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Learning aims 

• Reflect on different between single cell and bulk RNA-Seq – what are the 
applications?

• Understand the differences between scRNA-Seq methods and how to apply 
them

• Explore how to process scRNA-Seq data

• Learn new methods, Seurat, Pseudo time

• Establish your R knowledge

• Critical evaluation of scRNA-Seq 
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1. Overview: Exercises, Assessment, Lectures, datasets, WHY?

2. Why all of the fuss about single cell? – My approach.

3. Different single-cell technologies

4. Quality control: IGV, Web summary

5. Analysis pipeline
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Content



Datasets used: PBMC
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Seurat tutorial
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COVID single cell example dataset

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382903/



Discussion, if not clear… 
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• Why do we do transcriptomics? 

• Why should we do scRNA-Seq? 

• Is bulk not good enough?



2. My scRNA-Seq thoughts
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How can we 
understand
the differences?

Tastes 
different!



My scRNA-Seq thoughts
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What is similar
What is different

single cell is really noise…. 
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Actually 

Cell 1 

Cell 2

Cell 4

Cell 5

Cell 3

Cell 6

Which gene is highly expressed?

Cell 7
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“bulK”

Noise

doublets

Good cells with 10-40% of the genes 
“covered” that are expressed

Cell 7 – dying cells?

How do dying cell look like (scRNA-
Seq)?

 
How to differential noise from signal?

And how is it anyhow going to “look 
like”?



What you need to do!
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Find Cut-offs
BL01 <- subset(BL01, subset = nFeature_RNA > xXx & 
                nFeature_RNA < xXx  & 
                percent.MT < xXx)

Genes UMI

G
en

es

UMI
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The Bioinformatics and the data
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What you need to do - PCA
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In SCAMPI
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All about visualization (and R)
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All about visualization (and R)
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What you need to do - Clustering

0 0.1 0.2 10
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All about visualization (and R)
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All about visualization (and R)

B - introduction to scRNA-Seq

Hot Dog

BURGER

McD_XMeat
Flour

Onions

Mayo

Onions

Gherkin
Tomato

Salad

Salt
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In SCAMPI



Source:
nhsbt.nhs.uk

Why so powerful?

Development of T-cells

library.med.utah.edu

Host:Pathogen
Interaction

.
.

B - introduction to scRNA-Seq 22



3. Different technologies
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scRNA-Seq methods

• Show the methods

• a lot, focus on two
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Again:

• How can we get to one cell?

• How can we sequence most of the genes of the cell?

• As many genes as possible!

• As many cells as possible!
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smartSeq2

• Full transcript scRNA-Seq 

• Developed for single cell but can performed using total RNA. 

• Selects for poly-A tail. 

• Full transcript assay. 

• – Uses template switching for 5' end capture. 

• • Standard illumina sequencing. – Off-the-shelf products. 

• Hundreds of samples. 

• Often do not see UMI used. 
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• Poly-A capture with 30nt polyT and 
25nt 5' anchor sequence. 

• RT adding untemplated C 
• Template switching 
• Locked Nucleic Acid binds to 

untemplated C 
• RT switches template 
• Preamplification / cleanup 
• DNA fragmentation and adapter 

ligation together. 
• Gap Repair, enrich, purify. 

B - introduction to scRNA-Seq 27



Equipment
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What could be the drawback?
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What could be the drawback?

• Few cells

• A bit of work

• On the plus, little dropout

• Coverage of the whole transcript
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Drop-seq 

• Moved throughput from hundreds to thousands. 

• Droplet-based processing using microfluidics 

• Nanoliter scale aqueous drops in oil. 

• 3'End 

• Bead based (STAMPs). 

• Single-cell transcriptomes attached to microparticles. 

• Cell barcodes use split-pool synthesis. 

• Uses UMI (Unique Molecular Identifier). 

• RMT (Random Molecular Tag). 

• Degenerate synthesis. 
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Let’s have a look

• https://ars.els-cdn.com/content/image/1-s2.0-S0092867415005498-
mmc8.mp4

•  (still working, testing 10/03/2024)
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10x massive sequencing

• Droplet-based, 3' mRNA.
– GEM (Gel Bead in Emulsion) 

• Standardized instrumentation and reagents. 

• More high-throughput scaling to tens of thousands. 

• Less processing time. 

