
CHAPTER 14

Introduction to Numerical Methods

CONTENTS

Equations 299
Newton’s method... 299
Complex roots301
The Bisection
method 301
fzero 303
roots 303

Integration....... 304
The Trapezoidal rule304
Simpson’s rule 305
quad..................... 306

Numerical
differentiation .. 306
diff..................... 307

First-order
differential
equations 308
Euler’s method 308
Example: Bacteria
growth 309
Alternative
subscript notation .. 311
A predictor-
corrector method... 312

Linear ordinary
differential
equations
(LODEs)........... 313

Runge-Kutta
methods.......... 313
A single differential
equation............... 313
Systems of
differential
equations: Chaos ... 314

THE OBJECTIVES OF THIS CHAPTER ARE TO INTRODUCE
NUMERICAL METHODS FOR:

■ Solving equations.
■ Evaluating definite integrals.
■ Solving systems of ordinary differential equations.
■ Solving a parabolic partial differential equation.

A major scientific use of computers is in finding numerical solutions to math-
ematical problems which have no analytical solutions (i.e., solutions which
may be written down in terms of polynomials and standard mathematical
functions). In this chapter we look briefly at some areas where numerical meth-
ods have been highly developed, e.g., solving non-linear equations, evaluating
integrals, and solving differential equations.

14.1 EQUATIONS

In this section we consider how to solve equations in one unknown numeri-
cally. The usual way of expressing the problem is to say that we want to solve
the equation f (x) = 0, i.e., we want to find its root (or roots). This process
is also described as finding the zeros of f (x). There is no general method for
finding roots analytically for an arbitrary f (x).

14.1.1 Newton’s method

Newton’s method is perhaps the easiest numerical method to implement for
solving equations, and was introduced briefly in earlier chapters. It is an iter-
ative method, meaning that it repeatedly attempts to improve an estimate of
the root. If xk is an approximation to the root, we can relate it to the next
approximation xk+1 using the right-angle triangle in Fig. 14.1:

f ′(xk) = f (xk) − 0

xk − xk+1
,

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00021-X
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

299

https://doi.org/10.1016/B978-0-08-102997-8.00021-X

300 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.1
Newton’s method.

Passing additional
parameters to an
ODE solver............ 317

A partial
differential
equation.......... 318
Heat conduction 318

Complex
variables and
conformal
mapping.......... 322
Joukowski airfoil.... 322

Other numerical
methods.......... 323

Summary 325

Exercises 325

where f ′(x) is df/dx. Solving for xk+1 gives

xk+1 = xk − f (xk)

f ′(xk)
.

A structure plan to implement Newton’s method is:

1. Input starting value x0 and required relative error e

2. While relative error |(xk − xk−1)/xk| ≥ e repeat up to k = 20, say:
xk+1 = xk − f (xk)/f

′(xk)

Print xk+1 and f (xk+1)

3. Stop.

It is necessary to limit step 2 since the process may not converge.

A script using Newton’s method (without the subscript notation) to solve the
equation x3 + x − 3 = 0 is given in Chapter 10. If you run it you will see that
the values of x converge rapidly to the root.

As an exercise, try running the script with different starting values of x0 to see
whether the algorithm always converges.

If you have a sense of history, use Newton’s method to find a root of x3 − 2x −
5 = 0. This is the example used when the algorithm was first presented to the
French Academy.

Also try finding a non-zero root of 2x = tan(x), using Newton’s method. You
might have some trouble with this one. If you do, you will have discovered
the one serious problem with Newton’s method: it converges to a root only if
the starting guess is ‘close enough’. Since ‘close enough’ depends on the nature
of f (x) and on the root, one can obviously get into difficulties here. The only
remedy is some intelligent trial-and-error work on the initial guess—this is

14.1 Equations 301

FIGURE 14.2
f (x) = 2x − tan(x).

made considerably easier by sketching f (x) or plotting it with MATLAB (see
Fig. 14.2).

If Newton’s method fails to find a root, the Bisection method, discussed below,
can be used.

14.1.1.1 Complex roots

Newton’s method can also find complex roots, but only if the starting guess is
complex. Use the script in Chapter 10 to find a complex root of x2 + x + 1 = 0.
Start with a complex value of 1 + i say, for x. Using this starting value for x

gives the following output (if you replace disp([x f(x)]) in the script with
disp(x)):

0.0769 + 0.6154i
-0.5156 + 0.6320i
-0.4932 + 0.9090i
-0.4997 + 0.8670i
-0.5000 + 0.8660i
-0.5000 + 0.8660i
Zero found

Since complex roots occur in complex conjugate pairs, the other root is −0.5 −
0.866i.

14.1.2 The Bisection method

Consider again the problem of solving the equation f (x) = 0, where

f (x) = x3 + x − 3.

302 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.3
The Bisection method.

We attempt to find by inspection, or trial-and-error, two values of x, call them
xL and xR , such that f (xL) and f (xR) have different signs, i.e., f (xL)f (xR) < 0.
If we can find two such values, the root must lie somewhere in the interval
between them, since f (x) changes sign on this interval (see Fig. 14.3). In this
example, xL = 1 and xR = 2 will do, since f (1) = −1 and f (2) = 7. In the
Bisection method, we estimate the root by xM , where xM is the midpoint of
the interval [xL, xR], i.e.,

xM = (xL + xR)/2. (14.1)

Then if f (xM) has the same sign as f (xL), as drawn in the figure, the root
clearly lies between xM and xR . We must then redefine the left-hand end of
the interval as having the value of xM , i.e., we let the new value of xL be xM .
Otherwise, if f (xM) and f (xL) have different signs, we let the new value of xR

be xM , since the root must lie between xL and xM in that case. Having redefined
xL or xR , as the case may be, we bisect the new interval again according to
Equation (14.1) and repeat the process until the distance between xL and xR

is as small as we please.

