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Bayesian phylogenetic methods were introduced in the  
1990s1,2 and have since revolutionized the way we analyse 
genomic sequence data3. Examples of such analyses include  

phylogeographic analysis of virus spread in humans4–7, inference of 
phylogeographic history and migration between species8–10, analysis  
of species diversification rates11,12, divergence time estimation13–15 
and inference of phylogenetic relationships among species or pop 
ulations13,16–20. The popularity of Bayesian methods seems to be  
due to two factors: (1) the development of powerful models of data  
analysis; and (2) the availability of user-friendly computer programs 
to apply the models (Table 1).

Models implemented in Bayesian software programs are becom-
ing increasingly complicated, and the priors and model assumptions 
made in those programs are not always clear to the user. Analyses 
are often conducted using default priors, which may not be appro-
priate and may lead to biased or incorrect results. Likewise, over-
simplified likelihood models may produce biased results, while 
over-complicated models may lead to loss of power as well as inef-
ficient computation.

The workhorse underlying all modern Bayesian phylogenetic 
programs is the Markov chain Monte Carlo (MCMC) or Metropolis–
Hastings algorithm21,22. However, the MCMC algorithm is both art 
and science, and a basic understanding of its workings is essential 
for the correct use of those programs. In this Review, we explain the 
basic concepts of Bayesian statistics and discuss the major features of 
MCMC algorithms, such as the prior and the likelihood, MCMC pro-
posals, diagnosis of MCMC convergence and mixing, and the sum-
mary of the posterior sample. Our intended reader is the empirical 
biologist who needs to use Bayesian phylogenetic programs to analyse 
their data. We lay out and answer a set of questions that are important 
for setting up a Bayesian analysis. We focus on Bayesian estimation of 
phylogenetic trees. However, the basic concepts discussed here apply 
to other phylogenetic problems as well, such as divergence time esti-
mation or species tree estimation under the multispecies coalescent 
(MSC) model. Extensive reviews of these are available elsewhere23–26.

What is the Bayesian method?
The Bayesian method is a statistical inference methodology. Its 
main feature is the use of probability distributions to describe the 

uncertainty of all unknowns, including the model parameter(s). Let 
D be the observed data and θ the unknown parameter. We assign a  
distribution f(θ), called the prior distribution, based on our knowl-
edge about θ before analysis of the data. After the data are observed,  
we use Bayes’s theorem to calculate the posterior distribution of θ 
given the data:

θ θ θ=f D
z

f f D( ) 1 ( ) ( ) (1)

where the probability of the data given the parameter f(D|θ) is called 
the likelihood. This summarizes the information about θ in the data. 
The normalizing constant ∫ θ θ θ=z f f D( ) ( )d  ensures that f(θ|D) 
integrates to 1 and is a proper statistical distribution. Equation (1) 
indicates that the posterior is proportional to the prior multiplied  
by the likelihood, or that the posterior combines the informa-
tion in the prior and in the data. An example of the prior, likeli-
hood and posterior for a two-parameter phylogenetic example is  
given in Fig. 1.

In the above we assume that the model for generating the data 
is known. In the so-called trans-model inference, we have several 
competing models, with each model m having its own parameters 
θm. Then a prior, f(m, θm) =​  f(m) f(θm|m), is assigned to both the 
model (m) and its parameters (θm), and the posterior of the model 
and parameter is similarly given by Bayes’s theorem: f(m, θm|D) ∝​ 
f(m, θm) f(D|m, θm).

In phylogenetics, the tree topology and the substitution model 
together specify the statistical model for the data. Different tree 
topologies thus correspond to different models, while the branch 
lengths or divergence times as well as the substitution parameters 
(such as the transition/transversion rate ratio) are parameters in the 
model. The data are usually a molecular sequence alignment or an 
alignment of morphological characters (or a combination of both).

An appealing property of Bayesian inference is that it makes direct  
probabilistic statements about the model or unknown parameter. 
The posterior probability of a model, f(m|D), is the probability that 
the model is correct, given the data. The 95% credibility interval of  
a parameter covers the true parameter with a probability of 0.95,  
given the data. Such statements are impossible using confidence 
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intervals and P values in classical statistics, which treat parameters 
as unknown constants26.

