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The risk of zoonotic spillover from reservoir hosts, such as wildlife or dom-
estic livestock, to people is shaped by the spatial and temporal distribution
of infection in reservoir populations. Quantifying these distributions is a key
challenge in epidemiology and disease ecology that requires researchers to
make trade-offs between the extent and intensity of spatial versus temporal
sampling. We discuss sampling methods that strengthen the reliability
and validity of inferences about the dynamics of zoonotic pathogens in
wildlife hosts.

This article is part of the theme issue ‘Dynamic and integrative
approaches to understanding pathogen spillover’.

1. Introduction

At any point in space and time, the risk of pathogen spillover from reservoir
hosts to humans, or to other animals, is a function of the intensity of infection
within reservoir host populations [1]. Spillover risk is then shaped by a series of
processes including the release of infectious particles from reservoir hosts,
response of pathogen survival to the environment, behaviours that affect
exposure of recipient hosts, and biologically driven susceptibility of recipient
hosts [1]. Here, we focus on the dynamics of infection in wildlife reservoirs
that determine how pathogen intensity is distributed in space and time.

Quantification of these dynamics is necessary to predict and manage
zoonotic transmission [2]. Emerging zoonoses often appear suddenly in novel
recipient hosts, and sampling of reservoir hosts (hosts in which the pathogen
is maintained [3]) is initiated before the dynamics of the zoonosis are fully
characterized. Therefore, sampling often is opportunistic or haphazard and is
guided by sparse information on, for example, the observed patterns of spil-
lover and the natural history of the reservoir host. Moreover, information on
the pathogen in reservoir hosts, which often tolerate infection with no apparent
clinical symptoms or pathology [4], is difficult to obtain. Catching, restraining
and sampling hosts, or testing excreta such as urine or faeces, is usually
required [5,6], and can be logistically intensive, expensive and hazardous.
Therefore, we address how sampling can be designed to minimize these
challenges while maximizing information gain.

Design of any sampling strategy requires clear specification of objectives
(table 1). The fundamental objective of sampling to inform management of
spillover is to identify times and places at which the risk of spillover is elevated.
If the reservoir hosts of an emerging pathogen are not well characterized, a wide
variety of potential hosts must be sampled to determine whether and the extent
to which they can be infected by the pathogen [7]. In other situations, the reservoir
hosts are known and are subject to pathogen incursions from other locations (e.g.
[8]). Here, we review sampling strategies for situations in which one or more poten-
tial reservoir species have been identified, and the pathogen may be endemic. We
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goal

identify distribution of
reservoir hosts and how
those hosts and
populations are connected
through space and time

identify times and places
with high prevalence in
reservoir hosts

identify causes of high
prevalence in reservoir
hosts

identify patterns of
transmission in the
reservoir host

estimate risk of spillover to
recipient hosts across
space and time to predict
future events

explore interventions to
reduce prevalence or
magnitude of an
epidemic, or eradicate
infection from reservoir
hosts

objectives

estimate the spatial distribution and
density of reservoir hosts

estimate the spatial and temporal
extents of connections between

reservoir host units

determine coarse-resolution patterns of
prevalence in reservoir hosts,
variation in prevalence among
reservoir host populations, and the
spatial extent of infection

estimate the spatial and temporal
autocorrelation of infectious animals
or populations

estimate the infectious period,
exogenous and endogenous
covariates associated with infection,
and shedding loads

identify covariates associated with
increased susceptibility or
transmission

estimate rates of change of prevalence
to inform the temporal resolution of
sampling

investigate the pathogen’s potential to
persist in the environment

describe when, where, and how
reservoir and recipient host species
interact

estimate rate of epidemic growth and
reproductive number (Ro)

estimate rates of effective vaccination
or culling

design effective implementation
strategies (e.g. ring vaccination or
culling, treatments at the infection
front)

Table 1. lllustrative goals and objectives motivating studies of pathogens in reservoir hosts.

