
Knowledge of how living (and extinct) species are related 
to one another underpins much of evolutionary biology. 
Knowing the relationships between species is an impor-
tant goal in its own right and underlies our system of 
phylogenetic classification. The tree of life is also the 
essential framework for studying the origins of novel 
phenotypes and the processes that underlie biological 
evolution1,2. Mapping heritable character states (pheno-
typic or genotypic) onto a tree is the basis of different 
evolutionary analyses: it allows us, for example, to make 
inferences about character homology and also to gain 
insights into character loss and convergent evolution. 
Homologous characters of two taxa were, by definition, 
present in their common ancestor, allowing us to infer 
the characteristics of these ancestors. More generally, 
character mapping allows us to follow the changing char-
acter states across a tree to reconstruct the historical path 
of evolution. Trees (and molecular data) also underpin 
methods for fitting a timescale to the evolutionary pro-
cess and trees underlie the comparative method used to 
establish trends in the processes of evolution2.

Reconstructing the relationships across all life, 
although prefigured in attempts at classification as long 
ago as Aristotle and Linnaeus, is an endeavour that began 
seriously in the 19th century with Darwinism. Whereas 
trees were initially based to a great extent on morpholog-
ical characters, biological molecules — nucleic acids and 
proteins — provide a far more powerful and plentiful 
source of information for reconstructing trees3. Since 
the development of DNA sequencing and sequence 
data being first used for phylogenetics, our understand-
ing of the tree of life has changed radically and major 

progress has been made towards Darwin’s dream of 
“very fairly true genealogical trees of each great kingdom  
of nature”4.

For almost two decades, molecular phylogenies 
depended on data from one or a few genes, typically 
generated using PCR amplification and Sanger sequenc-
ing5,6. The development of new sequencing technologies 
has resulted in large datasets containing numbers of 
genes that have increased by orders of magnitude7. The 
ease and low cost of genome and transcriptome sequenc-
ing have also meant that the number of taxa that can 
be considered is expanding massively, as manifest in 
recent proposals to sequence the genomes of all species 
on Earth8. The data for reconstructing the tree of life are 
increasingly available, but accurate tree reconstruction 
is not always straightforward.

In this Review, we describe the major steps in the 
phylogenetic pipeline (Fig. 1) involving hundreds or thou-
sands of genes (the so-​called phylogenomic approach). 
For every step, we outline the various methodological 
choices and several corresponding trade-​offs between 
model sophistication and computational demands. 
We begin with the identification of orthologous genes 
(that is, genes whose relationships will reliably reflect 
species relationships) from sets of genome or transcrip-
tome sequences. We then discuss how to align ortho-
logues from different species to account for insertions 
and deletions, and strategies for trimming unreliably 
aligned regions. Finally, we discuss in detail the choice 
of inference methods and substitution models and con-
sider potential errors as well as approaches to identify 
and avoid or mitigate them.

Homologous
When features, including 
morphological characters  
and gene loci, are inherited 
from a common ancestor,  
for example, a gene in two 
species originating from a 
single ancestral gene.

Orthologous
Homologous sequences  
that have diverged due  
to speciation events.

Substitution models
Continuous time Markov  
Chain probabilistic models that 
describe changes between 
nucleotides or amino acids 
over evolutionary time.
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Generating databases of orthologous genes
The first years of molecular phylogenetics were dom-
inated by studies using a small set of universal ortho
logous genes, including the small and large subunit 
ribosomal RNAs9 and (for eukaryote phylogenies) 
the mitochondrial genome10. The widespread use of 

rRNAs stemmed from the ease of PCR amplifica-
tion using universal primers (unlike protein coding 
genes, for which degenerate primers are required), the  
fact that orthology was clear amongst these univer
sal genes and the existence of a large database of these 
sequences.
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The advances in high-​throughput sequencing tech-
nologies of recent years mean that gene sequence data 
are abundant in sequence databases and new data are 
cheaply and easily produced. The challenges for data 
collection we now face are to ensure the data are free 
from contaminants, to identify orthologous genes that 
will reflect species relationships and, ideally, to select 
those genes that are less prone to biases that may result 
in inaccurate trees11.

Data compilation and preparation. Initial gene sequence 
data can be derived either from gene predictions based 
on genome sequences (even from draft-​quality genomes) 
or from transcriptomes generated by sequencing libraries 
derived from mRNA12 (Fig. 1a). An important part of this 
step is to identify and eliminate contamination (either  
by bacteria, commensals, parasites or gut contents, or by 
cross contamination post DNA extraction)13,14 (Fig. 1b). 
We start the description of the phylogenomic pipeline 
assuming the availability of gene sequences from each of 
the organisms of interest. Our ultimate aim is to produce 
an accurate tree of species relationships (a species tree).

Orthology predictions. Two genes are homologous if they 
are inherited from an ancestral gene (Fig. 2). Orthology 
is a special type of homology in which genes in differ-
ent species have diverged from each other due to spe-
ciation15,16. As a result, orthologous genes recapitulate 
the relationships among the species they derive from 
(Fig. 2b). Other forms of homology include paralogy, in 
which genes from two species are derived from gene 
duplications deeper in time than the common ancestor 
of the two species (Fig. 2c), and xenology, where a gene 
in one species derives from a distantly related species 
through horizontal gene transfer (HGT). Paralogy and 
xenology do not reflect the relationships among species 
(Fig. 2c). Therefore, determining orthologous genes is an 
essential step for reconstructing species phylogenies16,17 
(Fig. 1c). Gene duplications and losses in different line-
ages are common and may lead to paralogous relation-
ships even among single-​copy genes, posing a challenge 
to orthology identification.

Approaches for de novo identification of orthologues 
fall into two main categories (Table 1): tree based and 

graph based18. Tree-​based orthology inference iden-
tifies orthologues by aligning homologous sequences 
and reconstructing a tree to find those that are most 
plausibly related by speciation rather than by dupli-
cation or HGT19–21. These methods are conceptually 
closest to the definition of orthology, but they are com-
putationally expensive as they require both alignment 
and phylogenetic inference of entire gene families that 
often comprise hundreds of sequences. Deeper diver-
gences pose a greater challenge to the inference of a 
gene tree as the phylogenetic signal erodes (that is,  
multiple mutations accumulate resulting in homoplasy) 
and the risk of systematic errors increases (discussed in 
more detail in the later sections)22,23. Gene family rela-
tionships may be further obscured if other processes 
causing gene-​tree discordance are not accounted for 
such as incomplete lineage sorting, horizontal gene trans-
fer, hybridization, introgression and non-​allelic gene 
conversion22,24. Particular groups of organisms are char-
acterized by the frequent occurrence of some of these 
processes, for example, HGT in bacteria and hybrid
ization, genome duplication, and polyploidy in plants, 
which makes them more likely to suffer from orthology 
prediction errors.

