Universidad de la República Facultad de Ciencias Centro de Matemática

Grupos y teoría de Galois

Examen (extraordinario) Junio 2020

- 1. a) (P 3, Ej. 7) Mostrar que el grupo de isometrías Isom(T) de un tetraedro regular T es isomorfo a S_4 .
 - b) Cuál es el subgrupo de Isom(T) que corresponde a A_4 ?
 - c) Describir geométricamente^(*) las isometrías que corresponden a
 - 1) un 3-ciclo,
 - 2) una transposición,
 - 3) un producto de dos transposiciones disjuntas.
 - (*) decir, si son rotaciones, el eje y el ángulo, y si son reflexiones, el plano respecto al cuál se refleja.
- 2. Sea G un grupo de orden 340.
 - a) (Pr. 5, Ej. 16) Probar que G tiene un subgrupo normal H que es cíclico de orden 85.
 - b) Concluir que $G \cong H \rtimes K$ donde K es un 2-subgrupo de Sylow.
 - c) Mostrar que existen grupos G de orden 340, no abelianos, con $K \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ y con $K \cong \mathbb{Z}_4$.
- 3. (Pr. 7, Ej. 11) Sea \mathbb{E} el cuerpo de descomposición de X^5-7 sobre \mathbb{Q} . Denotamos $G=\mathrm{Gal}_{\mathbb{Q}}\mathbb{E}$.
 - a) Probar que $\mathbb{E} = \mathbb{Q}(\alpha, \zeta)$ donde α es una raiz de $X^5 7$ y ζ es una raiz de $X^4 + X^3 + X^2 + X + 1$.
 - b) Sea $N = \operatorname{Gal}_{\mathbb{Q}(\zeta)}\mathbb{E}$. Probar que $N \triangleleft G$ y que $N \cong \mathbb{Z}_5$, generado por σ con $\sigma(\alpha) = \zeta \alpha$.
 - c) Sea $H = \operatorname{Gal}_{\mathbb{Q}(\alpha)}\mathbb{E}$. Probar que $H \cong G/N \cong \operatorname{Gal}_{\mathbb{Q}}\mathbb{Q}(\zeta) \cong \mathbb{Z}_4$, generado por τ con $\tau(\zeta) = \zeta^2$.