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The notion of a critical community size (CCS), or population size that is likely
to result in long-term persistence of a communicable disease, has been devel-
oped based on the empirical observations of acute immunizing infections in
human populations, and extended for use in wildlife populations. Seasonal
birth pulses are frequently observed in wildlife and are expected to impact
infection dynamics, yet their effect on pathogen persistence and CCS have
not been considered. To investigate this issue theoretically, we use stochastic
epidemiological models to ask how host life-history traits and infection
parameters interact to determine pathogen persistence within a closed popu-
lation. We fit seasonal birth pulse models to data from diverse mammalian
species in order to identify realistic parameter ranges. When varying the syn-
chrony of the birth pulse with all other parameters being constant, our model
predicted that the CCS can vary by more than two orders of magnitude.
Tighter birth pulses tended to drive pathogen extinction by creating large
amplitude oscillations in prevalence, especially with high demographic turn-
over and short infectious periods. Parameters affecting the relative timing of
the epidemic and birth pulse peaks determined the intensity and direction
of the effect of pre-existing immunity in the population on the pathogen’s
ability to persist beyond the initial epidemic following its introduction.

1. Introduction

The infusion of modern ecological theory into epidemiology was initiated in the
1950s [1-3]. Subsequently, demographic factors controlling the fate of patho-
gens in animal populations have been identified in the context of zoonotic
reservoirs [4—-6] and wildlife conservation [1-3]. Two distinct mechanisms of
pathogen extinction have been proposed theoretically and explored in various
natural systems [4-6]. First, invasion thresholds are directly derived from the
basic reproduction ratio (Rp): deterministic models predict that a minimum den-
sity or proportion (depending on the mode of transmission) of susceptible
individuals is required for a given infection to spread. However, even above
this threshold epidemics may still fail to occur due to stochastic processes.
A classical prediction from branching process theory is that, given Ry > 1, the
probability that a single infectious individual in a naive population gives rise
to an epidemic is equal to 1 - 1/R, [7].

Second, stochastic models also predict that even when a pathogen success-
fully spreads in a population, it may not persist indefinitely. A relationship
between population size and probability of extinction for endemic diseases

© 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
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was first proposed by Bartlett [8]. Combining case reports of
measles in non-naive human populations and stochastic
models with a metapopulation structure, Bartlett proposed
that measles virus was more likely to ‘fade out’ in communities
below a ‘critical community size” (CCS). Many authors have
subsequently confirmed that measles and other viruses result-
ing in acute infections in humans are more likely to fade out in
smaller communities, but persist at the metapopulation level
through migration [9]. Over time, CCS has become a pervasive
concept through human and wildlife epidemiology. The
abbreviation CCS is now often used as a general term for any
population threshold for disease persistence [4] and its defi-
nition has been broadened to apply variously to population
density or size (e.g. [6,10-12]). However, unlike invasion
thresholds, which are simple functions of Ry, the CCS is an
ill-defined quantity. As underlined by Conlan et al. [9], CCS
estimation is sensitive to the chosen measure of persistence as
well as the detailed assumptions of the stochastic model used
for inference; these caveats make it difficult to compare CCS
estimates between studies.

The CCS was originally defined in human populations
with near-continuous birth. Substantial seasonal variation in
human birth rates (for example, in sub-Saharan Africa) was
recently shown to have significant effects on the periodicity,
magnitude and timing of measles epidemics [13]; however,
its effect on CCS has not been explored. Seasonality of life-
history traits and behaviour are important drivers of wildlife
infectious disease dynamics [14], yet also have not been
considered when estimating CCS in wildlife populations. The
timing of birth in wildlife is usually tightly controlled by seaso-
nal cycles in resource availability or climate [14]. Modelling
studies using deterministic frameworks have explored the
effect of seasonal reproduction of wildlife hosts on infection
cycles for a variety of pathogens, including macroparasites
[15], possum tuberculosis [16], house finch conjunctivitis [17],
rabbit haemorrhagic disease [18,19], vole cowpox [18,20] and
raccoon rabies [21,22]. Only one of these models considered
disease extinction [18], but the effect of stochastic fade-out
on persistence and CCS was not explored. Given the impor-
tance of birth pulses in shaping infection cycles in wildlife
populations, we hypothesize that these cycles could result
in pathogen extinction, thus affecting the CCS. Herein, we
use a simple stochastic epidemiological model to investigate
the effects of an annual seasonal birth pulse on pathogen
persistence and extinction.

