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The risk of zoonotic spillover from reservoir hosts, such as wildlife or dom-

estic livestock, to people is shaped by the spatial and temporal distribution

of infection in reservoir populations. Quantifying these distributions is a key

challenge in epidemiology and disease ecology that requires researchers to

make trade-offs between the extent and intensity of spatial versus temporal

sampling. We discuss sampling methods that strengthen the reliability

and validity of inferences about the dynamics of zoonotic pathogens in

wildlife hosts.

This article is part of the theme issue ‘Dynamic and integrative

approaches to understanding pathogen spillover’.
1. Introduction
At any point in space and time, the risk of pathogen spillover from reservoir

hosts to humans, or to other animals, is a function of the intensity of infection

within reservoir host populations [1]. Spillover risk is then shaped by a series of

processes including the release of infectious particles from reservoir hosts,

response of pathogen survival to the environment, behaviours that affect

exposure of recipient hosts, and biologically driven susceptibility of recipient

hosts [1]. Here, we focus on the dynamics of infection in wildlife reservoirs

that determine how pathogen intensity is distributed in space and time.

Quantification of these dynamics is necessary to predict and manage

zoonotic transmission [2]. Emerging zoonoses often appear suddenly in novel

recipient hosts, and sampling of reservoir hosts (hosts in which the pathogen

is maintained [3]) is initiated before the dynamics of the zoonosis are fully

characterized. Therefore, sampling often is opportunistic or haphazard and is

guided by sparse information on, for example, the observed patterns of spil-

lover and the natural history of the reservoir host. Moreover, information on

the pathogen in reservoir hosts, which often tolerate infection with no apparent

clinical symptoms or pathology [4], is difficult to obtain. Catching, restraining

and sampling hosts, or testing excreta such as urine or faeces, is usually

required [5,6], and can be logistically intensive, expensive and hazardous.

Therefore, we address how sampling can be designed to minimize these

challenges while maximizing information gain.

Design of any sampling strategy requires clear specification of objectives

(table 1). The fundamental objective of sampling to inform management of

spillover is to identify times and places at which the risk of spillover is elevated.

If the reservoir hosts of an emerging pathogen are not well characterized, a wide

variety of potential hosts must be sampled to determine whether and the extent

to which they can be infected by the pathogen [7]. In other situations, the reservoir

hosts are known and are subject to pathogen incursions from other locations (e.g.

[8]). Here, we review sampling strategies for situations in which one or more poten-

tial reservoir species have been identified, and the pathogen may be endemic. We
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Table 1. Illustrative goals and objectives motivating studies of pathogens in reservoir hosts.

