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Abstract. Predicting outbreaks of zoonotic infections in reservoir hosts that live in highly
fluctuating environments, such as Sin Nombre virus (SNV) in deer mice, is particularly
challenging because host populations vary widely in response to environmental conditions and
the relationship between field infection rates and abundance often appears to contradict
conventional theory. Using a stage-structured host-pathogen model parameterized and cross-
validated from a unique 15-year data set, we show how stochastic population fluctuations can
lead to predictable dynamics of SNV in deer mice. Significant variation in host abundance and
the basic reproductive number of the virus results in intermittent crossing of the critical host
population density necessary for SNV endemicity and frequent local extinctions. When
environmental conditions favor growth of the host population above the threshold, host–
pathogen interactions lead to delayed density dependence in reservoir prevalence. The resultant
ecological delay may provide a neglected opportunity for outbreak prediction in zoonoses.

Key words: critical host density; deer mice; delayed density dependence; ecological cascade; ecological
forecasting; Peromyscus maniculatus; Sin Nombre virus; zoonoses.

INTRODUCTION

Many of the animal reservoir hosts of important human
pathogens live in highly variable environments that induce

strong ecological cascade effects in their dynamics (Jones

et al. 1998, Saitoh and Takahashi 1998, Linthicum et al.

1999, Ostfeld and Keesing 2000, Kausrud et al. 2007).

Predicting outbreaks of these infections is particularly

challenging because reservoir abundance can consequent-

ly be extremely variable in space and time. Sin Nombre
virus (SNV) circulates in wild deer mice (Peromyscus

maniculatus; see Plate 1), causes hantavirus pulmonary

syndrome (HPS) with 30–40% case fatality in humans,

and is a classic illustration of the complexity of the

interaction among climate, animal host ecology, and

zoonoses (Parmenter et al. 1993, Yates et al. 2002). SNV

was first recognized in 1993 after it caused an outbreak of
HPS in the southwestern United States (CDC 1993).

Human-to-human transmission is extremely rare, and this

deadly outbreak was linked to increased primary produc-

tivity, highmouse density, and zoonotic transmission after

an El Niño event brought increased precipitation to this

usually arid region (Parmenter et al. 1993, Yates et al.
2002). This highlights the importance of understanding the

reservoir host and pathogen dynamics, which can be key in

controlling and preventing HPS and other zoonoses.

However, when SNV is present in a local mouse

population, it does not seem to follow typical temporal

patterns of incidence or prevalence expected for a directly

transmitted pathogen. For example, one would expect to

see increased prevalence with increased density. However,

the field data are mixed, only rarely showing a positive

correlation between mouse density and SNV infection

prevalence in the mouse population (Boone et al. 1998),

and often showing either no relationship (Mills et al. 1997,

Calisher et al. 1999) or inverse density dependence with

higher prevalences at lower densities (see Appendix: Fig.

A1; Douglass et al. 2001, Calisher et al. 2005).

We apply a quantitative approach in a highly variable

zoonotic system to understand when there is increased risk

of HPS and also to examine how the key theoretical

concepts in disease ecology, such as the basic reproductive

number (R0, the expected number of secondary cases from

a single case in a fully susceptible population) and the

critical host density (Nc) in governing invasion of

pathogens with density-dependent transmission, relate to

highly variable systems. We formulate a stage-structured

(age class) SI (susceptible–infected) model for the deer

mouse–SNV interaction, which we parameterize from 15

years of monthly field data from a site in Cascade County,

Montana, USA, (Fig. 1) and validate against data from a

separate field site near Polson, Montana, USA, with very

different temporal patterns of host abundance and virus

prevalence. We analyze how stochastic (e.g., climatic)

forcing of demographic rates affects the pathogen
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dynamics, how the pathogen affects the host population
dynamics, and the conditions required for circulation of
the virus.

