema de Tres Cuerpos

1. • Exprese la constante de Tisserand, T, en función de q y Q para el caso $i = 0^{\circ}$. Estudie aproximadamente la forma de las curvas T = cte en el espacio (q, Q). Determine la curva correspondiente a T = 3.

Piques: la forma de las curvas puede explorarse numericamente.

2. Considere el criterio de Tisserand para el sistema Sol-Júpiter. Sea un cometa parabólico con $i = 0^{\circ}$ y $q = a_J$, suponiendo que no hay cambios en la inclinación hallar la mínima distancia perihélica que puede alcanzar evolucionando en el sistema.

Piques: considerando que el afelio no puede estar ubicado interior a la orbita de Jupiter se obtiene q=1.08 ua.

3. • Considere el problema restringido de tres cuerpos plano. Probar que la ecuación de las curvas límite puede escribirse como:

$$(1-\mu)\left(r_1^2 + \frac{2}{r_1}\right) + \mu\left(r_2^2 + \frac{2}{r_2}\right) = C + \mu(1-\mu)$$

Luego pruebe que el mínimo valor para C es $3 - \mu(1 - \mu)$.

Piques: las curvas estan en el plano z=0. Hallar minimo de la funcion $C(r_1,r_2)$.

4. Calcular el radio de la esfera de Hill para la Tierra. Para el sistema Sol-Tierra determine si una partícula localizada en el punto L₂ opuesto al Sol puede ser eclipsada.

Piques: hay que recordar la longitud del cono de sombra de la Tierra. El RHill es 0.01 ua

5. • Si $(1-\mu)$ y μ son el Sol y la Tierra respectivamente probar que el período de las oscilaciones paralelas al eje z de una partícula colocada levemente desplazada del punto doble opuesto al Sol es 183.3 dias solares medios.

Piques: periodo de pequeñas oscilaciones.

6. Para el problema anterior probar que el período de las oscilaciones en el plano x-y es 177.0 días.

Piques: periodo de pequeñas oscilaciones estables.

7. • Considere la integral de Jacobi aplicada aproximadamente al caso del Sol, la Tierra y la Luna (sin masa). Hallar el valor de C e investigar el tamaño y forma de las superficies límites de Hill para el movimiento de la Luna. En particular determine si hay conexión entre los lobulos.

Piques: calcular C y comparar con los valores de C para las curvas que pasan por los puntos Lagrangeanos.

8. Libraciones. Considere las pequeñas oscilaciones en torno a los puntos de libración de los asteroides Troyanos. Probar que de los dos períodos, uno es aproximadamente igual al de Júpiter y el otro es aproximadamente 148 años. A la oscilación de mayor período se la conoce como libración.

Piques:las pequeñas oscilaciones son la composicion de varios periodos.

- 9. Diciembre 1996. Considere el sistema Sol, Neptuno y un transneptuniano como un problema restricto plano de 3 cuerpos. Inicialmente la partícula se mueve con velocidad perpendicular al eje \vec{x} del sistema rotante tal que su órbita osculante (movimiento heliocéntrico instantáneo) es circular con movimiento medio $n = \frac{2}{3}n_N$, siendo $n_N = 1$ el movimiento medio de Neptuno cuya masa es $\mu = 0.00005$.
 - a) Hallar la constante de Jacobi
 ${\cal C}$ para la partícula.
 - b) Determinar si la partícula puede ingresar dentro de la esfera de Hill de Neptuno.

Piques: calcular velocidad en sistema rotante.

- 10. Quasi-satélite. El asteroide 2004 GU9 tiene un semieje orbital a igual al de la Tierra, una excentriciad de 0.13 y cuando pasa por el perihelio lo hace exactamente alineado con la Tierra y el Sol. Asumiendo que su órbita es coplanar con la de la Tierra (asumida con excentricidad cero):
 - a) probar que en el sistema rotante centrado en la Tierra las coordenadas del asteroide son $x = r \cos(f M) a$ e $y = r \sin(f M)$.
 - b) asumiendo $r \simeq a(1 e \cos M)$ y $f M \simeq 2e \sin M$ probar que la trayectoria del asteroide respecto a la Tierra es aproximadamente una elipse con centro en la Tierra.
 - c) justifique si puede ser o no considerado un satélite de la Tierra.

Piques: calcular posicion en el sistema rotante. Si la excentric
dad es chica asumir $\sin(f-M) \sim (f-M)$ y $\cos(f-M) \sim 1$ Considerar radio de Hill.

11. Vida media 1. Para estimar el tiempo esperado de colisión de un asteroide con la Tierra se integran 10 clones por 10⁵ años. Se contabilizan 8200 encuentros de los clones con parametro de impacto menor a 1000 radios terrestres. Estimar la vida media o tiempo esperado de colisión del asteroide con la Tierra asumiendo que la velocidad relativa media de encuentro al infinito es de 10 km/seg.

Piques: calcular la seccion eficaz para que haya impacto y estimar cuantas colisiones ocurrieron (puede ser un numero menor que 1).

12. Vida media 2. Realizando algunos experimentos con el programa Colisionlab o Solevorb estime la vida media del auto Tesla Roadster (a = 1.333, e = 0.261, i = 1.096) debido a sus encuentros con la Tierra y de (6144) Kondojiro debido a sus encuentros con Júpiter. Compare esos resultados con los obtenidos con el programa Opik.

Piques: usar los codigos.