Specifically, we ask how host life-history traits (lifespan
and shape of the seasonal birth pulse) and infection par-
ameters (infectious period and basic reproduction ratio)
interact to determine the persistence of a pathogen following
its introduction in a closed population. We review published
and unpublished birth pulse data across various species to
motivate the structure of our demographic model. We then
present results of stochastic simulation series over a range
of parameter values and discuss our findings in the context
of the concept of CCS.

2. Material and methods
(a) Birth pulse function and empirical validation

Most species display seasonal variations in mating and births,
often marked by one or two yearly peaks. In humans, births
occur throughout the year and variations can be approximated

well by sine functions [13,23]. By contrast, many wild mamma-
lian species give birth only during a limited period of time
each year, which has led to the common use of a step function
(equal to zero for several months) to describe seasonal birth
rates in mathematical models [15,20,21]. At its most extreme,
all yearly births are assumed to occur simultaneously in an
instantaneous pulse [16,24]. Continuous (double-logit) step func-
tions have also been used to reduce the dynamic artefacts caused
by discontinuous step changes [17]. However, even in species
with a short breeding season, there is temporal variation in
birth rates, so we would expect step and sine functions to be
the two ends of a spectrum. We investigated empirical support
for an alternative mathematical description of birth pulses that
would fill the gap between those two extremes. Mathematically,
a pulse is commonly modelled as a Dirac delta function that
is the limit of the Gaussian function 8,(t) =1/ aﬁe”z/ ” when
a— 0. We modified the latter to make it periodic using a
cosine function, leading to the following per capita birth rate:

B(t) =k exp[ —s cos*(wt — ¢)], (2.1)

which has period of 1 time unit (here, 1 year); we refer to this as
the periodic Gaussian function. This function has three par-
ameters, which all have relevant biological interpretations: k is
a scaling factor proportional to the annual per capita birth rate,
¢ controls the phase (i.e. the timing of the peak of the birth
pulse) and s controls the bandwidth (i.e. the duration of the
birth pulse). Greater values of s result in higher and narrower
peaks, which can be interpreted as more synchronous births in
the population. In the absence of a birth pulse (s =0), we set
the birth rate to a constant. In the following, we refer to s as
the synchrony parameter. See the electronic supplementary
material, appendix 2.1 for more detail about the function.

To compare this function with the sine and step functions,
we searched the literature for published data on the timing of
births in wild mammals. We collected reports of observed num-
bers of births by day, week or month, covering the whole period
of reproduction for the populations of species considered (elec-
tronic supplementary material, appendix 1). We excluded species
with two or more birth peaks within a year, as well as datasets
that were either too small (fewer than 10 births recorded) or aggre-
gated from diverse locations, resulting in a blurred seasonal signal.

We fitted a total of three birth rate functions to each dataset
by maximum likelihood. The functions chosen were periodic
Gaussian function, cosine function and step function. For a
given model and a given dataset, the likelihood was calculated
as the multinomial probability of the distribution of observed
births, given the expected proportions of births obtained by inte-
grating the birth rate over that time step. For each dataset, the
three fitted models were ranked according to Akaike’s infor-
mation criterion (AIC); we used the second-order variant of
AIC which accounts for finite sample size [25]. See the electronic
supplementary material, appendix 2.2 for more information. All
calculations were performed with the R software version 3.0 [26].
For each dataset i and each model j, we then calculated the AIC
difference A;; = AIC;; — min; AIC;;, which indicates the relative
support for each model [25].