What type of data can I use?
The most common type of data used in phylogenetic analyses is 
DNA and amino acid sequence alignments. Morphological char-
acters can also be used27. Here we focus on DNA sequences. The 
sequences must be aligned before they are used as input data in phy-
logenetic programs, and alignment accuracy is important in phylo-
genetic analysis. Much effort has been made to develop models of 
insertions and deletions28–30. For species phylogeny estimation, the 
sequences must be orthologs, as incorrect use of paralogs may lead 

to incorrect phylogenies. Several methods are now available to infer 
paralogy/orthology31,32.

How do I select a substitution model for my data?
A number of models have been developed to describe nucleotide 
or amino acid substitutions26,33,34. For nucleotide sequences, these 
range from the simple JC69 (for Jukes and Cantor)35 to the complex 
GTR (for General Time Reversible)36–38 and the unrestricted model 
(UNREST)37. In JC69 all nucleotide changes occur at the same rate, 
whereas in GTR or UNREST substitutions occur at different rates 
depending on the source and target nucleotides. It is also common 
to assume a gamma model of variable rates across sites, particularly 
in the analysis of coding DNA or protein sequences39–41.

Programs such as jModelTest42, Modelgenerator43 or 
PartitionFinder44 are commonly used to choose a substitution 
model. Those programs examine the goodness of fit of the model to 
the data but never consider the robustness of the analysis to model 
assumptions. For example, it is well known that the transition/tran-
version bias typically has a greater impact on the fit of the model 
to data (judged by the improvement in likelihood), but less effect 
on estimation of the tree topology and branch lengths than rate 
variation among sites41. Although there does not seem to be serious 
harm in mechanical use of those programs, it may be unnecessary 
to employ them in many cases. As a rule of thumb, different substi-
tution models tend to give very similar sequence distance estimates 
when sequence divergence is less than 10%, so that a simple model 
can be used even though it may not fit the data. Complex mod-
els are necessary in the reconstruction of deep phylogenies. Two 
of the most complex nucleotide substitution models, HKY+​Γ​ (for 
Hasegawa, Kishino and Yano)45 and GTR+​Γ​, often produce simi-
lar estimates of phylogenetic trees and branch lengths37,46. When 
in doubt, note that it is more problematic to under-specify than to 
over-specify the model in Bayesian phylogenetics47.

For discrete morphological data, the Mk model, an extension of 
the JC69 model to k morphological character states, can be used27. 
An extension that allows for unequal rates of substitution is avail-
able in MrBayes48. A correction for assertion bias is applied in the 
calculation of the likelihood function because only variable charac-
ters are used27. For continuous characters, diffusion process models 
(such as the Wiener or the Ornstein–Uhlenbeck process) can be 
used49. Definitions and detailed reviews of these models are given 
elsewhere50. There has been much interest in the joint analysis of 
morphological and molecular data to estimate divergence times for 
extant and fossil species51–53.

What are over- and under-parameterization?
A model is non-identifiable if different values of parameters make the 
same predictions about the data, meaning that such data can never  
be used to estimate those parameters; in other words, the model is  
non-identifiable if f(D|θ1)  =​  f(D|θ2) for certain θ1 ≠​ θ2 and for all 
possible data D (see ref. 54). A simple phylogenetic example is the 
estimation of the geological time of divergence between two species (t) 
and the molecular evolutionary rate (r) using data of a pair of aligned 
sequences. The likelihood depends only on the molecular distance, 
d =​ rt, and not on t and r separately, and is the same for, say, t =​ 1 and 
r =​ 0.1, or t =​ 0.1 and r =​ 1, or any other combination of t and r such that 
rt =​ d =​ 0.1. In theory, non-identifiability (or over-parameterization) 
is not a serious problem for Bayesian analysis, especially if 
informative priors are assigned to the parameters. In practice, over-
parameterization can cause both inference difficulties (such as loss of 
power, strong correlations between parameters, large variance in the 
posterior, and extreme sensitivity to the prior and model assumptions) 
and computational problems (such as poor mixing of the MCMC). 
Sometimes, a model is identifiable, but the data contain only weak 
information about the parameters with the likelihood surface being 
nearly flat. Similar symptoms will then show up in the data analysis.

