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First things first 8 7 Clacgon

* Any questions about yesterday?

MVD - scMethods



Learning aims B 7 Caon

* Introduce more technical concepts

* Explore how to process scRNA-Seq data

* Learn new methods, integration and DE in scRNA-Seq
* Critical evaluation of scRNA-Seq

* Overview of developments in scRNA-Seq

MVD - scMethods



Today: Understand some of the computational concepts s7l University

¥ of Glasgow

Differential expression
Clustering (hierarchical / K-means)

Integration

> W N e

Dimension reduction

1. PCA
2. T-SNE

5. Normalisation

MVD - scMethods



1. Differential expression &) 7 Cison

* How was it done for bulk RNA-Seq with DESeq2?
* What test do they use?
 What are the assumptions?

MVD - scMethods



1. Differential expression b renkessel

* Open question in scRNA-Seq!

* When are two genes differentially expressed — can see a difference in
expression due to perturbation vs normal variation

e T-test?

MVD - scMethods



Pseudo bulk 8 o Clacgon
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Pseudo Bulk 88 7 Ciregon

* cells from each biological replicate are NOT independent (so different cells
are NOT replicates)

* Merges the cell of each replicate and generate bulk

* use DESeq2 or EDGER
* Muscat

* Good FDR, but not enough power!

* Master project from last year...

https://www.nature.com/articles/s41467-022-35519-4

MVD - scMethods



Pseudo Bulk &) o Cinsgon

Matters Arising \ Open Access \ Published: 22 December 2022

cells frome aph biolc A balanced measure shows superior performance of pseudobulk
are NOT replicates) methodsin single-cell RNA-sequencing analysis

* Merges the cell of € aun e murony = & nathan 6. skene =

* use DEseqz or EDG[ Nature Communications 13, Article number: 7851 (2022) | Cite this article
* Muscat 2502 Accesses | 2 Citations | 156 Altmetric | Metrics

Good FDR, but not enough power!

ARISING FROM Zimmerman, K. D., Espeland, M. A. & Langefeld, C. D. Nature Communications https://doi.org/10.1038
/[s41467-021-21038-1 (2021)

Recently, Zimmerman et al.}, highlighted the importance of accounting for the dependence between cells from the

° M a Ste r p ro J ect f O m same individual when conducting differential expression analysis on single-cell RNA-sequencing data. Their work
proved the inadequacy of pseudoreplication approaches for such analysis—this was an important step forward that
was conclusively proven by them. However, there appear to be limitations in both their benchmarking and simulation
approaches. Here, we corrected these issues, reran the author’s analysis and found that pseudobulk methods

outperformed mixed models. Based on these findings, we recommend the use of pseudobulk approaches for
https://www.nature.com/articles, differential expression in single-cell RNA-sequencing analyses.
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Pseudo Bulk 88 7 Ciregon

* cells from each biological replicate are NOT independent (so different cells
are NOT replicates)

* Merges the cell of each replicate and generate bulk

* use DESeq2 or EDGER
* Muscat

* Good FDR, but not enough power!

* Master project from last year...

https://www.nature.com/articles/s41467-022-35519-4
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How to do pseudo bulk in Seurat? &3] University

of Glasgow

=t

# pseudobulk the counts based on donor-condition-celltype

pseudo_ifnb <- AggregateExpression(ifnb, assays = "RNA", return.seurat =
T, group.by = c("stim", "donor_id", "seurat_annotations"))

pseudo_ifnb$celltype.stim <- paste(pseudo_ifnb$seurat_annotations, pseud
o_ifnb$stim, sep = "_")

Idents(pseudo_ifnb) <- "celltype.stim"

bulk.mono.de <- FindMarkers(object = pseudo_ifnb,
ident.1 = "CD14 Mono_STIM",
ident.2 = "CD14 Mono_CTRL",
test.use = "DESeq2")

| Jp— N
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Two approaches &) 7 Clagon

* Assuming all cells from one cluster!

ScRNA-based Pseudobulk-based

Slides from Yiyi Cheng (PhD student) MVD - scMethods



Testing the tools with perfect datasets &Y 7 Cinepon

G rO U n d TrUt h D E res U It Ground Truth scRNA_based method

ScRNA-based

0%g” 0 0 -

Ground Truth Pseudobulk based method

Pseudobulk-based
( )O 61
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Concept of false positive / true positive b renkessel

* We need a framework to classify how good the algorithms are

Ground Truth scRNA_based method

False negatives False positives

True positives

MVD - scMethods



Challenges in DEG in scRNA-Seq R prenes)

* Dropout events: Many genes have zero counts in individual cells, even if they
are expressed at low levels.

* Bimodality: Gene expression in single cells often follows a bimodal
distribution, with cells either expressing a gene (on) or not (off).

* Heterogeneity: Single-cell datasets are highly heterogeneous, with variability
arising from both biological and technical sources.

Ex p of thre g n two conditions
Active rheumatoid arthritis us Remisson in ~ 5000 cells

Remission

Exp
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What are the challenges of scRNA-Seq? &) oClacgon

* How well are data integrated?

* How well normalized?

Expression of three genes in two conditions
Active rheumatoid arthritis versus Remisson in ~ 5000 cells

c
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I| University

' of Glasgow

* The t-test is any statistical hypothesis test in which the test statistic follows a
Student's t-distribution under the null hypothesis.

Expression of TREM2 in two conditions

Active rheumatoid arthritis versus Remisson in ~ 5000 cells
2.5-

> t.test(ac$Expression,re$Expression)
Welch Two Sample t-test

data: ac$Expression and re$Expression

2.0 t = -26.756, df = 7195, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

. -0.2395823 -0.2068721
S sample estimates:
2 Gene mean of x mean of y
g [] rem2  0.07437191 0.29759911
) How are data normalised?
How many replicates?
I Can | take cell as replicates?

Condition MVD - scMethods


https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Test_statistic
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Null_hypothesis

Different method

e ?FindMarkers

"wilcox" : ldentifies differentially expressed genes between two groups of cells using a Wilcoxon
Rank Sum test (default)

"bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics,
2013)

"roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates
(using AUC) a classifier built on that gene alone, to classify between two groups of cells. An
AUC value of 1 means that expression values for this gene alone can perfectly classify the two
groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2).
An AUC value of 0 also means there is perfect classification, but in the other direction. A value
of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a
'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.

"t" : Identify differentially expressed genes between two groups of cells using the Student's t-
test.

"negbinom" : Identifies differentially expressed genes between two groups of cells using a
negative binomial generalized linear model. Use only for UMI-based datasets

"poisson" : ldentifies differentially expressed genes between two groups of cells using a poisson
generalized linear model. Use only for UMI-based datasets

"LR" : Uses a logistic regression framework to determine differentially expressed genes.
Constructs a logistic regression model predicting group membership based on each feature
individually and compares this to a null model with a likelihood ratio test.

"MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle
model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.

