

Departamento de Astronomía - Universidad de la República Astrofísica Estelar - Prof. Juan José Downes

Práctico 17 Evolución post-secuencia principal: La rama de las gigantes rojas

- 1. Demuestre que la presión en la superficie de una esfera isotérmica constituida por un gas ideal aumenta con el radio de la esfera.
- 2. ¿Por qué razón las estrellas gigantes y las estrellas enanas de un mismo tipo espectral pueden tener temperaturas efectivas diferentes?
- 3. Considere una estrella de masa M y radio R con un núcleo de masa M_n y radio R_n tal que la densidad de la estrella es de la forma: ²⁷

$$\rho = \rho_c - (\rho_c - \rho_n)(r/R_n)^2 \text{ si } 0 < r < R_n$$

$$\rho = \rho_n \frac{(R_n/r)^3 - (R_n/R)^3}{1 - (R_n/R)^3} \text{ si } R_n < r < R$$

donde ρ_c es la densidad central, $\rho_n = \rho(R_n)$. Encuentre la dependencia entre R/R_n con las nuevas variables $x_n = \rho_c/\rho_n$ y $y_n = M/M_n$ calcule el valor de R/R_n cuando $x_n = 10$ y $y_n = 7,5$ de manera que sean consistentes con el límite de Schonberg-Chandrasekhar para un núcleo de He:

$$\frac{M_n}{M} \le C \left(\frac{\mu_{env}}{\mu_c}\right)^2$$

 $^{^{27}}$ Versión del ejercicio 8.3 de An Introduction to the Stellar Structure and Evolution de Dina Prialnik