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https://www.informatec.com/en/machine-learning - more & more
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2 Machine Learning is the most popular technique of predicting the future or classifying information
to help people in making necessary decisions.

* Machine Learning algorithms are trained over instances or examples through which they learn
from past experiences and also analyze the historical data.

* Therefore, as it trains over the examples, again and again, it is able to identify patterns in order
to make predictions about the future.

https://data-flair.training/blogs/ machine-learning-tutorial/ ﬁ -

MVD - more & more
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¢ Machine Learning: branch of Al - knowledge analysis that automates analytical model building

* Deep learning: broader family of ML methods supported artificial neural networks with
representation learning

e Alis the greater pool that contains an amalgamation of all the above-discussed technologies.

MVD - more & more Kesthtion é
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Where do you encounter ML/Al in your day-2-day live? BNITM L
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* Correction when you type on your phone
* Speech recognition
*  Which advert to pu
* SPAM filter

* Prediction which mJ

Is it just good, or is there a

* Predict your friends “darker” site?

* Autonomous car dr
* single cell analysis -

e predicting protein s
e ChatGPT —and friends — does it all for you-

ALL BASED on collection of large data amount!

MVD - more & more e
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® Realise, it is everywhere
* What are the dangers?

* General concept of types
* Nomath®

* Some examples

Leibniz
Association

MVD - more & more
L L e, e e
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Flawr

Machine learns
from training data

Supervised

Machine
Learning

Types of
Machine
Learning

Reinforcement Ur vised J
Learning Parning
Machine learns No training data
onits own is required
VVD - more & more https://data-flair.training/blogs/machine-learning-tutorial/ =<,{#M é
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Supervised Unsupervised Reinforcement
Learning Learning Learning

— Fraud detection Text Mining

— Email Spam Detection Face Recognition

— Diagnostics Big Data Visualization
L Image Classification Image Recognition

Risk Assessment Biology
Score Prediction City Planning
Targetted Marketing é-g .
MVD - more & more . . .. . . . Letbaiz é
https://data-flair.training/blogs/ machine-learning-tutorial/ ~  #=ce

tut
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Machine Learning Algorithms BNITM [
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1. Regression - Linear Regression
° 2. Decision Tree Learning — supervised methods to take decisions based on user input.
3. Support Vector Machines - to classify data into two categories or classes.
4. Association Rule Learning - customer will buy item Y if he has purchased the item X
5. Artificial Neural Networks (ANN) — mirror the brain — layers of neuros —
6. Inductive Logic Programming - produce a rule-like learning model.
7. Reinforcement Learning — self driving car: series of trials and errors to get better
8. Clustering — unsupervised methods — we did that!
9. Similarity and Metric Learning - learns to map similar objects together
10. Bayesian Networks - P (A/B) = P (B/A)*P (A)/P (B)
11. Representation Learning - algorithms are able to preserve the input data and essential information
12. Sparse Dictionary Learning - extension of representation learning
13. Transformers — pay attention
14. Natural Language Processing (NLP) - makes chatGPT talk to you

MVD - more & more

Leibniz
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So far
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* Clustering
* T-SNE/UMAP

* How can we use Al/ML in der interpretation of our data?




Classifier — perceptron - a simplified approach

e Aclassifier of numbers from 0-9
* How easy?
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* Wegiveitanumber and want out, what number itis.

e Difficult as not clear

* Let’s use a neural network

Yy
Nucleus Soma Axon terminals - ;
(cell body) \ \\ Y Dendrites
\ov R
Synspses
Dendrites Myelin
Sheaths
(e \ - Axon y
7
(& / b=
Ve 4 Signal flow
i')‘? ~ | o P Output @
Axon Simplified neuron body within a network
Anatomy of a biological neuron Source: Gurney, 1997. An Introduction to Neural Artificial neuron
Source: ASU school of life sciences Networks

https://ml4a.github.io/ml4a/neural_networks/ igj
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What is the input? BNITM |
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* Yes the number?
* What how are we going to give it to the network?

input layer
We need an “embedding”

Any ideas?