goal objectives data needed sampling approaches

identify distribution of

reservoir hosts and how

those hosts and

populations are connected

through space and time

estimate the spatial distribution and

density of reservoir hosts

estimate the spatial and temporal

extents of connections between

reservoir host units

spatially explicit presence and absence

of marked or unmarked animals

movements of known and

instrumented individuals

population-level genetics on individuals

and groups

aerial or ground surveys that

account for detection

probability and use a

robust design

identify times and places

with high prevalence in

reservoir hosts

determine coarse-resolution patterns of

prevalence in reservoir hosts,

variation in prevalence among

reservoir host populations, and the

spatial extent of infection

estimate the spatial and temporal

autocorrelation of infectious animals

or populations

spatially and temporally replicated

prevalence and seroprevalence

within- and among-population

prevalence (or seroprevalence if the

refractory period is short relative to

the host lifespan) in space and time

and over life-history stages

probabilistic, spatially and

temporally stratified

sampling of reservoir host

populations

adaptive sampling of

probabilistically selected,

higher-prevalence sites

identify causes of high

prevalence in reservoir

hosts

estimate the infectious period,

exogenous and endogenous

covariates associated with infection,

and shedding loads

pathogen status, load, immunity and

demography of infected and

uninfected hosts

probabilistic sampling of

populations with high,

moderate and low

prevalence

identify patterns of

transmission in the

reservoir host

identify covariates associated with

increased susceptibility or

transmission

estimate rates of change of prevalence

to inform the temporal resolution of

sampling

time-series of cases or seroconversions

in space from same locations

longitudinal sampling of individual

infection status to identify change in

infection state of individuals over

time

age-stratified prevalence or

seroprevalence

longitudinal sampling of

individuals and

populations

estimate risk of spillover to

recipient hosts across

space and time to predict

future events

investigate the pathogen’s potential to

persist in the environment

describe when, where, and how

reservoir and recipient host species

interact

biotic and abiotic environmental

attributes at small and large spatial

extents and resolutions

contacts among individuals

multispecies (sero)surveys to identify

high-prevalence hosts in areas with

high prevalence

comparative studies of exuded load per

host across host species to

understand variation in pathogen

release among host species

probabilistic, spatially and

temporally stratified

sampling of reservoir host

populations

explore interventions to

reduce prevalence or

magnitude of an

epidemic, or eradicate

infection from reservoir

hosts

estimate rate of epidemic growth and

reproductive number (R0)

estimate rates of effective vaccination

or culling

design effective implementation

strategies (e.g. ring vaccination or

culling, treatments at the infection

front)

prevalence over time and duration in

infection class

age-stratified prevalence or

seroprevalence and demographic

data

longitudinal sampling during

epidemics at invasion

zones
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do not cover well-described statistical approaches such as

power and sample size analyses. We also simulate a theoretical

wildlife disease to illustrate how spatial and temporal variabil-

ity or synchrony in infection dynamics can inform sampling

decisions and inferences about disease dynamics.
publishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180336
2. Processes driving the distribution and
synchrony of pathogens in reservoir hosts

(a) Spatial and temporal distribution and intensity
The distribution and intensity of infection in reservoir hosts

vary among individuals and among populations in space

and time. This variation is driven by many within- and

between-host factors, including host demography and

movement, transmission rates, infectious periods and herd

immunity. Below we describe the factors that influence spatial

and temporal variation. In most instances, there is little a priori
information to decipher the drivers of variation, and these

knowledge gaps must be addressed with sampling (table 1).

When a pathogen first invades a population of hosts,

transmission dynamics may be synchronized through the

invasion process [9]. Such invasion dynamics may character-

ize West Nile virus and avian influenza H5N1 invasion in

wild birds in the USA, or Zika virus invasion in marmosets

(Callithrix species) in Brazil [10–12]. During this phase, the

basic reproduction number, R0, the average number of sec-

ondary infections generated over an individual’s infectious

period when infection is rare [13], is a powerful distillation

of the efficiency of pathogen spread. Beyond the initial

stage of pathogen invasion, however, R0 does not capture

all fundamental elements of pathogen dynamics that affect

the distribution of infection in space and time. For example,

a pathogen that produces an acute (short-lived) immunizing

infection with high transmission and mortality rates might

spread quickly through local host populations and then

fade out, to be reintroduced after the pool of susceptible

hosts is replenished. Such short-lived epidemics of Yersinia
pestis in rats, for example, may explain the sporadic outbreaks

of bubonic plague in humans in both fourteenth to sixteenth

century Europe [14] and modern urban Madagascar [15]. By

contrast, another pathogen with a comparable R0, but a long

infectious period and low transmission rate, may persist in

the same population for long periods, eventually producing

a spatially and temporally stable infection intensity as

exemplified by Mycobacterium bovis in white-tailed deer

(Odocoileus virginianus) in Michigan, USA [16].

Once a pathogen has established in the reservoir host

populations, within-host factors (e.g. duration of infection

within hosts) interact with the population dynamics,

density and movement of reservoir hosts to determine the

distribution of infection among hosts [17–19]. The intensity

of infection within individuals is governed by immune

responses and pathogen life history. Because individuals

acquire immunity, they typically have higher pathogen

loads during their first infection than during subsequent

infections. For example, juvenile Rousettus aegyptiacus bats

that excreted high levels of Marburg virus during their first

infections were linked to spillover of the virus to humans in

Uganda [20]. Similarly, pathogen burden and shedding

rates can vary over the course of infection as a function of

changes in the immune response, microbiome and pathogen
distribution within the host tissues. Bank voles (Clethrionomys
glareolus) infected with Puumala virus shed high titres of