Table 1 | List of Bayesian programs

Program Brief description Reference(s)

BEAST Implements a vast number of models. 
Examples are the simultaneous 
estimation of the tree topology and 
divergence times, phylodynamics, 
phylogeography, and species tree 
estimation under the MSC model.

87

MrBayes Implements a large number of models 
for analysis of nucleotide, amino acid and 
morphological data. Estimates species 
phylogenies and species divergence 
times.

88

RevBayes Similar to MrBayes, but with its own 
programming language to set up complex 
hierarchical Bayesian models.

89

MCMCTree Estimates divergence times on a fixed 
phylogenetic tree.

90

Phycas Estimates phylogenetic trees based 
on nucleotide data. This allows for 
multifurcating trees, helping to reduce 
spuriously high posterior probabilities for 
phylogenies.

91,92

PhyloBayes Reconstructs phylogenetic trees using 
infinite mixture models to account 
for among-site and among-lineage 
heterogeneity in nucleotide or amino acid 
compositions, which may be important 
for inferring deep phylogenies.

93

BPP Implements species tree estimation 
and species delimitation under the 
MSC model using multi-loci genomic 
sequence data.

57

Migrate Estimates population sizes and migration 
rates under the population-subdivision 
model based on molecular data.

94

IMa2 Estimates divergence times, population 
sizes and migration rates under the 
isolation-with-migration model using 
multi-loci DNA sequence data and a 
fixed phylogenetic tree for populations.

95

Structure Estimates population structure from 
multi-loci genotype data.

96

BAMM Estimates clade diversification rates on 
phylogenies.

97

Tracer A program for MCMC diagnostics and 
summaries.

83

AWTY A package for MCMC diagnostics for 
Bayesian phylogenetic inference.

98
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An example is the popular I+​Γ​ model of rate variation among sites, 
which assumes a proportion of sites p0 in the alignment are invariable 
with rate 0, while the other sites (1 – p0) evolve according to a discrete 
gamma distribution55. Because the gamma distribution allows for 
extremely conserved sites with rates close to 0, p0 and the gamma shape 
parameter α are strongly correlated56. The MCMC algorithm may have 
to spend a long time exploring a ridge on the posterior surface.

A similar case applies to the use of the parameter-rich GTR+​Γ​ 
model in analysis of highly similar sequences from closely related 
species, as in Bayesian species delimitation or species tree estima-
tion under the MSC model24,57. The GTR model has eight param-
eters that describe the exchangeabilities between nucleotides. If 
there are only a few variable sites in the alignment, there will be little 
information about those parameters. Simple models, such as JC69 
and K80 (for Kimura)58, may be adequate in such analysis.

On the other hand, the use of an overly simplistic model or 
under-parameterization can result in systematically incorrect phy-
logenetic trees and seriously biased estimates of branch lengths and 
substitution parameters, as well as an over-confident assessment 
of uncertainties such as spuriously high posterior probabilities for 
trees or clades47. For example, ignoring variable substitution rates 
among sites leads to underestimated branch lengths41. Systematic 
errors tend to be greater when sequences are more divergent. In 
short, the substitution model is a trade-off between bias on the 
one hand and variance and computation expense on the other, and 
should ideally be chosen by a careful consideration of its role on the 
analysis rather than mechanistic use of a model selection procedure.

How do I decide to concatenate or partition my data?
The rationale for partitioned analysis is that sites in the same parti-
tion have similar evolutionary characteristics while those in differ-
ent partitions have different characteristics40,44,59. The characteristics  
here may be substitution rates, base composition, branch lengths or  
even the tree topology. The Bayesian program will estimate differ-
ent parameter values or even different gene tree topologies for the  
different partitions, thus accounting for their heterogeneity in the 
evolutionary process.

