Prueba 2

1. **(9 puntos)**

Se considera \mathbb{R}^3 con el producto interno usual (el producto escalar). Sea W = [(1, 1, 1)].

- a) Hallar bases ortonormales de W y de W^{\perp} .
- b) Hallar explícitamente las proyecciones ortogonales sobre W y W^{\perp} .

2. (8 puntos)

Se considera la matriz $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{C}).$

- a) Probar que existen una matriz unitaria Q y una matriz diagonal D tales que $A = QDQ^*$.
- b) Encontrar matrices Q y D que verifiquen la parte anterior.
- c) Hallar escalares $\lambda_1, \lambda_2 \in \mathbb{C}$ y matrices $P_1, P_2 \in M_2(\mathbb{C})$ tales que

$$A = \lambda_1 P_1 + \lambda_2 P_2, \quad P_1 + P_2 = I, \quad P_1 P_2 = P_2 P_1 = 0, \quad P_1^* = P_1^2 = P_1, \quad P_2^* = P_2^2 = P_2.$$

3. (**8 puntos**)

Sea V un espacio vectorial de dimensión finita con producto interno y T un operador en V.

- a) Probar $(\operatorname{Im} T^*)^{\perp} = \operatorname{Ker} T$. Deducir $\operatorname{Im} T^* = (\operatorname{Ker} T)^{\perp}$.
- b) Si T es normal, probar $\ker T = \ker T^*$ y $\operatorname{Im} T = \operatorname{Im} T^*$.
- c) Probar que si T es una proyección ($T^2 = T$) y T es normal, entonces T es autoadjunta (es decir, T es una proyección ortogonal).

Solución.

- 1. a) El conjunto $\left\{\frac{1}{\sqrt{3}}(1,1,1)\right\}$ es una base ortonormal de W. $W^{\perp}=\{(x,y,z): x+y+z=0\}$, luego $W^{\perp}=[(1,0,-1),\,(0,1,0)]$. Aplicando Gram-Schmidt en esa base de W^{\perp} obtenemos que que $\left\{\frac{1}{\sqrt{2}}(0,1,-1),\,\frac{1}{\sqrt{6}}(-2,1,1)\right\}$ es una base ortonormal de W^{\perp} .
 - b) $P_W(x,y,z) = \left\langle (x,y,z), \frac{1}{\sqrt{3}}(1,1,1) \right\rangle \frac{1}{\sqrt{3}}(1,1,1) = \frac{1}{3}(x+y+z)(1,1,1)$. Luego de $P_{W^{\perp}} = \operatorname{Id} P_W$ deducimos $P_{W^{\perp}}(x,y,z) = \frac{1}{3}(2x-y-z,2y-x-z,2z-x-y)$.
- 2. Se considera la matriz $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{C})$.
 - a) La matriz A es unitaria, luego es normal y por lo tanto es unitariamente equivalente a una matriz diagonal.
 - b) $D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ y $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix}$.
 - c) Es $A = iP_i iP_{-i}$, siendo

$$P_{i} = \frac{1}{2i} \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}; \quad P_{-i} = \frac{-1}{2i} \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}.$$

 $3. \quad a)$

 $v \in (\operatorname{Im} T^*)^{\perp} \iff \langle v, T^*(u) \rangle = 0, \ \forall u \in V \iff \langle T(v), u \rangle = 0, \ \forall u \in V \iff T(v) = 0 \iff v \in \operatorname{Ker} T.$

Luego $(\operatorname{Im} T^*)^{\perp} = \operatorname{Ker} T$. Entonces

$$(\operatorname{Im} T^*)^{\perp} = \operatorname{Ker} T \ \Rightarrow \ (\operatorname{Im} T^*)^{\perp \perp} = (\operatorname{Ker} T)^{\perp} \ \Rightarrow \ \operatorname{Im} T^* = (\operatorname{Ker} T)^{\perp}.$$

b) Como T es normal, vale $||T(v)|| = ||T^*(v)||$, para todo $v \in V$, luego

$$v \in \operatorname{Ker} T \Leftrightarrow T(v) = 0 \Leftrightarrow 0 = ||T(v)|| = ||T^*(v)|| \Leftrightarrow T^*(v) = 0 \Leftrightarrow v \in \operatorname{Ker} T^*.$$

Esto prueba Ker $T = \operatorname{Ker} T^*$. Por la parte anterior es $\operatorname{Im} T^* = (\operatorname{Ker} T)^{\perp}$, luego $\operatorname{Im} T = (\operatorname{Ker} T^*)^{\perp}$ (usando $T^{**} = T$) y por lo tanto $\operatorname{Im} T = (\operatorname{Ker} T^*)^{\perp} = (\operatorname{Ker} T)^{\perp} = \operatorname{Im} T^*$.

c) Si T es una proyección, entonces vale $V = \operatorname{Im}(T) \oplus \operatorname{Ker}(T)$ y T es la proyección sobre $\operatorname{Im}(T)$ asociada a esta descomposición. Como T es normal, entonces $\operatorname{Ker}(T) = \operatorname{Ker} T^* = \operatorname{Im}(T)^{\perp}$, luego T es la proyección sobre $\operatorname{Im}(T)$ asociada a $V = \operatorname{Im}(T) \oplus \operatorname{Im}(T)^{\perp}$ y por lo tanto es una proyección ortogonal.

Otra forma de probarlo es observar que al ser T una proyección, entonces sus valores propios solo pueden ser 0 y 1. Luego T es un operador normal (complejo) con valores propios reales, y esto implica que es autoadjunto.