METHODS

The model

Our epidemiological model includes background host
population dynamics with three functional age classes,
juveniles (J ), subadults (SA), and adults (A), and since
infection is life-long (Mills et al. 1999a), two classes with
respect to the virus, susceptible (S ) or infected (I ),
determined by antibody positivity. To reduce the
dimensionality of the model, we omit a juvenile-infected
class, because juvenile infection in nature is very rare and
antibodies when they do occur are likely maternally
derived. Similarly, host sex is not included, although sex
differences may be important at the individual scale (e.g.,
Kuenzi et al. 2001, Douglass et al. 2007); males and
females are considered the same. This leads to five host
classes: juveniles (J ), susceptible subadults (SSA), infected
subadults (ISA), susceptible adults (SA), and infected
adults (IA). The model includes logistic growth (after Gao
and Hethcote 1992), where the host population experi-
ences density dependence in both birth and death rates,
which are determined by a time-varying carrying
capacity, Kt. Transmission is assumed to be density
dependent (Luis et al. 2012), and maturation from
juveniles to subadults is assumed constant (m1). Because
the presence of adults is known to inhibit subadults from
maturing and becoming reproductive (Millar 1989), we
assume maturation from subadult to adult depends on
the density of adults, where m2 is the maximum
maturation rate (in the absence of adults). We include a
parameter for disease-induced mortality (l), since we
recently documented that SNV infection decreases deer
mouse survival (Douglass et al. 2001, 2007, Luis et al.
2012). The resulting set of equations is

dJ

dt
¼ A b� ar

N

Kt

� �
� J d þ ð1� aÞr N

Kt

� �
� Jm1

dSSA

dt
¼ Jm1 � SSA d þ ð1� aÞr N

Kt

� �
� b1SSAI

� SSAm2 1� A

Kt

� �

dISA

dt
¼ b1SSAI � ISA lþ d þ ð1� aÞr N

Kt

� �

� ISAm2 1� A

Kt

� �

dSA

dt
¼ SSAm2 1� A

Kt

� �
� SA d þ ð1� aÞr N

Kt

� �
� b2SAI

dIA

dt
¼ b2SAI þ ISAm2 1� A

Kt

� �

� IA lþ d þ ð1� aÞr N

Kt

� � ð1Þ

where N is the total population size, A is the adult

population size (SA þ IA), I is the total number of
infected individuals for both age classes (ISA þ IA), b is

the maximum birth rate (in absence of density depen-
dence, i.e., when N ¼ 0), d is the minimum death rate,

and a is the proportion of density dependence due to
density dependence in birth rates. If a ¼ 0, then birth

rates are density independent, and all the density
dependence seen is due to density dependence in the

death rates, and conversely, if a¼ 1, then all the density
dependence is in the birth rates. r is b � d. b1 is the

transmission rate for subadults, and b2 is the transmis-
sion rate for adults. As a secondary analysis, we

estimated the importance of immigration of infected
mice. For this, we added a constant immigration term,

/, to dIA/dt. The transmission rates estimated without
immigration may then be too high to fit the observed

dynamics, so at the same time, we estimated an
additional parameter, a, as a multiplier on the trans-

mission rates. For instance, b2SAI is replaced with
ab2SAI. All of the parameters were estimated using field

data. Tables 1 and 2 summarize all variables and
parameters with respective maximum likelihood esti-

mates.
For our model the basic reproductive number for a

population at equilibrium is

R0 ¼
b1N*DSA þ b2N*DA

lþ d þ ð1� aÞrp
ð2Þ

where N* is the equilibrium population size, and D is the
stable age distribution, so that DSA and DA are the

proportion of the population that is made up of
subadults and adults, respectively, at equilibrium. For

a population not at equilibrium due to fluctuations in
the carrying capacity, N *DSA and N *DA could be

replaced with SAt and At, and p could be replaced with
Nt/Kt. However, this will still be an approximation for

time-varying systems because the vital rates and age
distribution may change over time (see Discussion).

Since the virus has density-dependent transmission,
and R0 is a function of density, there will be a critical

host density, Nc, below which the virus cannot invade
(when R0 falls below 1; Anderson 1981). For our model,

the critical host density is

Nc ¼
lþ d þ ð1� aÞrp

b1DSA þ b2DA

: ð3Þ

In the absence of disease, the population reaches the

disease-free equilibrium, N*
DF¼ pK, where p is a constant

of proportionality. Note that this equilibrium is less than

K (by about 12% with the given vital rates) because of
the age-structured interactions and the presence of

nonreproducing age classes. K would be the population
size if juveniles contributed to reproduction. Increasing

K leads to a linear increase in R0 and a nonlinear
increase in the equilibrium prevalence once the critical

host density, Nc, is exceeded (Appendix: Fig. A3).
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Data

To parameterize the model, we used 15 years of

monthly mark–recapture data from two trapping grids

(3 km apart) in Cascade County, central Montana, USA

(46859.30 N, 111835.30 W) from June 1994 through

December 2008. This site is an agricultural grassland

supporting an active, low-density cattle ranch. To

validate the model, we used out of sample data from a

trapping grid near Polson, Montana, USA (47838.40 N,

114820.70 W). This site, 220 km from the Cascade site, is

sagebrush scrub occasionally grazed by cattle. Deer mice

accounted for over 85% of the small mammal assem-

blage (Douglass et al. 2001). Live-trapping occurred for

three consecutive nights each month at the Cascade

grids. The Polson grid was not trapped during the winter

months. Grids consisted of 100 trap stations equally

spaced in a square of 1 ha with one Sherman live trap

(H. B. Sherman Traps, Talahassee, Florida, USA) per

station. Individuals were tagged with uniquely num-

bered ear tags and classified into age classes based on

weight according to the definitions of Fairbairn (1977).