"DESeq2" : Identifies differentially expressed genes between two groups of cells based on a
model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology,
2014).This test does not support pre-filtering of genes based on average difference (or percent
detection rate) between cell groups. However, genes may be pre-filtered based on their
minimum detection rate (min.pct) across both cell groups. To use this method, please install
DESeq2, using the instructions at
https://bioconductor.org/packages/release/bioc/html/DESeq2.html



The code Seurat i) ey

ifnb$celltype.stim <- paste(ifnb$seurat_annotations, ifnb$stim, sep = "_")

Idents(ifnb) <- "celltype.stim"

b.interferon.response <- FindMarkers(ifnb, ident.1 = "B_STIM", ident.2 = "B_CTRL", verbose = FALS
E )

head(b.interferon.response, n = 15)

seurat_annotations

* "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon
CD14 Mono Rank Sum test (default)
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Wilcoxon Rank-Sum Test in Seurat B 7 Caon

* Non-Parametric: It does not assume that the data follows a specific
distribution (e.g., normal distribution), making it suitable for scRNA-seq data,
which is often sparse and noisy.

* Robust to Outliers: It is less sensitive to extreme values compared to
parametric tests like the t-test.

 Handles Dropouts: It works well with sparse data, where many genes have
zero counts in individual cells.

MVD - scMethods



Wilcoxon rank-sum test compares the @ University

distributions of gene expression X 9 Glasgow
Step 1: Rank the Expression Values

* For each gene, the expression values across all cells are ranked from lowest to highest,
regardless of group membership.

* If there are ties (e.g., multiple cells with the same expression value), they are assigned the
average rank.

Step 2: Calculate the Test Statistic g Mt
— Ry —
* The ranks of the expression values are
summed for each group. Where:
* The test statistic U is calculated as: ° Ry is the sum of ranks for the first group.

o np is the number of cells in the first group.

Step 3: Compute the p-value
* The p-value is calculated based on the distribution of the test statistic UU.

* A small p-value indicates that the gene expression distributions between the two groups
are significantly different.

https://www.sciencedirect.com/science/article/pii/S0092867421005833?via%3Dihub; DeepSeek

IVIVD - SCIVIetnoads



https://www.sciencedirect.com/science/article/pii/S0092867421005833?via%3Dihub

MAST - Model-based Analysis of Single-ce IIU““'C‘“"“’

Transcriptomics X of Glasgow

Expres fTREM2 two conditions

* sScCRNA-Seq suffers from stochastic dropout and | e et ot v e 53
characteristic bimodal expression distributions in which
expression is either strongly non-zero or non-detectable.

* Technical assay variability and extrinsic biological factors
can significantly influence expression level measurements
— modelled through CDR (Cell detection rate) co-variate

 MAST uses a two-part, generalized linear model (hurdle
model) for such bimodal data that parameterizes both of
these features

Remission

DOI 10.1186/s13059-015-0844-5

MVD - scMethods



Cellular detection rate (CDR

@ University

) of Glasgow
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Fig. 1 Cellular detection rate correlates with the first two principal components of variation. The fraction of genes expressed, or cellular detection
rate (CDR) correlates mostly with the a,c) first principal component (PC) of variation in the myeloid dendritic cells (DC) data set and mostly with
| the second PC in the b,d) mucosal-associated invariant T (MAIT) data set




MAST uses a two-part model to analyze gene &% University

expression: ¥ of Glasgow
Part 1: Hurdle Model for Detection (Binary Model)

* This part”models the probability that a gene is expressed (i.e., not a dropout) in a
given cell.

* |t uses a logistic regression framework to predict whether a gene is "on" or "off"
based on covariates (e.g., cell type, condition, or batch, modelled through CDR).

. Thﬁ output is the detection rate (probability of expression) for each gene in each
cell.

Part 2: Continuous Model for Expression Level

* This part models the expression level of a gene only in cells where the gene is
detected (i.e., "on").

* It uses a linear regression framework (with a log-normal distribution) to predict
the expression level based on covariates.

* The output is the expected expression level for each gene in each cell where it is
expressed.

MVD - scMethods



Combining the Two Parts &) teon

« Part 1 (Hurdle Model): Part 2 (Continuous Model):

log(yi;) = Y0 + 71 Xij + v2CDR; + 15

log (1 Pij ) = Bo + ﬁlXij + B2CDRj + €5
— Py
Where:

Where:
) ) o ;5 is the expression level of gene 7 in cell j (for cells where the gene is expressed).
o p;; is the probability that gene 2 is expressed in cell 3.

. - o X;; represents other covariates.
o X,; represents other covariates (e.g., cell type or condition).

o CDR; is the cellular detection rate for cell j. > CDR;; is the cellular detection rate for cell 5.

o By, B1, B2 are coefficients to be estimated. © Yo, 71, Y2 are coefficients to be estimated.

 MAST combines the results from the two parts to perform differential
expression analysis.

* For each gene, it tests whether there are significant differences in:
* The probability of expression (Part 1) between groups (e.g., cell types or conditions).
 The expression level (Part 2) between groups.

* The final p-values from both parts are combined using a meta-analysis
approach (e.g., Fisher’s method) to determine overall significance

MVD - scMethods



University

of Glasgow

A e Master thesis Olympia (2020)

1.0 —— DESeq2
——  SigEMD
MAST
DEsingle 50 cells per condition
081 —— Rank Sums
° T Rank Distances ot Method Number of FDR F1
— R Rank Dist
Soe everse Rank Distances Detected DE LR TP (2x(Lasen xpecat )
) FP+TP
= Genes
Boa MAST 134 0.015
=
a SIgEMD %05 0.281
0.2 DEsingle 1379 0.381
DESeq2 2266 0.583
>0 : : : : : Rank Products 2805 0.644
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate Rank Sum 4231 0.723
D) Rank Distance 4905 0.746
200 samples/condition Reverse-Rank
. — oEsece Dliiarsy 3934 0.719 0.773 0.281 0.413
s
MAST
DEsingle e 3424 0.664 0.802 0.336 0.473
on Rank Products Rank Products
I an ums
— Difference of Rank Products
R Di . s . . .
5 oo —— Reverse Rank Distances Table 2: A summary statistics table showing the total number of detected differentially
2" expressed genes by each package for 50 cells per condition. The calculated false
=
8 discovery rate (FDR), true positive rate (TPR/Recall), precision and F1 score.
g4 Calculation formulas are included in the header where appropriate with number of
= o e
false positives denoted as FP, the number of true positives as TP and the number of
02 false negatives as FN.
0.0
Djﬂ 0.‘2 El.l4 Ojﬁ D.IE 1 I.D

False positive rate
IVIVD - scMethods



Newer study — false positive &Y o Clacgon

Nind Ncelis Two-part hurdle Tweedie GEE1 Pseudo-bulk Tobit Modified t
{eplicates Default Corrected RE GLMM GLM Mean Sum
50 0.561 0.637 0.069 0.082 0.340 0114 0.023 0.035 0.353 0.400
100 0.677 0.719 0.064 0.084 0.463 0.110 0.022 0.032 0.471 0.510
° 250 0.798 0.778 0.066 0.083 0.609 0.103 0.023 0.028 0.628 0.644
500 0.862 0.803 0.065 0.081 0.705 0.104 0.023 0.026 0.725 0.718
50 0.561 0.602 0.051 0.054 0.345 0.055 0.025 0.013 0.340 0.393
20 100 0.689 0.699 0.049 0.053 0.455 0.055 0.026 0.012 0.467 0.502
250 0.820 0.803 0.044 0.053 0.607 0.053 0.022 0.010 0.622 0.639
500 0.888 0.856 0.042 0.053 0.704 0.054 0.022 0.008 0.721 0.713

Default denotes MAST was implemented without random effects, RE denotes random effects, Corrected denotes data were batch-corrected for
individual with ComBat prior to analysis without using individual as a random effect, GLM denotes generalized linear model, and GLMM denotes
generalized linear mixed-effects model.