data needed

spatially explicit presence and absence
of marked or unmarked animals

movements of known and
instrumented individuals

population-level genetics on individuals
and groups

spatially and temporally replicated
prevalence and seroprevalence

within- and among-population
prevalence (or seroprevalence if the
refractory period is short relative to
the host lifespan) in space and time
and over life-history stages

pathogen status, load, immunity and
demography of infected and
uninfected hosts

time-series of cases or seroconversions
in space from same locations

longitudinal sampling of individual
infection status to identify change in
infection state of individuals over
time

age-stratified prevalence or
seroprevalence

biotic and abiotic environmental
attributes at small and large spatial
extents and resolutions

contacts among individuals

multispecies (sero)surveys to identify
high-prevalence hosts in areas with
high prevalence

comparative studies of exuded load per
host across host species to
understand variation in pathogen
release among host species

prevalence over time and duration in
infection class

age-stratified prevalence or
seroprevalence and demographic
data

sampling approaches

aerial or ground surveys that
account for detection
probability and use a
robust design

probabilistic, spatially and
temporally stratified
sampling of reservoir host
populations

adaptive sampling of
probabilistically selected,
higher-prevalence sites

probabilistic sampling of
populations with high,
moderate and low
prevalence

longitudinal sampling of
individuals and
populations

probabilistic, spatially and
temporally stratified
sampling of reservoir host
populations

longitudinal sampling during
epidemics at invasion

zones
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do not cover well-described statistical approaches such as
power and sample size analyses. We also simulate a theoretical
wildlife disease to illustrate how spatial and temporal variabil-
ity or synchrony in infection dynamics can inform sampling
decisions and inferences about disease dynamics.

2. Processes driving the distribution and
synchrony of pathogens in reservoir hosts

(a) Spatial and temporal distribution and intensity
The distribution and intensity of infection in reservoir hosts
vary among individuals and among populations in space
and time. This variation is driven by many within- and
between-host factors, including host demography and
movement, transmission rates, infectious periods and herd
immunity. Below we describe the factors that influence spatial
and temporal variation. In most instances, there is little a priori
information to decipher the drivers of variation, and these
knowledge gaps must be addressed with sampling (table 1).

When a pathogen first invades a population of hosts,
transmission dynamics may be synchronized through the
invasion process [9]. Such invasion dynamics may character-
ize West Nile virus and avian influenza H5N1 invasion in
wild birds in the USA, or Zika virus invasion in marmosets
(Callithrix species) in Brazil [10-12]. During this phase, the
basic reproduction number, Ry, the average number of sec-
ondary infections generated over an individual’s infectious
period when infection is rare [13], is a powerful distillation
of the efficiency of pathogen spread. Beyond the initial
stage of pathogen invasion, however, R, does not capture
all fundamental elements of pathogen dynamics that affect
the distribution of infection in space and time. For example,
a pathogen that produces an acute (short-lived) immunizing
infection with high transmission and mortality rates might
spread quickly through local host populations and then
fade out, to be reintroduced after the pool of susceptible
hosts is replenished. Such short-lived epidemics of Yersinia
pestis in rats, for example, may explain the sporadic outbreaks
of bubonic plague in humans in both fourteenth to sixteenth
century Europe [14] and modern urban Madagascar [15]. By
contrast, another pathogen with a comparable Ry, but a long
infectious period and low transmission rate, may persist in
the same population for long periods, eventually producing
a spatially and temporally stable infection intensity as
exemplified by Mycobacterium bovis in white-tailed deer
(Odocoileus virginianus) in Michigan, USA [16].

Once a pathogen has established in the reservoir host
populations, within-host factors (e.g. duration of infection
within hosts) interact with the population dynamics,
density and movement of reservoir hosts to determine the
distribution of infection among hosts [17-19]. The intensity
of infection within individuals is governed by immune
responses and pathogen life history. Because individuals
acquire immunity, they typically have higher pathogen
loads during their first infection than during subsequent
infections. For example, juvenile Rousettus aegyptiacus bats
that excreted high levels of Marburg virus during their first
infections were linked to spillover of the virus to humans in
Uganda [20]. Similarly, pathogen burden and shedding
rates can vary over the course of infection as a function of
changes in the immune response, microbiome and pathogen