Since the mouse abundances on the two grids at Cascade

were significantly correlated (Pearsons product moment

correlation test on minimum number alive (MNA); R¼
0.77, P , 0.001; Luis et al. 2010), data from the two

grids were lumped together. Since infection is lifelong,

individuals were considered infected if they had detect-

able antibodies to SNV (except for juveniles, as

explained in Methods) by enzyme-linked immunosor-

bent assay (Mills et al. 1999a) at the Montana

Department of Health and Human Services or at Viral

Special Pathogens Branch, Centers for Disease Control

and Prevention, Atlanta, Georgia, USA. For a detailed

description of the field and laboratory methods, see

Douglass et al. (2001).

Parameter estimation

We used mouse captures on the two grids as an index

for density of the five classes. The disease-induced

reduction in monthly survival probability for infected

deer mice was estimated using mark–recapture statistical

modeling (Luis et al. 2012). This probability was

converted to a rate for the estimate of disease-induced

mortality, l (according to rate ¼�log(1 � probability)/

Dt, where Dt is the trapping interval). We numerically

integrated the ODEs (Eq. 1) using the lsoda function

from the deSolve package for R software (R Develop-

ment Core Team 2010). Since we did not have an

independent measurement of the time varying K, we

estimated this function nonparametrically (using

smoothing splines) using a two-step protocol. We first

used the simplifying assumption that density reflected Kt

with a few months time lag. The crude assumption in

this first step is that demographic change is relatively

fast compared to environmental change. We investigated

various time lags, but finally used a smoothed spline of

the MNA four months ahead as our initial proxy of Kt.

Conditional on this, we estimated the remaining

parameters in the model from the mouse time-series

data using trajectory-matching (Wood 2001) maximum

likelihood, assuming Poisson errors (e.g., Bolker 2008).

For this, we numerically minimized the negative log-

likelihood between the model and the vectors of

abundance for the five classes over the whole trajectory

(i.e., trajectory matching) using the Nelder-Mead

algorithm implemented in the optim function. For the

statistical estimation, we assume that all of the

parameters are nonnegative, and a to be a proportion,

constrained to the interval 0–1. Parameters were

constrained using inverse log or logit transforms, as

appropriate. In the second step, we used these estimated

parameter values to produce a maximum likelihood

estimate of the time-varying carrying capacity, Kt, by

optimizing the coefficients (as done for the other

parameters) of the basis functions of a polynomial

TABLE 1. Notation used to denote model variables.

Variables Definition

J number of juveniles
SSA number of susceptible subadults
ISA number of infected subadults
SA number of susceptible adults
IA number of infected adults
A total number of adults
I total number of infected individuals
N total number of individuals
K carrying capacity
N* equilibrium population size
N*

DF disease-free equilibrium population size

FIG. 1. Deer mouse density (solid black line) over the study period in relation to the critical host density, Nc (dotted black line),
as well as density of infected mice (red line; scale on right) at the Cascade field site (Cascade County, Montana, USA).

June 2015 1693PREDICTABILITY IN SNV OUTBREAKS
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spline with 10 degrees of freedom (chosen to select the
smallest degrees of freedom that showed the overall

trend in the data). For simplification, these methods
assume that all the error between the model and the data

is measurement error and that all environmental process
stochasticity is captured by the time-varying Kt.

Analysis

R0 and Nc were calculated by setting dISA/dtþ dIA/dt

¼ 0 (Anderson 1991). To analyze the lags between
population density and antibody prevalence, we used the
cross-correlation function (CCF) to find the lag that

gave the largest correlation for both the data and model.
We also ran simulations using a push disturbance, from

K¼ 25 to K¼ 60, to determine the effect of the different
parameters on the dynamics. Elasticities of the param-

eters were calculated by individually increasing each
parameter (b, d, m1, m2, b1, b2, a, and l) by 5% and
determining the percentage of change in the lag between

maximum density and maximum prevalence. We also
ran simulations with different values of K and deter-

mined the time lag between maximum density and
maximum prevalence. Additionally, for different values
of K, starting from equilibrium in the absence of infected

individuals, we determined how long it took to reach five
infected individuals from one initial infection. Although

it is difficult to set a threshold level above which the
public is at greater risk, five infected individuals per

hectare is above the background level seen at the
Cascade site.
There were multiple colinearities in the parameters

