

Departamento de Astronomía - Universidad de la República Astrofísica Estelar - Prof. Juan José Downes

Práctico 4

Presiones debidas a los gases de iones, electrones y fotones.

- 1. Bajo condiciones muy generales la presión central P_c que soporta una estrella de masa M satisface la desigualdad $P_c < (\pi/6)^{1/3} G M^{2/3} \rho_c^{4/3}$ donde ρ_c es la densidad central. Se asume que parte de esta presión, denotada por $P_g = \beta P c$, se debe a un gas ideal clásico de electrones e iones con masas promedio \overline{m} y que la presión restante, denotada por $P_r = (1-\beta)Pc$ se debe a la radiación. ¹⁰
 - (a) Deduzca a partir de la desigualdad para P_c un límite superior para la cantidad $\eta = (1 \beta)/\beta^4$ como función de M y \overline{m} .
 - (b) A partir del límite superior calculado para η , establezca cuáles son los límites para la fracción de la presión debida a la radiación P_r en el centro de estrellas de masas 1 M_{\odot} , 4 M_{\odot} y 40 M_{\odot} , asumiendo que en todos los casos la estrella está constituida por Hidrógeno totalmente ionizado.
- 2. Considere una estrellas de masa $M=M_{\odot}$ y radio $R=R_{\odot}$ en la que a una distancia r=R/2 del centro la presión vale $P(r=R/2)=1,3\times 10^{15}dina/cm^2$ y la temperatura $T(r=R/2)=4,5\times 10^6 K$. Demuestre que bajo estas condiciones la presión de radiación es mucho menor que la presión del gas.
- 3. Considere una serie de estrellas de masas M_i .
 - (a) Realice un gráfico de la razón entre la energía potencial eléctrica U_E y la energía cinética K de una de sus partículas como función de M_i para dos casos hipotéticos de estrellas constituidas exclusivamente de H y exclusivamente de He.
 - (b) En base a los gráficos de la pregunta anterior: ¿Qué puede decir sobre la ecuación de estado del gas para estrellas con masas M en los intervalos $M > M_{\odot}$, $1 < M/M_{\odot} < 0.072$ y $0.072 < M/M_{\odot} < 0.01$?
- 4. ¿Cómo depende la razón entre la energía potencial eléctrica U_E y la energía cinética K de una estrella de masa M constituida de un gas ideal de H, del parámetro α empleado para calcular la energía potencial gravitatoria U_g de una distribución esférica de masa? ¿Cómo interpreta el resultado?
- 5. Encuentre la condición que la densidad numérica de electrones n_e debe satisfacer para que un gas de electrones pueda ser considerado como un gas ideal. 11
- 6. Considere una estrella cuya energía interna U viene dada por:

$$U = \int_0^M (u_{gas} + u_{rad}) dm$$

y en la que el factor β mantiene un valor constante en toda la estructura. Demuestre que el teorema del virial puede ser escrito como¹²:

$$E = \frac{\beta\Omega}{2} = -\frac{\beta}{2-\beta}U$$

7. Se define la interface entre el carozo estelar y su envoltura como la superficie a través de la cual la composición química cambia. En equilibrio, la presión y la temperatura serán constantes a través de la superficie. Demostrar que lo anterior implica una discontinuidad en la densidad. Si el carozo es He puro y la envoltura H puro: ¿por cuanto debe cambiar la densidad?.

 $^{^{10}\}mathrm{Versi\acute{o}n}$ del ejercicio 1 del práctico 5 de Julio Fernández

¹¹Versión del ejercicio 3.1 de Prialnik

 $^{^{12}}$ Versión del ejercicio 3.2 de Prialnik

Departamento de Astronomía - Universidad de la República Astrofísica Estelar - Prof. Juan José Downes

8. Considerando que la temperatura típica interior del Sol es de 6×10^6 K, que la densidad promedio es de $1,4~{\rm g/cm^3},~{\rm y}$ que el material (totalmente ionizado) está compuesto de un 70 % de H y un 30 % de He (en fracciones de masa), demostrar que los electrones forman en esas condiciones un gas clásico no relativista.

Datos: masa en reposo del electrón $m_e=9.1\times 10^{-28}$ g, masa del núcleo atómico de ${\rm H}m_H=1.67\times 10^{-24}$ g.