Two-part hurdle model as implemented in MAST, Tweedie distribution as implemented in “glmmTMB”, GEE1 as implemented in “geepack”, Pseudo-bulk
averaged or summed across cells within an individual and was implemented in DESeq2, Modified ¢ as implemented in ROTS, and Tobit as implemented

in Monocle.

Zimmerman et al, 2020, Nature Communication MVD - scMethods



Power o a

Power curves for various, but likely,
single-cell scenarios using MAST with
a random effect for individual. Fold-
change is simulated by multiplying
the global mean gene expression
values by the fold-change value for
one group. All power is computed at 0.4
a = 0.05. a Differences in power

when sample sizes range between 5
individuals per group to 100 when

the number of cells per individual is

held constant at 250

Power
§ L 1_' )

MVD - scMethods
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. 1y U : e "."- ;
Replicates & o Glasgow

* But how many replicates are feasible to do?

* Cells from one biological replicate are not independent

MVD - scMethods



Pooling idea R prenes)

* sScCRNA-Seq — MAST good but not enough signal per cell
* pseudo bulk good — but not enough power!

* |dea is to do something in the middle!!

MVD - scMethods



Random selection:

I N O a1a) University

el e LR ¥ of Glasgow

CellDeep

- r ,
2 ~ ~.t, -
-4 L San? . ¢
T T O,
[}
- My e?

Pseudobulk-based

ScRNA-based

CellIDEEP

° o

O

K-mean selection: pom—
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Yiyi has a solution

i
ScRNA-based : CellDEEP | Pseudobulk-based 0 000 o
CellDEEP - Cell o %, ! : X

DiffErential o0y % . O :

EXpreSS'()n by .. .. .... : O b Ground Truth scRNA_based method
Pooling Py :.‘ Y ! O OOO :
(W ! O !

Ground Truth CellDEEP

24

19

Ground Truth Pseudobulk_based method

Pseudobulk-based

O -

O

MVD - scMethods



_| Unn ersity

7 of fGl ASGOW

Simulation — CellDepp is pretty good!

Evaluation for CellDEEP, scRNA and pseudobulk methods

muscat Zimmaerman
1.00- —
0.75-
Methods
Q
- CellDEEP
< e - == pseudobulk-based
scRNA-based
0.25-
0.00- — -
FPR Precision Sens'itivity FPR Precision Sens'itivity
Evaluation

MVD - scMethods



Result 2: Covid dataset
Test 2: GO analysis

Healthy
n=24
3
DE analysis — DE gene list

Severe
n=15

GO analysis

GO list(significant
biological activity)

MVD - scMethods



Result 2: Covid dataset
Test 2: GO analysis

: DE TP GO
1| J.“J_J_“ [L ['ﬂ genes terms
4 42
Healthy
n=24
: . 1937 24
l TP GO term detection
. . B Yes
N
DE analysis — DE gene list x 108 7 0
-8 Methods
T ! B sc.MAST
Severe @ sc.DESeq2
. a 15 B Pseudobulk.DESeq2
n=13 GO anaIy5|s M Pseudobulk.Limma
R-mean,MAST
¥ R-mean,DESeq2

o 694 47
v w
w
GO list(significant =
. . . . o

biological activity) 08 43

o R
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Result 2: Covid dataset
Test 2: GO analysis

S

| I

I
|

TPGO TP
genes terms ratio

TP: CelIDEEP > scRNA > r IIIB4 42 '
Pseudobulk. Z
Same as simulation! I R 7 oo
AE“ I | ‘ 106 17 - :af’;s
Not same as E B o Eam2
simulation: Q | ‘ . R [
Pseudobulk also find 8 -mean DESec2
FP. 694 47 ‘8

o
w
w
]
F_If_l

-

3N
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Conclusion DEG 89 o Glasgon

* An open problem
* Be aware of limits and compare different methods

MVD - scMethods



2. Clustering RDprenvest

g==h L

* A dimension reduction methods, does not perform a grouping (clustering) of
cells, but just projects points from a high dimensional space into 2d

* So how can we cluster our data, if PCA and t-SNE are just visualization tools?

https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/

MVD - scMethods



il University

Hierarchical clustering & of Glasgow

Connectivity models: As the name suggests, these models are based on the
notion that the data points closer in data space exhibit more similarity to each
other than the data points lying farther away. These models can follow two
approaches. In the first approach, they start with classifying all data points into
separate clusters and then aggregating them as the distance decreases. In the
second approach, all data points are classified as a single cluster and then
partitioned as the distance increases. Also, the choice of distance function is
subjective. These models are very easy to interpret but lacks scalability for
handling big datasets. Examples of these models are hierarchical clustering
algorithm and its variants.



atal University

Distances between 2 vectors ) of Glasgow

* Euclidean distance: | |a-b| |,= V(2(a;-b)))

 Squared Euclidean distance: | |a-b]| |,?= Z((a-b;)?)

* Manhattan distance: | |a-b||=2|a;-b;]

* Maximum distance:| | a-b| [ \nginry= Max;| ai-b;]|

* Mahalanobis distance: V((a-b)'S(-b)) {where, s : covariance matrix}

h i . i j

euclidean <- function(a, b) sqrt(sum((a - b)"2))

N NN
N W NN
0O~ 0 W

N W NN

What is the difference between squared and simple Euclidean distance?

MVD - scMethods



Tl University

How to visualize this dataset? -:?f Glawﬂu

Student a b c d e f g h i j k | m n 0 p q

Maths 10 5 8 3 9 4 10 1 2 9 1 1 1 7 9 8 8
Informatics 9 5 9 2 8 2| 10 . 2 8 1 3 4 9 9 g 10
Physics 9 4 10 2 9 11D . 3 ¥ 4 3 2= 10 Tk 10 9
Chemistry 8 6 9 3 8 2| 10 . 2 8 1 2 3 9 8 g 10
Biology 9 5 8 2 8 3| 10 3 4 9 3 3 3 9 8 10 8
German 11 4 8 3 8 10 1 1 4 7 7 7 4 6 4] 10
English | 5 3 7 4 71D 3 3 2 8 8 8 4 3 3 9
Sport 5 5 1 6 4 11D 7 8 9 | 10 6 1 3 10
Travel e 110 5 8 4 3| 10 . 1 4 9 9 9 5 6 8
Social Behav 8 5 8 7 8 6 1 3 3 3| 10| 10 8 1 210 6
Literature 3 6 3 8 201D 4 3 3| 10 8 10 2 3 3 9
French 2 9 3 9 4 8 10 . 2 3 8 9 8 3 2 A0
Spanisch 3| 10 4 10 5 10 3 3 4 9 9 3 2 2 9
Religion 2 8 3 9 1 8 9 3 2 3 7 £l 3 1 3 9

MVD - scMethods



Hierarchical Clustering & 7Bl

* Think of the heatmap

Heatmap of students scores
e Each column is its own cluster rgu
e group to closed cluster, based f% 571 | e

8

t
0 20 40

Literature

distance, and form new group - I
* This generates a dendrogram

French

Travel

* Heatmap in R uses this
clustering (this afternoon)

Social Bet
Informatic:

Chemistry

Biology

e || 1T

Physics
Maths

Students

MVD - scMethods



Unaversity

How many clusters? &

f Glasgow

=

Color Key

g Heatmap of students scores

88 |

° T 3 Maximal distance, seems here, so 4 groups
| ‘ ‘ | ' | Does it make sense?