Graph-​based orthology inference methods25–29 rely 
on the assumption that a gene in one species should be 
more similar to its orthologue than to any other gene 
in a second species and vice versa30,31. This concept of 
orthology gave rise to the most popular graph-​based 
approach, the ‘bidirectional best hits’ method31 and 
several subsequent alternatives25,32,33. All such methods 
are based on all-​against-​all pairwise sequence compar-
isons mostly performed using Basic Local Alignment 
Search Tool (BLAST) for defining sequence similarity34. 
Graph-​based approaches are not immune to the prob-
lems described for tree-​based methods, but they have the 
advantage of being computationally efficient and scaling 
well with large datasets27.

Given the complexity of sequence and gene evolution, 
de novo orthology prediction is bound to be approxi-
mate. It is encouraging that phylogenomic studies based 
on these procedures yield consistent and accurate phy-
logenies. Orthology prediction errors can, however, be 
a source of incongruence in challenging phylogenetic 
problems27. An alternative to de novo prediction is to 
use a set of reference orthologues and to identify their 
co-​orthologues in newly sequenced species. Several 
dedicated databases offer orthologous sequences suit
able for this cause, some spanning all domains of life, for 
example, OrthoDB29 and OMA35 and others focused on 
specific groups of organisms such as plants (Plaza36) and 
mammals (OrthoMam37). Several pipelines are avail
able for automating this procedure (for example, ref.38) 
and there are two advantages in following this strategy. 
First, it is computationally cheaper than de novo infer-
ence and, second, it may alleviate errors associated with 
incomplete gene sampling. This is particularly relevant 
when using transcriptomic data, which usually contain  
only a subset of the genes. The incompleteness of data 
combined with differential gene loss may increase mis-
identification of paralogues for orthologues in de novo 
prediction. Using reference orthologous groups based 

Species tree
A phylogenetic tree for a set of 
species that underlies the gene 
trees at individual loci.

Paralogy
Homologous sequences  
that have diverged due to 
duplication events so that  
both copies have descended 
side by side during the history 
of an organism.

Xenology
Homologous sequences 
originating from horizontal 
gene transfer (also known as 
lateral gene transfer).

Alignment
Insertion of gaps in 
homologous sequences so  
that nucleotides or amino  
acids in the same column  
are homologous.

Gene tree
The phylogenetic or 
genealogical tree of sequences 
at a gene locus or genomic 
region.

Systematic errors
Errors due to incorrect model 
assumptions.

Incomplete lineage sorting
Discordance of gene trees  
from the species tree due  
to ancestral polymorphism.
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Fig. 1 | Phylogenomic pipeline. a | The starting material is a set of gene sequences 
(typically translated protein sequences) predicted from a genome sequence or derived 
from transcriptome sequencing. b | Contamination from commensals/symbionts, parasites, 
gut contents in animals, environmental sources or experimental errors, especially in 
multiplexed transcriptome sequencing, must be identified and removed. Contaminants 
can be identified and excluded based on the GC content of sequences, read coverage  
and taxonomy of sequence similarity matches. c | All-​against-​all comparisons (Basic  
Local Alignment Search Tool (BLAST) or similar) are used to identify sequences that are 
homologous between all species of interest. Clustering algorithms are used to identify 
putative orthologous genes whose relationships should reflect the species phylogeny.  
d | The sequences of putative orthologues are aligned to generate a multiple sequence 
alignment (MSA). e | The MSA can be analysed to produce an initial phylogenetic tree for 
the putative orthologues, which can be used to identify remaining paralogues, contaminants 
and other problematic sequences indicated by unusually long branches. f | The MSA  
is typically filtered to remove regions of unreliable alignment. g | The orthologues are 
concatenated to produce a supermatrix, which is analysed to infer the species phylogeny. 
Different models (or independently estimated substitution parameters under the same 
general model) may be used for different partitions of the MSA.

◀



hypothesis of orthology may also be tested at the same 
time as the species phylogeny. In particular, multi-​copy 
gene data can be used simultaneously to estimate the 
species and gene-​family evolution40,41. Several methods 
have been described either in a full Bayesian frame-
work41 or in heuristic alternatives (for example, refs42–44). 
Comparative assessment of the performance of these 
methods shows promising results45.

A final consideration for orthology prediction is the 
genetic fragment that is used as the unit. It is typical to 
use genes (entire or partial) as a means of identifying 
orthologous parts of a species’ genome. However, most 
genes consist of multiple domains and, through time, 
their order and number may change. In this context, it 
has been suggested that domains may be more suitable 
units for orthology and consequently for phylogenetic 
inference46,47.

Alignment and trimming
Sequence alignment. Due to insertions and deletions 
(indels), genes and proteins typically differ in length bet
ween species and, even in genes of identical length  
today, residues at the same location in a gene need not 
necessarily be homologous. Identifying homologous  
residues across genes entails aligning the genes, through  
the addition of gaps within the sequences48 so that, in the  
final multiple sequence alignment, the residues in each 
column of the alignment should have descended from 
the same ancestral residue (Fig. 1d). Accurate alignment 
is fundamental in the inference of evolutionary relation-
ships but, for genes in which indels have been frequent,  
it is a challenging task. When aligning protein-​coding 
DNA sequences, the nucleotides naturally evolve as codon 
triplets rather than as single nucleotides. This property, 
as well as the fact that amino acid sequences change less 
rapidly than the corresponding nucleotides, means that 
initial alignment at the protein level rather than at the 
DNA level is usually appropriate. The codon triplets 
can then be aligned according to their corresponding  
amino acids49–51.

Alignment methods can be classified into three main 
categories (Table 1). The most commonly used methods 
adopt the progressive approach, including Muscle52, 
Clustal53 and MAFFT54. These methods first make a 
rough estimate of how similar each pair of sequences 
is and use this information to produce an approximate 
guide tree of relationships between sequences. They 
then build up the alignment by first aligning the most 
similar pair of sequences and progressively adding more 
distantly related sequences, according to the guide tree, 
to this fixed alignment.

Second are the consistency-​based methods, including 
T-​Coffee55, ProbCons56 and some versions of MAFFT54. 
Initially, these methods estimate all pairwise alignments 
and, for each sequence pair, keep a record of alternative 
high-​scoring solutions. Subsequently, they attempt to 
identify the overall alignment that maximizes the con-
sistency among all pairs. Consistency-​based methods 
are slower but more accurate overall than progressive 
methods57.

Finally, the most computationally expensive are the 
statistical or evolution-​based methods such as Bali-​Phy58 

on good quality genome data minimizes this risk by 
ensuring the completeness of the gene repertoire for the 
group of interest39.