For example, genes with different guanine plus cytosine (G+​C)  
compositions or evolutionary rates may be analysed as separate 
partitions in phylogeny reconstruction. Vertebrate mitochondrial 
genes coded on the same strand of the genome have similar G+​C  
contents and may be concatenated and analysed as a single partition,  
although the three codon positions may be treated as different  
partitions to account for their large differences in rate and in base  
compositions60. Non-coding mitochondrial genes (ribosomal and 
transfer RNAs, rRNAs and tRNAs, respectively) may be analysed as 

another partition. Likewise, mitochondrial and nuclear sequences  
should also be analysed as different partitions61. For nuclear 
sequences, exons and introns should be analysed as different  
partitions, and the three codon positions should be placed in their  
own partitions. Some partitioning software may suggest the use of 
different substitution models for partitions44 (for example, HKY for  
one partition and GTR+​Γ​ for another). This is unnecessary because  
when using the same model for all partitions, different parameter 
values will accommodate the heterogeneity among partitions.

An important issue is whether partitions should share the same 
tree topology. In traditional phylogenetic inference the topology 
is assumed to be the same across partitions. However, a number 
of biological processes, such as gene duplication, horizontal gene 
transfer and incomplete lineage sorting can cause different genes 
to have different trees62,63. Recently, several methods for species tree 
estimation have been developed under the MSC model24,64,65which 
account for the process of incomplete lineage sorting (the so-called 
deep coalescent, due to polymorphism in ancestral species, where 
coalescence may occur in ancient ancestors leading to gene trees 
that differ from the species tree). Under the MSC model different 
genomic regions (or exons) are placed into different partitions and 
allowed to have their own gene-trees, which are embedded into the 
species tree. The mitochondrial genome does not recombine and 
mitochondrial genes should be treated as one partition within the 
MSC model. In some viruses, such as influenza, different genome 
segments can re-assort (that is, be horizontally transferred) among 
related strains66, and thus different segments can have different 
topologies and should be treated as different partitions.

How do I choose the prior for my Bayesian analysis?
In theory the prior should summarize the biologist’s best knowledge 
about the model or parameters before the data are analysed26,67. In 
practice, specification of the prior is often a thorny issue, especially if 
there are multiple parameters with complex correlations or if little is 
known about the parameters. While we are supposed to specify a joint 
prior distribution for all parameters, the common practice is to ignore 
the correlation, and assign independent priors for the parameters. 
When there are many parameters of the same kind, such independent 
and identically distributed (i.i.d.) prior can sometimes cause problems 
because they may make a strong statement about the mean or sum of 
those parameters. For example, it is common to assign independent 
exponential or uniform priors for branch lengths in the unrooted 
tree, but this i.i.d. prior can cause very long trees in analysis of highly 
similar sequence data68,69. In relaxed-clock dating analysis, the i.i.d 
prior for substitution rates among different partitions makes a strong 
statement about the average rate over loci, leading to biased but over-
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Fig. 1 | Bayesian analysis of a two-parameter phylogenetic example. a, Prior distribution. b, Likelihood function. c, Posterior distribution. The data of the 
12s RNA mitochondrial genes from human and orangutan sequences are used to estimate the sequence distance d and the transition/transversion rate 
ratio κ in the K80 model58.
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confident divergence time estimates70, particularly as the number of 
partitions increases. Such i.i.d. priors should be avoided.

Default priors in many Bayesian software packages may not be 
appropriate for the data being analysed and should be used with 
caution. Specification of the prior is the biologist’s responsibility 
even though it may not be an easy task. Robustness analysis should 
also be an important component of any Bayesian analysis. By evalu-
ating the posteriors generated under different priors, the biologist 
can evaluate whether the posterior is robust to the prior.

