PRÁCTICO 1

1- Complete las siguientes ecuaciones nucleares, remplazando las X por los símbolos o números correspondientes (Nota: X toma diferentes números y símbolos en cada una de las situaciones):

a)
$${}_{88}^{X}$$
Ra $\rightarrow {}_{X}^{222}X + {}_{X}^{4}X$

b)
$${}^{73}_{X} As + {}^{0}_{-1} e \rightarrow {}^{X}_{32} X$$

- 2- Escriba las ecuaciones correspondientes a cada uno de los siguientes procesos nucleares:
 - a) emisión de un positrón del ¹⁸ F
 - b) emisión de una partícula β por el 35S
 - c) captura electrónica por el ⁷Be
 - d) emisión de radiación γ (gamma) por el ^{99m}Tc.
- 3- Calcule la energía de ligadura por nucleón para el ³⁷Cl.

4- Demuestre que el ²²Na es alfa estable y que es inestable con respecto a la captura electrónica y la emisión de positrones.

Datos: MA
$$^{22}Na = 21.994437$$
 u MA $^{4}He = 4.002603$ u MA $^{22}Ne = 21.991385$ u MA $^{18}F = 18.000937$ u Masa $electrón = 0.000549$ u

- 5- Los isótopos estables del Cromo tienen números de masa iguales a 50, 52, 53 y 54. En función de la relación N/Z, el ⁵¹Cr puede solamente decaer por:
 - a) β^- , pero no por β^+ ni CE b) β^+ , pero no por β^- ni CE c) β^+ o CE, pero no β^-

 - d) $\beta^+ \circ \beta^- \circ CE$
- 6- Un mL que contiene ^{99m}Tc presenta una actividad de 1x10⁸ Bq a las 10 h de hoy. ¿Qué actividad presentará dicha solución luego de 2 horas? Expréselo en Bg y mCi.

Dato:
$$t\frac{1}{2} (^{99m}Tc) = 6 \text{ horas}$$

7- La actividad de un radionucleido se reduce al cabo de 12 h al 25 % de su valor inicial. ¿Cuál es el valor de su período de semidesintegración (t½)?

Curso de Química I, Química General y Química Núcleo

Ejercicios Complementarios

- **8-** El ¹³⁴Cs emite una partícula beta negativa, seguida de 2 rayos gamma. El nucleido resultante generado cumple que:
 - a) A = 134
 - b) es un isótopo del Cs.
 - c) Z= 54
 - d) Z= 57
 - e) ninguna de las anteriores es correcta.
- 9- Para la reacción de combustión del metano:

$$CH_4(g) + O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$
 $\Delta H = -118 \text{ kcal/mol}$

¿Cuantos moles de metano producen la misma energía que 1 mol de ^{14}C en su emisión β^- ?

MA
$$^{14}C$$
 = 14.003242 u MA ^{14}N = 14.003074 u

- **10-** Teniendo en cuenta que el único isótopo estable del *I* es el ¹²⁷*I*.
 - a) Indique los modos de decaimiento más probables del ¹²⁵I.
 - b) ¿Cuáles de los modos de decaimiento hallados en a) son posibles energéticamente para 125/?

MA
$$^{125}I$$
 = 124.904578 u MA ^{125}Te = 124.904418 u MA ^{125}Xe = 124.906620 u

- **11-** El cuerpo humano contiene 18 % de carbono del cual el 1.58 x 10⁻¹⁰ % es ¹⁴C.
 - a) ¿Qué masa de ¹⁴C existe en una persona que pesa 88 kg?
 - b) ¿Cuál es la actividad (en dpm) que produce el 14 C contenido en esa persona? Datos: $t\frac{1}{2}$ $\binom{14}{6}$ = 5568 años, MA 14 C = 14.003242 u
- **12-** ¿Cuántas partículas alfa emite en un segundo 1 miligramo de californio 252 (252 Cf) cuyo $t\frac{1}{2}$ = 2645 años?
- **13-** Una muestra de ^{230}Th de 0.1 mg tiene 4.3 x 10^6 dpm. ¿Cuál es su $t\frac{1}{2}$? El ^{230}Th se produce por decaimiento alfa a partir del ^{234}U . ¿Cuántos Ci de ^{234}U se necesitan para producir 0.1 mg de ^{230}Th ? Dato: $t\frac{1}{2}$ ^{234}U = 2.45 x 10^5 años