

Departamento de Astronomía - Universidad de la República Astrofísica Estelar - Prof. Juan José Downes

Práctico 9 Modelos simples de estructura estelar: el Modelo Estándar.

- 1. Encuentre una expresión para el gradiente de la presión del gas P_{gas} asumiendo equilibrio radiativo y la condición de Eddington para el equilibrio radiativo $\kappa F < 4\pi cGm$. ¹⁸
- 2. La ecuación de cuarto orden de Eddington puede ser escrita como:

$$1 - \beta = \left(\frac{M}{M_{\star}}\right)^2 \mu^4 \beta^4$$

donde M_{\star} es una combinación de constantes que sustituye al cociente $M_{\odot}^2/0,003$ de la forma usual de la ecuación.

- (a) Encuentre una expresión para M_{\star} y su valor correspondiente 19
- (b) Exprese la masa de Chandrasekhar M_{Ch} en términos de $M_{\star}.$
- 3. A partir de la condición $L < L_{Edd}$ donde L_{Edd} es la luminosidad de Eddington estime la masa máxima que puede tener una estrella en la secuencia principal. ²⁰

 $^{^{18}\}mathrm{Versi\acute{o}n}$ del ejercicio 5.6 de Prialnik

¹⁹Versión del ejercicio 5.7 de Prialnik

 $^{^{20}\}mathrm{Versi\acute{o}n}$ del ejercicio 7.3 de Prialnik