distribution within the host tissues. Bank voles (Clethrionomys [ 3 |

glareolus) infected with Puumala virus shed high titres of
virus during the acute phase of infection and low titres
during the chronic phase of infection [21]. Pathogen levels
also can rise if host individuals are infected with multiple
pathogens or are immunocompromised by physiological or
environmental stress. Laboratory mice infected with both
worms and bacteria, for example, shed more of both for
longer than those infected with either pathogen in isolation
[22], and bats (Pteropus alecto) are hypothesized to excrete
zoonotic viruses during winter, when environmental stress
drives reactivation of latent viruses [23—25], but not during
summer, when food is abundant [26].

(b) Synchrony

The nature of the transmission process usually leads to
synchrony in the distribution of infection among individuals
at some spatial scale. Tobler’s first law of geography states
‘near things are more related than distant things’ [27].
Accordingly, the correlation of values of a variable through
space (spatial autocorrelation) and time (temporal autocorre-
lation) is usually positive. Understanding spatial synchrony
of infection [28] can help inform sampling design.

Synchrony of infections within populations can arise
through myriad processes that drive pathogen transmission
(electronic supplementary material, table S1). These include
processes that drive synchrony of animal populations
(dispersal, social organization and Moran effects (correlation
between population size or density that is linearly related
to the correlation between their environments), figure 1),
processes that drive synchrony of population-immunity
(e.g. the strong and directional autocorrelation of invasion,
the influx of susceptibles through birth, and synchronization
of susceptibility through stress from environmental pertur-
bations), and processes that drive synchrony of exposure,
such as pathogen survival (e.g. the response of influenza
survival to humidity [29] and of Hendra virus survival to
temperature [30]), or behaviour (e.g. winter consumption of
date-palm sap by humans in Bangladesh [31]). Synchrony
of transmission commonly is seasonal, especially in temper-
ate zones [32]. Efficient sampling of the distribution of
infection requires estimating the spatial and temporal scales
at which infection dynamics in the reservoir host are synchro-
nized and the extent to which variability or trends in those
dynamics are predictable [32].

The spatial extent of synchrony depends on the extent of
the process driving synchrony. When host movement drives
infection dynamics, spatial autocorrelation is driven by the
rate of host movement relative to the infectious period of
the pathogen [33]. For example, the more thoroughly mixed
the contacts among populations, and the longer the infectious
period, the lower the spatial variability in infection dynamics
(figure 2c,d). However, acute pathogens in hosts with high
connectivity may be as thoroughly mixed as chronic patho-
gens in hosts with low connectivity [33]. If movement rates
of hosts are not high enough to ensure transmission to new
subpopulations before recovery from infection, infection can
become trapped in subgroups [35]. For example, the spread
of measles, an acute disease, is limited in regions where
walking is a more common mode of transportation than
motorized vehicles [36]. By contrast, measles occurred in
waves across the UK prior to vaccination [37] because great
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Figure 1. Mechanisms governing spatial and temporal patterns and structure of disease dynamics include dispersal of individuals, social organization and synchrony
of host populations and Moran effects. For each mechanism, the color on the spatial prevalence panel indicates the time at which the local outhreak began, and the
circles represent the extent of the pathogen in space. The prevalence curves in the local temporal dynamics panel show prevalence through time at the epicentre of
each local outbreak. In (a), dispersal of infected hosts (bighorn sheep with red circles) produces spatial and temporal autocorrelation consistent with the movement
patterns of the primary host. In (b), synchronous demographic or behavioural dynamics within the host species produce synchrony in spatial and temporal dynamics
of prevalence within all host populations. In (c), Moran effects across populations create synchrony among populations experiencing similar environmental conditions.
Here, we imagine that limited nutritional availability consistently increases host susceptibility to infection during autumn in forest populations. This leads to syn-
chronous outbreaks in all forest populations that experience the nutrient deficit, without simultaneous outbreaks in populations in locations that are not forested.
(ases are infected individuals.
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Figure 2. A simulation of pathogen dynamics in reservoir host populations with varying autocorrelation of prevalence in space (populations) and time (days). Preva-
lence falls along spatial and temporal gradients of variability. In (a), variability is high over space but low over time (e.g. chronic infections with highly variable
prevalence over locations but stable prevalence over time such as hepatitis B in human populations) [34]. In (b), variability is high over space and time (e.g.
acute pathogens such as canine distemper virus in carnivores at the extent of the USA). In (c), variability is low over space and time, as with chronic, endemic
pathogens in highly connected populations, such as herpes simplex virus in human populations. In (d), variability is low over space but high over time, as in
highly contagious infections with seasonal transmission such as influenza. Methods for the simulations are described in electronic supplementary material, Methods.