Given that the identification of orthologues and  
the inference of a species phylogeny are intertwined, the 
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a  Gene history

b  Orthologue
    sampling 1st speciation

2nd speciation

c  Paralogue
    sampling Duplication event

1st speciation

2nd speciation

2nd speciation

1st speciation

Duplication event

** **

Fig. 2 | Distinguishing orthologous and paralogous relationships between genes.  
a | A gene has duplicated in a common ancestor of the species of interest. Two paralogous 
copies (red and grey) now evolve independently and each is inherited by descendant 
taxa following speciation events. b | Each of the duplicated genes (red or grey) have 
orthologous relationships amongst themselves such that reconstructing the relationships 
using just red or just grey orthologues will result in a tree that reflects the species 
relationships. c | Red and grey copies are related by duplication so that a tree based on a 
mixture of red and grey genes will not reflect the correct branch lengths of the species 
tree (left) and can also result in an incorrect species tree topology (right). The asterisks 
denote the part of the branch length that corresponds to the time between the 
duplication and the speciation events.
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Table 1 | Features of different orthology prediction and sequence alignment programs

software Method Key features Link Ref.

Orthology prediction

OMA standalone Graph based Infers OMA groups (that is, sets of genes for 
which all pairs are orthologous) and hierarchical 
orthologous groups; predicts gene function 
annotations, phylogenetic profiling (patterns of 
gene presence or absence across species); has been 
used to infer orthologous groups across the tree of 
life (https://omabrowser.org)

https://omabrowser.org/standalone/ 27

OrthoDB pipeline Graph based Infers hierarchical orthologous groups; has been used 
to estimate orthologous groups across the tree of life 
(https://www.orthodb.org/) as well as near-​universal 
single-​copy orthologues (that is, BUSCO genes) 
for different clades (https://busco.ezlab.org/); the 
BUSCO genes completeness is used as a quality 
metric for genome and transcriptome samples

https://www.orthodb.org/?page=software 29

OrthoFinder Graph based Corrects a previously undetected bias related to 
BLAST hits and gene lengths; offers options for 
different BLAST algorithms, alignments, building 
gene and species trees and comparative genomic 
statistics; easy to add or subtract species

https://github.com/davidemms/
OrthoFinder

26

OrthoMCL Graph based Uses BLAST and Markov clustering to group 
proteins of multiple species into groups of putative 
orthologues

https://orthomcl.org/orthomcl/ 25

InParanoid/HieranoiDB Graph based Infers hierarchical orthologous groups for multiple 
genomes by combining pairwise orthology analysis 
by InParanoid and a guide tree

http://hieranoidb.sbc.su.se/ 28

PhylomeDB Tree based Infers phylogenies of homologous genes using 
a two-​step optimization (neighbour joining and 
maximum likelihood); each node of the phylogeny is 
identified as a duplication or speciation event based 
on the overlap of species

http://phylomedb.org/ 20

Alignment inference

Clustal Progressive Infers alignment of DNA or protein sequences 
and can take into account protein structural 
information; provides a graphical interface

http://www.clustal.org/ 53

Muscle Progressive Infers alignment of DNA or protein sequences; 
similar to (but faster than) Clustal

http://www.drive5.com/muscle 52

ProbCons Consistency Infers alignment of amino acid sequences using 
a combination of probabilistic modelling and 
consistency-​based techniques; provides alignment 
quality scores per site

http://probcons.stanford.edu/ 56

MAFFT Progressive and 
consistency

Infers alignment of DNA or protein sequences; 
implements several different algorithms for 
accommodating low sequence similarity as well as 
long internal and terminal branches

https://mafft.cbrc.jp/alignment/software/ 54

PRANK Evolution based Infers alignment of DNA , codon or amino acids in 
a maximum likelihood framework; it is based on a 
guide tree (either provided by the user or inferred 
using neighbour joining) and it explicitly models 
insertions and deletions; it breaks ties randomly and 
therefore the result may differ across runs

https://code.google.com/archive/p/
prank-​msa/

62

Bali-​Phy Evolution based Jointly estimates the alignment (DNA , codon or 
amino acid sequences) and the phylogeny in a 
Bayesian framework; assumes an explicit model 
for insertions and deletions; performs ancestral 
sequence reconstruction

http://www.bali-​phy.org/ 58

StatAlign Evolution based Jointly estimates the alignment (DNA or amino 
acid sequences) and the phylogeny in a Bayesian 
framework; assumes an explicit model for insertions 
and deletions; offers a graphical interface and can 
take into account protein structure information

https://statalign.github.io/ 59

BLAST, Basic Local Alignment Search Tool; BUSCO, Benchmarking Universal Single-​Copy Orthologues; OMA , Orthologous MAtrix.

https://omabrowser.org
https://omabrowser.org/standalone/
https://www.orthodb.org/
https://busco.ezlab.org/
https://www.orthodb.org/?page=software
https://github.com/davidemms/OrthoFinder
https://github.com/davidemms/OrthoFinder
https://orthomcl.org/orthomcl/
http://hieranoidb.sbc.su.se/
http://phylomedb.org/
http://www.clustal.org/
http://www.drive5.com/muscle
http://probcons.stanford.edu/
https://mafft.cbrc.jp/alignment/software/
https://code.google.com/archive/p/prank-msa/
https://code.google.com/archive/p/prank-msa/
http://www.bali-phy.org/
https://statalign.github.io/


and StatAlign59. These assume an explicit evolutionary 
model of insertions and deletions60 and jointly infer, in 
a Bayesian framework, both the alignment and the tree 
relating the sequences58,59,61. The statistical approach is 
the most methodologically sound; however, with large 
datasets, it may become computationally demanding. 
In such cases, using well performing heuristics, such as 
PRANK62 and MAFFT, is a suitable compromise. For 
deeper divergences in particular, versions of MAFFT 
(‘MAFFT E-​INS-​i’ and ‘MAFFT L-​INS-​i’), which accom-
modate the possibility of long internal or terminal gaps, 
respectively54, may be practical alternatives50,63.

Filtering aligned putative orthologues. Any orthology 
identification procedure may falsely identify contam-
inants, paralogues or xenologues as orthologues. Such 
errors may have an effect on the accuracy of phylo
genetic inference, for example, by yielding longer 
branches, biased model parameters or even changes 
to tree topology. To minimize this source of error, 
phylogenomic projects typically follow methods that 
aim to identify outlier sequences, often employing 
BLAST-​based sequence comparisons34 to test the com-
patibility of closest neighbours with phylogenetic expec-
tations64,65 (Fig. 1e). A true insect orthologue, for example, 
is expected to show higher similarity to homologues 
from bilaterian phyla than to those from non-​bilaterians 
and, if such an assumption is not met, the sequence can 
be removed from the dataset. These protocols can be 
efficient in data sanitizing, but they typically require 
some knowledge of the phylogenetic relationships of 
the taxa involved.

Several tools are available that either automate such 
BLAST-​based procedures (for example, refs64,66) or use 
alternative approaches for outlier detection (for example, 
Phylo-​MCOA is based on multiple co-​inertia analysis67). 
Tools aiming to identify and eliminate sequences with 
characteristics that may be associated with systematic 
error66,68 or low phylogenetic information also exist65. 
Finally, to enrich orthologue groups that might have 
been produced by too-​stringent orthology prediction 
(that is, leading to many false negatives), it is possible to 
use reference-​based orthology prediction pipelines38,64 
under more relaxed criteria.