In Bayesian estimation of phylogenetic trees without the assump-
tion of a molecular clock, it is common to assign a uniform prior 
on the unrooted tree topologies. When phylogenetic analysis is con-
ducted on rooted trees under the clock or relaxed clock models71, 
rooted trees are commonly assigned a prior using models of clado-
genesis such as the Yule process and the birth–death-sampling pro-
cess72. Note that both models favour balanced trees, and the impact 
of the prior on the posterior probabilities of the rooted trees can be 
substantial if the tree is large. For coalescent-based species tree esti-
mation, the MSC model specifies a probability distribution for the 
rooted gene trees (topologies and node ages)73. This is part of the 
model rather than a prior on gene trees to be specified. In molecular 
clock dating analysis, fossils may be used to specify minimum and 
maximum bounds on clade age, which are used to construct a so-
called calibration density to calibrate the age of the clade, it is also 
advisable to include a prior on the age of the root of the tree. For an 
overview on calibration densities for use in divergence dating, see 
ref. 74. It is also necessary to specify a prior on the evolutionary rates 
for the different loci or partitions. A gamma–Dirichlet prior can be 
used instead of the i.i.d. prior mentioned above70. In relaxed-clock 
models, the rates not only vary among partitions, but also drift along 
branches on the tree. Current Bayesian implementations assume that 
rates drift independently among partitions so that different parti-
tions are independent realizations of the rate-drift process75,76. A dis-
cussion of the different rate-drift models is given in ref. 77.

What is MCMC?
Once the biologist has decided on the data, model and prior, the next 
step is to obtain a sample from the posterior. This is done by using 
MCMC, a simulation technique for sampling from a probability 
distribution that is known up to a normalizing constant21,22. Note that 
all terms on the right hand side of equation (1) are straightforward 
to calculate except z, which involves multidimensional integrals 
and may be too expensive to compute. Thus, MCMC is particularly 
suitable for Bayesian computation. Instead of calculating the 
posterior distribution f(θ​|D), the algorithm generates a sample from 
the posterior, which can be used to estimate the mean, the standard 
deviation of the posterior or even the whole posterior distribution.

Here we illustrate the major features of MCMC by applying it to the 
problem of estimating d and the transition/transversion rate ratio κ under 
the K80 model58 using a pair of DNA sequences. D is an alignment of the 
human and orangutan mitochondrial 12S rRNA genes, summarized as 
nS =​ 84 transitional differences and nV =​ 6 transversional differences at 
n =​ 948 sites (see page 7 in ref. 26). We assign independent gamma priors, 
d ~ G(2, 20) and κ ~ G(2, 0.1), with densities (Fig. 1a):
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Thus, the posterior (Fig. 1c) is:

κ κ κ∝f d D f d f f D d( , ) ( ) ( ) ( , ) (5)

We give a sketch of an MCMC algorithm in Box  1, and then  
discuss its main features. We use two sliding windows (uniform  
distributions centred around the current parameter value) to update 
parameters d and κ. The sliding window (even with reflection) is  
a symmetrical proposal, in the sense that the probability density  
of proposing d* from d is equal to that of proposing d from d*. If 
the proposal is asymmetrical, a correction term called the Hastings  
ratio22 needs to be applied.

Note that the parameter values (d and κ) visited in the next 
iteration depend on the current values but not values visited in the 
past. The algorithm has no memory. This memoryless property is 
called the Markovian property. As a result, the sequence of visited 
parameter values form a Markov chain, and the algorithm is called 

Box 1 | MCMC algorithm to estimate d and κ under the K80 model

1. Initialization
Initialize window sizes wd and wK. Choose random starting 

values (d, κ​).
2. Main loop

2(a) Proposal to change d. Propose a new value d* by sampling 
from a uniform sliding window (with reflection) around the 
current value: d*  =​  U(d – wd/2, d  +​  wd/2), where wd is the 
width of the window. If d* <​ 0, set d* =​ –d* (reflection). If the 
un-normalized posterior is higher at the new value, accept the 
proposal. Otherwise accept with a probability equal to the ratio 
of the posteriors:

α
κ
κ

κ κ
κ κ

= =
f d D
f d D

f d f f D d
f d f f D d

( , )
( , )

( ) ( ) ( , )
( ) ( ) ( , )

(6)
* * *

If the proposal is accepted, set d  =​  d*. If it is rejected, stay 
where it is (d =​ d).

2(b) Proposal to change κ. Use a similar sliding window of 
width wκ to propose a new value κ* =​  U(κ – wκ /2, κ +​  wκ/2). 
If κ* <​ 0, reflect by setting κ* =​ −​κ*. Accept the proposal with 
probability min{1, α​}, where:

α
κ
κ

κ κ
κ κ

= =
f d D
f d D

f d f f D d
f d f f D d

( , )
( , )

( ) ( ) ( , )
( ) ( ) ( , )

(7)
* * *

If the proposal is accepted, set κ =​ κ*. Otherwise stay where it 
is (κ =​ κ).