(b) Dynamic model

We model a hypothetical population with an annual birth pulse
as given in equation (2.1), and assume a constant death rate m. In
order to maintain a stationary population size from year to year,
we re-wrote the scaling coefficient k as a function of m and s, so
that the integral of B(t) over a period of 1 year is equal to m (see
the electronic supplementary material, appendix 2.1). As a result
of this assumption, the value of the death rate m also determines
the birth rate; to reflect this, we will refer to m as the “turnover
rate’. Additionally, 1/m represents the average lifespan in the
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population. Given the values of m and s, the phase of the birth
pulse ¢ and the yearly average of the population size v, we can
calculate the population size at the point in the cycle correspond-
ing to t=0 to initiate simulations (electronic supplementary
material, appendix 2.1).

At the start of the annual cycle (t = 0), we introduce an indi-
vidual infected with a directly transmitted pathogen. The spread
of infection is assumed to follow a classical SIR (susceptible—
infectious—recovered) model: there is no incubation period, sus-
ceptible individuals get infected by direct contact with infectious
individuals at rate B I/N, recovery occurs at a constant rate y and
recovery results in lifelong immunity. In addition, we assume
that the infection is not lethal, which means that the overall
population dynamics are the same with or without the pathogen.

First, we present a deterministic version of the model,
defined by the following set of differential equations:

ds BSI
dl  BsI
@ N o

and i—lf =yl —mR,

where S, I and R are the densities of susceptible, infected and
recovered individuals respectively, N=S5+1+ R is the total
population density, and B(t) is the seasonal per capita birth rate
from equation (2.1). Table 1 lists the model parameters and the
ranges of values explored in this study. The pathogen’s basic
reproduction ratio is Ry = B/(m + 7). Note that transmission is
modelled as a frequency-dependent function (i.e. proportional
to the prevalence of infection I/N), so Ry is independent of the
population size. We considered two variants on this model.
First, to tease apart the potential importance of increases in over-
all population size versus increases in the susceptible pool, we
considered a model with a seasonal death rate matching the
birth rate that allowed only the susceptible portion of the popu-
lation to increase; it produced results qualitatively similar to
those obtained with the main model (see the electronic sup-
plementary material, appendix 6). Second, in order to tease
apart frequency versus density dependence, we considered a
density-dependent transmission function B’SI with constant
death rate as in the original model (see the electronic supplemen-
tary material, appendix 7).

The deterministic model was solved numerically using the
deSolve package [27] in R. Given the values for m, the initial popu-
lation size N(0) was calculated to ensure a yearly population
average equal to the chosen value v (see the electronic supplemen-
tary material, appendix 2.1). Infection was seeded with I(0) =1,
and the rest of the population was split between naive, S(0) =
(I —p) [N@©) — 1], and immune, R(0)=p [N(0) — 1], with 0 <
p < 1 representing the fraction of the population immune prior to
pathogen introduction (due to acquired immunity from a previous
outbreak or vaccination).

The core of our study is based on an event-based, stochastic
version of the model, where the three state variables (S, I and R)
can take only integer values. Six types of events (births, deaths in
each state variable, infection or recovery) occur in continuous
time with probabilities proportional to their respective rates in
the deterministic model. However, because of the time-depen-
dent birth rate, we decided not to use the exact Gillespie
algorithm [28] as it can generate long time steps when event
rates are low. Instead, we implemented an adaptive time-step
algorithm [29], with a maximum step size of less than 1 day
(see the electronic supplementary material, appendix 3 for a com-
plete description). During a time step 6t, the number of events of
each typei= {1, ...,6} is drawn from a Poisson distribution with
mean 7,8, where r; is the rate of event type i, for example BSI/N
for an infection. If more events occur than are feasible (e.g. more

Table 1. List of symbols used in the model.

values

symbol description explored

S(t) susceptible individuals —
B I(t) T |np0pulat|on B I(O) SRR
R(t) e s S
B(t)blrthratepercap/ta—b
. yearly . rage : populat|on o T
B p R propomonof o

in population at t = 0

N TR 01—3yr :
" puIsesynchrony i
B QD R phaseofthebmhpulse L
o scaleofthebuthpulse B
yrecoveryrate1—52yr 1
. RO ...... ba5|creproduct|onrat|o e
Btransm|55|on T R

%5(0) and R(0) are functions of v, p and ¢ (see text).
%B(t) = k exp[—S cos’ {7 t — @)].