virus during the acute phase of infection and low titres

during the chronic phase of infection [21]. Pathogen levels

also can rise if host individuals are infected with multiple

pathogens or are immunocompromised by physiological or

environmental stress. Laboratory mice infected with both

worms and bacteria, for example, shed more of both for

longer than those infected with either pathogen in isolation

[22], and bats (Pteropus alecto) are hypothesized to excrete

zoonotic viruses during winter, when environmental stress

drives reactivation of latent viruses [23–25], but not during

summer, when food is abundant [26].
(b) Synchrony
The nature of the transmission process usually leads to

synchrony in the distribution of infection among individuals

at some spatial scale. Tobler’s first law of geography states

‘near things are more related than distant things’ [27].

Accordingly, the correlation of values of a variable through

space (spatial autocorrelation) and time (temporal autocorre-

lation) is usually positive. Understanding spatial synchrony

of infection [28] can help inform sampling design.

Synchrony of infections within populations can arise

through myriad processes that drive pathogen transmission

(electronic supplementary material, table S1). These include

processes that drive synchrony of animal populations

(dispersal, social organization and Moran effects (correlation

between population size or density that is linearly related

to the correlation between their environments), figure 1),

processes that drive synchrony of population-immunity

(e.g. the strong and directional autocorrelation of invasion,

the influx of susceptibles through birth, and synchronization

of susceptibility through stress from environmental pertur-

bations), and processes that drive synchrony of exposure,

such as pathogen survival (e.g. the response of influenza

survival to humidity [29] and of Hendra virus survival to

temperature [30]), or behaviour (e.g. winter consumption of

date-palm sap by humans in Bangladesh [31]). Synchrony

of transmission commonly is seasonal, especially in temper-

ate zones [32]. Efficient sampling of the distribution of

infection requires estimating the spatial and temporal scales

at which infection dynamics in the reservoir host are synchro-

nized and the extent to which variability or trends in those

dynamics are predictable [32].

The spatial extent of synchrony depends on the extent of

the process driving synchrony. When host movement drives

infection dynamics, spatial autocorrelation is driven by the

rate of host movement relative to the infectious period of

the pathogen [33]. For example, the more thoroughly mixed

the contacts among populations, and the longer the infectious

period, the lower the spatial variability in infection dynamics

(figure 2c,d). However, acute pathogens in hosts with high

connectivity may be as thoroughly mixed as chronic patho-

gens in hosts with low connectivity [33]. If movement rates

of hosts are not high enough to ensure transmission to new

subpopulations before recovery from infection, infection can

become trapped in subgroups [35]. For example, the spread

of measles, an acute disease, is limited in regions where

walking is a more common mode of transportation than

motorized vehicles [36]. By contrast, measles occurred in

waves across the UK prior to vaccination [37] because great
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Figure 1. Mechanisms governing spatial and temporal patterns and structure of disease dynamics include dispersal of individuals, social organization and synchrony
of host populations and Moran effects. For each mechanism, the color on the spatial prevalence panel indicates the time at which the local outbreak began, and the
circles represent the extent of the pathogen in space. The prevalence curves in the local temporal dynamics panel show prevalence through time at the epicentre of
each local outbreak. In (a), dispersal of infected hosts (bighorn sheep with red circles) produces spatial and temporal autocorrelation consistent with the movement
patterns of the primary host. In (b), synchronous demographic or behavioural dynamics within the host species produce synchrony in spatial and temporal dynamics
of prevalence within all host populations. In (c), Moran effects across populations create synchrony among populations experiencing similar environmental conditions.
Here, we imagine that limited nutritional availability consistently increases host susceptibility to infection during autumn in forest populations. This leads to syn-
chronous outbreaks in all forest populations that experience the nutrient deficit, without simultaneous outbreaks in populations in locations that are not forested.
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Figure 2. A simulation of pathogen dynamics in reservoir host populations with varying autocorrelation of prevalence in space ( populations) and time (days). Preva-
lence falls along spatial and temporal gradients of variability. In (a), variability is high over space but low over time (e.g. chronic infections with highly variable
prevalence over locations but stable prevalence over time such as hepatitis B in human populations) [34]. In (b), variability is high over space and time (e.g.
acute pathogens such as canine distemper virus in carnivores at the extent of the USA). In (c), variability is low over space and time, as with chronic, endemic
pathogens in highly connected populations, such as herpes simplex virus in human populations. In (d ), variability is low over space but high over time, as in
highly contagious infections with seasonal transmission such as influenza. Methods for the simulations are described in electronic supplementary material, Methods.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180336