Literature

English
Religion

Spanisch

French

Travel

Germa

Sport

Subjetts

Social Bel
Informatic:
Chemistry

Biology
Physics

Maths

£ - — c 0 © ® @ & T ©®%“ 9 v g x —
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Unaversit

Output of single cell data is “HUGE"

of Glasgow

* A table of ~20 thousands rows and ~10 thousands cells per run
e Each cell (column) is described by ~2,500 genes (row)

. . ° . . [ ] [ ] =] Jg = B Supplementary Data 6 Q- Search § @ b
@ D I I I I‘ l l It to VI S u a I IS e t h IS Home Insert Page Layout Formulas Data Review View &+ Share
o _ 4 v v .
[ - % Calibri (Body) +|[12 +| A~ Av = = _| &~ = Wrap Text General . B - o+ 57~ nsert z Ay -
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Centroid models: These are iterative clustering algorithms in which the notion
of similarity is derived by the closeness of a data point to the centroid of the
clusters. K-Means clustering algorithm is a popular algorithm that falls into
this category. In these models, the number of clusters required at the end have
to be mentioned beforehand, which makes it important to have prior
knowledge of the dataset. These models run iteratively to find the local
optima.

MVD - scMethods
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* lterative approach; Easy to use; Random, difficult to get K

—0-0—00 00-00— 004

—o @0 oo o—ooe

T

Different initialisation Number of clusters (K)

- 80 oo—o00-O—

Reduction is

Variation There is a huge reduction in

variation with K=3, but after
that, the variation doesn’t go
down as quickly.

https://www.youtube.com/watch?v=BVEG7fd1H30 moré'dn StatGlest: https://www.youtube.com/watch?v=4b5d3muPQmA



https://www.youtube.com/watch?v=BVFG7fd1H30

atal University
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* lterative approach; Easy to use; Random, difficult to get K
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https://www.youtube.com/watch?v=BVFG7fd1H30 more'dn’Stat Guest: https://www.youtube.com/watch?v=4b5d3muPQmA



https://www.youtube.com/watch?v=BVFG7fd1H30

7 University
K-means e

* lterative approach; Easy to use; Random, difficult to get K

Iteration random initialisation to not just find
local minima.

Reduction is

Variation There is a huge reduction in

variation with K=3, but after
that, the variation doesn’t go
down as quickly.

BTW, this is considered
Machine Learning

https://www.youtube.com/watch?v=BVFG7fd1H30 more on Stat quest. nttps://Www.youtube.com/watch sv=4p5d3muPQmA



https://www.youtube.com/watch?v=BVFG7fd1H30

Which clustering in scRNA-Seq? h

e First k-means £

* But k-means is not good for noisy high
dimensional data

B

* shared nearest neighbor (SNN) -> graph theory-

based algorithms & ’
e Euclidean norm between two cells (expression

difference of genes)
* Build graph c
* Find cliques (connections between nodes) e '
e FindClusters(pbmc, resolution = 0.5) h

https://academic.oup.com/bioinformatics/article/31/12/1974/2%4505



Conclusion clustering 82 7 Clegon

* Actually not so difficult!

MVD - scMethods



3. Integration
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* Why do we need to integrate our data?
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Integration 88 7 Ciregon

* Preserve biological variation: Ensure that meaningful biological differences
(e.g., cell types or states) are retained.

* Remove batch effects:
* Different protocols (amount UMI, different machines)
e Different days
» Different person
* scRNA-Seq is just different

* Seurat CCA methods
* BBKNN

* Harmony

* STACAS

MVD - scMethods
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Seurat CCA — “default”

Unaligned dataset

d scRNA-seq

Heterogeneous 3 : {11}
population '
~ Combine data
>

Nl
F w
w® ®@ Op
t-SNE_1
Aligned dataset
| Nl
—
t-SNE_1



Canonical Correlation Analysis (CCA) &Y 7 Cinepon

* CCA is a statistical method that identifies linear relationships between two
datasets by finding pairs of vectors (called canonical vectors) that maximise
the correlation between the datasets.

* For two datasets Y, and Y, CCA finds vectors u; and u, such that the
correlation between Y, and Y, is maximised.

* In Seurat, CCA is applied to the normalised expression matrices of the two
datasets, using the shared HVGs.

ul0-k u
CCA : max p = corr (Yqu1, Yous) = L 21242 .
1,2 Vul Y nuivud Y sus

MVD - scMethods — https://pmc.ncbi.nlm.nih.gov/articles/PMC7416047/



How is roughly works 8 o Ciegon

I. learns a shared gene correlation structure that is conserved between the
data sets using canonical correlation analysis

ii. identifies individual cells that cannot be well described by this shared
structure

iii. aligns the data sets into a conserved low-dimensional space (latent space /
PCA), using nonlinear ‘warping’ algorithms to normalise for differences in
feature scale in a manner that is robust to shifts in population density

iv. proceeds with an integrated downstream analysis, for example, identifying
discrete subpopulations through clustering, or reconstructing continuous
developmental processes

v. It performs comparative analysis on aligned subpopulations

MVD - scMethods



How is roughly works b renkessel

. learns a shared gene correlation structure that is conserved between the data sets using canonical
correlation analysis

ii. identifies individual cells that cannot be well described by this shared structure

iii. aligns the data sets into a conserved low-dimensional space, using nonlinear ‘warping’ algorithms to
normalize for differences in feature scale, in a manner that is robust to shifts in populations density

iv. proceeds with an integrated downstream analysis, for example, identifying discrete subpopulations
through clustering, or reconstructing continuous developmental processes

v. It performs comparative analysis on aligned subpopulations
Shared, unaligned o _— .
' correlation structure ynamic time warping Aligned dataset
& |
Canonical \ |
correlation I\ \ A o
analysis o\ \ |
ﬁ g P Ty .'I,III l"'-,ll' : h %
Dataset-specific RN -
cell removal |\ !
| 1

CC1 t-SNE_1



How is roughly works

t-SNE_2

Shared, unaligned
correlation structure

Canonical
correlation
analysis o
O
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Dataset-specific
cell removal
CCH
Aligned dataset Integrated analysis
™
ﬁ m
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ata| University
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Aligned dataset

t-SNE_2

t-SNE_1

Compare expression
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+Drug expression
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University

Works nice on datasets of paper W Gl oo

Unaligned datasets b Aligned datasets
d C
© Human @ Mouse © Human & Mouse @ Beta ® Ductal ® Delta ® Endothelial » Beta_er_stress
® Alpha @ Acinar @ Stellate ® Gamma @ Immune
251 25 -
N (aV]
w w i o
z =z 0 TR
af -~
—25- -25 4
o
60 30 0 30 60 40 —20 0 20 40 —40 20 0 20 40
t-SNE 1 t-SNE 1 t-SNE 1
Joint identification of cell types across human and mouse islet scRNA-seq atlases. )
YP MVD - scMethods 9 d0|101038/nbt4096
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Harmony

