Prueba 2

En los ejercicios siguientes V es un \Bbbk -espacio con producto interno de dimensión finita.

- 1. (10 puntos) Consideremos \mathbb{R}^4 con el producto interno usual (el producto escalar). Sea W = [(2,1,0,1), (0,1,-2,5)].
 - a) Hallar el complemento ortogonal de W.
 - b) Hallar la proyección ortogonal de v = (1, 1, 1, 1) sobre W.
- 2. (9 puntos) Un operador $T \in \mathcal{L}(V)$ es semipositivo si es autoadjunto y vale $\langle T(v), v \rangle \geq 0$ para todo v.
 - a) Sea $T \in \mathcal{L}(V)$ un operador semipositivo. Probar que si λ es un valor propio de T, entonces $\lambda \geq 0$.
 - b) Probar que si $S \in \mathcal{L}(V)$ es autoadjunto, entonces $S^2 := S \circ S$ es semipositivo.
 - c) Sea $T \in \mathcal{L}(V)$ un operador semipositivo. Probar que existe un operador $S \in \mathcal{L}(V)$ tal que $S^2 = T$. Sugerencia: definir S es una base ortonormal adecuada.
- 3. (6 puntos) Sea $\mathbb{k} = \mathbb{C}$ y $T \in \mathcal{L}(V)$.
 - a) Probar que si T satisface $\langle T(v), v \rangle = 0$ para todo $v \in V$, entonces T = 0. Sugerencia: sustituir v por v + w y luego por v + iw, siendo $v, w \in V$ arbitrarios.
 - b) Probar que T es autoadjunto si y solo si $\langle T(v), v \rangle$ es real, para todo $v \in V$.

Solución.

- 1. Consideremos \mathbb{R}^4 con el producto escalar. Sea W = [(2,1,0,1), (0,1,-2,5)].
 - a) $W^{\perp} = \{(x, y, z, t) \in \mathbb{R}^4 : 2x + y + t = 0 \text{ y } y 2z + 5t = 0\}.$
 - b) Aplicando Gram-Schmidt y normalizando obtenemos que $\left\{\frac{1}{\sqrt{6}}(2,1,0,1), \frac{1}{\sqrt{6}}(1,0,1,-2)\right\}$ es una base ortonormal de W. Luego $P_W(v) = \frac{2}{3}(2,1,0,1)$.
- 2. a) Sea $0 \neq v \in V$ y $\lambda \in \mathbb{k}$ tales que $T(v) = \lambda v$. Entonces

$$0 \le \langle T(v), v \rangle = \langle \lambda v, v \rangle = \lambda \|v\|^2 \quad \Rightarrow \quad \langle T(v), v \rangle \ge 0 \text{ y } \|v\|^2 > 0 \quad \Rightarrow \quad \lambda \ge 0.$$

- b) Usando dos veces que S es autoadjunto obtenemos $\langle S^2(v), v \rangle = \langle S(v), S(v) \rangle = \langle v, S^2(v) \rangle$, $\forall v \in V$. Luego S^2 es autoadjunto. Además $\langle S^2(v), v \rangle = \langle S(v), S(v) \rangle = ||S(v)||^2 \geq 0$, $\forall v \in V$. Luego S^2 es semipositivo.
- c) Como T es autoadjunto entonces existe \mathcal{B} base ortonormal tal que $[T]_{\mathcal{B}} = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, siendo $\lambda_1, \ldots, \lambda_n$ los valores propios de T. Como T es semipositivo, entonces es $\lambda_i \geq 0$, para todo i. Sea $S \in \mathcal{L}(V)$ el operador tal que

$$[S]_{\mathcal{B}} = \operatorname{diag}\left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}\right).$$

Entonces $[S^2]_{\mathcal{B}} = ([S]_{\mathcal{B}})^2 = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = [T]_{\mathcal{B}}$, luego $S^2 = T$.

- 3. Sea $\mathbb{k} = \mathbb{C} \ \mathrm{y} \ T \in \mathcal{L}(V)$.
 - a) Siguiendo la sugerencia obtenemos $\langle T(w), v \rangle + \langle T(v), w \rangle = 0$ y $\langle T(w), v \rangle \langle T(v), w \rangle = 0$, lo cual implica $\langle T(w), v \rangle = \langle T(v), w \rangle = 0$. Como $v, w \in V$ son arbitrarios, $\langle T(v), w \rangle = 0$ para todo w implica T(v) = 0, y como v es arbitrario, concluimos T = 0.
 - b) Si T es autoadjunto, entonces $\langle T(v), v \rangle = \langle v, T(v) \rangle = \overline{\langle T(v), v \rangle}$, luego $\langle T(v), v \rangle$ es real, para todo $v \in V$. Recíprocamente, si $\langle T(v), v \rangle$ es real, para todo $v \in V$, entonces

$$\langle (T - T^*)(v), v \rangle = \langle T(v), v \rangle - \langle T^*(v), v \rangle = \langle T(v), v \rangle - \langle v, T(v) \rangle = \langle T(v), v \rangle - \overline{\langle T(v), v \rangle}$$

$$= \langle T(v), v \rangle - \langle T(v), v \rangle = 0, \quad \forall v \in V.$$

Luego la parte anterior implica $T - T^* = 0$ y por lo tanto $T = T^*$; luego T es autoadjunto.