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First we investigate the balance of forces within a star in equilibrium.
From elementary physics, the local gravity at spherical radius r is

g(r) =
GMr

r2 = 2.74× 104
⎪

Mr

M!

⎨⎪
r

R!

⎨−2

cm s−2 (1.1)

and
Mr+dr −Mr = dMr = 4πr2ρ(r) dr (1.2)

is the mass contained within a spherical shell of infinitesimal thickness dr at
r. The integral of (1.2) yields the mass within r,

Mr =
⎩ r

0
4πr2ρ dr . (1.3)

Either (1.2) or (1.3) will be referred to as the mass equation or the equation
of mass conservation.

Now consider a 1–cm2 element of area on the surface of the shell at r.
There is an inwardly directed gravitational force on a volume 1 cm2 × dr of

ρg dr = ρ
G Mr

r2 dr . (1.4)

To counterbalance this force we must rely on an imbalance of pressure forces;
that is, the pressure P (r) pushing outward against the inner side of the shell
must be greater than the pressure acting inward on the outer face. The net
pressure outward is P (r)−P (r+dr) = −(dP/dr) dr. Adding the gravitational
and di!erential pressure forces then yields

ρr̈ = −dP

dr
− G Mr

r2 ρ (1.5)

as the equation of motion, where r̈ is the local acceleration d2r/dt2.
By hypothesis, all net forces are zero, with r̈ = 0, and we obtain the

equation of hydrostatic (or mechanical) equilibrium:

dP

dr
= −G Mr

r2 ρ = −gρ . (1.6)

Since g, ρ ≥ 0, then dP/dr ≤ 0, and the pressure must decrease outward
everywhere. If this condition is violated anywhere within the star, then hy-
drostatic equilibrium is impossible and local accelerations must occur.

We can obtain the hydrostatic equation in yet another way and, at the
same time, introduce some new concepts.

1.2 An Energy Principle

The preceding was a local approach to mechanical equilibrium because only
local quantities at r were involved (although a gradient did appear). What we
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shall do now is take a global view wherein equilibrium is posed as an integral
constraint on the structure of the entire star.

Imagine that the equilibrium star is only one of an infinity of possible
configurations and the trick is to find the right one. (The wrong ones will not
be in equilibrium and just won’t do.) Each configuration will be specified by
an integral function so constructed that the equilibrium star is represented
by a stationary point in the series of possible functions. This begins to sound
like a problem in classical mechanics and the calculus of variations—and it
is. (We’ll ease into the mathematics.) The function in question is the total
stellar energy, and so let’s see what it is.

The total gravitational potential energy, Ω, of a self-gravitating body is
defined as the negative of the total amount of energy required to disperse all
mass elements of the body to infinity. The zero point of the potential is taken
as the final state after dispersal. In other words, Ω is the energy required to
assemble the star, in its current configuration, by collecting material from
the outside universe. Thus Ω represents (negative) work done on, or by, the
system and it must be accounted for when determining the total energy of
the star.

We can get to the dispersed state by successively peeling o! spherical
shells from our spherical star. Suppose we have already done so down to an
interior mass of Mr + dMr and we are just about to remove the next shell,
which has a mass dMr. To move this shell outward from some radius r′ to
r′ + dr′ requires (G Mr/r′2) dMr dr′ units of work. To go from r to infinity
then gives a contribution to Ω of (remembering the minus sign for Ω)

dΩ = −
⎩ ∞

r

G Mr

r′2
dMr dr′ = −G Mr

r
dMr.

To disperse the whole star requires that we do this for all dMr or,

Ω = −
⎩ M

0

G Mr

r
dMr . (1.7)

The potential energy thus has the units of G M2/R and we shall often write
it in the form

Ω = −q
G M2

R . (1.8)

For a uniform density sphere, with ρ constant, it is easy to show that the
pure number q is equal to 3/5. (This should be familiar from electrostatics,
where the energy required to disperse a uniformly charged sphere to infinity is
−3e2/5R.) Because density almost always decreases outward for equilibrium
stars, the value of 3/5 is, for all practical purposes, a lower limit with q ≥ 3/5.