* Projects cells into a shared embedding in which cells group by cell type
rather than dataset specific conditions

Dataset | Cell type —
L X R AL B / lterate until convergence
a C b Cly, C Ciy, d Cy
>h I&G‘fﬂ &":E}- 'gf'ﬂ,. U.g-f
N > e x} 2 & N & t
W | & N o m. v
| |
: e . * e o
Cy, C
o3 Clusy o Clus, o® %, oot 2 oy,
(}ﬁ Y (}‘5& v Q}“:" > o 4
A y ++
+ + * & d ./
Soft assign cells to Get cluster centroids Get dataset correction Move cells based on
clusters, favoring mixed for each dataset factors for each cluster soft cluster membership

dataset representation

https://www.nature.com/articles/s41592-019-0619-0  MVD - scMethods



https://www.nature.com/articles/s41592-019-0619-0
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https://www.nature.com/articles/s41592-019-0619-0
https://www.nature.com/articles/s41592-019-0619-0
https://www.nature.com/articles/s41592-019-0619-0
https://www.nature.com/articles/s41592-019-0619-0
https://www.nature.com/articles/s41592-019-0619-0

Comparison - time
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Fig. 3 | Computational efficiency benchmarks. BBKNN, Scanorama, MNN Correct and MultiCCA are compared on five downsampled HCA datasets of

increasing sizes. a,b, Total runtime (a) and maximum memory (b) required to analyze each dataset are shown. Scanorama, MultiCCA and MNN Correct
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BBKNN — batch balanced k nearest neighbors Y 7 Clnseon

* Implemented in Python

* Main assumptions:

 at least some cells of the same type exist across batches

* that the differences between the same cell types across batch caused by batch
effects are less than the differences between cells of different types within a batch

e Says, it is the best ©

MVD - scMethods



K-Nearest Neighbor(KNN) Algorithm for Machine Learning i University

' of Glasgow

=t

Q €I o «€@»

A

\ Category B \ Category B

New data point . HOW does K_NN Work?

Category A ) The K-NN working can be explained on the basis of the below algorithm:

o Step-1: Select the number K of the neighbors

o Step-2: Calculate the Euclidean distance of K number of neighbors

o Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.

o Step-4: Among these k neighbors, count the number of the data points in each category.

o Step-5: Assigh the new data points to that category for which the number of the neighbor is maximum.

o Step-6: Our model is ready.

https://www.javatpoint.com/k-nearest-neighbor-algorithmi“for:migctine-learning



How is that different? ) ey

= 0

K-Nearest Neighbour Batch Balanced K-Nearest Neighbour Supplementary Figure 1: A conceptual schematic of BBKNN'’s operation.
Identifying a cell’'s k nearest neighbours for the purpose of constructing a KNN
® % graph compared to the batch balanced counterpart in BBKNN (A). The neigh-
8@ OQ O bour distance collection is then converted to exponentially related connectiv-
C%D 8% OO 8 O ities, which BBKNN trims to weed out any erroneous connections between
o - .
K O 5 Main assumptions:
& O at least some cells of the same type exist across batches

that the differences between the same cell types across
batch caused by batch effects are less than the differences
T Co between cells of different types within a batch

Batch Balanced
K-Nearest Neighbour

: =T ke Y AN =AY Aoy
(I-ESL'

Connecitivity

Distance

where ) is a bandwidth parameter (set to 1 by default) that controls how quickly

Converting distances L 3 .
the connectivity values decay to 0 with distance.

to connectivities

(see Methods) The connectivity score a., is then made symmetric to give,
Trimming (optional) Weg = Wae = Qge + Oleg — ClgeClog (6)
Downsiream analvsis ;Zéj Each connection between cells is given the corresponding weight, w.., produc-
@ (graph based Visua“;‘aﬁgn, N ing a weighted network representation of the data.

E clustering, pseudotime) ‘%
(@ MVD - scMethods



Example

Mouse atlas: Analysing the complete 267,690 cell murine atlas collection.
Merging all of the data sources leads to a clear divide based on the study
of origin (A), which is successfully amended by BBKNN (B,C).

UMAP2

UMAP1

® Brain

® Embryo

® Gastrula

® HSC

® Kidney

® MCA

» Tabula(Droplet)
Tabula(Plate)

® Thymus

etho

UMAP2

UMAP2

Dataset

UMAP1

il University
7 of Glasgow

@ Brain
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@ Kidney

® MCA

» Tabula(Droplet)
Tabula(Plate)

® Thymus

@ Digestive system

@ Embryo/Stem cells

@ Endocrine system

® Fetal

® Immune system

® Muscular system

@ Neonatal
Nervous system

® Others
Reproductive system
Respiratory system
Skin
Urinal system



Better than harmony?

UMAP2

UMAP2

Cell types
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UMAP1

® Brain

® Embryo

@ Gastrula

® HSC

® Kidney

® MCA

@ Tabula(Droplet)
Tabula(Plate)

® Thymus

@ B cell
® Embryonic/Fetal/Neonatal cell
@ Endothelial
@ Epithelial
® Erythrocyte
@ Granulocyte
® Hematopoietic stem cell
Mesenchymal cell
® Muscle
Myeloid cell
NK cell
Neuron/glial cell
Smooth muscle
T cell

UMAP2

UMAP2

Harmony

UMAP1

BBKNN

—

UMAP1

@ HSC

@ HSC

_| Unn ersity
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Harmony batch correction of the
murine atlases. The datasets are well
mixed (A), and the cell types are
successfully reconnected (B) in most
cases. However, the resulting
manifold is considerably more
fragmented than the one proposed
by BBKNN, with the purified
hematopoetic stem cell population
from the HSC dataset split across the
whole space instead of forming a
centralised hub (C).



JOURNAL ARTICLE

STACAS: Sub-Type Anchor Correction for Alignment
in Seurat to integrate single-cell RNA-seq data 3

. Massimo Andreatta, Santiago J Carmona =
* We are using STACAS
y ) Bioinformatics, Volume 37, Issue 6, March 2021, Pages 882-884, https://doi.org/10.1093/
e “works” best bioinformatics/btaa755

Published: 26 August 2020  Article history v
* How do we know that an

integration worked?
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Which is the best tool? & o Ciegon

- Independent comparison needed.| Spoiler alert, there is no winner!!!!

nature methods Bad for us, as we will need to test
Explore content v  About the journal v  Publish with us v BUt that Wi” keep us Our jObS "-)
nature > nature methods > analyses > article BUt What abOUt mUItiple tESting?

Analysis \ Open access \ Published: 23 December 2021

Benchmarking atlas-level data integration in single-cell
genomics

Malte D. Luecken, M. Buttner, K. Chaichoompu, A. Danese, M. Interlandi, M. F. Mueller, D. C. Strobl, L.

Zappia, M. Dugas, M. Colomé-Tatché & & Fabian J. Theis &

Nature Methods 19, 41-50 (2022) \ Cite this article

108k Accesses \ 225 Citations \ 358 Altmetric \ Metrics MVD - scMethods



How to compare tools?