‘k is a function of m and s.

9B = Ro(m + 7).

recoveries than there are currently infected individuals), the time
step is halved and the new Poisson-distributed random numbers
are drawn.

The stochastic model was implemented in R, using the same
range of parameter values and initial conditions as for the deter-
ministic model and explored a full factorial set of model
parameters. For each set of parameter values and initial con-
ditions, we ran 1000 simulations for a duration of 10 years.
This arbitrary time limit was chosen to allow several seasonal
cycles to occur, while keeping in mind that our assumptions of
constant parameters and closed populations would not be rel-
evant in nature over long periods of time. We estimated the
probability of pathogen extinction as the proportion of simu-
lations that reached the state I = 0, and we recorded the time of
extinction. Combined with average infectious periods of at
most 1 year, this gives us a reasonable measure of pathogen per-
sistence following a single introduction event. Failure of an
epidemic to ‘take off’ (result in sustained transmission), which
is expected to occur with a probability equal to 1/R, [7], was
recorded separately to post-epidemic extinctions, using a
threshold of five transmission events before extinction. This
value gave results consistent with the theoretical expectation
across the wide range of parameter values. In addition to the
figures in the main text, the electronic supplementary material,
appendices 5, 6, 7 and 9 contain more complete graphs showing
interactions between parameters, as well as a global sensiti-
vity analysis, which confirms statistically the complexity of
these interactions.

3. Results
(a) Empirical validation of birth pulse function

For each of the 18 datasets, we rank our three models using
AIC; the results are shown in the electronic supplemen-
tary material, appendix 1. The periodic Gaussian function
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Figure 1. Observed and predicted births for six datasets. Black solid lines show data (numbers of births, except dataset 13: proportion of females with pups);
coloured symbols show the three fitted models. Numbers preceding common names refer to datasets listed in the electronic supplementary material, table S1.

ranked highest with 17 datasets. For the remaining dataset (2),
the cosine function is ranked first but the periodic Gaussian
function still receives substantial support (AAIC = 2.7). The
step function (which is the most commonly used one in model-
ling studies) receives very little support across all but one
dataset. Plots of the observed and predicted dynamics show
that the periodic Gaussian birth rate generally reproduces the
shape of the birth distribution quite well (figure 1; electronic
supplementary material, figure S2). Discrepancies occur with
datasets that display a small number of births on either side
of the main peak: the fitted model produces a wider and
lower peak as a result (e.g. dataset 9 in figure 1).

Across our 18 datasets, the maximum-likelihood esti-
mates of the synchrony parameter s range from 2.4 to 227,
with a median of 30. To put these values into biological con-
text, electronic supplementary material, figure S3 shows the
duration of the birth pulse, defined arbitrarily as the period
when 95% of yearly births are predicted to take place, as a
function of synchrony s.

(b) Demographic dynamics with periodic
Gaussian birth rate

Using the periodic Gaussian birth rate from equation (2.1)
scaled with the turnover rate m to ensure a stationary popu-
lation size from year to year, the deterministic population
dynamics are given by

dN
— —_m N[KS efs cos?(m t—¢) ~1 ],

5 3.1)

where K; is a normalization factor that depends on s only

(see the electronic supplementary material, appendix 2.1).
Numerical solutions of equation (3.1) show that N(t) follows
asymmetrical annual cycles with the peak N(f) occurring
after the birth pulse peak. A ‘tighter” birth pulse (increased
synchrony of births occurring over shorter duration, rep-
resented by higher values of s) generates greater amplitude
of population cycles with a shorter time lag (electronic
supplementary material, figure S4). Increasing the turnover
(m) while keeping the average population size constant
also results in oscillations of greater amplitude (electronic
supplementary material, figure S5).