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 O

ct
ob

er
 2

02
3 
distances could be travelled by car or train within the two-

week infectious period. High movement rates relative to

infectious periods create synchronous dynamics across

populations, maintenance of herd immunity and dampening

of epidemics [38]. However, high synchrony also can lead
to synchronous pathogen extinction across all infected

populations. Understanding host movement relative to the

pathogen’s infectious period is critical to inform sampling.

Unpredictable spatial synchrony in transmission can be

generated through synchronous environmental stochasticity
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[39]. Stochastic perturbations in climate or extreme events

such as hurricanes and fires have synchronized parasitic dis-

ease in grouse (Lagopus lagopus scoticus) [39,40] and have been

hypothesized to cause pulses of viral shedding from bats

(Pteropus species) [38,41]. Comparing the extent of synchro-

nous infection dynamics with the extent of environmental

variation can be useful for causal inference [42].

Truly decoupled dynamics across space or time, where

dynamics vary chaotically among populations or depend

on factors that are limited in space and time (figure 2b),

also can occur. Isolation, for example on islands, may foster

uncoupling from other populations, and reduce the likeli-

hood of pathogen persistence, particularly if populations

are small and infectious periods are short relative to host

lifespans [33]. Complex transmission feedbacks within popu-

lations may drive spatial asynchrony. For example, longer

infectious periods in older bighorn sheep (Ovis canadensis)

may drive feedbacks that result in either high or low endemic

states of pneumonia-causing Mycoplasma ovipneumoniae
depending on the age-structure of the population at first

infection [43]. These feedbacks could create dynamics that

are relatively independent across space but have temporal

trends. Thus, sampling multiple populations across space,

with many sampling points through time, is essential to

make inferences that can be generalized across all infected

bighorn sheep populations [44,45].
3. Sampling the distribution of infection
in reservoir hosts

(a) Basic sampling principles
Designing a sampling strategy that identifies how pathogens

are distributed in space and time is challenging. In particular,

trade-offs between the spatial extent of sampling and inten-

sity of sampling are ubiquitous. Sampling intensity should

be informed by temporal and spatial variability in prevalence

(the proportion of infected individuals in a population) and

by spatial and temporal autocorrelation. In general, more

sampling is required in more variable and less autocorrelated

systems. The observed autocorrelation depends on resolution

of observation and units for sampling and analysis (e.g. indi-

viduals, populations or regions; days, months or years),

which must reflect the objectives of the study (table 1). For

example, canine distemper virus in wolves (Canis lupus)

might appear patchily distributed at coarse resolution (e.g.

counties within Montana), but synchronous at fine resolution

(e.g. Yellowstone National Park [46]). If the resolution of data

collection is coarse, one may infer that infection dynamics are

spatially independent (figure 2a,b), whereas finer-resolution

sampling within a more limited spatial extent may indicate

spatial homogeneity (figure 2c,d ). Neither choice is erro-

neous, as long as the inferences are aligned with the scale

of investigation. Ultimately, however, trade-offs between

spatial versus temporal sampling, and decisions on the resol-

ution and units of analysis, are decided by the prioritization

of objectives and resources available for sampling.

To draw valid statistical inferences from field data, theory

generally prescribes sampling randomly in space and time

[47]. However, for logistical reasons, probabilistic sampling

(random selection of samples in which all units have equal

probability of being selected) is rare in animal epidemiology.
For example, social hosts, such as bats that roost in a common

location, are not randomly distributed, and it is also challen-

ging to randomly sample bats within these roosts [48].

