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Preface

The first steps in the study of geological structures are largely geometrical. This is true
in the historical development of our knowledge of such structures, in the initial stages of
any field investigation, and in the education of a structural geologist. This concern for
geometry includes the methods of describing and illustrating the form and orientation of
geological structures, and the solution of various dimensional aspects of these structures.

This book attempts to fill a need for an introduction to the geometrical techniques used
in structural geology. I have sought an approach which is basic yet modern. The topics
covered include well-established techniques, newer approaches which hold promise and
an introduction to certain fundamental mechanical concepts and methods. Students who
go no further in structural geology should have a working knowledge of the basic geo-
metrical techniques and at least some appreciation of where the field is headed. Those
who do go on, either in advanced courses or on their own should have the necessary
foundation.

The first few chapters apply the methods of orthographic projection to the solution
of simple structural problems. An introduction or review of these methods is given in
AppendixA.Application to geological and topographical maps are included and extensive
use is made of Mackin’s powerful method of visualization – the down-structure view of
geological maps.

The method of stereographic projection and the stereonet, together with the methods
of plotting and solving angular problems are introduced fairly early. Many of the same
elementary problems as well as some more advanced ones are solved with their uses.

Faults are described and classified. Problems of displacement are solved by combining
orthographic and stereographic methods. The geometry of states of stress in two dimen-
sions is then given in some detail. With this as background the Coulomb criterion of
shear failure is applied to the interpretation of shear and extensional fractures in rocks.

Folds are described and classified in a similar way. In particular, the orientation and
geometry are treated thoroughly. The powerful isogon classification of the shape of a sin-
gle folded layer is treated in some detail. The relationship of these shapes to deformation
and strain is briefly outlined. Parallel and similar folds are the subject of separate chapters.

xv



xvi Preface

The subject has a mathematical side. It is a common observation that geology students,
despite having been exposed to these matters in other courses, do not retain much of
the material. As Vacher (1998, p. 292) put it, “Students leave that information in ‘that
other building’ when they go to their geology classes.” An important part of the problem
is that they do not have much opportunity, especially in introductory courses, to see
how mathematics can be applied to geology. I have sought a variety of ways to address
this deficiency by including a number of applications throughout the book. Most of this
material has been placed in separate modules close to the areas to which they apply. Thus
an instructor or reader can use them, or not, but they can not be easily ignored. With
one exception, the mathematics will be recognized from introductory courses in physics
and calculus. The exception is a brief introduction to matrix algebra, a powerful, natural
language of vectors and tensors.

Even at these early stages it is important to realize that geometry is not the end. The
final goal, however elusive, is a complete understanding of the processes responsible
for the structure in as great detail as possible. This is a branch of applied mechanics
(see Pollard & Fletcher, 2005).While an introductory course is not the place to treat
these matters in any great detail, it most certainly is the place to set the stage for such
a consideration. In particular, it is important to understand the core concepts of stress,
deformation, strain and flow.
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1
Structural planes

1.1 Introduction

Especially in the early stages of an investigation of the geology of an area, much attention
is paid to determining and recording the location and orientation of various structural
elements. Planes are the most common of these. They are also a useful starting point in
the introduction to the geometrical methods of structural geology.

1.2 Definitions

Plane: a flat surface; it has the property that a line joining any two points lies wholly on
its surface. Two intersecting lines define a plane.

Attitude: the general term for the orientation of a plane or line in space, usually related to
geographical coordinates and the horizontal (see Fig. 1.1). Both trend and inclination
are components of attitude.

Trend: the direction of a horizontal line specified by its bearing or azimuth.
Bearing: the horizontal angle measured east or west from true north or south.
Azimuth: the horizontal angle measured clockwise from true north.
Strike: the trend of a horizontal line on an inclined plane. It is marked by the line of

intersection with a horizontal plane.
Structural bearing: the horizontal angle measured from the strike direction to the line

of interest.
Inclination: the vertical angle, usually measured downward, from the horizontal to a

sloping plane or line.
True dip: the inclination of the steepest line on a plane; it is measured perpendicular to

the strike direction.
Apparent dip: the inclination of an oblique line on a plane; it is always less than

true dip.

1



2 Structural planes

S

(a) (b)

S

δ

α

β

Figure 1.1 Strike S, true dip δ (delta), apparent dip α (alpha) and structural bearing β (beta).

1.3 Dip and strike

The terms dip and strike apply to any structural plane and together constitute a statement
of its attitude. The planar structure most frequently encountered is the bedding plane.
Others include cleavage, schistosity, foliation and fractures including joints and faults.
For inclined planes there are special dip and strike map symbols; in general each has
three parts. The only exception is the special case of a horizontal plane which requires a
special symbol.

1. A strike line plotted long enough so that its trend can be accurately measured on the
map.

2. A short dip mark at the midpoint of one side of the strike line to indicate the direction
of downward inclination of the plane.