variability over time

distances could be travelled by car or train within the two- to synchronous pathogen extinction across all infected
week infectious period. High movement rates relative to populations. Understanding host movement relative to the
infectious periods create synchronous dynamics across pathogen’s infectious period is critical to inform sampling.

populations, maintenance of herd immunity and dampening Unpredictable spatial synchrony in transmission can be

of epidemics [38]. However, high synchrony also can lead generated through synchronous environmental stochasticity
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[39]. Stochastic perturbations in climate or extreme events
such as hurricanes and fires have synchronized parasitic dis-
ease in grouse (Lagopus lagopus scoticus) [39,40] and have been
hypothesized to cause pulses of viral shedding from bats
(Pteropus species) [38,41]. Comparing the extent of synchro-
nous infection dynamics with the extent of environmental
variation can be useful for causal inference [42].

Truly decoupled dynamics across space or time, where
dynamics vary chaotically among populations or depend
on factors that are limited in space and time (figure 2b),
also can occur. Isolation, for example on islands, may foster
uncoupling from other populations, and reduce the likeli-
hood of pathogen persistence, particularly if populations
are small and infectious periods are short relative to host
lifespans [33]. Complex transmission feedbacks within popu-
lations may drive spatial asynchrony. For example, longer
infectious periods in older bighorn sheep (Ovis canadensis)
may drive feedbacks that result in either high or low endemic
states of pneumonia-causing Mycoplasma ovipneumoniae
depending on the age-structure of the population at first
infection [43]. These feedbacks could create dynamics that
are relatively independent across space but have temporal
trends. Thus, sampling multiple populations across space,
with many sampling points through time, is essential to
make inferences that can be generalized across all infected
bighorn sheep populations [44,45].

3. Sampling the distribution of infection
in reservoir hosts

(a) Basic sampling principles

Designing a sampling strategy that identifies how pathogens
are distributed in space and time is challenging. In particular,
trade-offs between the spatial extent of sampling and inten-
sity of sampling are ubiquitous. Sampling intensity should
be informed by temporal and spatial variability in prevalence
(the proportion of infected individuals in a population) and
by spatial and temporal autocorrelation. In general, more
sampling is required in more variable and less autocorrelated
systems. The observed autocorrelation depends on resolution
of observation and units for sampling and analysis (e.g. indi-
viduals, populations or regions; days, months or years),
which must reflect the objectives of the study (table 1). For
example, canine distemper virus in wolves (Canis lupus)
might appear patchily distributed at coarse resolution (e.g.
counties within Montana), but synchronous at fine resolution
(e.g. Yellowstone National Park [46]). If the resolution of data
collection is coarse, one may infer that infection dynamics are
spatially independent (figure 2a,b), whereas finer-resolution
sampling within a more limited spatial extent may indicate
spatial homogeneity (figure 2c,d). Neither choice is erro-
neous, as long as the inferences are aligned with the scale
of investigation. Ultimately, however, trade-offs between
spatial versus temporal sampling, and decisions on the resol-
ution and units of analysis, are decided by the prioritization
of objectives and resources available for sampling.

To draw valid statistical inferences from field data, theory
generally prescribes sampling randomly in space and time
[47]. However, for logistical reasons, probabilistic sampling
(random selection of samples in which all units have equal
probability of being selected) is rare in animal epidemiology.