• Cell Ranger software is available
 for install. 
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Working Principle of Gelbead Emulsions (GEM)

Gel Beads with bar-coded 
oligonucleotides 

Cells/Nuclei + enzymes Oil

Water droplets

•3.6 m bead types with different 
10x barcodes

•All molecules (e.g. cDNA) 
generated in a droplet carry an 
identical 10x barcode

•10x barcodes enable grouping of 
molecules as derivates from the 
same droplet/cell

GEM

Cell

Enzymes

Gel BeadPartitioning of single cells into droplets follow principle 
of cloning by limiting dilution.

Thanks to Stephen Hague, 10X genomics



Gel Beads with bar-coded 
oligonucleotides 

Cells/Nuclei + 
enzymes

Oil

Water droplets

Working Principle of Gelbead Emulsions (GEM)

Thanks to Stephen Hague, 10X genomics



• up to 10.000 cells (more possible, but doublets)

• 800-7500 individual transcripts captured (UMI)

• 500-2500 genes per cell captured (how many genes are expressed in a 
cells???)

• relative expensive (one library ~ £1.500)

• Need to be sequenced (Illumina) to 
30-50k reads per cells

• 3’ ENRICHED
• Partial coverage

• No splicing
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Data generation

10X sequencing (+/-)

How deep to sequence to get 2000-5000 
UMI? 



Output of single cell data is “HUGE”

• A table of ~20 thousands rows and ~10 thousands cells per run

• Each cell (column) is described by ~2,500 genes (row)

• Difficult to visualise this
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https://www.youtube.com/watch?v=4NAS1qTJmYA

Data generation



Linux processing
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Two types of methods 

• SmartSeq2: 
• Full length representation

• Alternative splicing

• Few cells

• Good for homogeneous cells - T-cells / parasites

• Drop-Seq / 10x 
• Just counting genes (UMI)

• A lot of cells – poorer coverage?

• Good for heterogeneous cells: Blood, joints, brain
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Conclusion 1

• scRNA-Seq is a powerful method to capture the expression profile of 
individual cell

• Technical challenges, noise, drop out, singletons

• Two main methods for homogeneous versus heterogeneous cell populations

• Expensive, but good?

• Need to analyse the data
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4. Quality control (QC)
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View of mapped file in IGV (FTH1)
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Position in genome

2 genes
UTR, Introns, direction

Coverage plot

Mapped reads

FTH1 is well expressed. Clear peak at 3’ end



IGV – IL10 
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Low expressed
Noise in intron



QC: Web summary

• https://support.10xgenomi
cs.com/single-cell-gene-
expression/datasets/1.1.0/
pbmc3k
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Better run (more recent)
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Buzz group task

• To understand better the output of CellRanger we will form groups of 3-4 
students

• You have ~1 minute to discuss, if
• How good is the run?

• Is the number of cells/genes good?

• Is the number of reads high enough? 

• What could be improved? 

• Would it need a rerun? 
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Discuss 1
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• How good is the run?

• Is the number of cells/ genes good?

• Is the number of reads high enough? 

• What could be improved? 

• Would it need a rerun? 

 



Discuss 2
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• How good is the run?

• Is the number of cells/ genes good?

• Is the number of reads high enough? 

• What could be improved? 

• Would it need a rerun? 

 



Discuss 3
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• How good is the run?

• Is the number of cells/ genes good?

• Is the number of reads high enough? 

• What could be improved? 

• Would it need a rerun? 

 



Cell ranger Web summary - summary

• Think about what is the best number of cells to aim for!

• How many reads do map the reference?

• Where enough reads sequenced? 

• How many genes are in each cells expressed – and UMI?
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5. Analysis pipeline

B - introduction to scRNA-Seq 51



• Many tools to process scRNA-Seq, including
• QC
• Normalization
• Detecting confounder
• Clustering
• Visualization
• Identifying marker genes
• Differentially expressed genes
• Pseudo time

• … over the next week
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https://satijalab.org/seurat/articles/get_started.html



scRNA-Seq analysis pipelines 

One sample:

• QC

• Normalisation

• Dimension reduction

• Clustering

• Visualisation

• Identifying marker genes

• Pseudo time

Two samples

• As before, plus

• Integration 

• Differential expression analysis
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SCAMPI

• Homework…
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Analysis 

• Seurat in R

• SCANPY, in pyton

• We will do in the exercise the Seurat one
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Seurat - Load data (PBMC datasets - immune cells in blood)

PBMC is the R-object that holds all the data

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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Quality control

Why is the expression 
of mitochondria 
interesting? 

nFeature_RNA – are the genes per cell; nCount_RNA are the UMI NOT the reads!!
Percent.mt is the percentage of expression explained by the mitochondria expressing genes (dead cells?)
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Quality control II

Get rid of doublets and potential dead cells
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Normalisation 

There are different methods to normalise, like sc_transform and scran, but we won’t do this here. 
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Dimension reduction

60



graph-based clustering approach
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Cluster the cells

So are we don’t see anything!

