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I
n December 2019, a new strain of coro-

navirus, severe acute respiratory syn-

drome–coronavirus 2 (SARS-CoV-2), was 

recognized to have emerged in Wuhan, 

China. Along with SARS-CoV and Middle 

East respiratory syndrome–coronavirus 

(MERS-CoV), SARS-CoV-2 is the third coro-

navirus to cause severe respiratory illness 

in humans, called coronavirus disease 2019 

(COVID-19). This was recognized as a pan-

demic by the World Health Organization 

(WHO) in March 2020 and has had consid-

erable global economic and health impacts. 

Although the situation is rapidly evolving, 

severe disease manifested by fever and pneu-

monia, leading to acute respiratory distress 

syndrome (ARDS), has been described in up 

to 20% of COVID-19 cases. This is reminis-

cent of cytokine release syndrome (CRS)–in-

duced ARDS and secondary hemophagocytic 

lymphohistiocytosis (sHLH) observed in pa-

tients with SARS-CoV and MERS-CoV as well 

as in leukemia patients receiving engineered 

T cell therapy. Given this experience, urgently 

needed therapeutics based on suppressing 

CRS, such as tocilizumab, have entered clini-

cal trials to treat COVID-19.

SARS-CoV-2 is a betacoronavirus that 

is most closely related to SARS-CoV. Both 

viruses use the angiotensin-converting en-

zyme–related carboxypeptidase (ACE2) re-

ceptor to gain entry to cells. This receptor is 

widely expressed in cardiopulmonary tissues 

but also in some hematopoietic cells, includ-

ing monocytes and macrophages. A key fea-

ture of COVID-19 infection is lymphopenia 

(low blood lymphocyte count), which corre-

lates with clinical severity (1). SARS-CoV effi-

ciently infects primary human monocytes and 

dendritic cells, whereas MERS-CoV infects 

monocytes and T cells via dipeptidyl pepti-

dase 4 (DPP4) (2, 3). It is possible that SARS-

CoV-2 also infects dendritic cells. T cell apop-

tosis and exhaustion resulting from defective 

activation due to dendritic cell dysfunc-

tion might contribute to the immunopath-

ology of COVID-19 (2, 4). However, lympho-

penia as a biomarker of poor prognosis for 

COVID-19 is not specific because it was also a 

biomarker that correlated with fatality in the 

2009 influenza A (H1N1) pandemic (5).

CRS was found to be the major cause of 

morbidity in patients infected with SARS-

CoV and MERS-CoV (6). Elevated serum 

concentrations of the cytokine interleukin-6 

(IL-6) and other inflammatory cytokines are 

hallmarks of severe MERS-CoV infections (7). 

CRS is common in patients with COVID-19, 

and elevated serum IL-6 correlates with re-

spiratory failure, ARDS, and adverse clinical 

outcomes (8, 9). Elevated serum C-reactive 

protein (CRP), a protein whose expression is 

driven by IL-6, is also a biomarker of severe 

betacoronavirus infection.

Betacoronavirus infection of monocytes, 

macrophages, and dendritic cells results in 

their activation and secretion of IL-6 and 

other inflammatory cytokines. IL-6 has 

prominent proinflammatory properties (see 

the figure). IL-6 can signal through two 

main pathways referred to as classic cis sig-

naling or trans signaling (10). In cis signal-

ing, IL-6 binds to membrane-bound IL-6 

receptor (mIL-6R) in a complex with gp130; 

downstream signal transduction is mediated 

by JAKs (Janus kinases) and STAT3 (signal 

transducer and activator of transcription 

3). Membrane-bound gp130 is ubiquitously 

expressed, whereas mIL-6R expression is re-

stricted largely to immune cells. Activation of 

cis signaling results in pleiotropic effects on 

the acquired immune system (B and T cells) 

as well as the innate immune system [neutro-

phils, macrophages, and natural killer (NK) 

cells], which can contribute to CRS (10).

In trans signaling, high circulating con-

centrations of IL-6 bind to the soluble form 

of IL-6R (sIL-6R), forming a complex with a 

gp130 dimer on potentially all cell surfaces. 

The resultant IL-6–sIL-6R–JAK-STAT3 sig-

naling is then activated in cells that do not ex-

press mIL-6R, such as endothelial cells. This 

results in a systemic “cytokine storm” involv-

ing secretion of vascular endothelial growth 

factor (VEGF), monocyte chemoattractant 

protein–1 (MCP-1), IL-8, and additional IL-

6, as well as reduced E-cadherin expression 

on endothelial cells (11). VEGF and reduced 

E-cadherin expression contribute to vascular 

permeability and leakage, which participate 

in the pathophysiology of hypotension and 

pulmonary dysfunction in ARDS.

sHLH is a hyperinflammatory syndrome 

characterized by CRS, cytopenias (low 

blood cell counts), and multiorgan failure 

(including the liver) (12). In adults, sHLH 

is most commonly triggered by severe viral 

infections but also occurs in leukemia pa-

tients receiving engineered T cell therapy. 