For the sun, GM!
2/R! ≈ 3.8 × 1048 erg. If we divide this figure by

the present solar luminosity, L!, we find a characteristic time (the Kelvin–
Helmholtz time scale) of about 3 × 107 years. More will be said about this
time scale later on.
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If we neglect gross mass motions or phenomena such as turbulence, then
the total energy of the star is Ω plus the total internal energy arising from
microscopic processes. Let E be the local specific internal energy in units of
ergs per gram of material. It is to be multiplied by ρ if you want energy per
unit volume. (Thus E will sometimes have the units of erg cm−3 but you will
either be forewarned by a statement or the appearance of those units.) The
total energy, W , is then the sum of Ω and the mass integral of E,

W =
⎩

M
E dMr + Ω = U + Ω (1.9)

which also defines the total internal energy

U =
⎩

M
E dMr . (1.10)

The statement now is that the equilibrium state of the star corresponds to
a stationary point with respect to W . This means that W for the star in
hydrostatic equilibrium is an extremum (a maximum or minimum) relative
to all other possible configurations the star could have (with the possible
exception of other extrema). What we are going to do to test this idea is to
perturb the star away from its original state in an adiabatic but otherwise
arbitrary and infinitesimal fashion. The adiabatic part can be satisfied if
the perturbation is performed su#ciently rapidly that heat transfer between
mass elements does not take place (as in an adiabatic sound wave). We shall
show later that energy redistribution in normal stars takes place on time
scales longer than mechanical response times. On the other hand, we also
require that the perturbation be su#ciently slow that kinetic energies of
mass motions can be ignored.

If δ represents either a local or global perturbation operator (think of it
as taking a di!erential), then the stellar hydrostatic equilibrium state is that
for which

(δW )ad = 0

where the “ad” subscript denotes “adiabatic.” Thus if arbitrary, but small,
adiabatic changes result in no change in W , then the initial stellar state is in
hydrostatic equilibrium. To show this, we have to look how U and Ω change
when ρ, T , etc., are varied adiabatically. We thus have to look at the pieces
of

(δW )ad = (δU)ad + (δΩ)ad .

A perturbation δ causes U to change by δU with

U −→ U + δU = U + δ

⎩

M
E dMr = U +

⎩

M
δE dMr .

The last step follows because we choose to consider the change in specific
internal energy of a particular mass element dMr. (This is a Lagrangian
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description of the perturbation about which more will be said in Chap. 8.)
Now consider δE. We label each mass element of dMr worth of matter and
see what happens to it (and E) when its position r, and ρ, and T are changed.

For an infinitesimal and reversible change (it would be nice to be able
to put the star back together again), the combined first and second laws of
thermodynamics state that

dQ = dE + P dVρ = T dS . (1.11)

Here dQ is the heat added to the system, dE is the increase in internal specific
energy, and P dVρ is the work done by the system on its surroundings if the
“volume” changes by dVρ. This volume is the specific volume, with

Vρ = 1/ρ (1.12)

and is that associated with a given gram of material. It has the units of
cm3 g−1. (The symbol V will be reserved for ordinary volume with units of
cm3.) The entropy S, and Q, are also mass-specific quantities. If we replace
the di!erentials in the preceding by δs, then the requirement of adiabaticity
(δS = 0) immediately yields (δE)ad = −P δVρ. Thus,

(δU)ad = −
⎩

M
P δVρ dMr .

What is δVρ? From the definition of the specific volume (1.12) and the
mass equation (1.2),

Vρ =
1
ρ

=
4πr2 dr

dMr
=

d(4πr3/3)
dMr

. (1.13)

To make life easy, we restrict all perturbations to those that maintain
spherical symmetry. Thus if the mass parcel dMr moves at all, it moves only
in the radial direction to a new position r + δr. Perturbing Vρ in (1.13) is
then equivalent to perturbing r or

Vρ −→ Vρ + δVρ =
d[4π(r + δr)3/3]

dMr
= Vρ +

d(4πr2δr)
dMr

(1.14)

to first order in δr, where we assume that |δr/r|' 1. (Later we will call this
sort of thing “linearization.”) The variation in total internal energy is then

(δU)ad = −
⎩

M
P

d(4πr2 δr)
dMr

dMr . (1.15)

We now introduce two boundary conditions. The first is obvious: we don’t
allow the center of our spherically symmetric star to move. This amounts to
requiring that δr(Mr = 0) = 0. The second is called the “zero boundary
condition on pressure” and it requires that the pressure at the surface vanish.