For example, social hosts, such as bats that roost in a common “

location, are not randomly distributed, and it is also challen-
ging to randomly sample bats within these roosts [48].
Stratified random sampling or other generalized random stra-
tified designs may be more feasible while achieving a
spatially well-balanced random sample and valid inferences
[49-52]. The stratification can be informed by knowledge of
seasonal peaks in prevalence and concentrations of infection
to focus efforts in high-risk places and times. Sampling also
continues at times and in locations where risk of infection
is thought to be low. Designs with unequal probability selec-
tion based on an auxiliary variable also can be considered in
such cases.

Stratified random sampling is less feasible for pathogens
for which prevalence responds to ephemeral environmental
drivers, or to transient dynamics in the reservoir host. In
these circumstances, one may wish to implement adaptive
sampling, in which probabilistic sampling is complemented
by more-intensive spatial and temporal sampling during an
outbreak or spillover. Opportunistic sampling often is
deployed following spillover in an effort to isolate pathogens
or identify reservoir hosts [53]. However, if opportunistic
sampling is accompanied by some probabilistic sampling, it
typically provides more insight into the spatial and temporal
dynamics of infection [54—-58].

Although adaptive sampling designs are valuable for
maximizing data collection around mortality events or spill-
over, or for sampling when there is little a priori
information, simulations suggest that statistical power to
detect temporal trends in infection dynamics is greater
when populations are sampled repeatedly and consistently
over a long period of time (e.g. monthly over a few years)
than when a given population is sampled for a short period
of time, albeit repeatedly [59] (box 1; e.g. daily or weekly
over a few months). Alternative sampling designs [59,73,74]
are robust to infrequent sampling, distant sites and large
spatial extents. These include: rotating panels, which
sample each site repeatedly but during temporal windows
that do not fully overlap; augmented, serially alternating
panels, which complement rotating panels with consistent
sampling of one location; and partially augmented, serially
alternating panels, in which infrequent sampling of a given
location periodically is complemented with frequent
sampling of the location (box 1 and table 2).

Another framework that recently has emerged from the
disease ecology literature is model-guided fieldwork [75],
where mathematical models of pathogen dynamics are devel-
oped a priori to guide field data collection. Modellers and
biologists work together to incorporate multiple hypotheses
and uncertainty about the structure of dynamics and then
iterate between models and measurement. Such approaches
can facilitate transdisciplinary research and lead to more
robust inferences.

(b) Targeted approaches to increase information about
prevalence

Prevalence is usually inferred from spatially and temporally
explicit data on individual infection or exposure status.
These data are usually information-weak because the out-
come of every sample is binary (infected or not infected),
and the outcomes may be subject to error. In addition
to simply increasing the number of individuals sampled,
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Box 1. Sampling to characterize pathogen prevalence in reservoir hosts.

To illustrate how sampling methods affect interpretation of pathogen dynamics, we used R [60] to simulate infection in a
reservoir host as a random realization of a binomial point process [61] (figure 3); see the electronic supplementary material
for more information and R code. The kernel-smoothed intensity of this process illustrates spatial and temporal concen-
trations of infection. We simulated sampling of this hypothetical host over space and time with different designs. Points
and thick lines in figure 3 indicate the prevalence estimated by each sampling design. Although this simulation is a clear
oversimplification of reality (e.g. no population structure, no underlying mechanistic model of infection dynamics), this
serves as a heuristic tool to illustrate the variation in inference about prevalence estimates from different spatio-temporal
sampling designs.

In opportunistic or haphazard designs, nearby populations are sampled following a spillover event (A). For example, the
emergence of severe acute respiratory syndrome in 2002 in Guangdong Province, China was followed rapidly by surveys of
mammals in wet markets [62]. Similarly, the emergence of Hendra virus in Brisbane, Australia in 1994 was followed by sur-
veys of wild and domestic animals through Queensland [63]. Although important for isolating virus and identifying reservoir
hosts, opportunistic or haphazard sampling may overestimate prevalence, may not capture both spatial and temporal vari-
ation in infection dynamics, and may limit the validity of inferences about the population [47]. Repeated (i.e. longitudinal)
sampling of single or a few populations (B, C) is common in disease ecology [64—67]. However, longitudinal sampling across
a broad number of spatially replicated populations is rare during epidemiological surveillance of wildlife [68]. Opportunistic
sampling of multiple populations may be complemented with repeated sampling of one population (e.g. [69]). Longitudinal
sampling often is conducted at regular intervals (e.g. every four months), and such designs can capture or consistently fail to
detect temporal peaks in viral shedding from reservoirs.