University

, of Glasgow

9 integration tasks

cells
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The methods b renkessel

* benchmark 38 method and preprocessing combinations on 77 batches of
gene expression, chromatin accessibility, and simulation data from 23
publications, altogether representing >1.2 million cells distributed in nine
atlas-level integration tasks

* freely available reproducible python module can be used to identify optimal
data integration methods for new data, benchmark new methods, and
improve method development.

* BBKNN, Scanorama, and scVI perform well, particularly on complex
integration tasks;

e Seurat v3 performs well on simpler tasks with distinct biological signals
* Where is harmony?
* Also do scATAQ-Seq

MVD - scMethods
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Result 1:human immune cell task
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Critical thinking! 82 7 Clegon

* Did they do a fair test?
* How is it better than the other papers (comparing their own tool).

MVD - scMethods
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Overview
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Result 3: large mouse brain ATAC task ) ey

b Unintegrated BBKNN (graph) Harmony (embed) scVI (embed)

Batch
e 10x Genomics
e Cusanovich et al.
e Fangetal.

UMAP2
UMAP2
UMAP2
UMAP2

UMAP1 UMAP1

BBKNN (graph) scVI (embed) Cell type

Astrocytes
Cerebellar granule cells
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Conclusion 88 7 Ciregon

* No really a winner!

 Basically, for complex datasets you need a pipeline that can integrate your
datasets of choice and then you decide the best one.

* BBKNN, Scanorama, and scVI perform well, particularly on complex integration tasks;
* Seurat v3 performs well on simpler tasks with distinct biological signals

* For our work larger tasks, we mostly use Harmony
* Pairwise, ok with Seurat -> part of the exercise

MVD - scMethods



And more reviews to reads... &) 7CTegon

nature reviews genetics

Explore content v  About the journal v  Publish with us v

nature > nature reviews genetics > expert recommendation > article

Expert Recommendation | Published: 31 March 2023

Best practices for single-cell analysis across modalities

Lukas Heumos, Anna C. Schaar, Christopher Lance, Anastasia Litinetskaya, Felix Drost, Luke Zappia,

Malte D. Liicken, Daniel C. Strobl, Juan Henao, Fabiola Curion, Single-cell Best Practices Consortium,

Herbert B. Schiller & Fabian J. Theis &

Nature Reviews Genetics 24, 550-572 (2023) | Cite this article

129k Accesses \ 73 Citations | 341 Altmetric \ Metrics

MVD - scMethods



Conclusion Integration b renkessel

e Sorry, there is not one solution!

* Important, just the embedding get transformed, not the raw reads

* Don’t trust the comparison of the tool developers but of others

MVD - scMethods
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* Qur data are high-dimensional
* A lot of drop outs
* Noisy data...

doublets Noise

= ‘7'

Cell 6

7

Cell 3

!/

i
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Our data are high-dimensional!

* Every gene is one component, with 65000 possible categories

* The expression of each cell (in bulk sample) is a combination of the 65000
genes

* We speak of an N-dimensional space, as we cannot image more than 3
dimension

* Most values might be close to zero, and some values are more relevant
* Some low dimensional pattern are batch effects, need to get rid

Visualisation

* So we need to reduce the dimensionality....

Get rid of things we don’t need

MVD - scMethods



Many methods to reduce dimensionality — [Bechzeiesss

PCA (linear)

t-SNE (non-parametric/ nonlinear)
Sammon mapping (nonlinear)
Isomap (nonlinear)

LLE (nonlinear)

CCA (nonlinear)

SNE (nonlinear)

MVU (nonlinear)

Laplacian Eigenmaps (nonlinear)
10. UMAP (nonlinear)

11. Diffusion Maps (nonlinear)

12. Phate (nonlinear)

 The good news is that you need to use only two of the algorithms mentioned above to effectively
visualize data in lower dimensions — PCA and UMAP.

0 00N Uk WwWNRE

MVD - scMethods



PCA ) ey

* Principal Component Analysis (PCA) is a dimension-reduction tool that can
be used to reduce a large set of variables to a small set that still contains
most of the information in the large set.

* Principal components are new variables that are constructed as linear
combinations of the initial variables.

* Transform correlated variables into uncorrelated variables

* PCA tries to detect the highest variability

* For single cell use it to find real signal versus confounders. Generally 15 - 30

MVD - scMethods
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original data space

component space

PCA

ﬁ-
PC 1 ¥ lar!
- e X
™ - ++.:ﬂ-— V<i><;<}<
O & %fﬁf X
e i 7
mDLJ_
=3
POl
PC1

Gene 1

Source: nlpca
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PCA — at different levels &) ey

* An expression of a cell is described by the expression of its genes

* Taken n genes (g;..8,), part of the same metabolic pathways (eg fatty acid
biosynthesis ). One is upregulated, then the others as well, as when the
process starts, all genes are expressed higher - as they are correlated — like
weight and height is generally correlated

e Simplest explanation: PCA reduces features, as one variable might be enough
to describe that our pathway is up

* PCA build new features (principal components) that are linear combination
of old features (g,+4*g,-0.5*g; etc)

* This new feature should contain most of the variance — so describes best if
the genes of the pathway are changing or if you would reconstruct the
expression of the genes (g,..g,) the error is minimal

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues



PCA — at different levels &) o Clgon

g==h L

* new property is a line wx+w,y

 spread on project (red dot on black line)
highest — average squared distance from
the center of the gene cloud to each red
dot; variance

n

1
2 § :  =)\2
Um_n_l (mi :E)

1=1

expression gene 1
(or height of chicken)

e or the total reconstruction error is Ll
measured as the average squared length L B U R
of the corresponding red lines expression gene 1

(or weight of chicken)

* so: the higher the variance caputed by
PC1 the lower the error

MVD - scMethods
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues



PCA — eigenvector eigenvalues &) o ieon

e \/ariance measures the variation of a
single random variable

e covariance is a measure of how much
two random variables vary together

e covariance matrix:

(o(w) a(m,y)) y
C = co-variance 3|

expression gene 1
(or height of chicken)

o(y,z) o(y,y) 1 & )
g-(aj,y): n_lz(mi_x)(yﬁ_y) i 2 1 o 1 2 3
=l expression gene 1
(or weight of chicken)
Co-variance of these data Eigenvalues

1.07  0.63 '\ _Spectral theorem (1-52 0 )
0.63 0.64/ (Eigenvectors) 0 019

MVD - scMethods
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues



MNIST fashion
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PuHover

Ankle boot

o
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T shirt/top
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Ankle boot
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Ankle boot
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&
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Second Dimension
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result
T-shirt/top
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Shirt
Sneaker
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Ankle boot
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https://dax-cdn.cdn.appdomain.cloud/dax-fashion-mnist/1.0.2/data-preview/Part%201%20-%20Data%20Exploration.html



t-Distributed Stochastic Neighbor

Embedding (t-SNE)

* non-linear technique for
dimensionality reduction

e extensively applied in image
processing, NLP, genomic data and
speech processing

e Clustering data that preserves
distances varying scales

* Ignores intermediate and long
distances

https://www.jmlr.org/papers/volume9/
vandermaaten08a/vandermaaten08a.pdf

Topological defect

Ilterative

MVD - scMethods
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...and this point repels a little bit.
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https://www.jmlr.org/papers/volume9/

_| Unn ersity

Standard deviation o; (perplexity i'-'f Gl d5ZOW

parameter)

o exp (—||xi — Xj|/20%)
L > €XP (—||Xi — Xk ||2/207)

The probability of point x; to have ¥/j as it's neighbor

Average distance between
all points

Calculating a joint probability distribution that represents the similarities between the data points

MVD - scMethods
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exp (—||xi — x;||2/20%)
>y €XP (—||xi — xk||2/20?)