2(c) Save the state of the chain. Print out d and κ. Go back to 
step 2(a) and iterate to obtain as many samples as desired.
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MCMC. An important feature of the algorithm is that it requires  
the calculation of the ratio of posterior densities, but not the poste-
rior density itself. The normalizing constant z of equation (1) can-
cels in the calculation of the acceptance ratio α in steps 2(a) and  
2(b), and the algorithm thus avoids its calculation. It is easy to  
see that the algorithm visits parameter values with a high poste-
rior more often than those with a low posterior. Indeed, it visits the 
parameter values exactly in proportion to their posterior. One runs 
the algorithm over many iterations, and then uses the visited val-
ues of d and κ to construct a histogram to estimate the posterior 
distribution or to calculate the mean and standard deviation of the 
posterior (Fig. 2).

The window size (or step length) in the sliding window proposal 
(wd and wK) can affect the mixing efficiency of the chain (Box 2). If 
the window is too large, most of the proposals will fall in the tails 
of the posterior and be rejected. The chain then stays at the cur-
rent value and does not move (Fig. 2b). If the window is too small, 
the chain takes tiny baby steps, almost all of which are accepted but 
the chain is ineffective in exploring the posterior surface (Fig. 2d). 
Thus, both small steps (with a high acceptance proportion) and 
large steps (with very low acceptance proportion) lead to ineffi-
cient algorithms. The step lengths should be adjusted to achieve a 
near optimal acceptance proportion, at about 30–40%. Fine-tuning 
a phylogenetic MCMC chain to be efficient is important because 
MCMC runs may take weeks or months. It is easy to monitor the 
acceptance proportion and use it to adjust the step length automati-
cally78. Most current MCMC phylogenetic programs have automatic 
fine-tuning algorithms, and this is therefore not usually a concern 
for the user.

In trans-model MCMC algorithms, both the model index m and 
the model parameters θm change over the chain. The algorithm will 
involve both within-model proposals, which change parameters of 
the current model, and trans-model proposals, which move from 
the current model to another new model79. In the long run, the 
frequency at which the MCMC visits each model is an estimate 
of the posterior probability of that model. There are a number of 
differences between within-model and trans-model algorithms26, 
and here we note a few concerning mixing efficiency and 
acceptance proportion. First, for a within-model move (such as a 
sliding window changing the sequence distance or branch length), 
we can make the window size small enough so that the acceptance 
proportion is arbitrarily close to 100%. However, in trans-model 
moves, the acceptance proportion is constrained by the posterior 
model probabilities. If the maximum a  posteriori (MAP) model 
(the model with the highest posterior probability) has the posterior 
P1, then the acceptance proportion cannot exceed 2(1 – P1) (see 
ref. 26). Thus, if the MAP tree has P1 =​ 99%, the highest acceptance 
proportion for cross-tree moves is 2%. Second, while an acceptance 
proportion of near 0 indicates a poor proposal (for example, the 
window size is too large) for a within-model move, this may or 
may not indicate a mixing problem in cross-model moves because 
it may be caused by the MAP model having a posterior near 
100%. Third, for a within-model move, the optimal acceptance 
proportion is intermediate at 30–40%, but for a trans-model move, 
a mobile chain is in general more efficient than a lazy chain; we 
should therefore strive to achieve as high an acceptance proportion 
as possible.

All of those comments apply to Bayesian phylogenetic MCMC 
algorithms, which include both within-tree moves that change 
the branch lengths and substitution parameters without changing 
the tree topology and cross-tree moves that change the tree 
topology. The cross-tree moves are typically constructed using 
tree-perturbation (branch-swapping) algorithms such as nearest-
neighbour interchange, subtree pruning and re-grafting and tree 
bisection and reconnection26,80. About a dozen MCMC phylogenetic 
programs are now available (Table 1).