The neat thing about this method is that, before starting, we can calculate how
many bisections are needed to obtain a certain accuracy, given initial values of
xL and xR . Suppose we start with xL = a, and xR = b. After the first bisection
the worst possible error (E1) in xM is E1 = |a − b|/2, since we are estimating
the root as being at the midpoint of the interval [a, b]. The worst that can
happen is that the root is actually at xL or xR , in which case the error is E1.
Carrying on like this, after n bisections the worst possible error En is given
by En = |a − b|/2n. If we want to be sure that this is less than some specified
error E, we must see to it that n satisfies the inequality |a − b|/2n < E, i.e.,

n >
log(|a − b|/E)

log(2)
(14.2)

14.1 Equations 303

Since n is the number of bisections, it must be an integer. The smallest integer
n that exceeds the right-hand side of Inequality (14.2) will do as the maximum
number of bisections required to guarantee the given accuracy E.

The following scheme may be used to program the Bisection method. It will
work for any function f (x) that changes sign (in either direction) between the
two values a and b, which must be found beforehand by the user.

1. Input a, b and E

2. Initialize xL and xR

3. Compute maximum bisections n from Inequality (14.2)
4. Repeat n times:

Compute xM according to Equation (14.1)
If f (xL)f (xM) > 0 then

Let xL = xM

otherwise
Let xR = xM

5. Display root xM

6. Stop.

We have assumed that the procedure will not find the root exactly; the chances
of this happening with real variables are infinitesimal.

The main advantage of the Bisection method is that it is guaranteed to find
a root if you can find two starting values for xL and xR between which the
function changes sign. You can also compute in advance the number of bisec-
tions needed to attain a given accuracy. Compared to Newton’s method it is
inefficient. Successive bisections do not necessarily move closer to the root, as
usually happens with Newton’s method. In fact, it is interesting to compare the
two methods on the same function to see how many more steps the Bisection
method requires than Newton’s method. For example, to solve the equation
x3 + x − 3 = 0, the Bisection method takes 21 steps to reach the same accuracy
as Newton’s in five steps.

14.1.3 fzero

The MATLAB function fzero(@f, a) finds the zero nearest to the value a of the
function f represented by the function f.m.

Use it to find a zero of x3 + x − 3.

fzero doesn’t appear to be able to find complex roots.

14.1.4 roots

The MATLAB function M-file roots(c) finds all the roots (zeros) of the poly-
nomial with coefficients in the vector c. See help for details.

304 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.4
The Trapezoidal rule.

Use it to find a zero of x3 + x − 3.

14.2 INTEGRATION

Although most ‘respectable’ mathematical functions can be differentiated ana-
lytically, the same cannot be said for integration. There are no general rules for
integrating, as there are for differentiating. For example, the indefinite integral
of a function as simple as e−x2

cannot be found analytically. We therefore need
numerical methods for evaluating integrals.

This is actually quite easy, and depends on the fact that the definite integral of
a function f (x) between the limits x = a and x = b is equal to the area under
f (x) bounded by the x-axis and the two vertical lines x = a and x = b. So all
numerical methods for integrating simply involve more or less ingenious ways
of estimating the area under f (x).

14.2.1 The Trapezoidal rule

The Trapezoidal (or Trapezium) rule is fairly simple to program. The area un-
der f (x) is divided into vertical panels each of width h, called the step-length.
If there are n such panels, then nh = b − a, i.e., n = (b − a)/h. If we join the
points where successive panels cut f (x), we can estimate the area under f (x)

as the sum of the area of the resulting trapezia (see Fig. 14.4). If we call this
approximation to the integral S, then

S = h

2

[
f (a) + f (b) + 2

n−1∑
i=1

f (xi)

]
, (14.3)

14.2 Integration 305

where xi = a + ih. Equation (14.3) is the Trapezoidal rule, and provides an
estimate for the integral

∫ b

a

f (x)dx.

Here is a function to implement the Trapezoidal rule:

function y = trap(fn, a, b, h)
n = (b-a)/h;
x = a + [1:n-1]*h;
y = sum(feval(fn, x));
y = h/2*(feval(fn, a) + feval(fn, b) + 2*y);

Note:

1. Since the summation in the rule is implemented with a vectorized for-
mula rather than a for loop (to save time), the function to be integrated
must use array operators where appropriate in its M-file implementation.

2. The user must choose h in such a way that the number of steps n will be
an integer—a check for this could be built in.

As an exercise, integrate f (x) = x3 between the limits 0 and 4 (remember to
write x.^3 in the function M-file). Call trap as follows:

s = trap(@f, 0, 4, h);

With h = 0.1, the estimate is 64.04, and with h = 0.01 it is 64.0004 (the exact
integral is 64). You will find that as h gets smaller, the estimate gets more
accurate.

This example assumes that f (x) is a continuous function which may be eval-
uated at any x. In practice, the function could be defined at discrete points
supplied as results of an experiment. For example, the speed of an object v(t)

might be measured every so many seconds, and one might want to estimate
the distance traveled as the area under the speed-time graph. In this case, trap
would have to be changed by replacing fn with a vector of function values.
This is left as an exercise for the curious. Alternatively, you can use the MATLAB
function interp1 to interpolate the data. See help.

14.2.2 Simpson’s rule

Simpson’s rule is a method of numerical integration which is a good deal more
accurate than the Trapezoidal rule, and should always be used before you try

306 CHAPTER 14: Introduction to Numerical Methods

anything fancier. It also divides the area under the function to be integrated,
f (x), into vertical strips, but instead of joining the points f (xi) with straight
lines, every set of three such successive points is fitted with a parabola. To
ensure that there are always an even number of panels, the step-length h is
usually chosen so that there are 2n panels, i.e., n = (b − a)/(2h).

Using the same notation as above, Simpson’s rule estimates the integral as

S = h

3

[
f (a) + f (b) + 2

n−1∑
i=1

f (x2i) + 4
n∑

i=1

f (x2i−1)

]
. (14.4)

Coding this formula into a function M-file is left as an exercise.

If you try Simpson’s rule on f (x) = x3 between any limits, you will find rather
surprisingly, that it gives the same result as the exact mathematical solution.
This is a nice extra benefit of the rule: it integrates cubic polynomials exactly
(which can be proved).

14.2.3 quad

Not surprisingly, MATLAB has a function quad to carry out numerical integra-
tion, or quadrature as it is also called. See help.