Because pathogen transmission processes are temporally dynamic, even coarse-resolution spatial sampling must be tem-
porally explicit. Estimates of prevalence from one population at one point in time may be misleading if disease dynamics are
sufficiently rapid that prevalence changes substantially over the study period. For example, a cross-sectional sample of a
travelling wave epidemic could bias estimates of spatial variance if different populations are at troughs and peaks of preva-
lence. Nevertheless, estimates of prevalence that are based on pooling of samples in space or time frequently are reported in
the literature [70].

Random sampling can reduce bias that results from sampling at regular intervals (D). Although sampling with random
designs may reduce bias in estimates of spatial and temporal infection dynamics, it may not capture temporal trends within
a given location. Furthermore, random samples may be clustered in time and space. Additionally, random selection
of sampling locations may have less statistical power than intentional selection of sampling locations [71]. Moreover, truly
random sampling may not make sense for certain taxa, such as central-place foragers (e.g. many bats), which are most
easily sampled at locations that are not randomly distributed (e.g. roosts) [48]. Stratified random sampling in space and
time [72] may be more effective. For example, in E, two samples are drawn from each region. Another alternative to
random sampling is adaptive sampling (F), in which random sampling is augmented by more-intensive sampling in the
spillover region. This design reduces bias associated with longitudinal surveys while capitalizing on opportunistic sampling
following spillover (e.g. virus isolation).

Panels F through I illustrate designs from the sampling literature [59,73,74]. Rotating panels (G) sample each site a finite
number of times; as sampling of each site ceases, sampling of another site begins. Although rotating panels can help infer
fine-resolution temporal dynamics efficiently over space, they also can restrict broader longitudinal analyses and may
change the state of the epidemiological system if sampling of a given site occurs too frequently [73]. Serially alternating
sampling is similar to rotating sampling but increases the interval between samples of each site. Both the rotating and the
serially alternating designs can be augmented with longitudinal sampling of single or multiple sites (e.g. H). The partially
augmented, serially alternating design replaces longitudinal sampling of one site with sampling of multiple sites at consecu-
tive intervals (I). Prior simulations suggested that the power of augmented, serially alternating and partially augmented,
serially alternating sampling to detect temporal trends is greater than that of rotating sampling [59]. However, given that
these designs include replicated sampling over time per multiple sites, their implementation can require ample sampling
effort and therefore resources in terms of personnel, time and funding.

the information content of wildlife field samples can be
augmented in several ways.

Information on ages of sampled animals is useful because
age—seroprevalence or age—prevalence curves can be used to
estimate transmission rates [17]. Seroconversion of juveniles
provides clear evidence of ongoing pathogen transmission
within a population. If juveniles seroconvert each year, the
pathogen is likely to be persistent and endemic in that popu-
lation rather than infrequent and oscillatory. Serosurveys of
juveniles are particularly useful in systems where long-lived
circulating antibodies are the only measurable indication of
exposure (e.g. African bat henipaviruses, in which RNA

rarely is found, and virus has not yet been isolated [76,77]),
as long as maternal immunity is not mistaken for juvenile
exposure [78]. Sampling of isolated populations (e.g. [76])
similarly can help distinguish between pathogen persistence
at the population level versus spatially and temporally
patchy transmission.