Alignment trimming. Alignment quality naturally 
decreases with increasing sequence divergence69. Because 
alignment errors may affect subsequent phylogenetic 
analyses69,70, it is common to filter ambiguously aligned 
regions (Fig. 1f). Filtering can be based on ad hoc crite-
ria regarding alignment quality such as gappyness and 
sequence similarity71–73 or by retaining only the align-
ment positions that are robust to changes in alignment 
parameters74. Reports on the impact of alignment trim-
ming on the quality of downstream phylogenetic analysis 
vary75,76, and hence trimming should be used cautiously.

Phylogenetic inference methods
Classification of phylogenetic inference methods. Given 
a set of aligned and trimmed orthologous genes, there 
are two approaches to deriving a species tree. First, each 
of the gene alignments can be analysed independently 

to provide an estimate of the tree and the different trees 
can then be integrated to produce an estimate of the 
species tree. This is known as the super-​tree approach. 
Second, the aligned genes can be concatenated into a 
supermatrix, which is analysed to produce a global esti-
mate of the species tree. Although we discuss methods 
for the reconciliation of multiple gene trees in the con-
text of genealogical heterogeneity across genes (below), 
the supermatrix method (Fig. 1g) is most commonly used 
and is the main focus of this Review.

Phylogeny reconstruction methods fall into two cat-
egories: distance based and character based. Distance 
methods involve calculating a genetic distance between 
every pair of species (based on comparison of their 
aligned sequences) and using the resulting distance 
matrix iteratively to construct a tree. The most popu
lar distance method is the neighbour joining (NJ) 
algorithm77. Because NJ does not search (according 
to a certain criterion) for the optimal tree in the huge 
space of all possible trees, it is computationally very 
efficient. There are several implementations of the NJ 
method or variants78 as well as versions capable of pro-
ducing phylogenies of several thousands of samples79,80. 
However, distance methods tend to perform poorly 
for distantly related species because large distances are 
hard to estimate and distance methods exacerbate this 
problem by summing up the branch lengths on the path 
between species on the phylogeny when defining the 
pairwise distance.

Character-​based phylogenetic inference methods. 
Character-​based methods include maximum parsimony, 
maximum likelihood (ML) and Bayesian inference 
(BI)81–83. The maximum parsimony method calculates 
the minimum number of nucleotide or amino acid 
changes that are required to explain the data using each 
possible tree topology84,85. The tree topology with the 
smallest number of changes is known as the most par-
simonious tree and is the estimate of the species phy-
logeny. For large datasets, exhaustive comparison of 
all possible trees is impossible (for 10 species there are 
8.2 × 1021 possible rooted trees), and various heuristic 
tree searching approaches are typically used. Parsimony 
is attractive because of its mathematical simplicity and 
computational efficiency. Nevertheless, the method 
involves apparently unrealistic, implicit assumptions 
about the evolutionary process86. The lack of an explic-
itly stated model in the method makes it hard to incor-
porate well-​known features of the process of sequence 
evolution such as different rates between character states 
(for example, different rates for transitions and trans-
versions) and different rates among sites (for example, 
higher rates at the third codon position than at the first 
and second positions). Parsimony is known to be more 
prone than likelihood methods to systematic errors, 
including long-​branch attraction (LBA)87 (see below). The 
method is nevertheless useful for data types for which 
it is difficult to devise appropriate models of character 
evolution such as rare-​event characters based on genome 
rearrangements or unique morphological characters.

In contrast to parsimony, both ML and BI methods 
are based on an explicitly stated model of sequence 

Topology
The branching pattern of a 
phylogenetic tree indicating 
relationships between taxa.

Long-​branch attraction
(LBA). The phenomenon of 
inferring an incorrect tree in 
which taxa with long branches 
are grouped together.
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evolution and on the likelihood function. Under a sta-
tistical model parametrized by unknown parameter θ, 
the likelihood L(θ) is the probability of the observed 
data viewed as a function of θ. Here, θ may include the 
parameters of the substitution model and the branch 
lengths on the tree. In phylogenetics, almost all models 
assume that different sites or columns in the alignment 
are independent; the likelihood is then the product of 
the probability of observing the data at the different 
sites. The likelihood contains all the information in 
the data concerning the unknown parameter under the 
model88. In other words, a parameter value that makes 
the observed data look highly likely to occur is expected 
to be closer to the truth than a parameter value that 
makes the data look nearly impossible. The ML estimate 
of the parameter is the parameter value that maximizes 
the likelihood. The ML method of tree estimation was 
introduced by Felsenstein89 and has been implemented 
in programs such as PAML90, PhyML91, RAxML-​NG92, 
IQ-​Tree93 and FastTree94 (Table 2). For each tree topol-
ogy, the substitution parameters and branch lengths 
are optimized to maximize the likelihood and the 
tree topology that achieves the highest likelihood is  
the ML tree.

The Bayesian method also relies on an explicitly 
stated model and on the likelihood function. It differs 
from ML in that it uses statistical distributions to quan-
tify uncertainties in the parameters. Before the data are 
observed, the prior distribution is used to describe our 
prior information concerning the species tree and model 
parameters. After the data have been collected and ana-
lysed, the posterior distribution does the same thing. The 
posterior is the prior multiplied by the likelihood, res-
caled so that it becomes a proper distribution. The pos-
terior thus captures all information relevant for the 
parameters from the data and is an update of the prior.

The Bayesian method was introduced into molecu-
lar phylogenetics in the 1990s95–97 and has been imple-
mented in programs such as MrBayes98, RevBayes99, 
BEAST1 (ref.100), BEAST2 (ref.101) and PhyloBayes102,103 
(Table 2). Computation in Bayesian phylogenetics is 
achieved using the Markov chain Monte Carlo (MCMC)  
algorithm, which is a computer simulation algorithm 
that generates a sample of the tree topologies and para
meters from their posterior. In practical terms, the 
frequency with which the algorithm visits a given tree 
topology is an estimate of the posterior probability  
for that tree. The maximum posterior probability tree 
(or the MAP tree) is our best estimate of the true tree95. 
The 95% credible set of trees includes the most proba-
ble trees with a total posterior probability of ≥ 95%; the 
credible set has the interpretation that the set includes 
the true tree with a probability of 95%, given the data 
and model95,104.

A serious drawback of likelihood-​based methods, 
including both ML and BI, is their heavy computational 
demand since they may take many thousands of CPU 
hours to run; this is particularly true of MCMC algo-
rithms. Formulation of the likelihood function requires 
explicit specification of model assumptions concerning 
sequence evolution; this was considered by some as a 
disadvantage (because all models are wrong). However, 

it means that the assumed model can be tested, its 
impact on the analysis can be assessed and the model 
can be improved by incorporating important features of 
the evolutionary process. Indeed, most modern devel-
opments in statistical phylogenetics have been achieved 
in the likelihood framework83,105.