You may think there is no point in developing our own function files to handle
these numerical procedures when MATLAB has its own. If you have got this far,
you should be curious enough to want to know how they work, rather than
treating them simply as ‘black boxes’.

14.3 NUMERICAL DIFFERENTIATION

The Newton quotient for a function f (x) is given by

f (x + h) − f (x)

h
, (14.5)

where h is ‘small’. As h tends to zero, this quotient approaches the first deriva-
tive, df/dx. The Newton quotient may therefore be used to estimate a deriva-
tive numerically. It is a useful exercise to do this with a few functions for
which you know the derivatives. This way you can see how small you can
make h before rounding errors cause problems. Such errors arise because ex-
pression (14.5) involves subtracting two terms that eventually become equal
when the limit of the computer’s accuracy is reached.

As an example, the following script uses the Newton quotient to estimate f ′(x)

for f (x) = x2 (which must be supplied as a function file f.m) at x = 2, for
smaller and smaller values of h (the exact answer is 4).

14.3 Numerical differentiation 307

h = 1;
x = 2;
format short e
for i = 1:20
nq = (f(x+h) - f(x))/h;
disp([h nq])
h = h / 10;

end

Output:

1 5
1.0000e-001 4.1000e+000
1.0000e-002 4.0100e+000
1.0000e-003 4.0010e+000
1.0000e-004 4.0001e+000
1.0000e-005 4.0000e+000
1.0000e-006 4.0000e+000
1.0000e-007 4.0000e+000
1.0000e-008 4.0000e+000
1.0000e-009 4.0000e+000
1.0000e-010 4.0000e+000
1.0000e-011 4.0000e+000
1.0000e-012 4.0004e+000
1.0000e-013 3.9968e+000
1.0000e-014 4.0856e+000
1.0000e-015 3.5527e+000
1.0000e-016 0
...

The results show that the best h for this particular problem is about 10−8. But
for h much smaller than this the estimate becomes totally unreliable.

Generally, the best h for a given problem can only be found by trial and er-
ror. Finding it can be a non-trivial exercise. This problem does not arise with
numerical integration, because numbers are added to find the area, not sub-
tracted.

14.3.1 diff

If x is a row or column vector

[x(1) x(2) ... x(n)]

then the MATLAB function diff(x) returns a vector of differences between ad-
jacent elements:

308 CHAPTER 14: Introduction to Numerical Methods

[x(2)-x(1) x(3)-x(2) ... x(n)-x(n-1)]

The output vector is one element shorter than the input vector.

In certain problems, diff is helpful in finding approximate derivatives, e.g., if
x contains displacements of an object every h seconds, diff(x)/h will be its
speed.

14.4 FIRST-ORDER DIFFERENTIAL EQUATIONS

The most interesting situations in real life that we may want to model, or
represent quantitatively, are usually those in which the variables change in
time (e.g., biological, electrical or mechanical systems). If the changes are con-
tinuous, the system can often be represented with equations involving the
derivatives of the dependent variables. Such equations are called differential
equations. The main aim of a lot of modeling is to be able to write down a
set of differential equations (DEs) that describe the system being studied as
accurately as possible. Very few DEs can be solved analytically, so once again,
numerical methods are required. We will consider the simplest method of nu-
merical solution in this section: Euler’s method (Euler rhymes with ‘boiler’).
We also consider briefly how to improve it.

14.4.1 Euler’s method

In general we want to solve a first-order DE (strictly an ordinary—ODE) of the
form

dy/dx = f (x, y), y(0) given.

Euler’s method for solving this DE numerically consists of replacing dy/dx

with its Newton quotient, so that the DE becomes

y(x + h) − y(x)

h
= f (x, y).

After a slight rearrangement of terms, we get

y(x + h) = y(x) + hf (x, y). (14.6)

Solving a DE numerically is such an important and common problem in sci-
ence and engineering that it is worth introducing some general notation at
this point. Suppose we want to integrate the DE over the interval x = a (a = 0
usually) to x = b. We break this interval up into m steps of length h, so

m = (b − a)/h

(this is the same as the notation used in the update process of Chapter 11,
except that dt used there has been replaced by the more general h here).

14.4 First-order differential equations 309

For consistency with MATLAB’s subscript notation, if we define yi as y(xi)

(the Euler estimate at the beginning of step i), where xi = (i − 1)h, then
yi+1 = y(x + h), at the end of step i. We can then replace Equation (14.6)
by the iterative scheme

yi+1 = yi + hf (xi, yi), (14.7)

where y1 = y(0). Recall from Chapter 11 that this notation enables us to gen-
erate a vector y which we can then plot. Note also the striking similarity
between Equation (14.7) and the equation in Chapter 11 representing an up-
date process. This similarity is no coincidence. Update processes are typically
modeled by DEs, and Euler’s method provides an approximate solution for
such DEs.

14.4.2 Example: Bacteria growth

Suppose a colony of 1000 bacteria is multiplying at the rate of r = 0.8 per hour
per individual (i.e. an individual produces an average of 0.8 offspring every
hour). How many bacteria are there after 10 hours? Assuming that the colony
grows continuously and without restriction, we can model this growth with
the DE

dN/dt = rN, N(0) = 1000, (14.8)

where N(t) is the population size at time t . This process is called exponential
growth. Equation (14.8) may be solved analytically to give the well-known for-
mula for exponential growth:

N(t) = N(0)ert .

To solve Equation (14.8) numerically, we apply Euler’s algorithm to it to get

Ni+1 = Ni + rhNi, (14.9)

where the initial value N1 = 1000.

It is very easy to program Euler’s method. The following script implements
Equation (14.9), taking h = 0.5. It also computes the exact solution for com-
parison.

h = 0.5;
r = 0.8;
a = 0;
b = 10;
m = (b - a) / h;
N = zeros(1, m+1);

310 CHAPTER 14: Introduction to Numerical Methods

Table 14.1 Bacteria growth.

Time
(hours)

Euler Predictor-
Corrector

Exact

0.0 1000 1000 1000

0.5 1400 1480 1492

1.0 1960 2190 2226

1.5 2744 3242 3320

2.0 3842 4798 4953

. . .

5.0 28925 50422 54598

. . .

