Transcriptomica ll 2025
single-cell RNA-seq

PRACTICO 2

Natalia Rego

nrego@fcien.edu.uy



mailto:nrego@fcien.edu.uy

bajar datos del DRIVE y arrancar script Colab

DRIVE

https://drive.google.com/drive/folders/1ItESbSyw1VTO_irAXwPtrCajhAcZV
rvz?usp=sharing
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seminarios para 19 y 20 de noviembre

CattaPreta&2024 Leishmania: Agustin y Emilia (19)
Hutchinson&2021 VSGs

Hammond&2019 microglia

Randolph&2021 genetic ancestry: Sofia y Felipe
Roux&2023 C elegans

Segerstolpe&2016 type 2 diabetes; Lauray Antonella

Tosches&2018 pallium evolution



@ Preprocessing and visualization
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Data Integration

e multi-modal

o CITE-seq

o scRNA-seq & scATAC-seq

o scRNA-seq & spatial

o etc
e multiple samples

o batch effects
different patients
different conditions & treatments
different experiments / labs
different technologies (e.g. smart-Seg2 and 10X)
different species

© O O O O



a Separate analysis of multiple modalities
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b Joint analysis of multiple modalities
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multimodal data sets are likely to reveal subtle
differences in cell state that cannot be
captured by a single modality alone

Q: e.g. CITE-seq: RNA & surface protein??
e.g. RNA-seq + ATAC-seq?
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Mutual nearest neighbours

identification of either a shared space or equivalent cells across groups (e.g. using CCA or MNNs) can then be used to eliminate batch-specific
variation, enabling direct comparison between the groups
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t-SNE 2
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Fast, sensitive and accurate integration of single-cell
data with Harmony
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Fig. 1| Overview of Harmony algorithm. PCA embeds cells into a space with reduced dimensionality. Harmony accepts the cell coordinates in this reduced
space and runs an iterative algorithm to adjust for dataset specific effects. a, Harmony uses fuzzy clustering to assign each cell to multiple clusters, while

a penalty term ensures that the diversity of datasets within each cluster is maximized. b, Harmony calculates a global centroid for each cluster, as well

as dataset-specific centroids for each cluster. ¢, Within each cluster, Harmony calculates a correction factor for each dataset based on the centroids.

d, Finally, Harmony corrects each cell with a cell-specific factor: a linear combination of dataset correction factors weighted by the cell's soft cluster
assignments made in step a. Harmony repeats steps a to d until convergence. The dependence between cluster assignment and dataset diminishes with
each round. Datasets are represented with colors, cell types with different shapes.



Efficient integration of heterogeneous single-cell
transcriptomes using Scanorama
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Fig. 1| lllustration of ‘panoramic’ dataset integration. a, A panorama stitching algorithm finds and merges overlapping images to create a larger,
combined image. b, A similar strategy can also be used to merge heterogeneous scRNA-seq datasets. Scanorama searches nearest neighbors to identify
shared cell types among all pairs of datasets. Dimensionality reduction techniques and an approximate nearest-neighbors algorithm based on hyperplane
locality sensitive hashing and random projection trees greatly accelerates the search step. Mutually linked cells form matches that can be leveraged to
correct for batch effects and merge experiments together (Methods), whereby the datasets forming connected components on the basis of these matches

become a scRNA-seq ‘panorama’.



Cell type annotation

e |t can be performed with manual or automatic approaches
a three-step approach is recommended:
automated annotation -> expert manual annotation -> verification step

e Manual approach using gene markers (issue with P values, known markers, time consuming)
e Automated approaches:

classifier-based methods: e.g. CellTypist
pre-trained classifiers; results depends on method and reference data

reference mapping: e.g Azimuth (Seurat)
mapping to existing, annotated single-cell reference and performing label
transfer on the resulting join embedding



SingleR

SingleR is an automatic annotation method for single-cell RNA sequencing (scRNAseq) data
(Aran et al. 2019). Given a reference dataset of samples (single-cell or bulk) with known
labels, it labels new cells from a test dataset based on similarity to the reference. Thus, the
burden of manually interpreting clusters and defining marker genes only has to be done
once, for the reference dataset, and this biological knowledge can be propagated to new
datasets in an automated manner.

https://bioconductor.org/packages/release/bioc/html/SingleR.html
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SingleR

the SingleR () function: identifies marker genes from the reference and uses them to compute
assignment scores (based on the Spearman correlation across markers) for each cell in the test
dataset against each label in the reference. The label with the highest score is the assigned to the
test cell, possibly with further fine-tuning to resolve closely related labels.

plotScoreHeatmap () displays the scores for all cells across all reference labels, which allows
users to inspect the confidence of the predicted labels across the dataset. Ideally, each cell (i.e.,
column of the heatmap) should have one score that is obviously larger than the rest, indicating
that it is unambiguously assigned to a single label. A spread of similar scores for a given cell
indicates that the assignment is uncertain, though this may be acceptable if the uncertainty is
distributed across similar cell types that cannot be easily resolved.



Using cell atlases as a reference for cell assignment: projecting cells
onto an existing dataset to facilitate the transfer of cell labels
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TRANSCRIPTOMICA I, SINGLE-CELL RNA-seq codigo B0058

) lunes 16:00 - 19:00 salén 201/203
TEORICO " . :

03/11 - 06/11/25 miércoles 16:00 - 19:00 salén 209
jueves 16:00 - 19:00 salén 209
lunes 16:00 - 19:00 salén 107

PRACTICO . . _ .
10/11 - 20/11 miércoles 16:00 - 19:00 salén 109
jueves 16:00 - 19:00 salon 107




Linux:

https://swcarpentry.github.io/shell-novice/key-points.html
R:

https://www.rforbiologists.org/
https://melbournebioinformatics.github.io/r-intro-biologists/intro r biologists.html
Google Colab:

https://colab.research.google.com/
https://www.youtube.com/watch?v=inN8seMm7Ul

https://www.youtube.com/watch?v=FXKMmilL70w
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