Confidence in clades using the bootstrap. The NJ tree, 
parsimony tree or ML tree may be considered a point 
estimate of the true phylogeny from the respective meth-
ods. It is desirable to attach a measure of confidence in 
the point estimate as the confidence interval on a con-
ventional parameter does. The most commonly used 
method for this purpose is bootstrapping, introduced 
to phylogenetics by Felsenstein106. This generates a num-
ber of bootstrap pseudo-​datasets (say, 100), of the same 
size as the original dataset formed by resampling, with 
replacement of alignment sites. The pseudo-​datasets 
are then analysed in the same way as the original data-
set. The bootstrap support for a tree is the frequency at 
which that tree is inferred among the pseudo-​datasets. 
The bootstrap is often used to attach support values for 
clades (as opposed to the whole tree): the support for a 
clade is the frequency at which the clade is recovered 
following phylogenetic tree reconstruction based on the 
bootstrap datasets. Unlike the bootstrap in other appli-
cations of statistics, the phylogenetic bootstrap does not 
have well-​accepted or straightforward interpretations107.

The bootstrap is applied to assess confidence in esti-
mated trees for the distance, parsimony and ML meth-
ods. For Bayesian methods, the posterior probabilities 
for trees and clades provide the natural measure of 
confidence so that the bootstrap is unnecessary.

In analyses of phylogenomic datasets, a common 
observation is that bootstrap and posterior support 
values are very high (near 100%) whether the relation-
ships are correct or not. This is particularly obvious for 
Bayesian posterior probabilities108. In phylogenomic- 
scale datasets, random errors become unimportant, and 
such strong support for incorrect relationships typically 
derives from systematic errors.

We now review the most common and important 
sources of error in phylogenetic analysis of deep phylog-
enies. The reader may consult Felsenstein81 and Yang83 
for more detailed discussions.

Accommodating phylogenetic errors
There are two main kinds of errors in phylogenetic infer-
ence. Stochastic errors (also known as random errors) are 
due to the dataset having a finite size (that is, a limited 
number of sites in the alignment), whereas systematic 
errors are due to the violation of the model assumptions 
in the method11. In general, systematic errors arise when 
phylogenies are inferred under a simple homogeneous-​
process model of sequence evolution (assuming homo-
geneous rates of evolution between character states, 
among sites or genes, and across taxa or time) when, 
in reality, the process is heterogeneous. The explosive 
accumulation of sequence data in recent years means 
that random errors in phylogenetic analysis have been 
greatly reduced, but systematic errors actually increase 
with longer alignments.

Clades
A clade is a group of taxa on a 
tree that includes their most 
recent common ancestor and 
all its descendants, also known 
as a monophyletic group.

Stochastic errors
Errors due to the finite length 
of sequences in the alignment.

Homogeneous-​process 
model
A model that assumes the 
same substitution rate  
or process across alignment 
sites, taxa and time.
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Phylogenetic inference

RAxML-​ng Maximum 
likelihood

Yes Yes Yes – No Yes Phylogenetic inference on a single or 
partitioned matrix; specifically designed 
for large phylogenomic analyses

https://github.com/
amkozlov/raxml-​ng

92

PAML Maximum 
likelihood

Yes Yes No – No No Tree comparisons, divergence 
times estimation, ancestral state 
reconstruction, sequence simulation, 
detection of positive selection, tree 
search only for small datasets

http://abacus.gene.ucl.ac.uk/
software/paml.html

90

Phyml Maximum 
likelihood

Yes Yes No – No No Phylogenetic inference on a single 
or partitioned matrix, ancestral state 
reconstruction, divergence times 
estimation (PhyTime), competition 
and dispersal phylogeography model 
(PhyloGeo), demographic inference 
(PhyREX)

http://www.atgc-​montpellier.
fr/phyml/

91

FastTree Heuristic 
maximum 
likelihood

Yes Yes No – No Yes Specifically designed for efficiently 
estimating large phylogenies in 
terms of number of taxa (up to one 
million); restricted to a small number of 
substitution models

http://www.microbesonline.
org/fasttree/

94

IQ-​Tree Maximum 
likelihood

Yes Yes Yes – Yes Yes Phylogenetic inference on a single or 
partitioned matrix; also implements 
partition and model selection, 
codon models, heterotachy models, 
approximation to empirical profile 
mixture models

http://www.iqtree.org/ 93

MrBayes Bayesian 
inference

Yes Yes Yes – No Yes Phylogenetic inference on a single 
or partitioned matrix, divergence 
times estimation; also implements 
ancestral state reconstruction, topology 
comparison and a covarion model

http://mrbayes.net 98

PhyloBayes Bayesian 
inference

Yes Yes No – Yes Yes Phylogenetic inference on a single or 
partitioned matrix; also implements 
ancestral reconstruction, divergence 
times estimation, data recoding, 
posterior predictive analyses, cross 
validation for model comparison, and 
sequence simulations

http://www.atgc-​montpellier.
fr/phylobayes/

102,103

BEAST Bayesian 
inference

Yes Yes Yes – No Yes Primarily designed for divergence 
times estimation, all inferences are 
performed on rooted, time-​scaled 
phylogenies; additionally , it includes, 
phylogeography models and estimation 
of demographic parameters under 
several coalescent models

http://beast.community 100

BEAST2 Bayesian 
inference

Yes Yes Yes – No Yes Primarily designed for divergence times 
estimation, all inferences are performed 
on rooted, time-​scaled phylogenies; 
it comprises several independently 
implemented plugins (for example, 
model selection, demographic parameter 
estimation, species delimitation and 
species network inference)

https://www.beast2.org/ 101

P4 Bayesian 
inference/
maximum 
likelihood

Yes Yes No – No Yes Python package for phylogenetic 
analyses; implements site and taxa 
heterogeneous models; particularly 
useful for model comparison and 
sequence simulations; requires 
knowledge of Python

http://p4.nhm.ac.uk/ 116

https://github.com/amkozlov/raxml-ng
https://github.com/amkozlov/raxml-ng
http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
http://www.microbesonline.org/fasttree/
http://www.microbesonline.org/fasttree/
http://www.iqtree.org/
http://mrbayes.net
http://www.atgc-montpellier.fr/phylobayes/
http://www.atgc-montpellier.fr/phylobayes/
http://beast.community
https://www.beast2.org/
http://p4.nhm.ac.uk/


Heterogeneity of rates across taxa and long-​branch 
attraction. LBA is perhaps the best-​known systematic 
error affecting phylogenetic reconstruction. At the root 
of LBA errors are unequal rates of evolution in different 
lineages; the resulting variance in the expected amount of 
change per lineage is represented by long branches (highly 
divergent sequences) and short branches (less divergent 
sequences) on a tree87. LBA manifests itself as the incorrect 
grouping of long but, in reality, distantly related branches 
on the tree (Fig. 3). Two unrelated long branches can 
experience occasional identical substitutions. Parsimony 
methods will reconstruct these convergences as a homolo-
gous shared character inherited from a common ancestor. 
Likelihood methods (ML and BI) are more robust to LBA 
errors than is parsimony, as they are branch-​length aware 
and hence consider the increased possibility of conver-
gence on two long branches. ML and BI can neverthe-
less suffer from LBA if the assumed substitution model is 
incorrect or too simplistic109 such as wrongly assuming a 
homogeneous rate of change across sites.