(see Appendix: Fig. A6 for profile likelihoods), so the
the variance–covariance matrix was not definite posi-

tive. Therefore, we used the Moore-Penrose generalized
inverse of the Hessian (pseudoinverse in the corpcor
package in R) and a generalized Cholesky decomposi-

tion (gchol in the bdsmatrix package) to produce a
pseudo-variance matrix (Gill and King 2004). To get a

measure of uncertainty for our estimate of Nc, using
mvrnorm in the MASS package of R (Venables and

Ripley 2002), we took 1000 random samples from the

multivariate normal distribution, using our parameter
estimates as the means, and the pseudo-variance–

covariance matrix. Using these parameter values, we
determined the interquartile range for Nc (Bolker

2008).

Model validation

To validate the model, we used MNA and MNI
(minimum number infected) estimates from the trapping

grid near Polson, Montana, USA. The correlation of the
times series of mouse abundances between the Cascade
and Polson sites were low (R¼ 0.26). The demographic

and epidemiological parameter estimates (b, d, m1, m2,
b1, b2, a, and l) for the Cascade site were used here.

Since cross-correlation analysis revealed that MNA
lagged behind Kt by approximately three months for

the Cascade site, we set the time-varying Kt for the
Polson model to a smoothed spline of the MNA at this
site three months ahead. This site was not trapped over

winter. To fill in the missing months, we interpolated
mouse MNA linearly between the last fall measurement

and the first spring measurement. All other parameters
were set to those estimated from the Cascade site
(independent from validation data). Pearson’s product

moment correlation test and Bartlett’s test was used to
compare the number of infected mice at Polson to the

out of sample model predictions for the corresponding
time points.

RESULTS

Maximum likelihood estimates of the model param-

eters are given in Table 2. Using these parameter
estimates, we estimate the critical host density to be 17

mice/ha (interquartile range 7–35). The mouse popula-
tion was below this critical threshold 57% of the time at
the Cascade field site (Fig. 1). R0 ranged from 0.19

(when the population was at its lowest density) to 5.73
(at highest density), with a mean of 1.27 and a median of

0.96.
We estimate the time-varying carrying capacity, Kt,

nonparametrically using a smoothing spline (Fig. 2A,

TABLE 2. Model parameters, their maximum likelihood estimates (with CI in parentheses), and definitions.

Parameters Maximum likelihood estimate Definition

b 0.315 (0.295–0.337) maximum birth rate (when N ¼ 0)
d 3.66 3 10�5 (2.13 3 10�12–627) minimum death rate (when N ¼ 0)
a 0.614 (0.607–0.622) proportion of the density dependence attributable to births
m1 2.12 (1.92–2.33) maturation rate from juvenile to subadult
m2 1.05 (0.941–1.17) maximum maturation rate (when A ¼ 0) from subadult to adult
b1 3.87 3 10�3 (3.22 3 10�3–4.66 3 10�3) transmission rate for subadults
b2 1.50 3 10�2 (1.46 3 10�2–1.53 3 10�2) transmission rate for adults
/ 0.033 (0.015–0.073) constant immigration rate of infected adult mice
a 0.770 (0.642–0.862) multiplier on transmission rates for models with immigration
r 0.315 b � d
p 0.879 proportion of K that is the disease-free equilibrium ðN*

DF ¼ pKÞ
found numerically

l 0.085 disease-induced mortality rate (Luis et al. 2012)
DSA 0.215 proportion of the population made up of subadults at N*

DF
DA 0.737 proportion of the population made up of adults at N*

DF

Note: All rates are per month.
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heavy solid line). The cross-correlation function (CCF)

reveals that the rodent abundance generally lags behind

Kt by three months (CCF(3) ¼ 0.856), which is not

surprising given our original assumption used for

demographic parameter estimation. However, this lag

is slightly longer when the population is increasing and

less when the population is decreasing (Fig. 2A).

Our previous work has shown that SNV-induced

mortality (l) can be significant in the natural rodent host

(Douglass et al. 2001, 2007, Luis et al. 2012). Disease-

induced mortality was estimated from a mark-recapture

study as described in Luis et al. (2012), and as we

discussed there, this is likely to be an underestimate, due

to the combination of incubation period, time to

detectable antibodies, and intertrapping interval. There-

fore, we explored the effect of varying l on the pathogen

dynamics. The disease-induced mortality affects both R0

and the critical host density. With the estimated

parameters, if there was no disease-induced mortality,

the critical host density would be as low as 9 mice/ha;

increasing l from 0.085 to 0.2 would increase the critical

host density to 26 mice/ha.