What are convergence, burn-in and mixing of the MCMC?
An MCMC algorithm may suffer from two problems: slow 
convergence and poor mixing. In the long run, the Markov chain 
should be spending most of the time visiting high-probability 
regions of the posterior. The convergence rate is the rate at which a 
chain starting from any initial position (which may be in the tails of 
the posterior) moves to the high-posterior region of the parameter 
space81. Parameter values sampled before reaching this stationary 
phase are usually discarded as the burn-in. Thus, if convergence is 
slow, a long burn-in will be necessary. Convergence rate is affected 
by the proposals used and by the shape of the posterior in the tails69. 
If the posterior is nearly flat in the tail, it will be difficult for the 
chain to get out of the tail and move to the high-posterior region.

Mixing efficiency refers to how efficiently the chain traverses the 
posterior after it has reached the stationary distribution. If the chain 
is more efficient, the estimate based on the MCMC sample will have 
a smaller variance, and the results will show less variation among 
independent runs (Box 2) and a relatively short chain will provide 
an acceptable estimate. The proposal (such as the uniform sliding 
window versus the normal-distribution sliding window) as well as 
the step length for the same proposal (such as the width of the slid-
ing window) can have a great effect on mixing efficiency78.

Both convergence and mixing problems can be diagnosed by 
using a trace plot, in which we plot the log likelihood or sampled 
parameter values against the MCMC iteration, for example, using 
R82 or Tracer83. It is also very important to run the same algorithm 
multiple times to check consistency between runs. With fast 
convergence, different chains that started from very different 
positions become indistinguishable very quickly. Efficient mixing 
is indicated by different runs generating nearly identical means, 
standard deviations, and histograms. If the runs are healthy, 
samples from different runs can be combined to produce posterior 
summaries.

The trace plots of Fig. 2a,c are from an efficient chain with good 
mixing, while those of Fig. 2b,d have poor mixing and low efficiency. 
The histograms from the efficient algorithm (Fig. 2e) match each 
other much more closely than those from the inefficient algorithm 
(Fig.  2f). In theory, the consistency among multiple runs could  
be because all of the runs got stuck in a region of the parameter 
space, giving the false impression that convergence was reached. 
This may happen when there are multiple peaks in the posterior. 
Thus, it is important to initiate the runs from starting points that 
are widely dispersed.

How many iterations? How many samples?
Ideally the MCMC would be run long enough to obtain a reliable 
estimation of the posterior distribution, but not so long as to waste 
computational resources. However, currently reliable automatic 
stopping rules do not exist. As a result, the user has to specify the 
number of iterations, and then decide whether the chain is long 
enough or additional iterations are necessary using certain diagno-
sis tools. MCMC algorithms tend to generate huge output files. To 
save disk space, samples are taken after a set number of iterations. 
For example, running an MCMC chain for 107 iterations and using a 
sample frequency of 103 iterations will produce 104 samples.

Note that in some programs (such as MCMCtree and BPP), each 
MCMC iteration consists of a fixed sequence of MCMC propos-
als, while in some others (such as MrBayes and BEAST), it consists 
of one proposal, chosen at random from a collection of proposals. 
Thus, if there are 1,000 parameters in the model and if each pro-
posal changes one parameter, each MCMC iteration in the former 
programs is worth about 1,000 iterations in the latter programs. 
Thus, MCMC iterations from different programs are not compa-
rable. The biologist should instead aim to accumulate a reasonable 
(as large as practically possible) effective sample size (ESS) for each 
parameter (Box 2).
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Why should we run an MCMC without data?
It is useful to run the MCMC algorithm sampling from the  
prior. This is achieved by setting the likelihood to 1 in equation 
(1). Some programs generate a dummy ‘empty’ alignment that  
can be used to achieve the same effect. Runs should also be 
assessed for good convergence and mixing. Running the chain 
without data is a good way of checking the correctness of the  
software, because the mean, variance, and so on of the prior are 
often analytically available and can be checked against the MCMC 
sample. In molecular clock dating using fossil calibrations,  
the prior on divergence times incorporates the calibration  
information and is typically intractable. Running the program 

without using the sequences allows one to generate the prior used  
by the program.