LBA may be hard to identify in empirical datasets. Its 
symptoms include two or more rapidly evolving lineages 
grouping together or a long-​branch taxon joining a distant 
outgroup. It is then important to assess the robustness of 
such relationships to changes of the substitution model.

Several ad hoc strategies have been suggested to 
alleviate potential LBA artefacts such as exclusion of 
problematic species with very high evolutionary rates6,  

removal of genes or gene regions with very high rates 
(which also tend to have poor alignment quality), and the  
addition of species that serve to break up long branches 
on the tree110–112. More recently, measures of branch 
length heterogeneity have been used to identify genes 
that appeared less rate heterogeneous and which were 
therefore assumed to be less susceptible to LBA. In a 
similar spirit are methods for identifying and removing 
substantially longer branches from individual gene trees, 
thereby reducing rate heterogeneity67,68,113.

Heterogeneity of nucleotide or amino acid compositions 
across taxa (compositional bias). Most phylogenetic 
inference models assume that the substitution process 
has been stationary throughout the history of the spe-
cies under study and that all species therefore share 
the same frequencies of the 4 nucleotides or 20 amino 
acids. This assumption of compositional homogeneity is 
often violated in analyses of distantly related species; 
an obvious example is when distantly related taxa have 
independently evolved adenine/thymine-​rich genomes. 
In such a case, assumption of the homogeneous model 
will tend to artefactually group species with similar base 
compositions114.

The optimal approach to dealing with compositional 
bias is to relax the assumption of compositional homo-
geneity by allowing the character state frequency param-
eters to drift across the phylogeny115–117. Such models 

Compositional homogeneity
Homogeneity in nucleotide or 
amino acid frequencies across 
lineages of a phylogeny.
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Phylogenetic inference (cont.)

RevBayes Bayesian 
inference

Yes Yes Yes – Yes Yes Software package written in ‘Rev’ 
language; it is entirely based on 
probabilistic models and it provides the 
user with the flexibility to implement 
any combination of models, Markov 
chain Monte Carlo algorithms, sampling 
proposals or any other component of 
the phylogenetic inference in a Bayesian 
framework; requires knowledge of Rev

http://revbayes.com 99

Coalescent-​based species-​tree estimation

BPP Bayesian 
inference

No Yes No – No Yes Full likelihood method for species tree, 
species delimitation and coalescent 
model parameter estimation

https://github.com/bpp/bpp 174,175

*BEAST Bayesian 
inference

Yes Yes – – No Yes Full likelihood method for species-​tree 
and coalescent model parameter 
estimation

http://beast.community 173

*BEAST2 Bayesian 
inference

Yes Yes – – No Yes Full likelihood method for species-​tree 
and coalescent model parameter 
estimation

https://www.beast2.org/ 172

MP-​EST Maximum 
likelihood

– – – Yes No No Two-​step species-​tree estimation, that 
is, the species tree is estimated given 
pre-​calculated and rooted gene trees

http://faculty.franklin.uga.
edu/lliu/mp-​est

171

Astral Maximum 
likelihood

– – – Yes No No Two-​step species-​tree estimation, that 
is, the species tree is estimated given 
pre-​calculated unrooted gene trees

https://github.com/smirarab/
ASTRAL

170

Table 2 (cont.) | Features of different tree reconstruction programs
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involve a set of frequency parameters for every branch 
on the tree and result in a large number of parameters, 
with a high computational cost.

A more practical approach to circumventing this 
problem is to identify and remove from the analysis genes 
or taxa that show compositional bias118. There are sev-
eral measures of compositional deviation that are avail-
able (for example, in the software packages p4 (ref.116), 
IQ-​Tree93 and PhyloBayes102,103). However, removing 
genes or taxa will not be possible if the most biased taxa 
are of central interest or if the majority of genes fails the 
homogeneity tests.

A final approach that has been proposed is to aggre-
gate character states119. The 4 nucleotides can, for exam-
ple, be recoded into purines (A and G) and pyrimidines 
(C and T), which removes any AT bias. Similarly, the 
20 amino acids have been recoded into a reduced set, 
grouped according to their inter-​exchangeability as 
represented in a substitution matrix120. The recoding 

naturally leads to information loss, which on its own 
may lead to topological changes. However, it can be 
informative to examine how the placement of com-
positionally divergent taxa changes when the data are 
recoded.

Heterogeneity of rates across sites. Different parts of the 
genome evolve at different rates. Collagens change more 
quickly than histones, introns change more quickly than 
exons, third positions in a codon change more quickly 
than the first and second positions, and some amino 
acids within a protein are under strong stabilizing selec-
tion while others are free to vary; ultimately, assum-
ing a constant rate among sites of a gene is unrealistic. 
Assuming a single (average) rate results in a systematic 
underestimation of the likelihood of change at sites 
with higher rates121. As we have seen, underestimating 
the likelihood of change (and hence the probability 
of convergent evolution) tends to exacerbate LBA. To 
accommodate this among-​site rate variation, Yang121,122 
proposed the modelling of rates of sites as a random 
variable following a gamma distribution (Fig. 4a). The 
resulting model is represented by a suffix ‘+ Γ’ or ‘+ G’ 
and can be combined with any nucleotide or amino acid 
substitution model (for example, ‘JC69 + Γ’, ‘GTR + Γ’ or 
‘LG + Γ’). This strategy for accounting for rate hetero-
geneity among sites is implemented in all phylogenetic 
inference and model-​selection tools. Alternative mod-
els to accommodate among-​site rate variation include 
the free-​rates model (which assumes a few discrete rate 
classes)123,124 and the gamma-​mixture model (which 
assumes a mixture of two gamma distributions)125. In 
addition to heterogeneities across sites in an alignment, 
substitution rate and processes can also vary over time, 
perhaps reflecting structural and functional changes in 
the proteins in different taxa126. As a consequence, the 
substitution rate and pattern at a given site may differ 
substantially among the lineages of a phylogeny (Fig. 5); 
this phenomenon is called ‘heterotachy’127,128 and current 
methods for dealing with it are only computationally 
feasible for tree searching on very small datasets or for 
comparisons of single trees for larger datasets129.

Heterogeneity of substitution patterns across sites —  
partition and mixture models. Different rates for differ-
ent types of substitutions are easily accommodated in 
the Markov models used in phylogenetics. For example, 
transitions and transversions can be assigned distinct 
rates, with two parameters used130. The general time 
reversible model assumes all nucleotides occur at dif-
ferent frequencies (that is, three free model parameters) 
and change to one another at different rates (that is, six 
exchangeability parameters).