8.0 217795 529892 601845

. . .

10.0 836683 2542344 2980958

N(1) = 1000;

t = a:h:b;

for i = 1:m

N(i+1) = N(i) + r * h * N(i);

end

Nex = N(1) * exp(r * t);

format bank

disp([t’ N’ Nex’])

plot(t, N), xlabel(’Hours’), ylabel(’Bacteria’)

hold on

plot(t, Nex), hold off

Results are shown in Table 14.1, and also in Fig. 14.5. The Euler solution is
not too good. In fact, the error gets worse at each step, and after 10 hours of
bacteria time it is about 72 per cent. The numerical solution will improve if
we make h smaller, but there will always be some value of t where the error
exceeds some acceptable limit.

In some cases, Euler’s method performs better than it does here, but there are
other numerical methods which always do better than Euler. Two of them are
discussed below. More sophisticated methods may be found in most textbooks
on numerical analysis. However, Euler’s method may always be used as a first
approximation as long as you realize that errors may arise.

14.4 First-order differential equations 311

FIGURE 14.5
Bacteria growth: (a) Euler’s method; (b) the exact solution.

14.4.3 Alternative subscript notation

Equation (14.9) is an example of a finite difference scheme. The conventional
finite difference notation is for the initial value to be represented by N0, i.e.
with subscript i = 0. Ni is then the estimate at the end of step i. If you want the
MATLAB subscripts in the Euler solution to be the same as the finite difference
subscripts, the initial value N0 must be represented by the MATLAB scalar N0,
and you have to compute N(1) separately, before the for loop starts. You also
have to display or plot the initial values separately since they will no longer be
included in the MATLAB vectors t, N and Nex (which now have m instead of
m + 1 elements). Here is a complete script to generate the Euler solution using
finite difference subscripts:

h = 0.5;
r = 0.8;
a = 0;
b = 10;
m = (b - a) / h;
N = zeros(1, m); % one less element now
N0 = 1000;
N(1) = N0 + r*h*N0; % no longer ’self-starting’

for i = 2:m
N(i) = N(i-1) + r * h * N(i-1); %finite difference notation

end

t = a+h:h:b; % exclude initial time = a

312 CHAPTER 14: Introduction to Numerical Methods

Nex = N0 * exp(r * t);
disp([a N0 N0]) % display initial values separately
disp([t’ N’ Nex’])

plot(a, N0) % plot initial values separately
hold on
plot(t, N), xlabel(’Hours’), ylabel(’Bacteria’)
plot(t, Nex), hold off

14.4.4 A predictor-corrector method

One improvement on the numerical solution of the first-order DE

dy/dx = f (x, y), y(0) given,

is as follows. The Euler approximation, which we are going to denote by an
asterisk, is given by

y∗
i+1 = yi + hf (xi, yi) (14.10)

But this formula favors the old value of y in computing f (xi, yi) on the right-
hand side. Surely it would be better to say

y∗
i+1 = yi + h[f (xi+1, y

∗
i+1) + f (xi, yi)]/2, (14.11)

where xi+1 = xi +h, since this also involves the new value y∗
i+1 in computing f

on the right-hand side? The problem of course is that y∗
i+1 is as yet unknown,

so we can’t use it on the right-hand side of Equation (14.11). But we could
use Euler to estimate (predict) y∗

i+1 from Equation (14.10) and then use Equa-
tion (14.11) to correct the prediction by computing a better version of y∗

i+1,
which we will call yi+1. So the full procedure is:

Repeat as many times as required:
Use Euler to predict: y∗

i+1 = yi + hf (xi, yi)

Then correct y∗
i+1 to: yi+1 = yi + h[f (xi+1, y

∗
i+1) + f (xi, yi)]/2.

This is called a predictor-corrector method. The script above can easily be
adapted to this problem. The relevant lines of code are:

for i = 1:m % m steps of length dt
ne(i+1) = ne(i) + r * h * ne(i);
np = nc(i) + r * h * nc(i);
nc(i+1) = nc(i) + r * h * (np + nc(i))/2;
disp([t(i+1) ne(i+1) nc(i+1) nex(i+1)])

end;

14.5 Linear ordinary differential equations (LODEs) 313

ne stands for the ‘straight’ (uncorrected) Euler solution, np is the Euler predictor
(since this is an intermediate result a vector is not needed for np), and nc is the
corrector. The worst error is now only 15 per cent. This is much better than the
uncorrected Euler solution, although there is still room for improvement.

14.5 LINEAR ORDINARY DIFFERENTIAL EQUATIONS
(LODES)

Linear ODEs with constant coefficients may be solved analytically in terms of
matrix exponentials, which are represented in MATLAB by the function expm. For
an example see MATLAB Help: Mathematics: Matrices and Linear Algebra:
Matrix Powers and Exponentials.

14.6 RUNGE-KUTTA METHODS

There are a variety of algorithms, under the general name of Runge-Kutta,
which can be used to integrate systems of ODEs. The formulae involved are
rather complicated; they can be found in most books on numerical analysis.

However, as you may have guessed, MATLAB has plenty of ODE solvers, which
are discussed in MATLAB Help: Mathematics: Differential Equations. Among
them are ode23 (second/third order) and ode45 (fourth/fifth order), which im-
plement Runge-Kutta methods. (The order of a numerical method is the power
of h (i.e., dt) in the leading error term. Since h is generally very small, the
higher the power, the smaller the error). We will demonstrate the use of ode23
and ode45 here, first with a single first-order DE, and then with systems of such
equations.

14.6.1 A single differential equation

Here’s how to use ode23 to solve the bacteria growth problem, Equation (14.8):

dN/dt = rN, N(0) = 1000.

