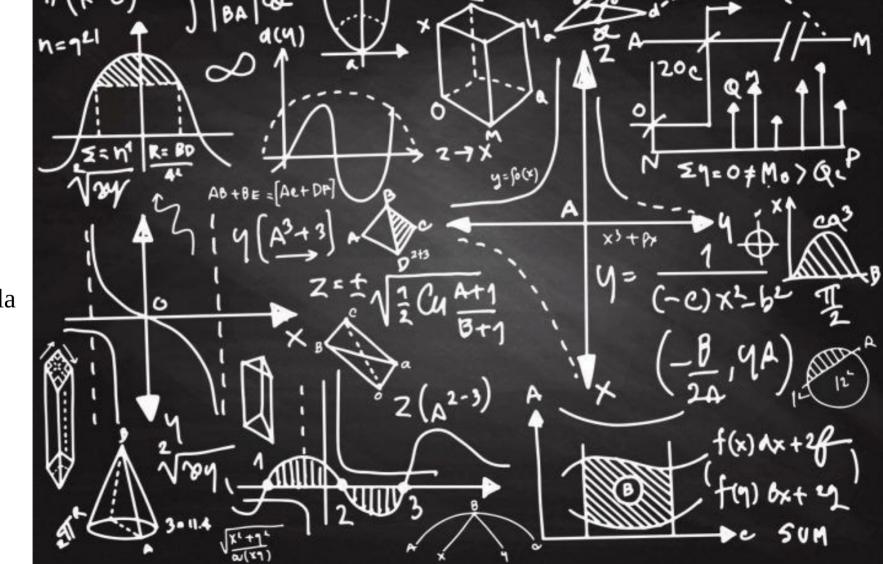
Cantidades Físicas:

Análisis Dimensional, Vectores y Escalares

Curso: Introducción a la Meteorología 2020

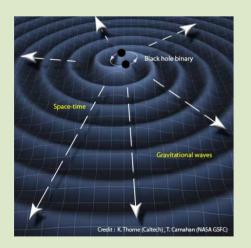
Profesor: Nicolás Díaz Negrín

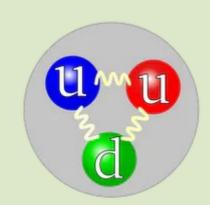


¿Qué es Física y por qué la estudiamos?

10) (1/=1) - #2 DY(F, E) + V(F, E) Y(F, E) n= Asin (wet + 27) = Aros (w.1)

Es el estudio de las interacciones fundamentales entre dos (o más) objetos, y su efecto sobre estos

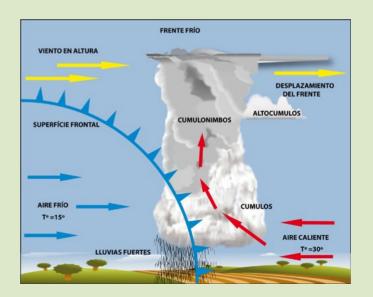




En este curso vamos a estudiar:

Mecánica

Termodinámica

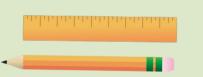


Cantidades Estándar: longitud, masa y tiempo

12 DU(F, F) + V(F, E) U(F, E)

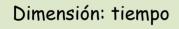
iempo $w_{0} = \left(\frac{1}{\Pi}\right)^{k} \quad w_{0} = A \sin \left(\frac{1}{2}\right)^{k} \quad E = \frac{1}{(\lambda - v^{2}/c^{2})^{2}} \quad E = \frac{1}{2} \left(\frac{1}{\lambda - v^{2}/c^{2}}\right)^{k} \quad E = \frac{1}{2} \left(\frac{1}{\lambda - v^{2}/c^{2}}\right)^{2} \quad E = \left(\frac{1}{\lambda - v^{2}/c^{$

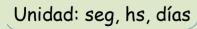
Distinción entre dimensión y unidad de una cantidad física:



Dimensión: longitud

Unidad: cm, in, mi





Dimensión: masa

Unidad: kg, libra, onza

Unidades del Sistema Internacional (SI)

Tiempo: 1.0seg Tiempo de 9.192.631.779 oscilaciones de la radiación emitida por un isótopo de Cesio (reloj atómico)

Longitud: 1.0m — Distancia recorrida por la luz en el vacío en 1/299792458 seg

Masa: 1.0kg Se mide a partir de la constante de planck:

1kg = (h/6.62607015×10⁻³⁴)m⁻²s

Sea X una variable física cualquiera, su dimensión nos da la naturaleza de la cantidad. La denotamos como [X]

Ej: [distancia] = L [masa] = M [tiempo] = T

La dimensión de cualquier variable física en mecánica, puede escribirse únicamente usando L, M y T Ej1: Área y volúmen

 $[A] = L^2, [V] = L^3$

Ej2: Velocidad y Aceleración

[v] = [distancia]/[tiempo] = L/T [a] = [distancia]/[tiempo]² = L/T²

Ej3: Energía (Cinética), Ec=mv²/2

 $[Ec] = [m][v^2] = ML^2/T^2$

Análisis Dimensional: utilidad

$$w_{0} = \left(\frac{E}{\Pi}\right)^{\frac{1}{2}} v_{0} = A \sin \theta$$

$$E = \frac{1}{(A-v)^{2}/c^{2}} V_{0}$$

$$R = A \sin \left(wet + \frac{1}{2}\pi\right) = A \cos \left(w.t\right)$$

$$E = p^{2}c^{2} + M^{2}c^{2}$$

$$E = \left(p^{2}c^{2} + M^{2}c^{2}\right)$$

Chequear ecuaciones dimensionalmente

Ej1:
$$x=at^2/2$$

$$[x] = L, [at^2] = [a][t^2] = (L/T^2)T^2 = L$$

 $[x] = [at^2]$

Ej2: Los argumentos de las funciones elementales son adimensionados (exp, log, sen, cos, tan)

$$P(z) = \exp(-\alpha z)$$
 $[\alpha z] = 1 \rightarrow [\alpha] = \frac{1}{[z]} = \frac{1}{L}$

Encontrar relaciones dimensionalmente

Ej: Hago un experimento, donde mido el período de un péndulo. Sospecho que el mismo depende del largo del péndulo, la aceleración de la gravedad y la masa.

$$P=l^{\alpha}m^{\beta}g^{\gamma}$$

$$[P] = [l^{\alpha} m^{\beta} g^{\gamma}]$$

$$T^{1} = L^{\alpha} M^{\beta} \left(\frac{L}{T^{2}} \right)^{\gamma} = L^{\alpha + \gamma} M^{\beta} T^{-2\gamma}$$

$$\beta = 0, -2 \gamma = 1, \alpha + \gamma = 0$$

Cantidades Escalares y Vectoriales

n= Asin (wet + 4π) = Aros (w.t)

E= ω((1-v)/c) / Ε= μ(+ 4π)

E= ρ(+ 4π)

E= ρ(

Escalares: pueden ser escritos mediante un único número.

Ej: masa, tiempo, distancia, volumen, área, energía, temperatura, etc...

Operan según la aritmética usual:

A, B y C son escalares: A+B, AB, A/B, (A/B)C $A^2A^3=A^{2+3}=A^5$ Vectoriales: requieren de un número y una dirección y sentido, o equivalentemente 3 números (coordenadas de un vector)

Ej: velocidad, aceleración, fuerza, momento lineal, momento angular, etc..



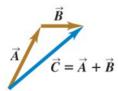
¿Cómo Operamos con Vectores?

Vectores?

$$\psi_{o} = \left(\frac{E}{\Gamma}\right)^{k} \quad \text{i. = } A \sin \theta \quad E = \frac{\pi i c}{(\lambda - v^{2}/c^{2})^{1/2}} \quad E = \frac{\pi i c}{(\lambda - v^{2}/c^{2}$$

Suma:

a) Podemos sumar dos vectores colocándolos punta con cola.

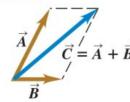


b) Al sumarlos a la inversa se obtiene el mismo resultado.

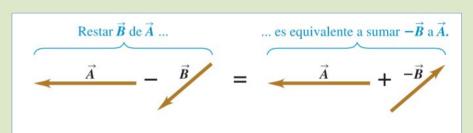
$$\vec{C} = \vec{B} + \vec{A}$$

$$\vec{B}$$

c) Podemos también sumarlos construyendo un paralelogramo.



