Universidad de la República Facultad de Ciencias Centro de Matemática

Álgebra Lineal II Segundo semestre 2020

Prueba 3

1. (**8 puntos**)

Se considera la matriz $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix} \in M_3(\mathbb{R})$. Hallar $D \in M_3(\mathbb{R})$ diagonal y $Q \in M_3(\mathbb{R})$ ortogonal tales que $A = QDQ^t$.

2. **(9 puntos)**

Sea φ la forma bilineal asociada a la forma cuadrática $\Phi:\mathbb{R}^3\to\mathbb{R}$ definida por

$$\Phi(x, y, z) = 2x^2 + y^2 - 4xy + 8xz + 6yz, \quad \forall (x, y, z) \in \mathbb{R}^3.$$

- a) Aplicar el algoritmo de diagonalización para encontrar una base \mathcal{B} de \mathbb{R}^3 tal que $M_{\mathcal{B}}(\varphi)$ sea una matriz diagonal.
- b) Clasificar la forma cuadrática Φ , es decir, indicar si es definida o semidefinida (positiva o negativa), no definida, o no degenerada, justificando la respuesta.

3. (**8 puntos**)

Sea V de dimensión finita y $\varphi \in \text{Bil}_S(V)$ no degenerada. Sea Φ la forma cuadrática asociada.

- a) Probar que si $u, v \in V$ son tales que $\varphi(u, w) = \varphi(v, w)$, para todo $w \in V$, entonces u = v.
- b) Sea $\mathcal{B} = \{e_1, \dots, e_n\}$ una base φ -ortogonal de V.
 - 1) Probar $\Phi(e_i) \neq 0$, para todo $i = 1, \dots, n$.
 - 2) Probar $v = \sum_{i=1}^{n} \frac{\varphi(v,e_i)}{\Phi(e_i)} e_i$, para todo $v \in V$.
- c) Probar que si $\alpha \in V^*$, entonces existe un único $w \in V$ tal que $\alpha(v) = \varphi(v, w)$, para todo $v \in V$.

Solución.

1. Es $\chi_A(t) = -(t-1)^2(t-7)$. Operando obenemos $E_7 = [(1,1,1)]$ y $E_1 = \{(x,y,z) \in \mathbb{R}^3 : x+y+z=0\}$. Aplicando Grahm-Schmidt (o a ojo) se obtiene una base ortogonal de E_1 y normalizando obtenemos

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{pmatrix}, \quad Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

- 2. a) Es $\varphi = \beta_A$, con $A = \begin{pmatrix} 2 & -2 & 4 \\ -2 & 1 & 3 \\ 4 & 3 & 9 \end{pmatrix}$. Aplicando el algoritmo obtenemos $D = Q^t A Q$, siendo $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 41 \end{pmatrix}, \ Q = \begin{pmatrix} 1 & 1 & 5 \\ 0 & 1 & 7 \\ 0 & 0 & 1 \end{pmatrix}. \text{ Luego } \mathcal{B} = \{(1,0,0), (1,1,0), (5,7,1)\}.$
 - b) La forma es no definida porque hay entradas diagonales positivas y negativas en D y es no degenerada porque en D no hay entradas diagonales nulas (luego su rango es máximo).
- 3. a) $\varphi(u,w) = \varphi(v,w), \ \forall w \in V \Rightarrow \quad \varphi(u-v,w) = 0, \ \forall w \in V \Rightarrow \quad u-v \in \operatorname{Rad}(\varphi) = \{0\} \Rightarrow \quad u=v$
 - b) Sea $\mathcal{B} = \{e_1, \dots, e_n\}$ una base φ -ortogonal de V.
 - 1) $M_{\mathcal{B}}(\varphi) = \operatorname{diag}(\Phi(e_1), \dots, \Phi(e_n))$. Como φ es no degenerada, entonces rango $(\varphi) = n$, lo cual equivale a $\Phi(e_i) \neq 0$, para todo $i = 1, \dots, n$.
 - 2) $v = \sum_{i=1}^{n} a_i e_i \Rightarrow \varphi(v, e_k) = a_k \Phi(e_k), \ \forall k = 1, \dots, n \Rightarrow a_k = \frac{\varphi(v, e_k)}{\Phi(e_k)}, \ \forall k = 1, \dots n.$
 - c) Sea $\mathcal{B} = \{e_1, \dots, e_n\}$ una base φ -ortogonal de V. Si existe un tal w, entonces $w = \sum_{i=1}^n \frac{\varphi(w, e_i)}{\Phi(e_i)} e_i = \sum_{i=1}^n \frac{\alpha(e_i)}{\Phi(e_i)} e_i$. Luego $w = \sum_{i=1}^n \frac{\alpha(e_i)}{\Phi(e_i)} e_i$, esto prueba la unicidad. Además

$$\varphi(e_k, w) = \varphi\left(e_k, \sum_{i=1}^n \frac{\alpha(e_i)}{\Phi(e_i)} e_i\right) = \sum_{i=1}^n \frac{\alpha(e_i)}{\Phi(e_i)} \varphi(e_k, e_i) = \alpha(e_k), \ \forall k = 1, \dots, n.$$

Luego la linealidad de α y de φ en su primera variable implican $\alpha(v) = \varphi(v, w)$, para todo $v \in V$.