The probability of point x; to have x ; as it’s neighbor

Pjli =

- VOV @ v @

Creating a dataset of points in the target dimension and then calculating the joint probability distribution for them as well.

-1
(1 + ||y,- =Y ||2) < (t-distributed student test)

qdij = 1
Sk (14 |[yk —yil]?)



Low dimensional embedding using a Student t- [ University

7 of Glasgow

distribution to avoid overcrowding

0.40

0.35
0.30
0.25}
X 0.20}
0.15}
0.10}

0.05

Also explains the t- in the name of t-SNE

0'0(-)—‘4 -3 -2 -1 0 1 2 3 4
X

Red — Student t-distribution (1 degree of freedom)
Blue - Gaussian

MVD - scMethods



Need to compare G University

of Glasgow

Kullback-Leibler divergence between P and Q. DKL (P || Q) — Z P(.’L‘)

reX

P and () defined on the same probability space, X, the relative entropy from () to P

Use the Kullback-Leibler equation as a cost function that we want to optimise.

c=S"KLP|Q) =Y >‘pﬂlogpf'z

R djli

 ifp=gthenlog(l)=

* Penalize whenp I=q
* Large p modeled by small g: Big penalty
 Small p modeled by large q: Small penalty



Gradient decent optimization J University

7 of Glasgow

=4 (pi; — a;)) 1+ lly — 5117 (i — ¥5)

1.1'.:

ch,'

e
AS e

oH

https://www.youtube.com/watch?v=RJVL80Gg3IA MVD - scMethods



Gradient decent optimization ] University

nNe 2
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eF
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Gradient decent optimization ] University

aC’ . . o\ _ 18
—— =4 Ipi; — qi;)(1 + lly: — y;lI5) " Lyi — ¥5)
()‘y‘ =
 exertion / compression
e
nNe eD
e )

eF
®G

oH ®|
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Gradient decent optimization ] University

aC | | \ ey |
dy, im ai;)(1 + llys — w5017 (i — ¥3)
s J#

eH
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Ilterative
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MSe points attract..  KL-divergence
Pjli
C =3 KL(RIQ) =33 pislog -
) 7 j J1?

L@ YWY @ v e

v

...and this point repels a little bit.
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Euclidean dlstances
(—||X1—XJ|| /20; )

p..:
I s iexp (—|xi —xx|[2/202)

The probability of point x; to have xj as it’s neighbor

Student t-distribution
(1+|yi—yill*)
it (14 e =yill*)”

dij =

) - scMethods




t-SNE

v ¢ °® @ _ Euclidean distances
~

exp (—||xi — x;||*/20?)
ki €XP (—||Xi — xk||2/20?)

The probability of point x; to have x ; as it's neighbor

Pjii =

Student t-distribution
(1+ |lyi —y;l1?)”

qdij =

- 000 00000 ¢

-
Yitt (14 vk —»i|?)

KL-divergence

G = ZKL FlQ:) = ZZp]hlonglz
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] ;
Another &€ ﬁ;E,“;:j?éﬁL
Approach:

exponential probability distribution
(not normalisations)

d(ZBi,ZL’j) — Pi

pijj =€ o

¢ = (1 +a(y — yj)zb)_l

binary cross-entropy

- T3 [pooe(Gm) -0 -meores(=3)

This method is called UMAP



UMAP: Uniform Manifold Approximation and Projection

» Use topology to estimate the binary cross entropy
e Use algebraic topology

* UMAP essentially constructs a weighted graph from the high
dimensional data — simplex

* edge strength representing how “close” a given point is to another
* projects this graph down to a lower dimensionality (force-directed

graph layout algorithm) Simplex fuzzy simplicial complex
Y s / ) B
..‘ . ! \ . ‘.‘

o . B L .
@ o
:. <« % ’ '. -
e B P B R
o
I b
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https://github.com/zalandoresearch/fashion-mnist
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Standard example: Fashion MNIST (784-dimensional)

Ankle boot U MAP I Ankle boot
e, Can we see that s
o s | difference in sScRNA- [ B
i seq datasets? N

: o -“ -- e k - /
- g’ §— \’. .."
P RN Trouser o Y Trouser
? " - " g 3
4 e .‘r‘ > “Au,-\ l\ y
\ N ) A X
e T-shirt/top g T-shirt/top

+ different classes pick out nicely + More understanding between the classes-

- Global conservation of distance
15 minutes on a desktop 78 seconds™ 11x faster!

MVD - scMethods




want to play a little bit? B o

https://pair-code.github.io/understanding-umap/

t-SNE

. Aﬁ
Shlrt PuIIover Coat Dress Sandal ' Sneaker: -Trouser‘ Bag

MVD - scMethods




Conclusions? 89 o Glasgon

* What do you think — T-SNE or UMAP?

MVD - scMethods



Last but not least - normalise &) 7 CTegon
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What is our problem? & rClgon

e cell-specific biases

Are there differences?
Expression of three genes in two conditions .
Active rheumatoid arthritis versus Remisson in ~ 5000 cells RaW Cou ntS - n Ot n O rm al |Zed

Gene

ACTB
TREMA1
TREMZ2

Expression

Condition
ActiveRA

Remission

Acti\:eRA Remilssion
Condition



Normalization

a1al Unaversity
¥ of Glasgow

e default Seurat — log scale - zero mean, variance one

e scTransform

* Scran

But why do we need to normalize data?
What happens, if we don’t?

MVD - scMethods



Default Seurat method b renkessel

* Employ a global-scaling normalization method “LogNormalize” that
normalizes the feature expression measurements for each cell by the total
expression, multiplies this by a scale factor (10,000 by default), and log-
transforms the result.

 Normalized values are stored in pbmc[["RNA"]]@data.
Scaling the data

* Shifts the expression of each gene, so that the mean expression across cells
IsO

 Scales the expression of each gene, so that the variance across cells is 1

* This step gives equal weight in downstream analyses, so that highly-expressed genes
do not dominate

* The results of this are stored in pbmc[["RNA"]]@scale.data

MVD - scMethods



Linear regression — heart about it? &) teon

* Linear regression is a statistical technique used to
model the relationship between a dependent variable
(response variable) and one or more independent
variables (predictor variables)

* Goal: Find the best-fit line that describes the linear
relationship between the dependent variable and
independent variables.

In linear regression, the =
observations (red) are assumed to be

° y — bO + lel + b2X2 + ..+ bn*xn the result of ran.dom de\fiatior?s (green)
from an underlying relationship (blue)
between a dependent variable (y) and
an independent variable (x).