For the 20 amino acids, the general time reversible 
model will involve 209 parameters (19 frequencies and 
190 exchangeabilities). This model is parameter rich but 
can be fitted to moderately sized datasets131. However, 
it is computationally expensive to estimate so many 
parameters during tree searching. Instead, empirical 
amino acid models derived from the analysis of hun-
dreds or thousands of protein sequences are more often 
used, including Dayhoff132, JTT133, WAG134 and LG135. 
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Fig. 3 | Heterogeneous rates across lineages and long-branch attraction. Heterogenous 
rates of substitution across lineages, if not accommodated by the model, may result in a 
long-​branch attraction (LBA) artefact. a | The tree on the left is the true tree relating four 
species, in which substitution rates are heterogeneous among taxa, with long branches 
reflecting many changes along the lineages. The numbers on the branches denote the 
number of substitutions per site, and the given example is vulnerable to the LBA artefact. 
The tree on the right shows the effect of interpreting the occasional convergent changes 
arising in the long branches as shared characters indicating a close relationship between 
the long branches. This erroneous tree is inferred using maximum parsimony (MP), whereas 
branch length-​aware likelihood methods such as maximum likelihood (ML) and Bayesian 
inference are less prone to this error. b | We used the true tree shown in part a to simulate 
1,000 replicate datasets (sequence alignments) of increasing length (with 50–10,000 sites) 
under the Jukes–Cantor model. We analysed each replicate dataset using ML (blue) and 
MP (red) and recorded whether the correct (solid lines) or LBA tree (dotted lines) were 
recovered. For ML , small datasets show errors due to small sample size (stochastic errors), 
which decrease with larger samples. For MP, the systematic errors caused by LBA become 
larger with increasing sample size.
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Fig. 4 | Heterogeneous substitution rates and patterns across sites. a | When different sites have different substitution 
rates (in different colours in the multiple sequence alignment at the bottom of the panel), more mutations (white circles) 
are accumulated at fast evolving sites, resulting in more homoplasy (convergent substitutions independently acquired by 
unrelated taxa, white stars). A model that assumes homogenous rates across sites (middle panel) will lead to underestimation 
of the amount of change at the fast-​evolving sites and underestimation of the likelihood of convergence. Such systematic 
errors can lead to an erroneous long-​branch attraction tree, whereas assuming the heterogeneous model incorporating 
variable rates across sites (right panel) recovers the true tree. b | When different sites in the protein prefer different 
amino acids (for example, two of the five different colours in the multiple sequence alignment and corresponding amino 
acid frequency bar charts denote hydrophobic or hydrophilic amino acids), rates of change within each composition 
category (for example, amongst hydrophobic amino acids) are higher than the average rate across the whole alignment. 
The homogeneous model ignoring among-​site composition heterogeneity (middle panel) tends to underestimate the 
amount of change expected for sites with restricted compositions and to underestimate the likelihood of convergence, 
resulting in an erroneous long-​branch attraction tree. The heterogeneous model incorporating among-​site composition 
variation (right panel) recovers the true tree.



Empirical models have also been calculated based 
on specific subsets of proteins (for example, viral136,  
chloroplast137 and mitochondrial138); different genes will 
fit different models best.

The common practice in a phylogenomic study has 
been to concatenate all genes into a super gene from 
which a single tree is inferred. Nevertheless, genes may 
differ in the rate and process of evolution. Such differ-
ences between genes may be accommodated by partition 
models that construct partitions with distinct para
meters, such that sites in the same partition share evo-
lutionary features and parameters whereas different 
partitions have distinct parameters139. Partition models 
provide a way of reducing errors from model misspec-
ification by accounting for large-​scale heterogeneity in 
rates and substitution patterns.

In a dataset of hundreds of genes and with dozens 
of models to choose from, it is not simple to assign 
models to genes or to construct a partitioning strategy. 
Automated model selection methods typically assume a 
fixed tree topology and try to maximize the likelihood 
of the data by altering the substitution models per gene 
(for example, refs93,140,141). Some tools combine the pro-
cess of model selection with the evaluation of alterna-
tive partition schemes, in which case genes that fit the 
same model are merged into one larger partition. For 
large datasets, the combined task of partition selection 
and model optimization is computationally intensive. 
Phylogenetic inference using empirical data under 
different substitution schemes may, however, result in 
differences in topology, branch lengths and statistical 
support142,143. Simulations show that optimized parti-
tioning schemes are similar to partitioning based on 
biological common sense (for example, by gene or by 

codon) and that both approaches are substantially better 
than unpartitioned data143,144.

Mixture models. Mixture models may also accommodate 
among-​site heterogeneity in substitution rates and pat-
terns (Fig. 4). In a mixture model, instead of assigning 
each site to a specific partition, the model averages over-
all possible assignments of a site to the site classes. The 
gamma model of variable rates among sites discussed 
above is a typical mixture model. When biological 
knowledge is available to assign sites to well-​defined par-
titions (for example, to assign sites of a gene to the three 
codon positions), it is natural to use partition models; 
when such knowledge is lacking, mixture models offer 
a flexible alternative.

In the analysis of protein data, different parts of a 
protein may have very different substitution rates as 
well as having preferences for different amino acids dic-
tated by local selective constraints. A one-​size-​fits-​all 
empirical substitution matrix or even a partitioning 
approach is unlikely to capture these subtleties in the 
process of evolution. A mixture model may then be 
natural for accommodating the among-​site hetero
geneity in the rate and mode of amino acid substitution.  
A mixture model involves far more computation than a 
partition model, because without the knowledge of 
which component each site is from, one has to average 
overall components in the likelihood calculation (Fig. 6).

Mixture models can be used to account for site hetero
geneity in both the rate and pattern of substitution. The 
model may assume multiple substitution matrices145–147 
or multiple sets of amino acid frequencies148,149. Profile  
mixture models use multiple components that differ in 
the frequencies of the 20 amino acids, while assuming 
a single set of exchangeability rates among them148,150–152. 
The C10–C60 (ref.148) empirical models, for example, 
include empirically estimated amino acid frequencies  
from known protein sequences. These models are imple
mented in both Bayesian103 and ML frameworks148,152,153.  
The ‘CAT’ (categories) model, implemented in Phylo
Bayes103, is the broadest generalization of the profile  
models. The CAT model treats the mixture compo-
nents as free parameters and estimates the amino acid 
frequencies as well as the mixing proportions from the 
data (Fig. 4b). Importantly, the CAT model and other 
mixture models appear to be much less prone to under-
estimating branch lengths and more robust against LBA 
artefacts in analyses of distantly related species than 
site-​homogeneous models154.

Genealogical heterogeneity across genes
Concatenating all genes into a supermatrix and inferring 
a single tree assumes that one single gene tree under-
lies all genes and that it corresponds to the species tree. 
However, due to multiple biological processes — such as 
polymorphism in ancestral species, gene duplication and 
loss, and horizontal gene transfer — different genes or 
proteins may have different histories or gene trees155,156.

Ancestral polymorphism means that orthologous 
genes from different species may not coalesce as soon as 
they reach the common ancestral species when we trace 
their history backwards in time; as a result, the genes 

Mixture models
Models that assume different 
substitution rates or processes 
across sites of the alignment.