The presence of disease-induced mortality also dem-

onstrates that SNV has the potential to regulate its host

below the disease-free equilibrium. The strength of the

impact on the population is largely determined by the

prevalence, which is a function of previous density and

the carrying capacity (Appendix: Fig. A3). During the

study, SNV infection prevalence reached as high as 30%,

during which time our model suggests the host

population had been regulated to almost 20% below

the disease-free equilibrium.

Although we have assumed density-dependent trans-

mission, the prevalence is not predicted to increase with

density in an instantaneous fashion. On the contrary, the

model predicts environmental fluctuations to induce an

overall negative relationship between current density and

prevalence at the Cascade site and an overall pattern of

delayed density-dependence in prevalence. Both of these

predictions are clearly borne out in the data (Appendix:

Figs. A1, A2). These patterns are due to fluctuations in

the mouse population. The dominant lag between a peak

in abundance and a peak in prevalence for the Cascade

site was 16 months in the data (R ¼ 0.367, P , 0.0001,

CCF ¼ 0.348; Appendix: Fig. A2a), exactly as predicted

by the model (R ¼ 0.90, P , 0.0001, CCF ¼ 0.737;

Appendix: Fig. A2b). This 16-month lag is a result of the

dominant peak in mouse abundance and the subsequent

peak in mouse infection prevalence (Fig. 1).

The simulated mouse abundance and infected mouse

abundance from the model without immigration are a

little behind those in the data (Fig. 3A), potentially due

to the smoothing of K and the deterministic model

framework lacking immigration of infected mice, as

discussed in Discussion. Therefore, we added an

immigration rate to the infected adult class. A constant

monthly immigration of 0.033 infected mice per month

and a corresponding 23% reduction in the transmission

rate improved the fit to the major outbreak that

occurred in the Cascade data (Fig. 3B). These changes

to the model raise the estimate of the critical host density

slightly to 18 mice/ha.

Using simulations, we find that the lag between a peak

in density and a peak in prevalence when the population

FIG. 2. Mouse population density observed (light dashed line), the carrying capacity, K (heavy solid line), and model simulated
density (heavy dashed line) for the (A) Cascade and (B) Polson (Polson, Montana, USA) sites. K for the Cascade site was estimated
as a smoothed spline with 10 degrees of freedom. For the Polson site, MNA (minimum number alive) three months ahead (with
winter months interpolated) was used as a proxy for K. N is mice/ha.
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is allowed to come to equilibrium is inversely related to

R0 (Fig. 4B, dashed line). With higher K values, the

population reaches equilibrium and maximum preva-
lence faster (Fig. 4A) because of the associated increase

in R0. To illustrate, for various constant K values,

starting from equilibrium in the absence of infected
individuals, we analyze how long it will take to reach five

infected individuals from one initial infection (above

background levels; Fig. 4B). The predicted time lag
ranged from 37 to 4 months, as K was varied from 25 to

75. This illustrates how the 16-month lag that was

dominant at the Cascade site was a result of how high
the population density reached and for how long during

2002 and 2003 (Fig. 1). If there had been a larger peak in

mouse density, the peak CCF would occur at a shorter
lag. The elasticity analysis indicated that the transmis-

sion rate of the adults, b2, is the most influential

parameter on the lag time, causing a 5.5% decrease in lag
time with a 5% increase in the parameter value

(Appendix: Fig. A5). The proportion of density

dependence acting on births vs. deaths (a) was the most
important demographic parameter (Appendix: Fig. A5).

The confidence intervals for the maximum likelihood

estimate of d were quite large, but the elasticity analysis
reveals this parameter has little effect on the dynamics.

Although the temporal patterns of infected hosts

differ significantly between the Cascade site and a
distant site (independent data from parameter estima-

tion, Polson, Montana; Pearson production moment

correlation, P ¼ 0.41, R ¼ 0.09), our model parameter-
ized from the Cascade site does a fair job at predicting

the viral dynamics at this distant site (Fig. 3). The only

input for the model was the initial values for the stage
classes, and the proxy for the time-carrying capacity,

MNA three months ahead. Model-predicted and ob-

served-number infected have a correlation of R ¼ 0.75

(correlation coefficient, with P , 0.01 by Bartlett’s test)

in this out of sample model validation. The addition of

an immigration term to the model had little effect on the
fit to the Polson data (Fig. 3C, D).