Stratified random sampling or other generalized random stra-

tified designs may be more feasible while achieving a

spatially well-balanced random sample and valid inferences

[49–52]. The stratification can be informed by knowledge of

seasonal peaks in prevalence and concentrations of infection

to focus efforts in high-risk places and times. Sampling also

continues at times and in locations where risk of infection

is thought to be low. Designs with unequal probability selec-

tion based on an auxiliary variable also can be considered in

such cases.

Stratified random sampling is less feasible for pathogens

for which prevalence responds to ephemeral environmental

drivers, or to transient dynamics in the reservoir host. In

these circumstances, one may wish to implement adaptive

sampling, in which probabilistic sampling is complemented

by more-intensive spatial and temporal sampling during an

outbreak or spillover. Opportunistic sampling often is

deployed following spillover in an effort to isolate pathogens

or identify reservoir hosts [53]. However, if opportunistic

sampling is accompanied by some probabilistic sampling, it

typically provides more insight into the spatial and temporal

dynamics of infection [54–58].

Although adaptive sampling designs are valuable for

maximizing data collection around mortality events or spill-

over, or for sampling when there is little a priori
information, simulations suggest that statistical power to

detect temporal trends in infection dynamics is greater

when populations are sampled repeatedly and consistently

over a long period of time (e.g. monthly over a few years)

than when a given population is sampled for a short period

of time, albeit repeatedly [59] (box 1; e.g. daily or weekly

over a few months). Alternative sampling designs [59,73,74]

are robust to infrequent sampling, distant sites and large

spatial extents. These include: rotating panels, which

sample each site repeatedly but during temporal windows

that do not fully overlap; augmented, serially alternating

panels, which complement rotating panels with consistent

sampling of one location; and partially augmented, serially

alternating panels, in which infrequent sampling of a given

location periodically is complemented with frequent

sampling of the location (box 1 and table 2).

Another framework that recently has emerged from the

disease ecology literature is model-guided fieldwork [75],

where mathematical models of pathogen dynamics are devel-

oped a priori to guide field data collection. Modellers and

biologists work together to incorporate multiple hypotheses

and uncertainty about the structure of dynamics and then

iterate between models and measurement. Such approaches

can facilitate transdisciplinary research and lead to more

robust inferences.

(b) Targeted approaches to increase information about
prevalence

Prevalence is usually inferred from spatially and temporally

explicit data on individual infection or exposure status.

These data are usually information-weak because the out-

come of every sample is binary (infected or not infected),

and the outcomes may be subject to error. In addition

to simply increasing the number of individuals sampled,



Box 1. Sampling to characterize pathogen prevalence in reservoir hosts.

To illustrate how sampling methods affect interpretation of pathogen dynamics, we used R [60] to simulate infection in a

reservoir host as a random realization of a binomial point process [61] (figure 3); see the electronic supplementary material

for more information and R code. The kernel-smoothed intensity of this process illustrates spatial and temporal concen-

trations of infection. We simulated sampling of this hypothetical host over space and time with different designs. Points

and thick lines in figure 3 indicate the prevalence estimated by each sampling design. Although this simulation is a clear

oversimplification of reality (e.g. no population structure, no underlying mechanistic model of infection dynamics), this

serves as a heuristic tool to illustrate the variation in inference about prevalence estimates from different spatio-temporal

sampling designs.

In opportunistic or haphazard designs, nearby populations are sampled following a spillover event (A). For example, the

emergence of severe acute respiratory syndrome in 2002 in Guangdong Province, China was followed rapidly by surveys of

mammals in wet markets [62]. Similarly, the emergence of Hendra virus in Brisbane, Australia in 1994 was followed by sur-

veys of wild and domestic animals through Queensland [63]. Although important for isolating virus and identifying reservoir

hosts, opportunistic or haphazard sampling may overestimate prevalence, may not capture both spatial and temporal vari-

ation in infection dynamics, and may limit the validity of inferences about the population [47]. Repeated (i.e. longitudinal)

sampling of single or a few populations (B, C) is common in disease ecology [64–67]. However, longitudinal sampling across

a broad number of spatially replicated populations is rare during epidemiological surveillance of wildlife [68]. Opportunistic

sampling of multiple populations may be complemented with repeated sampling of one population (e.g. [69]). Longitudinal

sampling often is conducted at regular intervals (e.g. every four months), and such designs can capture or consistently fail to

detect temporal peaks in viral shedding from reservoirs.