1. Start by writing a function file for the right-hand side of the DE to be
solved. The function must have input variables t and N in this case (i.e.,
independent and dependent variables of the DE), in that order, e.g., create
the function file f.m as follows:

function y = f(t, Nr)
y = 0.8 * Nr;

2. Now enter the following statements in the Command Window:

a = 0;
b = 10;

314 CHAPTER 14: Introduction to Numerical Methods

n0 = 1000;
[t, Nr] = ode23(@f, [a:0.5:b], n0);

3. Note the input arguments of ode23:
@f: a handle for the function f, which contains the right-hand side of the
DE;
[a:0.5:b]: a vector (tspan) specifying the range of integration. If tspan
has two elements ([a b]) the solver returns the solution evaluated at
every integration step (the solver chooses the integration steps and may
vary them). This form would be suitable for plotting. However, if you
want to display the solution at regular time intervals, as we want to here,
use the form of tspan with three elements as above. The solution is then
returned evaluated at each time in tspan. The accuracy of the solution is
not affected by the form of tspan used.
n0: the initial value of the solution N .

4. The output arguments are two vectors: the solutions Nr at times t. For
10 hours ode23 gives a value of 2961338 bacteria. From the exact solution
in Table 14.1 we see that the error here is only 0.7 per cent.

If the solutions you get from ode23 are not accurate enough, you can request
greater accuracy with an additional optional argument. See help.

If you need still more accurate numerical solutions, you can use ode45 instead.
It gives a final value for the bacteria of 2981290—an error of about 0.01%.

14.6.2 Systems of differential equations: Chaos

The reason that weather prediction is so difficult and forecasts are so erratic is
no longer thought to be the complexity of the system but the nature of the DEs
modeling it. These DEs belong to a class referred to as chaotic. Such equations
will produce wildly different results when their initial conditions are changed
infinitesimally. In other words, accurate weather prediction depends crucially
on the accuracy of the measurements of the initial conditions.

Edward Lorenz, a research meteorologist, discovered this phenomenon in
1961. Although his original equations are far too complex to consider here,
the following much simpler system has the same essential chaotic features:

dx/dt = 10(y − x), (14.12)

dy/dt = −xz + 28x − y, (14.13)

dz/dt = xy − 8z/3. (14.14)

This system of DEs may be solved very easily with the MATLAB ODE solvers.
The idea is to solve the DEs with certain initial conditions, plot the solution,
then change the initial conditions very slightly, and superimpose the new so-
lution over the old one to see how much it has changed.

14.6 Runge-Kutta methods 315

We begin by solving the system with the initial conditions x(0) = −2,
y(0) = −3.5 and z(0) = 21.

1. Write a function file lorenz.m to represent the right-hand sides of the
system as follows:

function f = lorenz(t, x)
f = zeros(3,1);
f(1) = 10 * (x(2) - x(1));
f(2) = -x(1) * x(3) + 28 * x(1) - x(2);
f(3) = x(1) * x(2) - 8 * x(3) / 3;

The three elements of the MATLAB vector x, i.e., x(1), x(2) and x(3),
represent the three dependent scalar variables x, y and z respectively. The
elements of the vector f represent the right-hand sides of the three DEs.
When a vector is returned by such a DE function it must be a column
vector, hence the statement

f = zeros(3,1);

2. Now use the following commands to solve the system from t = 0 to
t = 10, say:

x0 = [-2 -3.5 21]; % initial values in a vector
[t, x] = ode45(@lorenz, [0 10], x0);
plot(t,x)

Note that we are use ode45 now, since it is more accurate.
You will see three graphs, for x, y and z (in different colors).

3. It’s easier to see the effect of changing the initial values if there is only
one graph in the figure to start with. It is in fact best to plot the solution
y(t) on its own.
The MATLAB solution x is actually a matrix with three columns (as you
can see from whos). The solution y(t) that we want will be the second
column, so to plot it by itself use the command

plot(t,x(:,2),’g’)

Then keep the graph on the axes with the command hold.

Now we can see the effect of changing the initial values. Let’s just change the
initial value of x(0), from −2 to −2.04—that’s a change of only 2 per cent, and
in only one of the three initial values. The following commands will do this,
solve the DEs, and plot the new graph of y(t) (in a different color):

x0 = [-2.04 -3.5 21];
[t, x] = ode45(@lorenz, [0 10], x0);
plot(t,x(:,2),’r’)

316 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.6
Chaos?

You should see (Fig. 14.6) that the two graphs are practically indistinguish-
able until t is about 1.5. The discrepancy grows quite gradually, until t reaches
about 6, when the solutions suddenly and shockingly flip over in opposite di-
rections. As t increases further, the new solution bears no resemblance to the
old one.

Now solve the system (14.12)–(14.14) with the original initial values using
ode23 this time:

x0 = [-2 -3.5 21];
[t,x] = ode23(@lorenz, [0 10], x0);

Plot the graph of y(t) only—x(:,2)—and then superimpose the ode45 solution
with the same initial values (in a different color).

A strange thing happens—the solutions begin to deviate wildly for t > 1.5!
The initial conditions are the same—the only difference is the order of the
Runge-Kutta method.

Finally solve the system with ode23s and superimpose the solution. (The s
stands for ‘stiff’. For a stiff DE, solutions can change on a time scale that is very
short compared to the interval of integration.) The ode45 and ode23s solutions
only start to diverge at t > 5.

The explanation is that ode23, ode23s and ode45 all have numerical inaccuracies
(if one could compare them with the exact solution—which incidentally can’t
be found). However, the numerical inaccuracies are different in the three cases.
This difference has the same effect as starting the numerical solution with very
slightly different initial values.

How do we ever know when we have the ‘right’ numerical solution? Well, we
don’t—the best we can do is increase the accuracy of the numerical method
until no further wild changes occur over the interval of interest. So in our ex-
ample we can only be pretty sure of the solution for t < 5 (using ode23s or
ode45). If that’s not good enough, you have to find a more accurate DE solver.

So beware: ‘chaotic’ DEs are very tricky to solve!

14.6 Runge-Kutta methods 317

Incidentally, if you want to see the famous ‘butterfly’ picture of chaos, just plot
x against z as time increases (the resulting graph is called a phase plane plot).
The following command will do the trick:

plot(x(:,1), x(:,3))

What you will see is a static 2-D projection of the trajectory, i.e., the solution
developing in time. Demos in the MATLAB Launch Pad include an example
which enables you to see the trajectory evolving dynamically in 3-D (Demos:
Graphics: Lorenz attractor animation).