BNSE
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1-layer neural network for MNIST. The 10 output neurons correspond to our classes, the 10 digits from 0 to 9.
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How to input an image into a neural network
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Learning BNITM L
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* Split the data into training and testing 4

* Train, iteratively, optimise a cost function

* Tryto find the global minimum of the cost function 5%*5 i\

* Hope that the system converges %ho L | \
4 50 H

2 K
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2

W1

xxxxxxx
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Demo: Looking inside neural nets [demo page] [view source] MNIST ordinary v

3 misclassified as 9
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Adding an internal layer!

output layer

hidden layer 3

99.4 % correctness

hidden layer 2
il
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hidden layer 1

input layer
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Why not do more internal layers?

fati



If doing this, you need to read about

125 Years

BNITM L

1900-2025
BERNHARD NOCHT INSTITUTE FOR TROPICAL MEDICINE

* Samplesize
* Overfitting: a model learns patterns that are specific to the training data but don’t generalize
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Example of Al: Alpha fold v1 BNITM [
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AlphaFold v1 (2018)
* Used convolutional and recurrent (LSTM) networks.

* Architecture was relatively shallow by today’s standards:
around 8-10 layers in its main modules.

* Achieved impressive accuracy for its time but had limits on long-range residue
interactions.

CASP (Critical Assessment of Structure Prediction)

Accuracy: It predicted ~25 out of 43 protein structures more accurately than any
other method.

Average GDT_TS: = 58.9

Second-best method
* The second-ranked group at CASP13 was typically listed as Zhang Lab (University of Michigan, team “Zhang-

Server”).
* Their models were the best for about 3 to 5 targets (depending on subcategory).
- Average GDT_TS: = 49.6 (FM category) Gty
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* AlphaFold v2 at CASP14 (2020)
* Competition: CASP14 (2020)
* Result: Transformed the field entirely.

* Average GDT_TS: 92.4 (out of 100) across all categories — essentially experimental accuracy.

So here we can see that Al — deep neural networks, do “something correct”
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AlphaFold v2 (2021) BNI;[M

* Completely redesigned with transformer-style modules.
* Uses two key components:

Evoformer — a deep stack of transformer blocks processing sequence and
pairwise residue information.

Structure Module — a geometric deep-learning component that predicts 3D

atomic coordinates.
* Each Evoformer contains about 48 transformer blocks, and each block includes multiple attention layers (so,
effectively hundreds of sublayers when expanded).

* So depending on how you count, AlphaFold2 has on the order of hundreds of neural layers, far deeper than a
standard MLP.
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The trick is the transformer and putting things one after the other BN |19'|:0M

Database searc.h Evoformer Structure module
and preprocessing
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* Transformers let the model learn what to pay attention to. o

Provided proper attribution is provided, Google hereby grants permission to

reproduce the tables and figures in this paper solely for use in journalistic or
scholarly works. Feed
Forward
T )
| Add & Norm |<s
(R Mult-Head
. Feed Attenti
Attention Is All You Need Forvard 7 ‘3'°”; Nx
| N—
Nix Add & Norm
~>{ Add & Norm Nashead
Multi-Head Multi-Head
Attention Attention
1t t
o J — )
Positional ® @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

| still need to read this paper! %

Association
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* “The cat sat on the mat because it was soft.”
* The It refers to the mat — that is not easy to get the of neural network

* For each token (word) it computes three vectors: Query (Q), Key (K), and Value (V).
QK"
Vdj,

Attention(Q, K, V') = softmax
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How does ChatGPT works? BN |19'|:0M
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e https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

e Just decided “randomly” what the next word will be

a ranked list of words that might follow, together with “probabilities”:

learn 4.5%
predict 3.5%
The best thing about Al is its ability to = Make 3.2%
understand 3.1%
do 2.9%

* Probability is learn from billions of texts of the internet
* Thereis arandom value, which word to take in the list... so every answer is the same
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* Words get transformed into numbers oagle
* if we project down to 2D
deer
camel
. e . duck
* Train on 5 billion words from the web and some words like bear  oOW
crocodile and alligator will often appear almost _ shickan
. . . .. elephan b
interchangeably in otherwise similar sentences bird mu:;ir::"ygrape
dog fish strawbspherry
chimpanzee cat
cheetah dolphin
e 175 billion neural net weights ke apricot
fig peach
cherry  PinegpRifut
alligator mango
crocodile
banarfi?Paya melon
ant apple
bee ribes
avocado
blackberry turnip

httes:“writi ngs.steeh enwolfram .com‘202 3‘02‘what-is-chatset-d oins-a nd-whx-d oes-it-wor k‘ =
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Store more concepts

In 2016 a wild crane was born in Wales for...