Because pathogen transmission processes are temporally dynamic, even coarse-resolution spatial sampling must be tem-

porally explicit. Estimates of prevalence from one population at one point in time may be misleading if disease dynamics are

sufficiently rapid that prevalence changes substantially over the study period. For example, a cross-sectional sample of a

travelling wave epidemic could bias estimates of spatial variance if different populations are at troughs and peaks of preva-

lence. Nevertheless, estimates of prevalence that are based on pooling of samples in space or time frequently are reported in

the literature [70].

Random sampling can reduce bias that results from sampling at regular intervals (D). Although sampling with random

designs may reduce bias in estimates of spatial and temporal infection dynamics, it may not capture temporal trends within

a given location. Furthermore, random samples may be clustered in time and space. Additionally, random selection

of sampling locations may have less statistical power than intentional selection of sampling locations [71]. Moreover, truly

random sampling may not make sense for certain taxa, such as central-place foragers (e.g. many bats), which are most

easily sampled at locations that are not randomly distributed (e.g. roosts) [48]. Stratified random sampling in space and

time [72] may be more effective. For example, in E, two samples are drawn from each region. Another alternative to

random sampling is adaptive sampling (F), in which random sampling is augmented by more-intensive sampling in the

spillover region. This design reduces bias associated with longitudinal surveys while capitalizing on opportunistic sampling

following spillover (e.g. virus isolation).

Panels F through I illustrate designs from the sampling literature [59,73,74]. Rotating panels (G) sample each site a finite

number of times; as sampling of each site ceases, sampling of another site begins. Although rotating panels can help infer

fine-resolution temporal dynamics efficiently over space, they also can restrict broader longitudinal analyses and may

change the state of the epidemiological system if sampling of a given site occurs too frequently [73]. Serially alternating

sampling is similar to rotating sampling but increases the interval between samples of each site. Both the rotating and the

serially alternating designs can be augmented with longitudinal sampling of single or multiple sites (e.g. H). The partially

augmented, serially alternating design replaces longitudinal sampling of one site with sampling of multiple sites at consecu-

tive intervals (I). Prior simulations suggested that the power of augmented, serially alternating and partially augmented,

serially alternating sampling to detect temporal trends is greater than that of rotating sampling [59]. However, given that

these designs include replicated sampling over time per multiple sites, their implementation can require ample sampling

effort and therefore resources in terms of personnel, time and funding.
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the information content of wildlife field samples can be

augmented in several ways.

Information on ages of sampled animals is useful because

age–seroprevalence or age–prevalence curves can be used to

estimate transmission rates [17]. Seroconversion of juveniles

provides clear evidence of ongoing pathogen transmission

within a population. If juveniles seroconvert each year, the

pathogen is likely to be persistent and endemic in that popu-

lation rather than infrequent and oscillatory. Serosurveys of

juveniles are particularly useful in systems where long-lived

circulating antibodies are the only measurable indication of

exposure (e.g. African bat henipaviruses, in which RNA
rarely is found, and virus has not yet been isolated [76,77]),

as long as maternal immunity is not mistaken for juvenile

exposure [78]. Sampling of isolated populations (e.g. [76])

similarly can help distinguish between pathogen persistence

at the population level versus spatially and temporally

patchy transmission.