14.6.3 Passing additional parameters to an ODE solver

In the above examples of the MATLAB ODE solvers the coefficients in the right-
hand sides of the DEs (e.g., the value 28 in Equation (14.13)) have all been
constants. In a real modeling situation, you will most likely want to change
such coefficients frequently. To avoid having to edit the function files each time
you want to change a coefficient, you can pass the coefficients as additional pa-
rameters to the ODE solver, which in turn passes them to the DE function. To
see how this may be done, consider the Lotka-Volterra predator-prey model:

dx/dt = px − qxy (14.15)

dy/dt = rxy − sy, (14.16)

where x(t) and y(t) are the prey and predator population sizes at time t , and
p, q, r and s are biologically determined parameters. For this example, we take
p = 0.4, q = 0.04, r = 0.02, s = 2, x(0) = 105 and y(0) = 8.

First, write a function M-file, volterra.m as follows:

function f = volterra(t, x, p, q, r, s)
f = zeros(2,1);
f(1) = p*x(1) - q*x(1)*x(2);
f(2) = r*x(1)*x(2) - s*x(2);

Then enter the following statements in the Command Window, which generate
the characteristically oscillating graphs in Fig. 14.7:

p = 0.4; q = 0.04; r = 0.02; s = 2;
[t,x] = ode23(@volterra,[0 10],[105; 8],[],p,q,r,s);
plot(t, x)

Note:

■ The additional parameters (p, q, r and s) have to follow the fourth input
argument (options—see help) of the ODE solver. If no options have been
set (as in our case), use [] as a placeholder for the options parameter.

318 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.7
Lotka-Volterra model: (a) predator; (b) prey.

You can now change the coefficients from the Command Window and get a
new solution, without editing the function file.

14.7 A PARTIAL DIFFERENTIAL EQUATION

The numerical solution of partial differential equations (PDEs) is a vast sub-
ject, which is beyond the scope of this book. However, a class of PDEs called
parabolic often lead to solutions in terms of sparse matrices, which were men-
tioned briefly in Chapter 16. One such example is considered in this section.

14.7.1 Heat conduction

The conduction of heat along a thin uniform rod may be modeled by the par-
tial differential equation

∂u

∂t
= ∂2u

∂x2
, (14.17)

where u(x, t) is the temperature distribution a distance x from one end of the
rod at time t , and assuming that no heat is lost from the rod along its length.

Half the battle in solving PDEs is mastering the notation. We set up a rectan-
gular grid, with step-lengths of h and k in the x and t directions respectively.
A general point on the grid has co-ordinates xi = ih, yj = jk. A concise nota-
tion for u(x, t) at xi , yj is then simply ui,j .

Truncated Taylor series may then be used to approximate the PDE by a finite dif-
ference scheme. The left-hand side of Equation (14.17) is usually approximated

14.7 A partial differential equation 319

by a forward difference:

∂u

∂t
= ui,j+1 − ui,j

k

One way of approximating the right-hand side of Equation (14.17) is by the
scheme

∂2u

∂x2
= ui+1,j − 2ui,j + ui−1,j

h2
. (14.18)

This leads to a scheme, which although easy to compute, is only conditionally
stable.

If however we replace the right-hand side of the scheme in Equation (14.18)
by the mean of the finite difference approximation on the j th and (j + 1)th
time rows, we get (after a certain amount of algebra!) the following scheme for
Equation (14.17):

−rui−1,j+1 + (2 + 2r)ui,j+1 − rui+1,j+1 = rui−1,j + (2 − 2r)ui,j + rui+1,j ,

(14.19)

where r = k/h2. This is known as the Crank-Nicolson implicit method, since it
involves the solution of a system of simultaneous equations, as we shall see.

To illustrate the method numerically, let’s suppose that the rod has a length
of 1 unit, and that its ends are in contact with blocks of ice, i.e., the boundary
conditions are

u(0, t) = u(1, t) = 0. (14.20)

Suppose also that the initial temperature (initial condition) is

u(x,0) =
{

2x, 0 ≤ x ≤ 1/2,

2(1 − x), 1/2 ≤ x ≤ 1.
(14.21)

(this situation could come about by heating the center of the rod for a long
time, with the ends kept in contact with the ice, removing the heat source at
time t = 0.) This particular problem has symmetry about the line x = 1/2; we
exploit this now in finding the solution.

If we take h = 0.1 and k = 0.01, we will have r = 1, and Equation (14.19)
becomes

−ui−1,j+1 + 4ui,j+1 − ui+1,j+1 = ui−1,j + ui+1,j . (14.22)

Putting j = 0 in Equation (14.22) generates the following set of equations for
the unknowns ui,1 (i.e., after one time step k) up to the midpoint of the rod,

320 CHAPTER 14: Introduction to Numerical Methods

which is represented by i = 5, i.e., x = ih = 0.5. The subscript j = 1 has been
dropped for clarity:

0 + 4u1 − u2 = 0 + 0.4

−u1 + 4u2 − u3 = 0.2 + 0.6

−u2 + 4u3 − u4 = 0.4 + 0.8

−u3 + 4u4 − u5 = 0.6 + 1.0

−u4 + 4u5 − u6 = 0.8 + 0.8.

Symmetry then allows us to replace u6 in the last equation by u4. These equa-
tions can be written in matrix form as

⎡
⎢⎢⎢⎢⎣

4 −1 0 0 0
−1 4 −1 0 0

0 −1 4 −1 0
0 0 −1 4 −1
0 0 0 −2 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0.4
0.8
1.2
1.6
1.6

⎤
⎥⎥⎥⎥⎦ . (14.23)

The matrix (A) on the left of Equations (14.23) is known as a tridiagonal matrix.
Having solved for the ui,1 we can then put j = 1 in Equation (14.22) and
proceed to solve for the ui,2, and so on. The system (14.23) can of course be
solved directly in MATLAB with the left division operator. In the script below,
the general form of Equations (14.23) is taken as

Av = g. (14.24)

Care needs to be taken when constructing the matrix A. The following notation
is often used:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 c1

a2 b2 c2

a3 b3 c3
. . .

an−1 bn−1 cn−1

an bn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

A is an example of a sparse matrix (see Chapter 16).