Run non-linear dimensional reduction (UMAP/tSNE)
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Finding differentially expressed features (cluster biomarkers)

The task here will be to read/investigate (or know), which marker genes are specific for what tissues. 
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Known markers
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Annotation of clusters

Be careful; we will use 
different codes. 

Obviously, you need 
to adapt those for 
each dataset.



• We quality controlled, clustered and annotated a PBMC dataset.

• But that is bowring, how can we compare two different groups? 
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That’s it



• Comparing stimulated PBMC or Covid patients with healthy

• For each cluster, we want to know the statistically differentially expressed 
genes between the two conditions – think about “multiple test” corrections

• Findallmarkers function – set the test; MAST is a good one, and talk about 
more on Monday

• People argue that pseudo bulking each sample for each clusters (if sufficient 
replicates) allows better results
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Differential expression between two conditions
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Integration:

https://satijalab.org/seurat/articles/integration_introduction

This part is tricky and we will look at other methods. 
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Differential expression

How is that different to the previous DESeq2 work? 



• Have a good look at the list of DE genes

• Do enrichment analysis 
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And then – understand difference!
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If you like Python – SCAMPI was done with SCANP[Y|I]
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• Select cells, exclude doublets & dead cell (more tomorrow)

• Need to reduce dimensionality – PCA - but how much?

• Need to cluster data – solved graph-based clustering, but which resolution?

• How to annotate clusters?

• We are going to cover these further, but here, grasp a general idea how they 
work

• A lot of literature for further reading available
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Where to tweak the parameters?



• scRNA-Seq is a moving field in terms of methods

• Need to reduce dimensionality – PCA - but how much?

• Need to cluster data – solved graph-based clustering, but which resolution?

• How to visualise data: UMAP – but it is just a visualisation methods

• We are going to cover these further, but here, grasp a general idea how they 
work

• A lot of literature for further reading available

• In our practical we are using R, however Python with ScanPy, very powerfull 
as well, and several member of my team prefer it.
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Take home message here:



• Home work – try a scampi workflow

• https://scampi.mvls.gla.ac.uk/ 
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Show case SCAMPI 

https://scampi.mvls.gla.ac.uk/
https://scampi.mvls.gla.ac.uk/


• Role of macrophages in Rheumatoid Arthritis

• Cell atlas ParaCell

(both projects lead by previous bioinformatics students)
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6. Examples



Remission in rheumatoid arthritis
• Mariola Kurowska-Stolarska and Stefano Alivernini: Some people stay 

in remission, other flare – what is the role of macrophages?

• Did scRNA-seq with 10X chromium 

PhD Student Lucy MacDonaldB - introduction to scRNA-Seq 76



Macrophages subtypes are associated to 
disease state
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Macrophages subtypes are associated to 
disease state

Two-tailed Spearman’s correlation between 
synovial expression of  SPP1 with disease activity 
in the PEAC cohort (IMID-Bio-UK - n = 90) 

B - introduction to scRNA-Seq 78



Stimulation of primary fibroblast-like synoviocytes (FLS) with 
different phenotype macrophages

MerTKnegCD206neg and MerTKposCD206pos STMs induce inflammatory and repair responses, respectively in fibroblast B - introduction to scRNA-Seq 79



Summary

• Amazing!
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Answer/Solution

Interpretation



Data accessibility - ParaCell

http://cellatlas.mvls.gla.ac.uk/ B - introduction to scRNA-Seq 81

William Haese-Hill
Edward Agboraw



Cellxgene - paraCell
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Show example

• http://cellatlas.mvls.gla.ac.uk/
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Conclusion

• Presentation of the pipeline from QC, normalisation, clustering, visualization 
and annotation. 

• scRNA-Seq is noise, and many statistical & computational methods are used

• The pipelines are quite well defined, however, some important parameters 
need to be set.
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Exercise

• SCAMPI – getting the workflow
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