Seroprevalence can be useful for monitoring spatial and

temporal trends in prevalence if few individuals are infected

at any point in time (e.g. with infectious periods short or

transmission rates low), or if detection is difficult (e.g.

lethal sampling is required to test whether lyssaviruses

are present in most mammals [79]). However, if antibodies



Table 2. Sampling designs used in studies of pathogen dynamics in reservoir hosts.a

sampling design description advantages disadvantages

opportunistic nearby populations are sampled

following a spillover event

isolating pathogen, identify

reservoir hosts, pragmatic

overestimate prevalence, cannot capture

spatial or temporal variation, skew

inference of prevalence

single longitudinal repeated sampling of single

population over time

infer some temporal dynamics cannot capture spatial variation, regular

intervals could consistently miss

shedding pulses

replicated

longitudinal

repeated sampling of multiple

populations over time

infer some spatial and temporal

dynamics

logistically challenging, regular intervals

could consistently miss shedding pulses

random sample random distribution of sampling

events over space and time

reduce bias from sampling at

regular intervals

may not capture spatial or temporal

variation when truly random, may not

be feasible for many species

random stratified random sampling from

predetermined regions in

space and time

more likely to obtain a

representative spatial and

temporal sample

may require greater effort than a simple

random sample

adaptive sampling random sampling augmented by

intensive spatio-temporal sampling

near outbreaks

reduce bias while capturing

benefits of opportunistic

sampling (e.g. isolating

pathogen)

uncertainty in final sample size

rotating panel each site is sampled x number of

times and then the next site is

sampled x times

infer fine-resolution temporal

dynamics efficiently over space

few longitudinal samples from any one

population, can modify system if

sampling of given sites is too frequent

augmented serial

panel

increases the between-site interval

from a rotating panel design, adds

a longitudinal study for one site

higher power for trend detection,

longitudinal analysis possible,

less likely to modify system

may require greater effort in terms of

time and funding

partially augmented

serial

replaces the longitudinal sampling of

the augmented serial panel with

repeated sampling of multiple sites

higher power for trend detection,

longitudinal analysis possible,

minimized bias

may require greater effort in terms of

time and funding

aSee box 1 for references.
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persist for long periods relative to the lifespan of individual

hosts, seroprevalence can remain relatively stable over time,

even if pathogen prevalence oscillates or the pathogen is

extinct locally [80].

Longitudinal sampling of even a small number of known

animals over the course of their infections can place prelimi-

nary constraints on disease process parameters, which in

turn may prove useful for identifying the duration of infec-

tion and immunity with stratified or adaptive sampling of

populations. This strategy has been used to study wildlife

diseases in diverse hosts, from bighorn sheep [43] to bats

[81,82]), and is essential for elucidating the within-host

dynamics of poorly understood bat viruses [23].

One may identify spatial extents and resolutions for

investigation of spillover risk by focusing early sampling at

invasion fronts, as suggested for non-native invasive species

[9,83,84]. Informal adaptive sampling often is employed

following spillover events, but it would be valuable to use

formal adaptive sampling [54–58]. Focused sampling at

invasion fronts facilitates explicit estimation of transmission,

recovery and disease-induced mortality rates before herd
immunity shapes dynamics. Moreover, higher public health

burdens are often observed at the invasion front because

epidemic curves in the reservoir hosts peak at those fronts,

exerting high pathogen pressure. Moreover, human popu-

lations at invasion fronts rarely are well prepared to reduce

spillover [11]. Sampling at the invasion front can be informed

by an iterative process of data assessment, dynamic model-

ling, spatial and temporal forecasting and model validation

[60]. Adaptive sampling, which complements random or

random stratified sampling across space and time with

focused sampling (e.g. in the region and months following

a spillover event), also could be informative, but rarely has

been implemented [56,85–87].
(c) Characterization of spatial and temporal dynamics
If there is no recent outbreak epicentre, various statistical

approaches can be used to estimate the spatial and temporal

structure of a pathogen to inform the sampling design. At

most scales of observation, infection dynamics have some

level of spatial and temporal dependence that decreases
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(G) rotating panel (H) augmented serial panel (I) partially augmented serial