The script below implements the general Crank-Nicolson scheme of Equa-
tion (14.19) to solve this particular problem over 10 time steps of k = 0.01.
The step-length is specified by h = 1/(2n) because of symmetry. r is therefore
not restricted to the value 1, although it takes this value here. The script exploits
the sparsity of A by using the sparse function.

14.7 A partial differential equation 321

format compact

n = 5;

k = 0.01;

h = 1 / (2 * n); % symmetry assumed

r = k / h ^ 2;

% set up the (sparse) matrix A

b = sparse(1:n, 1:n, 2+2*r, n, n); % b(1) .. b(n)

c = sparse(1:n-1, 2:n, -r, n, n); % c(1) .. c(n-1)

a = sparse(2:n, 1:n-1, -r, n, n); % a(2) ..

A = a + b + c;

A(n, n-1) = -2 * r; % symmetry: a(n)

full(A) %

disp(’ ’)

u0 = 0; % boundary condition (Eq 19.20)

u = 2*h*[1:n] % initial conditions (Eq 19.21)

u(n+1) = u(n-1); % symmetry

disp([0 u(1:n)])

for t = k*[1:10]

g = r * ([u0 u(1:n-1)] + u(2:n+1)) ...

+ (2 - 2 * r) * u(1:n); % Eq 19.19

v = A\g’; % Eq 19.24

disp([t v’])

u(1:n) = v;

u(n+1) = u(n-1); % symmetry

end

Note:

■ to preserve consistency between the formal subscripts of Equation (14.19)
etc. and MATLAB subscripts, u0 (the boundary value) is represented by
the scalar u0.

In the following output the first column is time, and subsequent columns are
the solutions at intervals of h along the rod:

0 0.2000 0.4000 0.6000 0.8000 1.0000

0.0100 0.1989 0.3956 0.5834 0.7381 0.7691

0.0200 0.1936 0.3789 0.5397 0.6461 0.6921

...

0.1000 0.0948 0.1803 0.2482 0.2918 0.3069

322 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.8
Map of circle to an airfoil: illustration of the application of the Joukowski transformation in the complex
plane.

MATLAB has some built-in PDE solvers. See MATLAB Help: Mathematics: Dif-
ferential Equations: Partial Differential Equations.

14.8 COMPLEX VARIABLES AND CONFORMAL MAPPING

In this section one application of the complex-variable capabilities in MATLAB
is demonstrated. It is the transformation of a circle to a Joukowski airfoil.

Joukowski airfoil

The solution of the flow around a circular cylinder with circulation in a cross
flow can be used to predict the flow around thin airfoils. We can transform the
local geometry of the cylinder into an ellipse, an airfoil or a flat plate without
influencing the geometry if the far field. This procedure is known as conformal
mapping. If we interpret the Cartesian coordinates as the coordinates the plane
of complex numbers z = x + iy, where x and y are real numbers, i = √−1, x is
the real part of z and y is the imaginary part of z, then doing this allows us
to use complex variable theory to solve two-dimensional potential flow prob-
lems. We are not going to examine complex variable theory here. Instead, we
will give an example of the application of one of the ideas to illustrate that
the circle can be transformed into an airfoil. Table 14.2 is a MATLAB script
that does this. MATLAB is very useful for this problem because it does com-
plex arithmetic. The steps are outlined in the table. The result of executing this
code is illustrated in Fig. 14.8. The figure shows the circle and the airfoil that
is mapped from it. Each point on the circle corresponds to a unique point on
the airfoil. The potential at each point on the cylinder is the same as the cor-
responding point on the airfoil. This is how the solution of the circle problem
is mapped to solve the flow around the airfoil. What is different is the distance
between points and, hence, the velocity and pressure distributions on the air-
foil must be determined from the mapped distribution of the potential. The
far field is not affected by the transformation.

14.9 Other numerical methods 323

Table 14.2 MATLAB file used to produce Fig. 14.8.

% Joukowski transformation MATLAB code

%

% Example of conformal mapping of a circle to an airfoil:

% A problem in the field of aerodynamics

% Daniel T. Valentine 2009/2018.

% Circle in (xp,yp) plane: R = sqrt(xpˆ2 + ypˆ2), R > 1

% Complex variables of three complex planes of interest:

% zp = xp + i*yp ==> Circle plane

% z = x + i*y ==> Intermediate plane

% w = u + i*v ==> Airfoil (or physical) plane

clear;clc

% Step 1: Select the parameters that define the airfoil of interest.

% (1) Select the a == angle of attack alpha

a = 2; % in degrees

a = a*pi/180; % Conversion to radians

% (2) Select the parameter related to thichkness of the airfoil:

e = .1;

% (3) Select the shift of y-axis related to camber of the airfoil:

f = .1;

% (4) Select the trailing edge angle parameter:

te = .05; % 0 < te < 1 (0 ==> cusped trailing edge)

n = 2 - te; % Number related to trailing edge angle.

tea = (nˆ2-1)/3; % This is a Karman-Trefftz extension.

% Step 2: Compute the coordinates of points on circle in zp-plane:

R = 1 + e;

theta = 0:pi/200:2*pi;

yp = R * sin(theta);

xp = R * cos(theta);

% Step 3: Transform coordinates of circle from zp-plane to z-plane:

z = (xp - e) + i.*(yp + f);

% Step 4: Transform circle from z-plane to airfoil in w-plane

% (the w-plane is the "physical" plane of the airfoil):

rot = exp(-i*a); % Application of angle of attack.

w = rot .* (z + tea*1./z); % Joukowski transformation.

% Step 5: Plot of circle in z-plane on top of airfoil in w-plane

plot(xp,yp), hold on

plot(real(w),imag(w),’r’),axis image, hold off

14.9 OTHER NUMERICAL METHODS

The ODEs considered earlier in this chapter are all initial value problems. For
boundary value problem solvers, see MATLAB Help: Mathematics: Differential
Equations: Boundary Value Problems for ODEs.

MATLAB has a large number of functions for handling other numerical proce-
dures, such as curve fitting, correlation, interpolation, minimization, filtering
and convolution, and (fast) Fourier transforms. Consult MATLAB Help: Math-
ematics: Polynomials and Interpolation and Data Analysis and Statistics.