.
. 2
F LI

...over 200 years the common crane plays a very important part...
i .
-  ®

Lesser sandhill crane A. c. canadensis Cuban sandhill...
...maps Audio recordings of Common crane on Xeno-canto Py o

Explore Species Blue crane at eBird Cornell Lab of...
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...High Noon had a famous crane shot
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N ...God that he needed a crane to construct the Ark ir

®
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...of a double wheel treadwheel crane is in use at Prague

[ |
A carry deck crane is a small 4 wheel...
® s — The crane was sold to the Panama...

...poured into a furnace by crane hot metal is then rolled...

e 1-. oe
. ...the only double wheel ireadwheel crane in the United Kingdom
Type s0-80 railway crane for accident recovery is preserved...
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Is there for example some kind of notion of “parallel transport” that would reflect “flatness” in

— the space? One way to get a handle on that is to look at analogies:  roR TRoICAL MEDIGINE

king toe purple : See
ﬁnger grapes —___,.—i"'"' eye /
man
1
woman
. red h
herri ___——— hear
queen | | oot hand eheres ear
plant foot

child \ | green stop
cat SOC!

bird ' seed
\ \ glove
adult red
kitten / g0

€99 hand

And, yes, even when we project down to 2D, there’s often at least a “hint of flatness”, though it’s

certainly not universally seen. 24




But why am | telling you that?
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* Could we train a LLM based on scRNA-Seq data, that “knows” which gene to express next?
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Transfer learning enables predictionsin
network biology

https://doi.org/10.1038/s41586-023-06139-9  Christina V. Theodoris"****, Ling Xiao*°, Anant Chopra®, Mark D. Chaffin? Zeina R. Al Sayed?,
Matthew C. Hill*5, Helene Mantineo®’, Elizabeth M. Brydon®, Zexian Zeng'’, X. Shirley Liu'’®
& Patrick T. Ellinor>®®

Received: 29 March 2022

Accepted: 27 April 2023

Published online: 31 May 2023

Mapping gene networks requires large amounts of transcriptomic datato learn the
connections between genes, which impedes discoveries in settings with limited data,

—~

" Check for updates




125 Years

GeneFormer - the model BNITM
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a
‘ Standard approach: training on task-specific learning objective for each application
Supervised
Label_egd seee training Trained Predictions on specific
task-specific JJJ0 —— model — task for which model
training data ®*e*** was initially trained
b
‘ **+ |imited task-specific
One self-supervised +e% data for task 1p
large-scale pretraining
on generalizable Fine-tuning
learning objective
Model for
Large-scale
pretraiging corpus fine-tuning | == ;:::i::tions
T EEEEEREN] /‘ iaSk1
::::::::::Se"'supew'sed Fine-tuni ith
sesseseead retrainin . ne-tuning W
sesessacss ’ g' Pretrained > - limited task-specific data on
eesessense model task-specific learning objectives
e eceasoss for a multitude of
ssscccnces \‘ downstream applications
Model for Task N
. fine-tunin.
Democratize task l‘:l 9 predictions
fundamental
understanding
of learning T Fine-tuning
domain
¢+ + Limited task-specific
+« s+ data fortask N
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The training data
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a Self-supervised large-scale pretraining Fine-tuning with limited task-specific data
Limited task-specific
data for task 1
J Fine-tuning
[] Fine-tuning
Model for layer for
Genecorpus-30M fine-tuning task 1 Task 1
& 7 task 1 predictions
: Self-supervised Copy o
» a f pretraining Pretrained | Weights
. A, '@ Geneformer
a Fine-tuning
\ Model for layer for
Bemocratize fine-tuning task N Task N
task N reclictions
fundamental S P
understanding of o
network dynamics Fine-tuning
to vast array of
iowl?c?;?::; Limited task-specific
PP data for task N
b Tissue representation of Genecorpus-30M
Placenta Prostate Breast Brain
Adrenal Small intestine Lymphatic Decidua
Unlabelled Adipose Tonsil Bone marrow I
Pancreas Endothelial Bladder Oesophagus \
Airway Bone Stomach Skin  [J— Immune
Cord blood Pluripotent Embryo Eye
Spleen Intestine, NOS Nasal Testis
Thymus Yolk sac Ear . .
Lymph node Muscle Large intestine Liver

Kidney

Lung Heart
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¢ Rank value encoding Transformer encoder unit
Gene T
T - - Contextual gene
o Gene H o < o and cell embeddings
> o = w e w
¢ | GeneY = E g g =
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Now, think you have your own data, what could you do? BNITM [
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More datasets to come

* Niechformer — Schaar et al, Theis lab, BioRxiv 20205 - From 90 million to 300 cells?
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Again, how could you used that? BNITM L.
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Thank you for inviting me to Montevideo
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