Práctico 9

En los ejercicios que siguen todos los espacios son de dimensión finita.

- 1. Para cada uno de los operadores $T \in \mathcal{L}(V)$ y cada vector $v \in V$, encontrar una base del subespacio T-cíclico generado por v.
 - a) $V = \mathbb{R}_3[x], T(p(x)) = p''(x) \vee v = x^3.$
 - b) $V = M_2(\mathbb{R}), T(X) = X^t \text{ y } v = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$
 - c) $V = M_2(\mathbb{R}), T(X) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} X \ y \ v = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- 2. Sea

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & a_0 \\ 1 & 0 & \dots & 0 & 0 & a_1 \\ 0 & 1 & \dots & 0 & 0 & a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & a_{n-2} \\ 0 & 0 & \dots & 0 & 1 & a_{n-1} \end{pmatrix} \in M_n(\mathbb{k})$$

donde a_0, a_1, \dots, a_{n-1} son escalares arbitrarios. Probar

$$X_A(t) = (-1)^n (t^n - a_{n-1} t^{n-1} - \dots - a_1 t - a_0).$$

Sugerencia: probarlo por inducción en n, desarrollando $\det(A-tI)$ por la primera fila.

3. a) Sea $A \in M_n(\mathbb{k})$ tal que $\chi_A(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_2 t^2 + a_1 t + a_0$. Probar que si A es invertible entonces $a_0 \neq 0$ y

$$A^{-1} = \frac{-1}{a_0} ((-1)^n A^{n-1} + a_{n-1} A^{n-2} + \dots + a_2 A + a_1 I).$$

Sugerencia: aplicar el teorema de Cayley-Hamilton.

b) Probar que si una matriz triangular superior es invertible, entonces su inversa también es triangular superior.

Sugerencia: Notar que si $A, B \in M_n(\mathbb{k})$ son triangulares superiores, entonces AB también lo es.

4. Calcular el polinomio minimal de las siguientes matrices.

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 4 & -14 & 5 \\ 1 & -4 & 2 \\ 1 & -6 & 4 \end{pmatrix}, \quad \begin{pmatrix} 3 & 0 & 1 \\ 2 & 2 & 2 \\ -1 & 0 & 1 \end{pmatrix}.$$

- 5. Calcular el polinomio minimal de los siguientes operadores.
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ donde T(x,y) = (x+y, x-y).
 - b) $T: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ donde T(p(x)) = p'(x) + 2p(x).
 - c) $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ donde $T(X) = X^t$.

Sugerencia: el último caso se puede resolver sin hallar la matriz asociada al operador.

- 6. Determinar cuales de las matrices y operadores de los dos ejercicios anteriores son diagonalizables.
- 7. Probar que si $T \in \mathcal{L}(\mathbb{R}^2)$ es diagonalizable y verifica $T^3 2T^2 + T = 0$, entones T es una proyección.
- 8. Sea $T \in \mathcal{L}(V)$ que verifica $T^3 = T^2$ y $T^4 = T^3 + T^2 T$. ¿Es T diagonalizable?
- 9. Sea $A \in M_n(\mathbb{k})$ una matriz invertible y $m_A(t) = t^k + b_{k-1}t^{k-1} + \cdots + b_1t + b_0$ su polinomio minimal.
 - a) Probar $b_0 \neq 0$.
 - b) Sea p(t) un polinomio de grado r tal que $p(A^{-1}) = 0$ y $p(0) \neq 0$. Probar que r es mayor o igual que el grado de $m_A(t)$. Sugerencia: notar que $A^r p(A^{-1})$ es un polinomio en A.
 - c) Probar que los polinomios minimales de A y de A^{-1} tienen el mismo grado.
 - d) Probar que el polinomio minimal de A^{-1} es $m_{A^{-1}}(t) = \frac{1}{b_0} t^k m_A(1/t)$.
- 10. Sea $T \in \mathcal{L}(V)$ y $W \subset V$ un subespacio T-invariante. Probar que el polinomio minimal de $T|_W$ divide al polinomio minimal de T.
- 11. Sea T un operador en V. Sean W_1 y W_2 subespacios T-invariantes de V tales que $V=W_1\oplus W_2$.
 - a) Sean $\chi_1(t)$ y $\chi_2(t)$ los polinomios característicos de $T|_{W_1}$ y $T|_{W_2}$ respectivamente. Probar que $\chi_1(t) \chi_2(t)$ es el polinomio característico de T.
 - b) Sean $m_1(t)$ y $m_2(t)$ los polinomios minimales de $T|_{W_1}$ y $T|_{W_2}$ respectivamente. Probar que $m_1(t) m_2(t)$ se anula en T.
 - c) Considerando el caso de $T \in \mathcal{L}(\mathbb{R}^3)$ definida por T(x, y, z) = (x + y, y, z), probar que en general **no** es cierto que $m_1(t)$ $m_2(t)$ sea el polinomio minimal de T.

Nota. Se puede probar que el polinomio minimal de T es el mínimo común múltiplo de $m_1(t)$ y $m_2(t)$.

- 12. Sea $A \in M_n(\mathbb{k})$. Probar que la dimensión del subespacio generado por $\{I, A, A^2, \ldots\}$ dentro de $M_n(\mathbb{k})$, coincide con el grado del polinomio minimal de A.
- 13. Sea $A \in M_n(\mathbb{k})$ como en el ejercicio 2. Probar

$$m_A(t) = t^n - a_{n-1} t^{n-1} - \dots - a_1 t - a_0.$$

Sugerencia: observar que si $\mathcal{B} = \{e_1, \dots, e_n\}$ es la base canónica de \mathbb{k}^n , entonces $e_i = A^{i-1}e_1$, para todo $i = 2, \dots, n$.