324 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.9
A cubic polynomial fit.

Here’s an example of curve fitting. The following script enables you to plot
data points interactively. When you have finished plotting points (signified
when the x coordinates of your last two points differ by less than 2 in absolute
value) a cubic polynomial is fitted and drawn (see Fig. 14.9).

% Interactive script to fit a cubic to data points

clf
hold on
axis([0 100 0 100]);

diff = 10;
xold = 68;
i = 0;
xp = zeros(1); % data points
yp = zeros(1);

while diff > 2
[a b] = ginput(1);
diff = abs(a - xold);
if diff > 2
i = i + 1;
xp(i) = a;
yp(i) = b;
xold = a;
plot(a, b, ’ok’)

end
end

Summary 325

p = polyfit(xp, yp, 3);
x = 0:0.1:xp(length(xp));
y= p(1)*x.^3 + p(2)*x.^2 + p(3)*x + p(4);
plot(x,y), title(’cubic polynomial fit’), ...

ylabel(’y(x)’), xlabel(’x’)
hold off

Polynomial fitting may also be done interactively in a figure window, with
Tools -> Basic Fitting.

SUMMARY

■ A numerical method is an approximate computer method for solving a
mathematical problem which often has no analytical solution.

■ A numerical method is subject to two distinct types of error: rounding
error in the computer solution, and truncation error, where an infinite
mathematical process, like taking a limit, is approximated by a finite pro-
cess.

■ MATLAB has a large number of useful functions for handling numerical
methods.

EXERCISES

14.1 Use Newton’s method in a script to solve the following (you may have
to experiment a bit with the starting values). Check all your answers
with fzero. Check the answers involving polynomial equations with
roots.
Hint: use fplot to get an idea of where the roots are, e.g.,

fplot(’x^3-8*x^2+17*x-10’, [0 3])

The Zoom feature also helps. In the figure window select the Zoom In
button (magnifying glass) and click on the part of the graph you want
to magnify.
(a) x4 − x = 10 (two real roots and two complex roots)
(b) e−x = sinx (infinitely many roots)
(c) x3 − 8x2 + 17x − 10 = 0 (three real roots)
(d) logx = cosx

(e) x4 − 5x3 − 12x2 + 76x − 79 = 0 (four real roots)
14.2 Use the Bisection method to find the square root of 2, taking 1 and 2 as

initial values of xL and xR . Continue bisecting until the maximum error
is less than 0.05 (use Inequality (14.2) of Section 14.1 to determine
how many bisections are needed).

326 CHAPTER 14: Introduction to Numerical Methods

14.3 Use the Trapezoidal rule to evaluate
∫ 4

0 x2dx, using a step-length of
h = 1.

14.4 A human population of 1000 at time t = 0 grows at a rate given by

dN/dt = aN,

where a = 0.025 per person per year. Use Euler’s method to project the
population over the next 30 years, working in steps of (a) h = 2 years,
(b) h = 1 year and (c) h = 0.5 years. Compare your answers with the
exact mathematical solution.

14.5 Write a function file euler.m which starts with the line

function [t, n] = euler(a, b, dt)

and which uses Euler’s method to solve the bacteria growth DE (14.8).
Use it in a script to compare the Euler solutions for dt = 0.5 and 0.05
with the exact solution. Try to get your output looking like this:

time dt = 0.5 dt = 0.05 exact

0 1000.00 1000.00 1000.00
0.50 1400.00 1480.24 1491.82
1.00 1960.00 2191.12 2225.54
...
5.00 28925.47 50504.95 54598.15

14.6 The basic equation for modeling radio-active decay is

dx/dt = −rx,

where x is the amount of the radio-active substance at time t , and r is
the decay rate.
Some radio-active substances decay into other radio-active substances,
which in turn also decay. For example, Strontium 92 (r1 = 0.256 per hr)
decays into Yttrium 92 (r2 = 0.127 per hr), which in turn decays into
Zirconium. Write down a pair of differential equations for Strontium
and Yttrium to describe what is happening.
Starting at t = 0 with 5 × 1026 atoms of Strontium 92 and none of Yt-
trium, use the Runge-Kutta method (ode23) to solve the equations up
to t = 8 hours in steps of 1/3 hr. Also use Euler’s method for the same
problem, and compare your results.

14.7 The springbok (a species of small buck, not rugby players!) population
x(t) in the Kruger National Park in South Africa may be modeled by the
equation

dx/dt = (r − bx sinat)x,

Exercises 327

FIGURE 14.10
A trajectory of Van der Pol’s equation.

where r , b, and a are constants. Write a program which reads values for
r , b, and a, and initial values for x and t , and which uses Euler’s method
to compute the impala population at monthly intervals over a period
of two years.

14.8 The luminous efficiency (ratio of the energy in the visible spectrum to
the total energy) of a black body radiator may be expressed as a per-
centage by the formula

E = 64.77T −4
∫ 7×10−5

4×10−5
x−5(e1.432/T x − 1)−1dx,

where T is the absolute temperature in degrees Kelvin, x is the wave-
length in cm, and the range of integration is over the visible spectrum.
Write a general function simp(fn, a, b, h) to implement Simpson’s
rule as given in Equation (14.4).
Taking T = 3500 K, use simp to compute E, firstly with 10 intervals
(n = 5), and then with 20 intervals (n = 10), and compare your results.
(Answers: 14.512725% for n = 5; 14.512667% for n = 10)

14.9 Van der Pol’s equation is a second-order non-linear differential equa-
tion which may be expressed as two first-order equations as follows:

dx1/dt = x2

dx2/dt = ε(1 − x2
1)x2 − b2x1.

The solution of this system has a stable limit cycle, which means that if
you plot the phase trajectory of the solution (the plot of x1 against x2)
starting at any point in the positive x1-x2 plane, it always moves con-
tinuously into the same closed loop. Use ode23 to solve this system

328 CHAPTER 14: Introduction to Numerical Methods

numerically, for x1(0) = 0, and x2(0) = 1. Draw some phase trajectories
for b = 1 and ε ranging between 0.01 and 1.0. Fig. 14.10 shows you
what to expect.