Seroprevalence can be useful for monitoring spatial and
temporal trends in prevalence if few individuals are infected
at any point in time (e.g. with infectious periods short or
transmission rates low), or if detection is difficult (e.g.
lethal sampling is required to test whether lyssaviruses
are present in most mammals [79]). However, if antibodies
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Table 2. Sampling designs used in studies of pathogen dynamics in reservoir hosts.”

sampling design description

opportunistic nearby populations are sampled

following a spillover event

single longitudinal repeated sampling of single

population over time

replicated repeated sampling of multiple

longitudinal populations over time

random sample random distribution of sampling

events over space and time

random stratified random sampling from

predetermined regions in
space and time

adaptive sampling random sampling augmented by

intensive spatio-temporal sampling
near outbreaks

rotating panel each site is sampled x number of

times and then the next site is
sampled x times

augmented serial increases the between-site interval

panel from a rotating panel design, adds
a longitudinal study for one site

partially augmented replaces the longitudinal sampling of

serial the augmented serial panel with
repeated sampling of multiple sites

See box 1 for references.

persist for long periods relative to the lifespan of individual
hosts, seroprevalence can remain relatively stable over time,
even if pathogen prevalence oscillates or the pathogen is
extinct locally [80].

Longitudinal sampling of even a small number of known
animals over the course of their infections can place prelimi-
nary constraints on disease process parameters, which in
turn may prove useful for identifying the duration of infec-
tion and immunity with stratified or adaptive sampling of
populations. This strategy has been used to study wildlife
diseases in diverse hosts, from bighorn sheep [43] to bats
[81,82]), and is essential for elucidating the within-host
dynamics of poorly understood bat viruses [23].

One may identify spatial extents and resolutions for
investigation of spillover risk by focusing early sampling at
invasion fronts, as suggested for non-native invasive species
[9,83,84]. Informal adaptive sampling often is employed
following spillover events, but it would be valuable to use
formal adaptive sampling [54-58]. Focused sampling at
invasion fronts facilitates explicit estimation of transmission,
recovery and disease-induced mortality rates before herd

advantages

isolating pathogen, identify

reservoir hosts, pragmatic

infer some temporal dynamics

infer some spatial and temporal

dynamics

reduce bias from sampling at

regular intervals

more likely to obtain a

representative spatial and
temporal sample

reduce bias while capturing

benefits of opportunistic
sampling (e.g. isolating
pathogen)

infer fine-resolution temporal

dynamics efficiently over space

higher power for trend detection,

longitudinal analysis possible,
less likely to modify system

higher power for trend detection,

longitudinal analysis possible,
minimized bias

disadvantages

overestimate prevalence, cannot capture
spatial or temporal variation, skew
inference of prevalence

cannot capture spatial variation, regular
intervals could consistently miss
shedding pulses

logistically challenging, regular intervals
could consistently miss shedding pulses

may not capture spatial or temporal
variation when truly random, may not
be feasible for many species

may require greater effort than a simple
random sample

uncertainty in final sample size

few longitudinal samples from any one
population, can modify system if
sampling of given sites is too frequent

may require greater effort in terms of
time and funding

may require greater effort in terms of
time and funding

immunity shapes dynamics. Moreover, higher public health
burdens are often observed at the invasion front because
epidemic curves in the reservoir hosts peak at those fronts,
exerting high pathogen pressure. Moreover, human popu-
lations at invasion fronts rarely are well prepared to reduce
spillover [11]. Sampling at the invasion front can be informed
by an iterative process of data assessment, dynamic model-
ling, spatial and temporal forecasting and model validation
[60]. Adaptive sampling, which complements random or
random stratified sampling across space and time with
focused sampling (e.g. in the region and months following
a spillover event), also could be informative, but rarely has
been implemented [56,85-87].