Stochastic  simulations of this simple time-forced
birth—death process enable us to assess the probability of a
population crash across the {m, s, v} parameter space. At the
higher end of the relevant parameter region (where higher
amplitude oscillations are expected), with a rapid turnover
m=2yr ! (equivalent to an average lifespan of six months)
and a tight birth pulse s =100 (representing 95% of births
occurring within 33 days), average population sizes as low
as v = 100 crash with a frequency of only 1% within 10 years
(electronic supplementary material, figure S6).

(c) Infection dynamics and critical community size

Using our stochastic SIR model, we assess the ability of the
pathogen to invade and persist following the introduction
of a single case into a closed population. We distinguish
between three categories of extinction occurrences: failure to
take off (fewer than five cases in total), epidemic burnout fol-
lowing the first wave of infection (with a cut-off time of two
years post introduction) and endemic fade-out (after the
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Figure 2. Effect of various parameters on the dynamics and persistence of infection. Contour plots show probability of pathogen extinctions within 10 years of
introduction (conditional on successful invasion) as a function of average population size (v) according to the scale in (a). The black line shows the (CS, defined as
the population size resulting in 50% of pathogen extinction within 10 years. For each combination of parameter values, 1000 stochastic simulations were run. Line
plots show deterministic dynamics, with the numbers of susceptible S(t) in blue and infected /(t) in red; the dashed line shows the threshold value N(t)/R, for
the number of susceptible individuals over which the infection spreads (d//dt > 0); the width of the shaded vertical bars reflects the duration and intensity of
seasonal births, B(t). (a) Effect of the turnover rate (m) and recovery rate (-y) in a population with a constant birth rate (s = 0). Parameter values: y = 12 yr_1
(left), m =1 yr_1 (right), Ry =4, @ = 0. (b) Effect of synchrony parameter s. Parameter values: m = 1 yr“, y=1 yr_1, Ry =14, ¢ = 0. (cd) Effect of
prior immunity (p), comparing no prior immunity (left) with 50% of the population initially immune (right). Inset labels (i—iv) show the combinations of
parameter values used in the corresponding deterministic plots. Parameter values: (c) s =10, m = 0.1 yr", y=056 yr", Ro=14 (d) s=10, m=105
yr ' y=12yr ", Ry= 4. An increase in p can shift the epidemic peak closer to the next birth pulse and rescue the pathogen (c) or on the contrary,
shift the epidemic peak from before the birth pulse to after it, resulting in deeper post-epidemic trough (d). (e) Effect of the phase of the birth pulse (¢).
The three values of ¢ (— /3, 0 and 7r/6) shown correspond to lags of two, six and 10 months from time of pathogen introduction until the next birth
pulse peak. Parameter values: s =10, m =05 yr ', y=12yr ', Ry = 4.

pathogen has persisted for at least two seasons). We focus on (i.e. higher recovery rates), a tight birth pulse (say s = 100)
the latter two, having confirmed that failure to take off occurs canincrease the CCS by a factor of 40 compared with a constant
with a probability of 1/Ry, as predicted by branching process birth rate (figure 2a). The quantitative effect of s on the CCS is
theory (see §2b). generally weaker in longer-lived host species (i.e. with lower