Figure 3. Allocation of sampling effort over time (months) and space (e.g. along a latitudinal gradient) and consequences for inference of pathogen prevalence.
Grey shading in panel (a) denotes the underlying spatial and temporal pattern in infection prevalence (the kernel-smoothed intensity of a random realization of a
binomial point process). Open circles represent sampling locations. Colours indicate sampling location. Panel (b) illustrates the observed and true temporal trends in
infection prevalence across sampling sites. Thin lines indicate the known infection prevalence over the annual cycle, whereas filled circles are estimated prevalence
values given each design and ignoring error in estimation of the prevalence. Thick lines indicate the observed time-series of infection prevalence and only connect
points from a single location; locations that are only sampled once within a design have no corresponding thick line. Heuristic sampling designs are as follows:
opportunistic (A), single longitudinal (B), replicated longitudinal (C), randomized (D), random stratified (E), adaptive (F), rotating (G), augmented, serially alternating
(H) and partially augmented, serially alternating (I). Sampling effort is held relatively constant across A to F and G to I ( for which designs can require higher
sampling effort). Methods for the simulations are given in electronic supplementary material, Methods.
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with distance or time. Understanding the extent of spatial

and temporal autocorrelation can inform the allocation of

sampling effort [59,73,74]; this can be accomplished formally

through exploratory tools such as correlograms (e.g. plotting

the between-site correlation as a function of between-site

distance) or semivariograms, for which semivariance is mod-

elled as a function of spatial and temporal lags [88]. Pairs or

clusters of samples within regions can be compared with

samples among regions to estimate spatial autocorrelation.

For example, Tobin [84] demonstrated that within a given

spatial extent, sampling clusters of points estimated spatial

autocorrelation more accurately than sampling evenly

distributed but distant points.

The larger the extent of spatial dependence, the further

the sampling units (e.g. sampled populations) can be from

each other to make general inferences about risk across a

landscape. For example, systems with little spatial variability—

e.g. highly connected systems and those in which the infectious

period is long relative to the lifespan of the host (e.g.

figure 2c,d )—require sampling of a small number of spatially

disparate populations. In this case, more frequent sampling

of one or two locations may be more informative than infre-

quent sampling of many locations. By contrast, spatially

asynchronous infections may require infrequent sampling of

many locations across the ranges of the pathogen and host.

In theory, the lower the temporal variance, the less

frequently one needs to sample. Surveillance of the temporal

dynamics of infection often is systematic, with sampling at

regular intervals within single or multiple populations, and

this is often dictated by logistical and funding constraints.

For example, the Soay sheep (Ovis aries) population of

St Kilda, Scotland, UK was sampled annually to reveal
long-term fluctuations in parasite prevalence [64], and vam-

pire bats (Desmodus rotundus) were sampled annually and

biannually to reveal endemic viral and bacterial pathogens

[65,66]. However, systematic sampling of a population in

which prevalence is either extrinsically driven and seasonal

or endogenous and epidemic may not detect temporal

peaks in prevalence, particularly if the interval between

samples is similar to or longer than the periodicity in the

pathogen cycles or the peaks in epidemics. Random or rotat-

ing sampling designs can reduce the likelihood of this type of

bias (box 1 and table 2). When temporal variance is high, as

in cases with seasonal oscillations or multiple-year peaks, the

sampling interval should reflect the periodicity of the disease.

In such cases, generalized random stratified approaches may

be used to avoid the pitfalls of systematic sampling and the

clumping of simple random sampling [49].

The most challenging pathogens to sample, and therefore

those that require the most-intense sampling, are those with

highly localized infection dynamics [38]. If only one popu-

lation is sampled, one erroneously might infer that all

populations have similar dynamics. Characterization of infec-

tion structure in these systems is best captured with random,

rotating or augmented sampling (box 1 and figure 3).
4. Conclusion
Uncertainty in predictions of spillover risk is reduced by

knowledge of the spatial and temporal distribution of infection

among populations of reservoir hosts. Financial and logistical

constraints often force one to make inferences on the basis of

small sample sizes and wide confidence intervals, and to
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make trade-offs between spatial and temporal replication.

Adopting wise design choices that are appropriate to the back-

ground dynamics of a particular system can extend the utility

of even sparse data, and is essential to efficiently understand

prevalence dynamics in reservoir host populations.
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