

Departamento de Astronomía - Universidad de la República Astrofísica Estelar - Prof. Juan José Downes

Práctico 3

Tiempos característicos de la evolución estelar. Ecuación de la energía total.

- 1. Considere que para estrellas en la secuencia principal la luminosidad escala con la masa como $L \propto M^3$ y que el radio escala como $R \propto M^{0,8}$. Si se calculan los tiempos característicos de la evolución estelar t_{dyn} , t_{ter} y t_{nuc} para estrellas con masas de 0,1, 0,5, 1,0, 5,0, y $10,0M_{\odot}$, ¿qué conclusiones generales se pueden obtener?
- 2. Grafique el tiempo térmico t_{ter} como función del parámetro α de la energía potencial gravitatoria de la estrella. Indique los puntos correspondientes a los perfiles de densidad estudiados en el práctico 1. ¿Qué puede concluir sobre la dependencia de t_{ter} con el perfil de densidad $\rho(r)$?
- 3. Demuestre la ecuación de equilibrio hidrostático a partir de la variación de la energía total E.⁸
- 4. Considere una esfera constituida por un gas ideal, de masa M y radio inicial R_1 en equilibrio hidrostático y cuyo perfil de densidad es uniforme $\rho = \rho_c$. Suponga que esta esfera es comprimida hasta alcanzar un radio R_2 y un nuevo equilibrio hidrostático en el que también el perfil de densidad es uniforme y su composición es de gas ideal. Demuestre cómo cambian entre ambas configuraciones las energías interna U, gravitatoria U_q , total E y la temperatura promedio \overline{T} .
- 5. Para una estrella en equilibrio termodinámico, encuentre una expresión que relacione el cambio en el radio estelar R con el cambio de la temperatura efectiva T durante colapsos o expansiones en los que la luminosidad L permanece constante.
- 6. Considere una estrella de masa M cuya única fuente de energía es el colapso gravitatorio. Encuentre una expresión para la tasa de disminución de su radio asumiendo que el proceso de colapso es lento y que su luminosidad permanece constante.⁹

⁸Véase la Sección 1.2 de Stellar Interiors, segunda edición, de Hansen, Kawaler & Trimble.

⁹Versión del ejercicio 2.4 de An Introduction to the Stellar Structure and Evolution de Dina Prialnik