Profile mixture models
Models that assume multiple 
sets of state frequencies  
for sites (for example,  
CAT, C10–C60).
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half of the sites in species A and C evolve faster than those 
in species B and D but the opposite is true for the second 
half. Such a heterogeneous substitution process is called 
‘heterotachy’136. The numbers on the two trees on the left 
denote the true branch lengths of the two heterotachous 
partitions. This particular case is vulnerable to errors in 
the tree inference if heterotachy is ignored. To show the 
effect, we simulated 5,000 sites for each of the partitions 
assuming the Jukes–Cantor model and inferred the 
phylogeny with IQ-​Tree for the concatenated alignment 
(that is, 10,000 sites) with the Jukes–Cantor model, 
ignoring heterotachy. The black tree shown on the 
right was inferred, with A and C erroneously joined. 
ML , maximum likelihood.



may not track the species phylogeny and may have a 
different tree topology from the species tree (Fig. 7). The 
phenomenon is variously termed incomplete lineage 
sorting (ILS), deep coalescence or gene-​tree–species-​tree 
incongruence. Incongruence is more likely to occur if 
the interior branches of the species tree are short and 
if the ancestral species had large population sizes. 
Phylogenetic relationships represented by long interior 
branches in the species tree will most likely be resolved 
confidently even if the analytical method ignores ILS. 
However, for species that arose through a radiative spe-
ciation process (which generates short interior branches 
in the species tree), ILS may pose serious challenges to 
species tree estimation157.

The framework for accommodating ILS is the multi
species coalescent (MSC) model158,159, an extension of the 
single-​population coalescent160 to the case of multiple 
species. Under the MSC model, the gene trees (topologies 
and branch lengths) vary among genes or genomic regions 
due to the coalescent process in the ancestral species: they 
have a statistical distribution specified by the species  
tree and by parameters such as the species divergence 
times and population sizes161. Thus, the MSC process is 
a natural consequence of reproduction and genetic drift. 
The simple MSC model has been extended to incorpo-
rate cross-​species gene flow, leading to models such as 
MSC with migration (the isolation-​with-​migration or IM 
model)162–164 and MSC with introgression (the MSCi or 
multispecies network coalescent or MSNC model)165–167; 
see refs161,168,169 for recent reviews.

There are two major classes of species tree meth-
ods that incorporate the MSC model. The summary or 
two-​step methods use phylogenetic programs to infer 
the gene trees for individual loci, and then use the esti-
mated gene trees as data to construct the species tree. 
Popular two-​step programs include ASTRAL170 and 
MP-​EST171. These methods are computationally efficient 
and can analyse thousands of genes but may suffer from 
errors in reconstructed gene trees.

By contrast, the full likelihood methods calculate 
the likelihood of the sequence alignments and there-
fore accommodate the uncertainties in the gene trees. 
Commonly used programs implementing the MSC 
model include *BEAST172,173 and BPP174,175; both are 
MCMC algorithms176 and involve heavy computation, 
although algorithmic improvements have made it 
possible to analyse datasets of 10,000 loci175,177,178.

Analyses of both simulated and empirical data 
suggest that full likelihood methods are superior to 
the approximate coalescent methods and to concate-
nation177–179. A number of coalescent-​based methods 
have been applied and evaluated in relatively shallow 
divergences, but the effectiveness of these methods in 
reconstructing deep phylogenies is poorly understood. 
However, the root cause of ILS is the short internal 
branches in the species tree, rather than the shallowness 
of the nodes: deep phylogenies are just as affected by ILS 
as shallow phylogenies157. We expect that the next few 
years will see much effort in evaluating and overcoming 
the impact of ILS in deep parts of the tree of life.

Conclusions and perspectives
We have discussed a phylogenomic pipeline for accurate 
tree building, from careful data compilation including 
orthologue identification and contamination avoid-
ance, via multiple sequence alignment, to selection of 
tree reconstruction methods and substitution models 
to avoid systematic errors in phylogenetic reconstruc-
tion. For challenging phylogenies — in particular deep 
phylogenies involving distant species — the choice of 
likelihood-​based methods and the selection of adequate 
models to accommodate heterogeneities in the process of 
molecular evolution across sites, taxa and time (Figs 3,4,5) 
appears to be as important as the generation of the under-
lying data. Here, we discuss a few areas in phylogenetic 
research that may see progress in the next few years.

Coalescence
The process of lineage joining 
when one traces the history  
of a sample of sequences 
backwards in time.

Genetic drift
The process of random 
changes in allele frequencies 
over generations due to  
the stochastic nature  
of reproduction.
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the same substitution rate and process for all the sites  
in the alignment. The probability pi of each site Xi is 
calculated under the shared model (M1). b | In a partitioned 
model, each site is assigned to a partition, with sites in the 
same partition evolving according to the same model, 
whereas different partitions have different models or 
model parameters. Therefore, the probability of observing 
each site Xi is calculated under the model it is assigned  
to (Mj, j = 1, … , p). c | In a mixture model, the sites in the 
alignment are a mixture of m classes, but we do not know 
a priori which class each site is from. The probability of 
observing data at a site i is then an average over the m  site 
classes = ∑ |= ( )p w P X Mi k

m
k i k1 , where wk is the proportion  
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One approach that has so far received little attention 
is the development of computationally tractable models 
for accommodating heterogeneity across clades. Besides 
compositional bias, amino acid exchangeabilities have 
also been reported to vary across the tree of life180,181. 
The strategy adopted to address this issue so far has been 
to remove data (taxa or genes) or to attempt to reduce 
other related problems such as among-​site heterogene-
ity. Nevertheless, directly modelling tree heterogeneity 
should provide more accurate tree estimates.

Species radiations and the resulting short branches 
in the species phylogeny are responsible for many of the 
challenges in resolving the tree of life. This is particularly 
true for species radiations in deep time (examples within 
the animal kingdom include the divergences of mam-
mals and birds, and the spirally cleaving phyla within 
the Lophotrochozoa). With deep radiations, the problem 
of ILS is exacerbated by the erosion of the phylogenetic  
signal resulting from substitutional saturation on the ter-
minal branches. The performance of the MSC methods in 
deep divergences, when the molecular clock is seriously 
violated, needs careful study. Recent work shows that 
existing approximate methods may be vulnerable to LBA 
artefacts182, and research is needed to evaluate the per-
formance of coalescent approaches under relaxed-clock  
models in inference of deep divergences.

Phylogenomic datasets pose enormous computa-
tional burdens, in particular when complex models (for 
example, heterogeneous or MSC models) are used to 
reduce systematic errors. Great progress has been made 
in computational phylogenetics by the development of 
algorithms for speeding up183 and parallelizing184 the 
likelihood calculation, and the implementation of soft-
ware making use of modern multi-​processor multi-​core 
computer architecture92,103,185–187. Additional improve-
ments have been achieved in the mixing efficiency of 
MCMC sampling methods in Bayesian inference188–190. 
Yet, there appears to be much room for further improve-
ment in the computational efficiency of those algo-
rithms. Such advances will enhance the biological 
realism of phylogenomic models and will improve the 
overall phylogenetic accuracy.
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