Conditional on successful invasion and in the presence of turnover m; electronic supplementary material, figure S7).
a constant birth rate throughout the year (s = 0), the prob- A closer look at interactions between parameters and model
ability of pathogen extinction is strongly influenced by dynamics reveals an unexpected pattern. In the presence of a
demographic turnover m and recovery rate y. In general, marked birth pulse, we observe a non-monotonic effect of the
for a given population size v and a given basic reproduction turnover rate m on pathogen persistence (figure 3). As already
ratio Ry, the probability of extinction increases with the rate of mentioned, the low turnover rate associated with longer-lived
recovery y and decreases with the turnover rate m (figure 2a). species (for example, the primate, ungulate and bat datasets)
The population size itself has a clear positive effect on persist- favours epidemic burnout, typically within 2-3 years of intro-
ence. For the sake of clarity, we follow Bartlett [8] and define duction. However, conditional on survival past the first post-
the CCS as the average annual population size with even epidemic trough, endemic persistence is very likely, as the
odds of pathogen persistence after 10 years. A shorter time system settles down to low-amplitude oscillations (as predicted
or a greater probability of extinction would result in lower by the deterministic model; figure 3). Increasing the turnover rate
CCS estimates, but the qualitative trends would remain the has two opposite effects. On the one hand, by providing more
same: basically, the CCS decreases when the turnover m is naive offspring in the first post-epidemic birth pulse, it reduces
higher or the recovery rate v is lower (figure 2a). We then use the probability of a rapid burnout. We call this a ‘rescue
these simple patterns as a background to study the effect of effect’, a term borrowed from metapopulation biology [30].
birth pulse synchrony on pathogen persistence and CCS. On the other hand, by generating cycles of greater amplitude,

All other parameters being fixed, increasing the birth pulse it creates deeper annual troughs (visible in the deterministic
synchrony (s) concentrates the same number of births over a model in figure 3), which in turn increases the probability of
shorter time period, which amplifies oscillations in the deter- stochastic fade-out. Hence, everything else being equal, persist-
ministic model and tends to increase the probability of ence is maximum in species with intermediate lifespans (for

pathogen extinction (figure 2b). With more acute infections example, m = 1, representing an average lifespan of 1 year).
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y="12y"", Ry =4, v = 50000.

An additional factor that can modulate the effect of the birth
pulse on the post-epidemic burnout is the timing of pathogen
introduction in the seasonal cycle (controlled by the phase par-
ameter ¢ in equation (2.1)). By default we assumed that the
introduction of infection took place when births were at their
lowest (six months before the maximum of the birth pulse,
¢ = 0). However, as shown in figure 2e with an average lifespan
of 2 years and an infectious period of one month, a shorter lag
between pathogen introduction and the next peak of the birth
pulse (e.g. two months, ¢ = —m/3) can result in a dramatic
increase in the CCS. The optimal phase difference for pathogen
persistence (around eight months in figure 2e, ¢ = w/6) varies
with combinations of m and 7y (electronic supplementary
material, figure S8). Epidemic burnout is most likely (i.e. the
deepest post-epidemic trough) when the initial epidemic
peak coincides with the birth pulse peak, and therefore is
followed by a waning of susceptible individuals entering
the population and maximal time until the ‘rescue effect’
of the next birth pulse. However, conditional to persistence
beyond this first post-epidemic trough, the relative timing of
the birth pulse and introduction of infection had little effect
on long-term persistence.

We also considered pre-existing immunity in the popu-
lation (parameter p) to simulate the effect of reintroduction
of a pathogen after a previous outbreak and extinction, or
after an immunization programme. Prior immunity reduces
the probability of an outbreak, but has a highly variable
effect on the CCS (which we estimated conditionally on out-
break occurrence). By reducing the effective reproduction
ratio of the pathogen, prior immunity slows down the initial
invasion. As a result, the birth pulse occurs earlier in the epi-
demic cycle, which can either shift the epidemic peak closer
to the next birth pulse and rescue the pathogen (figure 2c)
or, on the contrary, shift the epidemic peak from before the
birth pulse to after it, resulting in deeper post-epidemic
trough (figure 2d). In line with previous points, other par-
ameters that affect the relative timing of the epidemic peak

to the peak of the birth pulse (especially m, y and ¢) will
affect the intensity and direction of the effect of p on CCS
(figure 2¢,d; electronic supplementary material, figure S9).

