

Departamento de Astronomía - Universidad de la República Astrofísica Estelar - Prof. Juan José Downes

Práctico 18

Evolución post-secuencia principal: Rama horizontal y asintótica de las gigantes

- 1. Estime la escala temporal de pérdida de masa τ_m de una estrella de masa M y compárela con el tiempo térmico τ_{ter} . Demuestre que la tasa de energía requerida para que la estrella pierda masa a una tasa \dot{M} es mucho menor que la luminosidad L de la estrella. Encuentre una relación entre la escala temporal de pérdida de masa τ_m y la escala temporal nuclear de la estrella τ_{nuc} y muestre que $\tau_m <<<\tau_{nuc}$. ²⁸
- 2. Asumiendo que la perdida de masa de una estrella puede ser parametrizada según la ecuación:

$$\dot{M} \sim 10^{-13} \frac{L}{L_{\odot}} \frac{R}{R_{\odot}} \frac{M}{M_{\odot}} [M_{\odot}/a\tilde{n}o]$$

muestre que para una estrella de la secuencia principal $\dot{M} \propto L^{\alpha}$ y evalúe el valor de α . ²⁹

3. Considere la relación Período-Luminosidad para Cefeidas de la forma:

$$M_{max} = -2.6 - 3.7 Log(P)$$

donde M_{max} es la magnitud absoluta en el momento de máximo brillo y P es el período de variación en días. ¿A qué distancia de la Tierra se encuentra una Cefeida con un período de variación de 10 días y que en el momento de máxima intensidad brilla con una magnitud aparente $m_{max} = 22$?

- 4. ¿Cómo explicaría que el tiempo de expansión de una cefeida es más breve que el tiempo de compresión?
- 5. Consideremos una estrella de la rama gigante asintótica (AGB) con una luminosidad $L=10^4~\rm L_{\odot}$, una masa inicial $M=8\rm M_{\odot}$ y un radio $R=400\rm R_{\odot}$. Calcule cuál sería el incremento de la masa del carozo, de masa inicial $0.6M_{\odot}$ cuando se consume la masa de toda la envoltura. ¿Se encuentra la masa final por encima o por debajo del límite de Chandrasekhar?. (Indicación: considere que R es constante y M variable).

 $^{^{28} \}mathrm{Versi\acute{o}n}$ del ejercicio 8.4 de An Introduction to the Stellar Structure and Evolution de Dina Prialnik

 $^{^{29}}$ Versión del ejercicio 8.5 de An Introduction to the Stellar Structure and Evolution de Dina Prialnik