Resta:



$$\overrightarrow{A} + (-\overrightarrow{B}) = \overrightarrow{A} - \overrightarrow{B}$$

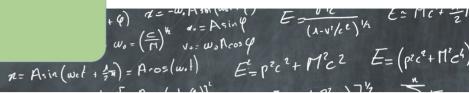
$$= \overrightarrow{A} + (-\overrightarrow{B}) = \overrightarrow{A} - \overrightarrow{B}$$

$$= \overrightarrow{A} + (-\overrightarrow{B}) = \overrightarrow{A} - \overrightarrow{B}$$

$$= \overrightarrow{A} - \overrightarrow{B} = \overrightarrow{A} - \overrightarrow{B} = \overrightarrow{A} - \overrightarrow{B}$$

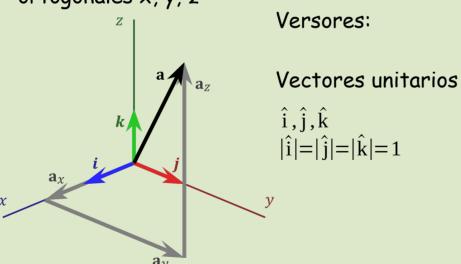
$$= \overrightarrow{A} - \overrightarrow{B} = \overrightarrow{A} - \overrightarrow{A} - \overrightarrow{A} - \overrightarrow{B} = \overrightarrow{A} - \overrightarrow{A$$

Descomposición de un Vector

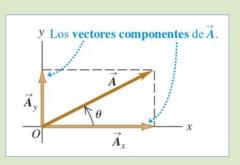


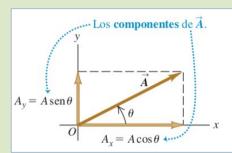
Sistema de coordenadas Cartesiano:

Orígen, y direcciones vectoriales mutuamente ortogonales x, y, z



Descomposición en 2D:







$$\cos(\theta) = \frac{\text{Cady}}{\text{hyp}}$$

$$\cos(\theta) = \frac{\text{Cop}}{\text{hyp}}$$

Descomposición de un Vector

$$w_{0} = \left(\frac{E}{\Pi}\right)^{\frac{1}{2}} v_{0} = A \sin \theta$$

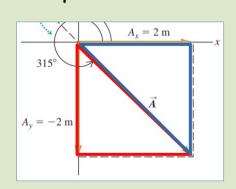
$$E = \frac{1}{(1 - v^{2}/c^{2})} v_{0}$$

$$w_{0} = \left(\frac{E}{\Pi}\right)^{\frac{1}{2}} v_{0} = A \cos (\omega \cdot 1)$$

$$E = p^{2}c^{2} + M^{2}c^{2}$$

$$E = \left(p^{2}c^{2} + M^{2}c^{2}\right)$$

Vector resultante a partir de sus componentes:



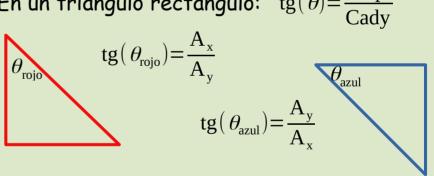
Opción A: método geométrico

Opción B: Pitágoras + trigonometría

Como Ax, Ay y A conforman un triángulo rectángulo: $A = \sqrt{A_x^2 + A_y^2}$

¿Cómo calculamos el ángulo?

En un triángulo rectángulo: $tg(\theta) = \frac{Cop}{Cady}$

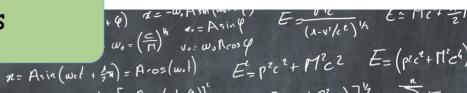


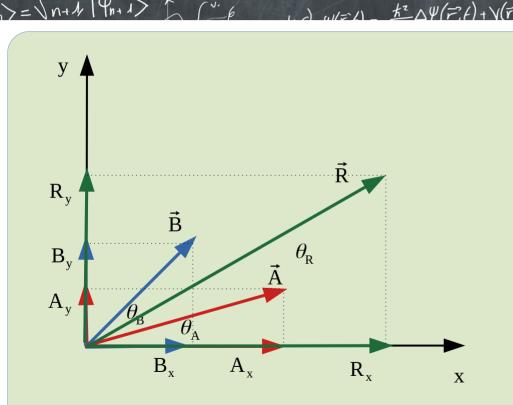
Las dos son correctas, pero iojol:

Rojo: $\theta'_{\text{rojo}} = 270 + \theta_{\text{rojo}}$

Azul: $\theta'_{azul} = -\theta_{azul}$

Ejemplo de Descomposición de Vectores





Queremos encontrar el vector resultante

$$\vec{R} = \vec{A} + \vec{B}$$

Descomponemos cada uno de los vectores:

$$\vec{A} = (A\cos(\theta_A), A\sin(\theta_A)) = A\cos(\theta_A)\hat{i} + A\sin(\theta_A)\hat{j}$$

$$\vec{B} = (B\cos(\theta_B), B\sin(\theta_B)) = B\cos(\theta_B)\hat{i} + B\sin(\theta_B)\hat{j}$$

• Sumamos componente a componente:

$$\begin{cases} R_x = A\cos(\theta_A) + B\cos(\theta_B) \\ R_y = A\sin(\theta_A) + B\sin(\theta_B) \end{cases}$$

• Expresamos el vector \vec{R}

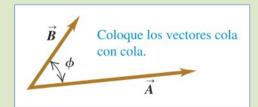
$$\vec{R} = R_x \hat{i} + R_y \hat{j}$$
 $R = \sqrt{R_x^2 + R_y^2}$ $tg(\theta_R) = R_y / R_x$

Producto Escalar y Vectorial

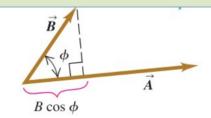
$$w_{o} = \left(\frac{c}{\Pi}\right)^{k} \quad w_{o} = A \sin \theta \qquad E = \frac{1}{(\lambda - v'/c^{2})^{k}} \qquad E^{2} \prod_{i=1}^{n} \frac{1}{(\lambda - v'/c^{2}$$

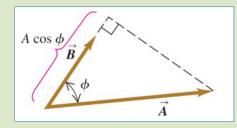
Producto escalar entre vectores: da como resultado un escalar

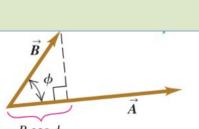
 \vec{A} , \vec{B} , definimos \vec{A} . $\vec{B} = A B \cos(\phi)$

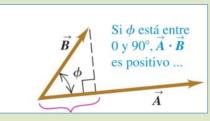


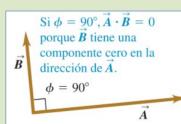
>= \n+1/9n+1> 1 (v. 6

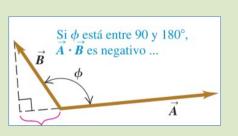












1. Si $\phi = 0$, $\vec{A} \cdot \vec{B} = AB$ Casos particulares:

2. Si $\phi = \text{pi}/2$, $\vec{A} \cdot \vec{B} = 0$

3. Si $\phi = pi$, $\vec{A} \cdot \vec{B} = -AB$

Descomposición y Producto Escalar

n= Asin (wet + 1/2) = Aros (w.t)

Producto escalar entre vectores:

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
 Opción A: calcular módulo
$$\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$$
 de cada vector (Pitágoras) y usar ángulo entre los

Opción B: usar $(B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$ descomposición en sistema de coordenadas cartesiano, y producto escalar entre versores.

$$\hat{i}.\hat{i} = \hat{j}.\hat{j} = \hat{k}.\hat{k} = 1$$

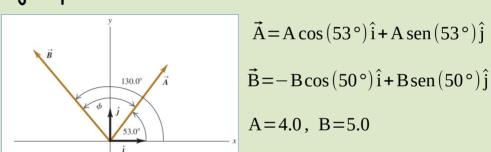
 $\hat{i}.\hat{j} = \hat{i}.\hat{k} = \hat{j}.\hat{k} = 0$

vectores $\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}).$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Ejemplo:

12 DU(F, E) + V(F, E) Y(F, E)



$$\vec{A} \cdot \vec{B} = -AB\cos(53^\circ)\cos(50^\circ) + AB\sin(53^\circ)\sin(50^\circ)$$

 $\vec{A} \cdot \vec{B} = 20(-\cos(53^\circ)\cos(50^\circ) + \sin(53^\circ)\sin(50^\circ)) =$
 $= 20(-0.387 + 0.612) \approx 4.5$