Taken together, these results suggest that the relative
importance of a parameter for pathogen persistence and CCS
is dependent on the respective variance of other parameters,
which is largely arbitrary in this study. Hence, a sensitivity
analysis will be most informative in the context of specific sys-
tems where more information on parameter values is available.
We have provided an extensive series of plots in the electronic
supplementary material that show more details of parameter
interactions and nonlinear patterns.

(d) Density-dependent model

A model with density-dependent transmission gave results
similar to the frequency-dependent model over the majority
of the parameter space, indicating little overall effect of
density-dependent transmission on persistence (electronic sup-
plementary material, figure S11). However, at extreme values
of m and s, greater fluctuations in total population size resulted
in amplified peaks and troughs of transmission, increasing the
likelihood of endemic fade-out (i.e. a higher CCS; electronic
supplementary material, figure S12).

4. Discussion

Growing concern about emerging zoonotic infections has
stimulated research effort to model the dynamics of pathogen
spillover from wildlife into human populations [31-33].
However, these approaches mostly ignore the dynamics of
infection in the reservoir host. This motivated our study
into factors that drive the persistence and extinction of patho-
gens in wildlife host populations, focusing on seasonal birth
pulses, a feature common to many animal species.

We identified data on seasonal birth rates for a range of
mammalian species. Whereas numerous studies report the
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period over which births take place, few provide the time
series of birth numbers required to calculate birth rates for
such study, even though appropriate data probably exist in
raw form. We assessed alternative mathematical functions
for the birth pulse using 18 datasets. Our results suggested
that the binary step function used in most published
models was not a good representation of real birth pulses
and the ‘periodic Gaussian’ function may be preferable for
this purpose. Estimates of the key parameter controlling the
tightness of the birth pulse (s, for synchrony) across available
datasets of birth pulses have not previously been quantified,
yet span two orders of magnitude and have significant effects
on the infection dynamics.

Our stochastic SIR model with annual birth pulses showed
that tighter birth pulses tend to drive pathogen extinction by
creating large amplitude oscillations in prevalence. In addition,
tighter birth pulses result in the population size being lower fora
greater proportion of the year, leading to an increased likelihood
of stochastic fade-out. The effect of s was stronger in species
with higher demographic turnover, and for pathogens with
shorter infectious periods and density-dependent transmission.
Interestingly, in the presence of a birth pulse, invasive patho-
gens are predicted to be most likely to persist in host species
with intermediate turnover (measured as the average number
of births and deaths per year): long-lived species with small
birth pulses tend to experience a single epidemic, which dies
out; by contrast, short-lived species with a higher birth pulse
can maintain the pathogen for a few seasons but with a pattern
of annual peaks and troughs, which often results in stochastic
extinction of the pathogen. Early, post-epidemic fade-outs are
also affected by the timing of pathogen introduction relative
to the birth pulse, as well as pre-existing immunity in the
population (e.g. from a recently extinct outbreak).

Empirical estimation of CCS in wildlife remains limited
[4]. A few studies have used mathematical models to analyse
the role of wildlife reservoir dynamics in the occurrence of
zoonotic spillover events in humans, highlighting factors
affecting pathogen persistence in reservoir host populations.
In particular, plague outbreaks have been linked to the meta-
population structure of the rat reservoir in Europe [34] and
gerbils in Kazakhstan [35,36]. However, as underlined by
Heier et al. [36], estimating the effect of host abundance on
the persistence of infection is more complicated than deter-
mining thresholds for pathogen invasion. George et al. [24]
showed that seasonal patterns of hibernation and highly syn-
chronous reproduction in American big brown bats (Eptesicus
fuscus) played a crucial role in the persistence of rabies virus in
that host, but their study only considered large populations,
hence offering little insight into CCS. Other ecological factors,
such as contacts between multiple host species, have been pro-
posed to contribute to pathogen persistence in wildlife by
increasing the effective community size [6,37].