DINAMICA ORBITAL - PRACTICO VII

Problema de N Cuerpos

1. Sean 3 masas m_1, m_2, m_3 iguales a 1, 2 y 3 M_{\odot} respectivamente encontrándose en determinado instante en una configuración de triángulo equilátero de 30 ua de lado y orbitando respecto al baricentro con órbitas elípticas de período de 100 años. Calcular la velocidad orbital de m_1 .

Piques: escribir la ecuacion para m_1 , como es la ley de Kepler en este caso? Resultado: 10.77 km/seg.

2. Tres planetas de masas m_0, m_1, m_2 orbitan una estrella de masa M. Los 3 planetas se encuentran capturados en una resonancia de tres cuerpos en la que se verifica

$$k_0 n_0 + k_1 n_1 + k_2 n_2 \simeq 0$$

siendo n_i los movimientos medios. Probar que dados a_1, a_2 el semieje del tercer planeta será:

$$a_0^{-3/2} \simeq -\frac{k_1\sqrt{(M+m_1)}}{k_0\sqrt{(M+m_0)}}a_1^{-3/2} - \frac{k_2\sqrt{(M+m_2)}}{k_0\sqrt{(M+m_0)}}a_2^{-3/2}$$

Piques: simplemente despejar.

3. • Utilizando ORBE integre los planetas gigantes junto a 20 partículas sin masa con idénticos elementos orbitales iniciales pero con semiejes distribuidos entre 2.4 < a < 2.6 ua y con e = 0.1 e integrar por 1 millón de años con salida de datos cada mil años. Hacer un gráfico superponiendo todos los estados orbitales de los asteroides ficticios en el espacio (a, e) y otro con (a, i). Explique estos resultados.

Piques: se obtiene una figura con la distribucion de los estados orbitales a lo largo de toda la evolucion.

4. • Probar que

$$\frac{1}{M} \frac{d^2}{dt^2} \left(\sum_{i \le j}^n \sum_{j=1}^n m_i m_j r_{ij}^2 \right) = 4C + 2U$$

. donde $M = \sum_{i=1}^{n} m_i$

Piques: poner $r_{ij}^2 = (\vec{r}_i - \vec{r}_j)^2$ y operar.

5. • Sea un sistema de n cuerpos donde la fuerza resultante en cada masa m_i es \vec{F}_i . Probar que

$$\frac{1}{2}\frac{d^{2}I}{dt^{2}} = 2T + \sum_{i=1}^{n} \vec{r_{i}} \cdot \vec{F_{i}}$$

Piques: partir de la definicion de I.

- 6. Escribir las ecuaciones del movimiento para un sistema de N cuerpos en donde la ley de fuerza varía inversamente con la potencia k de la distancia.
 - a) Hallar la función fuerza y las 10 integrales del movimiento.
 - b) Hallar el valor de k para el cual las ecuaciones de movimiento son independientes.

Piques: la funcion fuerza es aquella cuyo gradiente nos da la ley de fuerza. Ecuaciones independientes significa que la ecuacion para m_i solo depende de r_i .

7. Probar explícitamente que en un sistema de N masas puntuales sometidas a atracción newtoniana se cumple:

$$\sum_{i=1}^{N} \vec{r_i} \cdot \nabla_i U = -U$$

Calcular la sumatoria anterior para el caso en que la fuerza sea dada por

$$\mid \vec{F}_{ij}\mid = \frac{k^2 m_i m_j}{r_{ij}^K}$$

con K > 2.

Piques: comenzar probando que $\sum_{i=1}^{N} \vec{r}_i \cdot \nabla_i U = \sum_{i=1}^{N} (\vec{r}_i - \vec{r}_j) \cdot \nabla_i U.$

8. Calcular el radio de la esfera de influencia (o esfera de actividad) para la Tierra. Estime la aceleración que produce la Tierra en la Luna y la aceleración que produce el Sol en la Luna. Explique el resultado.

Piques: tiene que ver con la definicion de esfera de influencia.

9. • Estime el máximo valor de la perturbación de Júpiter en la órbita heliocéntrica de un objeto transneptuniano y en la órbita heliocéntrica de un asteroide con afelio en 4.5 ua.

Piques: se pide evaluar el maximo valor de la funcion perturbadora.

10. Considere un cometa de órbita baricéntrica circular y de semieje a. Si en vez del baricentro tomamos el Sol como origen probar que el semieje heliocéntrico a_H experimentará variaciones $\Delta a_H \simeq 2V_{\odot}a^{3/2}/k$ siendo V_{\odot} la velocidad orbital del Sol respecto al baricentro del Sistema Solar. Estimar Δa_H para el caso de un TNO con a=100 ua y para el caso de un cometa en la nube de Oort con a=10.000 ua.

9

Piques: podemos asumir que la distancia es la misma pero no asi la velocidad. Δa_H para el TNO es del orden de 1 ua y para el cometa del orden de 1000 ua.

11. • Un cometa de elementos orbitales a=3 ua, e=0.5 e $i=15^\circ$ sufre continuamente una perturbación del tipo $R=T=C/r^2$ y N=0 según las direcciones radial, transversa y normal respectivamente, siendo C una constante. a) Probar que $< da/dt> = 2C/(k\sqrt{a}(1-e^2))$ siendo k la constante de Gauss. b) Hallar C sabiendo que en 100 años el cometa aumentó su semieje en 0.1 ua.

Piques: ecuaciones de Gauss, instantaneas y medias.

12. Considere un asteroide experimentando una perturbación continua del tipo R = cte y T = N = 0 según las direcciones radial, transversa y normal respectivamente. Probar que < da/dt > = < de/dt > = < di/dt > = 0.

Piques: ecuaciones de Gauss, instantaneas y medias.