In addition to elevated serum cytokines, 

high concentrations of ferritin are charac-

teristic of sHLH. CD163-expressing macro-

phages are implicated as the source of fer-

ritin given their role in reticuloendothelial 

iron signaling, hence sHLH is alternatively 

known as macrophage activation syndrome. 

A retrospective study of COVID-19 patients 

found that elevated serum ferritin and IL-6 

correlated with nonsurvivors (9).

Patients receiving chimeric antigen recep-

tor (CAR) T cell therapy can also develop 

CRS and sHLH. This therapy involves engi-

neering patient T cells to express CAR mol-

ecules that recognize antigens on tumor cells. 

When transplanted back into the patient, 

these engineered T cells target tumor cells, 

thereby activating immune clearance. Emily 

Whitehead, the first patient to receive CD19-

targeted CAR T cells to treat pediatric B cell 

acute lymphoblastic leukemia in 2012, devel-

oped severe CRS and sHLH, leading to ARDS 

with multiorgan failure and hypotension that 

was refractory to standard treatment with 

steroids (13). Because of greatly elevated se-

rum IL-6 in this patient, she was treated em-

pirically with tocilizumab, an IL-6R antago-

nist approved at the time to treat rheumatic 

conditions such as juvenile idiopathic arthri-

tis. She received a single dose of tocilizumab 

on day 7 after CAR T cell administration, 

with rapid resolution of fever within hours 

followed by weaning from vasopressors 

(which treat hypotension) and from ventila-

tor support as ARDS resolved. Tocilizumab 

is now approved by the U.S. Food and Drug 

Administration (FDA) for the treatment of 

CAR T cell–induced CRS, with confirmed ef-

ficacy and minimal side effects in hundreds 

of patients.

The efficacy of IL-6–IL-6R antagonists 

for the treatment of CRS as well as sHLH 

underscores the central role of IL-6 sig-

naling in the pathophysiology of cytokine-

driven hyperinflammatory syndromes (10). 

Severe COVID-19 cases may benefit from 

IL-6 pathway inhibition given the associ-

ated CRS- and sHLH-like serum cytokine 

elevations. Indeed, preliminary results 

from an open-label study in 21 patients 

with COVID-19 treated with tocilizumab in 

China are encouraging (14). Fever subsided 
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in all patients within the first day of receiv-

ing tocilizumab. Oxygen requirements were 

reduced in 75% of the patients (14).

Controlled clinical trials are under way 

worldwide to test IL-6 and IL-6R antagonists 

for the management of COVID-19 patients 

with severe respiratory complications. One 

issue to resolve is whether there will be dif-

ferential effectiveness between IL-6 antago-

nists and IL-6R antagonists. Relevant to this 

is that IL-6R inhibitors can suppress both 

cis and trans signaling as well as trans pre-

sentation, a recently described third mode of 

signaling. Trans presentation involves IL-6 

binding to mIL-6R expressed on an immune 

cell, which forms a complex with gp130 on T 

helper 17 (TH17) cells, leading to downstream 

T cell signaling that may be involved in ARDS 

(10, 11, 15). However, IL-6 inhibitors can sup-

press only cis and trans signaling. The imme-

diate goal of IL-6 antagonism is to ameliorate 

severe COVID-19 cases so that requirements 

for advanced care are minimized. The long-

term goal should include a focus on the de-

velopment of antivirals and vaccines that 

prevent or ameliorate the infection.

There are a number of caveats to con-

sider, given the global urgency of mitigat-

ing the COVID-19 pandemic. In sepsis-

associated ARDS, corticosteroids are often 

administered. However, corticosteroid use 

in SARS and MERS patients did not im-

prove mortality and resulted in delayed 

viral clearance (6). As a result, the expert 

consensus from infectious disease authori-

ties and the WHO is to avoid systemic corti-

costeroids in COVID-19 patients at present. 

A theoretical possibility is that the suppres-

sion of inflammation by IL-6 antagonism 

might delay viral clearance. However, IL-6 

blockade also results in rapid reduction of 

serum IL-10, an immunosuppressive cyto-

kine secreted by macrophages, which may 

mitigate concerns about prolonging viral 

clearance (11). Moreover, one or two doses 

of an IL-6 antagonist are unlikely to result 

in complications, such as fungal infections 

or osteonecrosis of the jaw, which occur in 

patients dosed monthly on these drugs for 

chronic conditions such as rheumatoid ar-

thritis. It is notable that tocilizumab was 

first approved for rheumatic conditions, 

then for CRS in patients receiving CAR T 

cell therapy, and is now being further re-

purposed for the COVID-19 pandemic. It is 

possible that IL-6 directed therapies will be 

used in future pandemics involving other 

viruses such as influenza and Ebola (5, 11). j
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Pathways leading to cytokine release syndrome
Coronavirus infection results in monocyte, macrophage, and dendritic cell activation. IL-6 release then 

instigates an amplification cascade that results in cis signaling with TH17 differentiation, among other 

lymphocytic changes, and trans signaling in many cell types, such as endothelial cells. The resulting increased 

systemic cytokine production contributes to the pathophysiology of severe COVID-19, including hypotension 

and acute respiratory distress syndrome (ARDS), which might be treated with IL-6 antagonists such as 

tocilizumab, sarilumab, and siltuximab.
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