Ejercicio: Repetir el cálculo usando opción A

Producto Escalar y Vectorial

$$w_{0} = \left(\frac{E}{\Pi}\right)^{\frac{1}{2}} v_{0} = A \sin \theta$$

$$E = \frac{1}{(A-v^{2}/c^{2})}^{\frac{1}{2}} A \quad E = P(c^{2} + \frac{1}{2})^{\frac{1}{2}}$$

$$w_{0} = \left(\frac{E}{\Pi}\right)^{\frac{1}{2}} v_{0} = A \cos (\omega \cdot 1) \quad E^{2} = p^{2}c^{2} + M^{2}c^{2} \quad E = \left(p^{2}c^{2} + M^{2}c^{2}\right)^{\frac{1}{2}}$$

$$R = A \sin \left(\omega \cdot t + \frac{1}{2}\pi\right) = A \cos \left(\omega \cdot t\right) \quad E^{2} = p^{2}c^{2} + M^{2}c^{2} \quad E = \left(p^{2}c^{2} + M^{2}c^{2}\right)^{\frac{1}{2}}$$

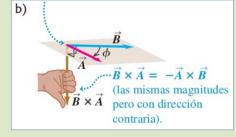
Producto vectorial entre vectores: da como resultado un vector

 \vec{A} , \vec{B} , definimos $\vec{C} = \vec{A} \times \vec{B}$

$$|\vec{C}| = |\vec{A} \times \vec{B}| = A B \operatorname{sen}(\phi)$$

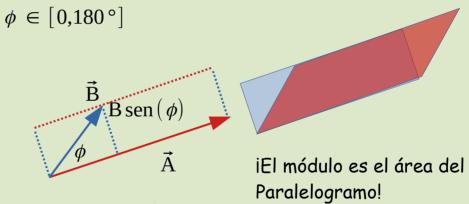
 \vec{C} es siempre perpendicular al plano formado por

 \vec{A} y \vec{B}



a) $\vec{A} \times \vec{B}$ es perpendicular al plano que contiene los vectores $\vec{A} \times \vec{B}$. Esta dirección se determina mediante la regla de la mano derecha.

Interpretación geométrica del módulo



Casos particulares:

1. Si
$$\phi = 0$$
, $|\vec{C}| = 0$
2. Si $\phi = 180$, $|\vec{C}| = 0$

3. Si $\phi = 90$, $|\vec{C}| = AB$

Área máxima (rectándgulo)

No hay área

Descomposición y Producto Vectorial

$$w_{0} = (\frac{E}{\Pi})^{\frac{1}{2}} v_{0} = A \sin \theta \qquad E = \frac{1}{(A - v^{2}/c^{2})^{\frac{1}{2}}} E = \frac{1}{(A - v^{2}/c^{2$$

$$\begin{cases}
\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \\
\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}
\end{cases}$$

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

$$\hat{i} \times \hat{j} = \hat{k}, \quad \hat{i} \times \hat{k} = -\hat{j}$$

$$\hat{j} \times \hat{i} = -\hat{k}, \quad \hat{j} \times \hat{k} = \hat{i}$$

>= \n+1/9n+1> 1 (v. 6

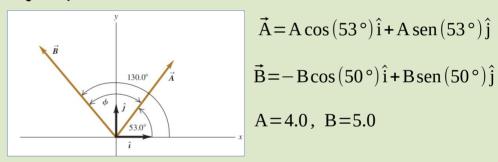
 $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}, \hat{\mathbf{k}} \times \hat{\mathbf{j}} = -\hat{\mathbf{i}}$

$$\vec{A} \times \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \times (B_x \hat{i} + B_y \hat{j} + B_z \hat{k}) = (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j} + (A_x B_y - A_y B_x) \hat{k}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Ejemplo:

12 DY(F, f) + V(F, E) Y(F, E)



$$\begin{split} \vec{A} \, x \, \vec{B} &= (A_x \, \hat{i} + A_y \, \hat{j}) \, x (B_x \, \hat{i} + B_y \, \hat{j}) = \\ &= A_x B_y \, \hat{k} + A_y \, B_x (-\hat{k}) = (A_x B_y - A_y B_x) \, \hat{k} \\ \vec{A} \, x \, \vec{B} &= \big(A \, B \cos(53^\circ) \sin(50^\circ) - A \, B \, \sin(53^\circ) (-\cos(50^\circ)) \big) \, \hat{k} = \\ &= 20 \big(0.461 + 0.513 \big) \, \hat{k} \approx 19.5 \, \hat{k} \end{split}$$

Ejercicio: Repetir el cálculo usando módulo del producto vectorial

Referencias

- $\frac{1}{4} \left(\frac{\partial u}{\partial t} \right) = \frac{1}{4} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial$
- [1] Física Universitaria, vol1, Sears y Zemansky
 - Capítulo 1
- [2] Física para Ciencias y Ingeniería, vol1, Serway y Jewett
 - · Capítulo 1