3. A dip angle written near the dip mark and on the same side of the strike line.

The most common symbols are shown in Fig. 1.2 and their usage is fairly well estab-
lished by convention. However, it is sometimes necessary to use these or other symbols
in special circumstances, so that the exact meaning of all symbols must be explained in
the map legend.

Attitude angles are also often referred to in text, although the usage is considerably
less standard. There are two basic approaches. One involves the trend of the strike of the
plane and the other the trend of the dip direction. Each of the four following forms refers
to exactly the same attitude (for other examples see Fig. 1.3).

1. Strike notation

(a) N 65 W, 25 S: the bearing of the strike direction is 65◦ west of north and the dip
is 25◦ in a southerly direction. For a given strike, there are only two possible dip
directions, one on each side of the strike line, hence it is necessary only to identify
which side by one or two letters. If the strike direction is nearly N-S or E-W then
a single letter is appropriate; if the strike direction is close to the 45◦ directions
(NE or NW) then two letters are preferred (see Fig. 1.3 for examples).

(b) 295, 25 S: the azimuth of the strike direction is 295◦ measured clockwise from
north and the dip is 25◦ in a southerly direction. Usually the trend of the north-
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Dip and strike of strata

Overturned beds

Vertical beds, top to north

Horizontal beds

Dip and strike of foliation

Vertical foliation

Horizontal foliation

Dip and strike of cleavage

Vertical cleavage

Horizontal cleavage

Dip and strike of joints

Vertical joints

Horizontal joints

Alternative symbols
informal symbol with 
bearing added (N 20 W)

7525

60

90

50

65

20

35

Figure 1.2 Map symbols for structural planes.

ernmost end of the strike line is given, but the azimuth of the opposite end of the
line may also be used, as in 115, 25 S.

2. Dip notation

(a) 25, S 25 W: the dip is 25◦ and the trend of the dip direction has a bearing of 25◦
west of south.

(b) 25/205: the dip is 25◦ and the trend of the dip direction has an azimuth of 205◦ mea-
sured clockwise from north. The order of the two angles is sometimes reversed,
as in 205/25. To avoid confusion, dip angles should always be given with two
digits and the trend with three, even if this requires leading zeros.

As these dip and trend angles are written here, the degree symbol is not included and this
isacommonpractice.However, thisisentirelyamatterofindividual preference and taste.

The two forms of the strike notation are the most common, with the difference usually
depending on whether the compass used to make the measurements is divided into
quadrants or a full 360◦ and on personal preference. The advantage of the quadrant
method of presentation is that most people find it easier to grasp a mental image of a
trend more quickly with it.

The forms of the dip notation are more generally reserved for the inclination and trend
of lines rather than planes, although when the line marks the direction of true dip, it may
apply to both. The last method gives the attitude unambiguously without the need for
letters and, therefore, is particularly useful for the computerized treatment of orientation
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40

36

35

15

48

8

28

44

87

32

N 40 E, 36 SE N 35 W, 15 NE N 48 E, 8 NW N 28 W, 44 SW N 87 W, 32 S

SYMBOL

Strike (a)

Strike (b)

Dip (a)

Dip (b)

18

23

N 18 E, 23 E

36/130 15/055 08/318 23/108 44/242 32/183

 40, 36 SE 325, 15 NE 48, 8 NW 332, 44 SW 273, 32 S198, 23 E

36, S 50 E 15, N 55 E 8, N 42 W 23, S 72 E 44, S 62 W 32, S 3 W

Figure 1.3 Examples of the strike and dip notations.

data. For this reason it is becoming increasingly common to see the attitudes of planes
written in this way.

It is essential to learn to read all these shorthand forms with confidence and to this end
we will use them in examples and problems. However, they are not always the best way
of recording attitude data in the field. It is a common mistake to read or record the wrong
cardinal direction, especially for beginners. For example, it is easy to write E when W
was intended for a strike or dip direction.

One way to avoid such errors is to adopt a convention such as the right-hand rule.
There are two versions.

1. Face in the strike direction so that the plane dips to the right and report that trend in
azimuth form.

2. Record the strike of your right index finger when the thumb points down dip (Barnes,
1995, p. 56).

Alternatively, record the attitude by sketching a dip and strike symbol in your field
notebook and adding the measured bearing or azimuth of the strike direction (see the
informal symbol in Fig. 1.2).1 This permits a visual check at the outcrop – stand facing
north and simply see that the structural plane and its symbolic representation are parallel.
Recording attitudes in this way also reduces the chance of error when transferring the
symbols to a base map.

Strike and dip measurements are commonly made with a compass and clinometer.
A variety of instruments are available which combine both functions. In North America,

1It is not necessary to plot this strike line in your notebook using a protractor. With a little practice any trend line can be
sketched with an accuracy of ±5◦ or better. In combination with the labeled strike direction this is sufficient.
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the Brunton compass is widely used. In Europe and elsewhere the Silva Ranger, Chaix
and Freiberg compasses are favored (McClay, 1987, p. 18, 21). The methods of measuring
attitudes in a variety of field situations are given in some detail by Barnes (1995, p. 7–9),
Davis and Reynolds (1996, p. 662–669) and McClay (1987, p. 22–30).