DISCUSSION

This is the most comprehensive study to date of SNV

and deer mouse population dynamics, including age-

structured demographic and epidemiological parameter
estimates, transmission rates, R0, critical host density,

and impact on the host population dynamics, using

detailed, long-term demographic data. The analyses
reveal that approximately 17 mice/ha are necessary for

pathogen invasion, and 57% and 20% of the time at the

Cascade and Polson sites, respectively, the population
was below this critical threshold. This finding explains

the sporadic disappearance of the virus and why most

reintroductions of the virus result in stuttering chains of
transmission rather than major epizootics. SNV in deer

mice, therefore, appears to often be at the edge of local

persistence: the virus persists at the metapopulation
rather than local scale (Grenfell and Harwood 1997,

Glass et al. 2000).

A critical consequence of host population fluctuations
and frequent local extinction of the virus is the

dominance of nonequilibrium and transient dynamics.

The two most commonly used formulations for disease
transmission are density-dependent and frequency-de-

pendent transmission (McCallum et al. 2001). Under

equilibrium conditions, density-dependent transmission
results in a positive correlation between abundance and

prevalence. Conversely, if transmission is frequency

dependent, prevalence should remain roughly the same
with varying host densities. Seemingly paradoxically, in

SNV, we, as well as others (Douglass et al. 2001,

Calisher et al. 2005), see a significantly negative

FIG. 3. Density of infected mice observed (thin dashed line), and model predicted (black solid line) for the (A and B) Cascade
and (C and D) Polson field sites. Panels (A and C) show model fit without an immigration term and panels (B and D) show model
fit with an immigration term. I is the total number of infected individuals for both age classes.
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correlation (Appendix: Fig. A1). This negative correla-

tion is due to the nonequilibirum dynamics (e.g., from a

constantly changing carrying capacity) leading to

delayed density dependence, such that prevalences lag

densities by 8–16 months (Yates et al. 2002, Madhav et

al. 2007, Adler et al. 2008, this study). Note that with

delayed density dependence, a positive relationship or

no relationship may also be observed between current

density and prevalence (as seen in, for example, Mills et

al. 1997, Boone et al. 1998, Calisher et al. 1999, Biggs et

al. 2000), depending upon the pattern of population

fluctuation. The combination of fluctuating populations

and a delay between a peak in density and a peak in

prevalence has been proposed before to explain the

inconsistent density–prevalence relationship for infec-

tions in rodents (Yates et al. 2002, Davis et al. 2005). We

provide a mechanism for this delay and show that the

delays may not be fixed (e.g., at one year, as seen in

Yates et al. 2002) but depend on host density, potentially

making the relationship not apparent using CCF (or

plotting the correlation between density and prevalence

at various time lags). However, CCF may be helpful in

indicating the range of lags.

While in the model transmission is in fact density

dependent, it can take many months to reach equilib-

rium or a maximum in prevalence after an increase in

the carrying capacity and a subsequent increase in

mouse density, and often, before enough transmission

occurs to generate an outbreak, the population density

has begun to decline due to temporal decreases in the

carrying capacity. Such nonequilibrium dynamics

reduce the likelihood of outbreaks, because it is not

enough for the mouse population to be above Nc, but it

must be high enough for long enough to sustain a chain

of transmission to produce an outbreak. In the

southwestern United States, at least two years of

high-risk conditions were necessary for SNV to reach

high prevalence (Glass et al. 2002). Whenever the

population density remains high enough for long

enough, the lag between peak density and prevalence

depends on all the demographic and epidemiological

parameters (because they affect R0), as well as the time-

varying carrying capacity. This explains why the delay

in density dependence varies within and between field

sites (Carver et al. 2011) in response to how the

underlying carrying capacity differs between sites and

at different times. As R0 or Kt increases, so does the

rate of spread of the pathogen, allowing the system to

approach equilibrium faster and thus decrease the time

lag between peak density and prevalence (Fig. 4). In the

same way that diseases with a lower R0 have a higher

age at first infection (Anderson and May 1991), a more

slowly circulating virus may take a number of months

to build to a maximum prevalence after an increase in

density. This delay allows for a potential opportunity

to forecast increases in SNV infection in the mouse

reservoir.