Apart from contributing to theoretical understanding of
viral dynamics and persistence, the notion of the CCS has prac-
tical applications in wildlife population management. For
example, vaccination is often difficult or impractical in wildlife,
and it is often recommended in combination with reduction of
population size by culling susceptible animals (discussed in
[38-41]). However, our model suggests that prior herd immu-
nity can increase the CCS in some circumstances. Sufficient
life-history data were not available for all of the seasonal
birth pulse datasets presented here to estimate the CCS
required for pathogen persistence over a range of infectious

periods. However, we provide two specific examples to

demonstrate the real-life utility of this model when data are
available. First, our results indicated that the effect of birth
pulse synchrony on the CCS was more pronounced in
shorter-lived host species (i.e. with higher turnover m), such
as Townsend’s vole (Microtus townsendii, dataset 3, m ~ 3.3
[42]). Even with a relatively low degree of synchrony (s = 3.3,
representing 95% of births occurring within 7.8 months), the
presence of the birth pulse in M. townsendii increases the
CCS for a pathogen with an infectious period of one month
(y=12) from less than 200 to almost 10 000 individuals (elec-
tronic supplementary material, figure S13). An even greater
increase in CCS is expected for pathogens with more
acute infectious periods (electronic supplementary material,
figure S7). Second, we consider the grey-headed flying fox
(P. policocephalus, dataset 13), which has a highly synchronous
seasonal birth pulse (s = 130, representing 95% of births within
28 days), but a low turnover rate (m =0.14 [43]), which
moderates the effect of the birth pulse (figure 2b). Our model
predicts that pathogens with an infectious period of less
than approximately six weeks (y > 8) could not persist in a
naive population with this turnover rate and degree of syn-
chrony (electronic supplementary material, figure S14a). This
raises questions regarding the dynamics of pathogens with
short infectious periods, such as Hendra virus (y~ 52) [44]
within populations of this species. The inclusion of pre-existing
immunity at 50% (equivalent to Hendra virus seroprevalence
rates commonly observed in this species [44]) resulted
in greater persistence, though still only to y~ 20 (electronic
supplementary material, figure S14b). This suggests that
other factors important in viral persistence in this system are
absent from our model; for example, age-structure, meta-
populations, multi-host systems, within-host persistence and
waning immunity.

Our model provides theoretical insights into the effect
of seasonal birth pulses on pathogen dynamics in wildlife
populations and a basis for further extension. For example,
one extension would be to consider a metapopulation frame-
work, which would allow recurrent introduction of the
pathogen. Interestingly, our model predicts that prior immunity
can favour the persistence of some pathogens by dampening the
secondary outbreak dynamics, a phenomenon related to the
‘epidemic enhancement’ proposed by Pulliam ef al. [45] and
applied within a metapopulation framework by Plowright
et al. [44]. There is ongoing debate on the effects of habitat frag-
mentation on the persistence of infectious diseases in wildlife
[46]. A landmark study by Swinton et al. [12] concluded that
the fragmented metapopulation structure of harbour seals
around the North Sea was responsible for the rapid fade-out
of a deadly outbreak of phocine distemper virus in 1988.
Recent examples indicate that existing habitat fragmentation
and variations in population sizes could be used to hinder the
threat from infectious diseases to endangered wildlife, including
rabies in the Ethiopian wolf [47] and chytridiomycosis in amphi-
bians [48]. Our model could also be modified to account for
disease-induced death in order to investigate the role of seasonal
birth pulse on the relative risks of host and pathogen extinction.

Despite growing interest in the environmental and demo-
graphic drivers of pathogen cycles in wildlife [14], the effect
of these cycles on pathogen persistence has been overlooked.
By incorporating an empirically motivated birth pulse func-
tion into a generic infection model, we have provided a
framework to study pathogen persistence in wildlife species
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exhibiting seasonal births. The CCS is sensitive to demo-
graphic and pathogen-related parameters, and should be
considered within an ecological context. Therefore, esti-
mation of CCS values and their subsequent use in wildlife
management practices must be treated with caution as it is

Downloaded from rspb.royalsocietypublishing.org on May 14, 2014

likely to be highly system-dependent.
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