The sample from the prior can also be compared with the sample 
from the posterior (which is generated by using the data) to assess 
how informative the data are, and whether there are serious conflicts 
between the prior and the data. A high degree of similarity between 
the prior and the posterior suggests that the data contain little  
information about the parameters. Considerable overlap between  
the prior and posterior but with the posterior being much more  
concentrated than the prior means that the data are informative 
and the prior is reasonable. In contrast, if the prior and posterior do 
not overlap well, there may be a conflict between the prior and the  
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Fig. 2 | Trace plots and histograms for d and κ from sampling a posterior distribution using efficient and inefficient MCMC chains. The posterior 
distribution used is shown in Fig. 1c. a,c, Trace plots of d (a) and κ (c) for an efficient chain with good mixing. The window sizes are wd =​ 0.12 and wκ =​ 180, 
with acceptance proportions Pjump =​ 30.4% for d and 29.8% for κ, achieving Eff =​ 23% for d and 20% for κ. b,d, The corresponding trace plots for an 
inefficient chain with poor mixing, with wd =​ 5 and wκ​ =​ 1. In b the window for d is too wide, and most proposals are rejected (Pjump =​ 1.5%), so the chain 
is often stuck at the same value for many iterations, leading to poor mixing with Eff =​ 1.79%. In d the window for κ is too small, so most of the proposals 
are accepted (with Pjump =​ 98.6%), but the chain makes small baby steps and is very slow in traversing the posterior parameter space, with Eff =​ 1.28%. 
e,f, Histograms of κ for two runs (shown by the black and blue lines) of the efficient (e) and inefficient (f) chains (sample size n =​ 10,000). The posterior 
mean (and standard deviation) calculated using a very long run of the efficient chain is 0.104 (0.0114) for d, and 29.2 (10.0) for κ.
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data, possibly caused by misspecified priors. One can also modify 
the prior to assess the impact of the prior on the posterior. Note, 
however, that it is incorrect to specify the prior by trying to match 
the posterior, since the prior is supposed to reflect our knowledge 
before the analysis of the data.

Conclusions
Bayesian phylogenetics has undergone explosive growth during the 
past decade. The implementation of sophisticated models in easy-
to-use software programs has made the method extremely appealing 
to biologists. The method is particularly powerful in combining 
different sources of information in an integrated data analysis. As 
a result, Bayesian MCMC methods are the most commonly used 
framework for the development of new models of data analysis, 
especially in the areas of divergence time estimation integrating 
molecular, morphological and fossil information77, species tree 
estimation using multi-loci genomic sequence data24, and species 
delimitation incorporating genetic and morphological/ecological 
information84. The potential of the Bayesian method to deal with 
these and future questions has never been greater. For further 
reading on the Bayesian method and Bayesian phylogenetics the 
reader may consult the literature26,85,86

Code availability
A tutorial that helps the user to write a simple R program to conduct 
phylogenetic MCMC to reproduce the figures of this paper is avail-
able at: http://github.com/thednainus/Bayesian_tutorial.
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ν ν ρ ρ= × + + + …[1 2( )] (8)MCMC IND 1 2

where νIND is the variance for an independent sample of the same 
size from the posterior distribution, and where ρk =​ corr(xt, xt + k) 
is the correlation between the values of the parameter in the 
MCMC sample that are k iterations apart, known as the lag k 
autocorrelation. Both νIND and νMCMC are typically proportional 
to 1/n, where n is the sample size. The efficiency of an MCMC 
chain is defined as the variance ratio:

ν
ν ρ ρ
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+ + …

Eff 1
1 2( ) (9)IND

MCMC 1 2

For example, Eff =​ 0.25 means that an MCMC sample of size 
n is as efficient as an independent sample of size n/4, so that we 
need to generate an MCMC sample four times as large as the 
independent sample to have the same variance. The ESS is simply 
calculated by:

= ×nESS Eff

As a rule of thumb, one should aim for ESS =​ 1,000 or 10,000 
(see ref. 99). Bayesian phylogenetic algorithms are computationally 
intensive; ESS =​ 200 is therefore commonly recommended, but 
this may be too small for calculation of the 95% or 99% credibility 
intervals. A good strategy may be to conduct multiple runs of the 
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the posterior summary. If ESS =​ 200 for each sample, 10 replicate 
runs will give a combined sample of ESS =​ 2,000.
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