The model parameterized from the Cascade site was
able to simulate the dynamics at the Polson site with R¼
0.75. Admittedly, the model is not able to replicate the

somewhat stronger seasonality seen at the second site.
Seasonality in birth rates and transmission (not included
in the model) may explain why prevalence often peaks in

the spring in more seasonal environments (Douglass et
al. 2001, Kuenzi et al. 2005, Madhav et al. 2007). Note
that the only input to the model for Polson was the local

mouse abundance data three months ahead used as a
proxy for the time-varying carrying capacity. Estimating
the spline function for the carrying capacity, as we did at

the Cascade site, was not done here, but could
potentially improve the fit.

We find that immigration of infected individuals is

important at Cascade, where the density is often below

FIG. 4. (A) The number, N, of infected mice predicted over
time at different population densities if we allow the population
to come to an equilibrium. The dashed lines show when the
infection peaks. As density is increased, the peak in I, the total
number of infected individuals for both age classes (subadults
and adults; ISA þ IA), is higher and occurs sooner. (B) The lag
between a peak in density and the peak in prevalence (dashed
line) when the population is allowed to come to equilibrium are
negatively correlated with N (mice/ha) and R0 (the expected
number of secondary cases from a single case in a fully
susceptible population). The number of months it takes to reach
five infected individuals from one initial infection (above
background levels; solid line). For models with infected
immigrants, the curves shift slightly to the right because of
corresponding decreases in the transmission rate.
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the critical host density and there is local fade-out of

infection. There was more than a year in which there

were no infected mice at the Cascade site, and the chain

of transmission was broken. In our deterministic model,

the number of infected mice dropped to a small fraction.

When the carrying capacity eventually increased above

the critical host density, the infection took longer to

build from this low level than if there had been one

infected mouse introduced. The addition of a constant

immigration improved the fit to the major outbreak that

occurred there. However, at Polson, where the density is

consistently above Nc (and the chain of transmission is

rarely broken), the addition of infected immigrants did

not alter the dynamics substantially (Fig. 3). Even with

the addition of immigration, we do not capture a smaller

peak that occurred at Cascade in 1997. Perhaps

surrounding areas were experiencing higher population

densities and higher prevalences and leading to higher

immigration of infected individuals.

The inherent lags between mouse density and

infection prevalence may lead to the potential to forecast

outbreaks. Once the mouse population density reaches

above the critical host density of 17 mice/ha, there is a

possibility of an outbreak if mouse density remains high.

For example, if mouse population density reaches 40

mice/ha and remains there for six to eight months, an

outbreak is likely. We call 5–10 infected mice/ha an

outbreak (above background levels seen at Cascade).

Fig. 4 shows the time to reach five infected mice with the

introduction of one infected mouse and also the time to

reach equilibrium, which is significantly longer. Once the

mouse population reaches this density, public officials

could begin prevention strategies such as public an-

nouncements. If, instead, the mouse population increas-

es from below Nc to only 25 mice/ha, there is a chance of

an outbreak only if the density remains at that level for

more than 18 months. So in this instance, there may be

many months warning and more time for intervention

strategies. For sites such as Cascade, which are at the

edge of local persistence, it is likely that during those

next 18 months the mouse population density will drop

below Nc once again and an outbreak may never occur.

Nevertheless, an understanding of the relationship

between time lags in mouse density and infection

prevalence provides additional warning for the potential

for an outbreak.

Our theoretical quantifications of R0 and Nc provide

important new insights into the maintenance and

metapopulation dynamics of Sin Nombre hantavirus

within the reservoir in Montana. We gain these insights

using the broad-brush equilibrium assumptions that the

rodent carrying capacity is constant and that stage

structure is stationary. Obviously, these heuristic equi-

librium assumptions are at odds with our overall take-

PLATE 1. Juvenile deer mouse (Peromyscus maniculatus). Photo credit: A. D. Luis.
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home message that ecological transience, which was

ever-present during the course of our study, is the source

of intermediate-term predictability in hantavirus dy-

namics. For example, whenever the age structure of the

fluctuating host population is skewed toward older

individuals (which have a higher transmission rate), R0

would transiently be higher and Nc would be lower.

Moreover, rodent vital rates depend on abundance (Nt)

in relation to current carrying capacity (Kt). When

abundance is lower than K, infected (and all) mice tend

to live longer, increasing their infectious period and

opportunities to transmit the infection to others. In the

real world, the infectious period will change over time in

response to how abundance changes with respect to

changes in Kt. We calculate that over the course of our

study, the infectious period was variable with a mean of

six months and an interquartile range of 4.6–6.9

months. Using a moving average over this range, we

calculate an interquartile range of 12.6–18.3 for Nc. At

any point in time, to truly know if one infected

individual will replace itself over its lifetime would

require knowledge of the future, what its infectious

period will be, and the continuous trajectory of the age

structure of the population over that period. The fact

that both R0 and Nc are nonstationary and widely time-

varying may require a shift in how we forecast risk of

human spillover in this system.