MVD - scMethods



Generalized linear model (GLM) & o Cigon

VOSSN RLIONS (D 2T WG
Regression Plot

* flexible generalization of ordinary linear regression

* GLM generalizes linear regression by allowing the
linear model to be related to the response variable via
a link function and by allowing the magnitude of the
variance of each measurement to be a function of its
predicted value

* Basically it can adapt through a function

* in R: ?gIm()

Wiki MVD - scMethods


https://en.wikipedia.org/wiki/Linear_regression

scTransform NP ey

e SCTransform(pbmc, vars.to.regress = "percent.mt", verbose = FALSE)

* sScCRNA-Seq is confounded by technical factors including sequencing depth

* Use a modelling framework for the normalization and variance stabilization
of molecular count data

* Omits the need for heuristic steps including pseudo counts addition or log-
transformation

* Improves common downstream analytical tasks such as variable gene
selection, dimensional reduction, and differential expression

MVD - scMethods


https://satijalab.org/seurat/reference/SCTransform.html
https://satijalab.org/seurat/reference/SCTransform.html

scTransform (2/2) 8 o Ciegon

* Show that different groups of genes cannot be normalized by the same
constant factor

e Construct a generalized linear model (GLM) for each gene with UMI counts
as the response and UMI counts as the explanatory variable

e pooling information across genes with similar abundances, scTransform
regularizes parameter estimates and obtains reproducible error models

Method | Open Access | Published: 23 December 2019
®re

-|Normalization and variance stabilization of single-cell RNA-
i seq data using regularized negative binomial regression es

Christoph Hafemeister & & Rahul Satija

Genome Biology 20, Article number: 296 (2019) | Cite this article

40k Accesses | 230 Citations | 65 Altmetric | Metrics




;i.: University

¥ of Glasgow

* “size factors” like in DESeq2

* normalization is performed on pooled counts for multiple cells, where the
incidence of problematic zeroes is reduced by summing across cells

* pooled size factors are then deconvolved to infer the size factors for the
individual cell
METHOD \ Open Access | Published: 27 April 2016

Pooling across cells to normalize single-cell RNA sequencing
data with many zero counts

Aaron T. L. Lun &, Karsten Bach & John C. Marioni

Genome Biology 17, Article number: 75 (2016) | Cite this article
30k Accesses | 303 Citations | 46 Altmetric | Metrics
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Conclusion R prenes)

* Try different methods
* | would suggest to use scTransform

* For parasites dataset we have good results with SCRAN as it deals better with
uneven RNA content

* Ross likes the log p + 1 method

MVD - scMethods



Single cell underlying methods b renkessel

* A lot of math & stats
e Similar concepts are used again and again

* Be critical in usage — tools will always do something- they don’t say when it
does not make sense

* Integration
* Differentially expression

* Let’s introduce pseudo time tomorrow

MVD - scMethods



Conclusions

single cell RNA-Seq is noisy

Need to relate the finding to “biology”

Many methods exists

Still open problems: How good is integration? DE!
Vehicle to understand your biological question
Pseudo time is powerful to find dynamics

Several exiting new tools



Another examples?



Malaria & Phylogeny fle University

of Glasg TOW

L-—_ﬂ

Life cycle of P.falciparum ———— Plasmodium gallinaceum £

Sporozoites ]

100 P.cynomalgi Gk

P. vivax ﬁ
Ookinete ¢ .

T e . I: P.reichenowi @
Zygote p E G 100 P. falciparum i
\ - 100 rex] @

Gamete

P. juxtanucleare el
Leucocytoroan cawlleyi ur)

In
mosquito

qut X 207 million clinical episodes, approx. 627,000 deaths
(2012); 408,000 in 2018; 620,00 2020

No vaccines // Fast development of drug resistance
Gametocytes Parasites needs to balance in-host replication and
between=host transmission 116




Unn ersity

Host parasite interaction in Malaria ) of Glasgow

a mCherry*iRBC

& 5 a®
o) N %
e T T e —— » @%@ >s @0 @j
Q © o \Jgﬁ qp*@%
@ 2 10X scRNAseq

Infection Organ harvest Cell isolation FACS separation iRBC-enriched pool CITEseq staining sequencing

50 %

O

106 iRBC i.v.

SCienceAdvanceS Current Issue  First release papers  Archive  About v Submi

HOME > SCIENCE ADVANCES > VOL.8 NO.17 > HOST CELL MATURATION MODULATES PARASITE INVASION AND SEXUAL DIFFERENTIATION IN PLASMODIUM BERGHEI

RESEARCH ARTICLE | MICROBIOLOGY f ¥ in & % =

Host cell maturation modulates parasite invasion and sexual differ-
entiation in Plasmodium berghei

F ra n Z ISka H e ntzsc h e I FRANZISKA HENTZSCHEL , MATTHEW P. GIBBINS , CHARALAMPQOS ATTIPA , DARIO BERALDI , CHRISTOPHER A. MOXON ,THOMAS D. OTTO , AND MATTHIAS MARTI| Authors Info &

Affiliations

Erlangen 2022 117



Samples in Spleen and bone marrow
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Differentially expressed genes?

o7a| University
7 of Glasgow

e

Generally more going on in MK / Monocytes — Ifits1, Lsg15

Ly6a
Isg15
Rsad2
Gbp2

Ifit1
Serpina3g
Spic
C1lqga
C1qgb
Cilqc
Oasl2
Isg20
Gm12250
Gbp7
Parp14
Ifi206
Gbp9
Rnf213
Zbp1
Gbp4

(Boy) uoissaidxg ‘Bay
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Invasion phenotype Y yersity
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Summary @ Univericy

e dual scRNA-Seq is powerful...
e ... but not correct setup

* But how could you look at these data?

Erlangen 2022 122



Learning aims B 7 Caon

* Introduce more technical concepts

* Explore how to process scRNA-Seq data

* Learn new methods, normalization, integration and DE in scRNA-Seq
* Critical evaluation of scRNA-Seq

* Overview of developments in scRNA-Seq

MVD - scMethods



Data accessibility - ParaCell
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Parasites

UMAP 2
UMAP 2

UMAP 1
Trypanosoma brucei bloodstream fi

S,
9@0/

This web-app was developed by Jesse Rop under the supervision of Dr Thomas Otto. It was funded by the SCF-

Edward Agboraw
http://cellatlas.vas.gIa.ac.uk\y

illiam Haese-Hill

"Megration

B - introduction to scRNA-Seq
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Cellxgene - paraCell ) of Glasgow

O @ @ cellxgene VIP X +
< C @ cellatlas-cxg.mvls.gla.ac.uk/Pb/
Ecellxgene VISUALIZATION INPLUGIN /) 1:36906 cells  2: 0 cells olalls= wlo

CD71_Status > ()
Host_Cell_Type > 'y
Host_Organ > ()
MCA_Annotation > 'y
Parasite_Stage v n
Early Gams 1096 M
Early Rings 3430 W
Early Trophs 1 6668 M
Early Trophs 2 5226
Females 215
o s
Males 0 paracCell: a novel software tool for the interactive
e i analysis and visualization of standard and dual host—
S w0 m parasite single-cell RNA-seq data @
Replicate > Y Edward Agboraw, William Haese-Hill, Franziska Hentzschel, Emma Briggs, Dana Aghabi,
Sample_ID > ¢ Anna Heawood, Clare R Harding, Brian Shiels, Kathryn Crouch, Domenico Somma ...

Show more

Nucleic Acids Research, Volume 53, Issue 4, 28 February 2025, gkaf091, https://
doi.org/10.1093/nar/gkaf091

) . Published: 20 February 2025  Article histo
& umap: 36906 out of 36906 cells B - introduction to scRivm-ocy y v 12>
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