(c) Characterization of spatial and temporal dynamics
If there is no recent outbreak epicentre, various statistical
approaches can be used to estimate the spatial and temporal
structure of a pathogen to inform the sampling design. At
most scales of observation, infection dynamics have some
level of spatial and temporal dependence that decreases
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Figure 3. Allocation of sampling effort over time (months) and space (e.g. along a latitudinal gradient) and consequences for inference of pathogen prevalence.
Grey shading in panel (a) denotes the underlying spatial and temporal pattern in infection prevalence (the kernel-smoothed intensity of a random realization of a
binomial point process). Open circles represent sampling locations. Colours indicate sampling location. Panel (b) illustrates the observed and true temporal trends in
infection prevalence across sampling sites. Thin lines indicate the known infection prevalence over the annual cycle, whereas filled circles are estimated prevalence
values given each design and ignoring error in estimation of the prevalence. Thick lines indicate the observed time-series of infection prevalence and only connect
points from a single location; locations that are only sampled once within a design have no corresponding thick line. Heuristic sampling designs are as follows:
opportunistic (A), single longitudinal (B), replicated longitudinal (C), randomized (D), random stratified (E), adaptive (F), rotating (G), augmented, serially alternating
(H) and partially augmented, serially alternating (I). Sampling effort is held relatively constant across A to F and G to | (for which designs can require higher
sampling effort). Methods for the simulations are given in electronic supplementary material, Methods.

with distance or time. Understanding the extent of spatial
and temporal autocorrelation can inform the allocation of
sampling effort [59,73,74]; this can be accomplished formally
through exploratory tools such as correlograms (e.g. plotting
the between-site correlation as a function of between-site
distance) or semivariograms, for which semivariance is mod-
elled as a function of spatial and temporal lags [88]. Pairs or
clusters of samples within regions can be compared with
samples among regions to estimate spatial autocorrelation.
For example, Tobin [84] demonstrated that within a given
spatial extent, sampling clusters of points estimated spatial
autocorrelation more accurately than sampling evenly
distributed but distant points.

The larger the extent of spatial dependence, the further
the sampling units (e.g. sampled populations) can be from
each other to make general inferences about risk across a
landscape. For example, systems with little spatial variability—
e.g. highly connected systems and those in which the infectious
period is long relative to the lifespan of the host (e.g.
figure 2¢,d )—require sampling of a small number of spatially
disparate populations. In this case, more frequent sampling
of one or two locations may be more informative than infre-
quent sampling of many locations. By contrast, spatially
asynchronous infections may require infrequent sampling of
many locations across the ranges of the pathogen and host.

In theory, the lower the temporal variance, the less
frequently one needs to sample. Surveillance of the temporal
dynamics of infection often is systematic, with sampling at
regular intervals within single or multiple populations, and
this is often dictated by logistical and funding constraints.
For example, the Soay sheep (Ovis aries) population of
St Kilda, Scotland, UK was sampled annually to reveal

long-term fluctuations in parasite prevalence [64], and vam-
pire bats (Desmodus rotundus) were sampled annually and
biannually to reveal endemic viral and bacterial pathogens
[65,66]. However, systematic sampling of a population in
which prevalence is either extrinsically driven and seasonal
or endogenous and epidemic may not detect temporal
peaks in prevalence, particularly if the interval between
samples is similar to or longer than the periodicity in the
pathogen cycles or the peaks in epidemics. Random or rotat-
ing sampling designs can reduce the likelihood of this type of
bias (box 1 and table 2). When temporal variance is high, as
in cases with seasonal oscillations or multiple-year peaks, the
sampling interval should reflect the periodicity of the disease.
In such cases, generalized random stratified approaches may
be used to avoid the pitfalls of systematic sampling and the
clumping of simple random sampling [49].

The most challenging pathogens to sample, and therefore
those that require the most-intense sampling, are those with
highly localized infection dynamics [38]. If only one popu-
lation is sampled, one erroneously might infer that all
populations have similar dynamics. Characterization of infec-
tion structure in these systems is best captured with random,
rotating or augmented sampling (box 1 and figure 3).

4. Conclusion

Uncertainty in predictions of spillover risk is reduced by
knowledge of the spatial and temporal distribution of infection
among populations of reservoir hosts. Financial and logistical
constraints often force one to make inferences on the basis of
small sample sizes and wide confidence intervals, and to
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make trade-offs between spatial and temporal replication.
Adopting wise design choices that are appropriate to the back-
ground dynamics of a particular system can extend the utility
of even sparse data, and is essential to efficiently understand
prevalence dynamics in reservoir host populations.
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