We found that the rate at which adult mice become

infected is almost four times greater than that for

subadults (b2 and b1, respectively; Table 2). This is

probably due to much of the transmission occurring

through aggressive contacts, which are more common in

reproductively active individuals (Glass et al. 1988, Mills

et al. 1997). This is consistent with numerous field

studies showing that older, heavier mice are more likely

to be infected (i.e., Abbott et al. 1999, Mills et al. 1999b,

Douglass et al. 2001). A second reason for the age bias is

that since the virus is often circulating with a low R0, the

mean age of infection will be high even when contact

patterns are random (Anderson and May 1991).

Since SNV causes disease induced mortality (Luis et

al. 2012), it has the potential to regulate the host

population. Here, the strength of regulation largely

depends on the prevalence of the virus, which is

determined by the carrying capacity. During the study,

prevalence reached as high as 30%, and during that time,

the population will have been regulated to almost 20%
below the disease-free equilibrium, according to our

analysis. Although, in this system, the bottom-up

control by climatic drivers appears to be the main driver

in this system (Luis et al. 2010) and responsible for

approximately 95% of the fluctuation in abundance in

our model, SNV may nevertheless be a significant

regulating force at high densities.

Disease-induced mortality also has important conse-

quences for the disease dynamics. Disease-induced

mortality effectively reduces the infectious period and

decreases R0, making the virus less likely to persist

locally. The addition of disease-induced mortality in the

model increases the critical host density necessary to

sustain an epidemic from an estimated 10 mice/ha to 17

mice/ha.

How transmission scales with host density in wildlife

populations is an open issue. There is evidence for

density-dependent transmission (Ramsey et al. 2002),

frequency-dependent transmission (transmission scales

with the proportion infected; McCallum et al. 2009), and

functions in between density- and frequency-dependent

transmission (Smith et al. 2009). We focus here on

density-dependent transmission, because it was support-

ed in our capture–mark–recapture study (Luis et al.

2012) and provided good out of sample validation.

Alternative transmission functions were explored, in-

cluding frequency-dependent transmission, and two

different flexible forms that could include transmission

functions between density and frequency dependence.

While these alternative transmission functions fit the

original time series adequately, the density-dependent

model provided the better out of sample validation

(Appendix: Fig. A7).

This relatively simple deterministic model neglects

several factors that may be important in the dynamics.

Demographic stochasticity could increase estimates of

Nc and decrease R0, most often when I , 10. Testing the

importance of demographic stochasticity, process noise,

stochastic immigration of infected individuals, stuttering

chains of transmission, and adding seasonality in

demographic processes are the next steps to improve

the fit of the model and understand the underlying

processes driving the observed dynamics. Additionally,

refinements of the estimates of the time-varying carrying

capacity for both field sites, including environmental

covariates (e.g., Luis et al. 2010), may be valuable in

improving predictive power of the model.

Since we have very limited data on viral shedding, we

must use antibodies as a marker of infection and

infectiousness. Generally infection is lifelong, though

in a few cases, antibodies may wane, and the virus may

be undetectable for periods with viral recrudescence

(Mills et al. 1999a, Kuenzi et al. 2005). There is some

evidence for increased infectiousness in the first few

months after infection (Botten et al. 2002), which could

affect the dynamics. However, our model ignores these

points and predicts the dynamics quite well, possibly

because most mice do not live for more than a few

months after antibody conversion.

Various studies focused in the southwestern United

States have attempted to find refugia of endemic SNV

circulation using remote sensing (Glass et al. 2002,

2007). Since densities at the Polson site were often above

the critical susceptible density (Nc), this habitat type

may represent such a refugium in Montana. However,

even at this site the chain of transmission was frequently

broken and abundance was below Nc more than 20% of

the time. Further research is therefore needed to identify

habitat characteristics associated with rodent densities
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above Nc and whether SNV persists as a core-satellite

metapopulation, where the infection is endemic in

certain favorable patches, or whether long-term local

persistence does not occur and persistence is only at the

regional metapopulation scale (Grenfell and Harwood

1997).

Although further studies are needed to refine esti-

mates and on the applicability of this approach to other

systems, our study demonstrates that monitoring of

zoonotic reservoir populations may provide advance

warning of the possibility of an outbreak, potentially

providing public health officials time to implement

prevention strategies.
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