The most direct method is to hold a compass directly against an exposed plane surface
at the outcrop. We illustrate the procedure using the Brunton compass, but the methods
with the other instruments are similar. The Freiberg compass is an exception because the
dip and dip direction are measured in a single operation, and this has some advantages.

1. Strike is measured by placing one edge of the open case against the plane and the
compass rotated until it is horizontal as indicated by the bull’s eye bubble (Fig. 1.4a).
The measured trend in this position is the strike direction.

2. Dip is determined by placing one side of the compass box and lid directly against
the exposed plane perpendicular to the previously measured strike. The clinometer
bubble is leveled and the dip angle read (Fig. 1.4b).

Figure 1.4 Measurements with
a Brunton compass (from
Compton, 1985, p. 37 with
permission of John Wiley): (a)
strike; (b) dip.

(a) (b)

1.4 Accuracy of angle measurements

The goal of making dip and strike measurements is to record an attitude which accurately
represents the structural plane at a particular location. With reasonable care, horizontal
angles may be read on the dial of the compass to the nearest degree, especially if the
needle is equipped with damping. Vertical angles may also be read on the clinometer
scale to the nearest degree, or better if a vernier is used.

There are two reasons why such accuracy does not automatically translate into accu-
rately known attitudes. First, even if the plane is geometrically perfect it is not possible
to place the compass in exactly the correct position when making a measurement. Sec-
ond, the presence of local irregularities means that a result will depend on the precise
placement of the instrument on the exposed surface. In everyday terms, the first is an
error, while the second introduces an uncertainty. In practice, however, it is difficult
or impossible to separate these two effects. Thus error and uncertainty are essentially
synonymous when applied to any scientific measurement (Taylor, 1997, p. 3).

It is, of course, easy to make a mistake when measuring or recording an angle of dip or
strike. Almost everyone has had the unfortunate experience of finding an attitude which
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seems out of place in a notebook or on a map. If the mistake is small it may be difficult
to identify, but then its presence may not make much difference. On the other hand, if
the mistake is large, then some effort should be made to avoid or correct it. There are
statistical methods for identifying outliers and discarding them, but the question always
remains: is the exception real or not? A better approach is to identify them while it is still
possible to correct them in the field. A good way to do this is to plot the attitude symbols
on a sketch map as they are made. Then seemingly anomalous attitudes can be quickly
confirmed or discarded by additional observations.

Because all measurements are subject to such errors or uncertainties there will gen-
erally be a discrepancy between any two angles measured on the same plane. There are
two main types of errors: random and systematic.

The difference between these two may be illustrated with a simple “experiment” con-
sisting of a series of shots fired at a target (Taylor, 1997, p. 95–96). Accurate “measure-
ments” are represented by shots which cluster around the center of the bull’s eye: they
may be tightly clustered (Fig. 1.5a) or not (Fig. 1.5b). An important cause of random
errors is the marksman’s unsteady hand. In either case, if there is a sufficient number of
shots and their distribution is truly random, the mean location of the shots will define the
center of the target with acceptable accuracy.

Systematic errors are caused by any process by which the shots arrive off-center, such
as misaligned sights. As before, the random component may be small (Fig. 1.5c) or large
(Fig. 1.5d). In both cases, the mean will depart significantly from the center of the target.

While the pattern of shots is a good way of illustrating the difference between random
and systematic errors, it is misleading in an important sense. Knowing the location of
the bull’s eye is equivalent to knowing the true value of the measured quantity. In the
real world we do not know this true value; indeed if we did we would not have to make
any measurements. A more realistic illustration would be to examine the pattern without
the target. Then the random errors would be easy to identify but systematic errors would
not be.2

(a) (b) (c) (d)

Figure 1.5 Combinations of small and large random R and systematic S errors (after Taylor, 1997, p. 95):
(a) R small, S small; (b) R small, S large; (c) R small, S large; (d) R large, S large.

2Then there is the Texas Sharpshooter Fallacy: a fabled marksman randomly sprays the side of a barn with bullets and
then paints a circle around a cluster. Epidemiologist call this fallacy to the clustering illusion, the intuition that random
events which occur in clusters are not really random events at all. To such clusters politicians, lawyers and, regrettably,
some scientists assign a causal relationship, such as a link of some environmental factor and a disease, when they are
actually due to the laws of chance (Carroll, 2003, p. 375).
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For horizontal trend angles measured in the field, systematic errors arise if the magnetic
declination is improperly set on the compass or an incorrect angle is used to manually
correct a reading. The compass needle may also be deflected by magnetic materials, such
as magnetite, in the rock or a piece of magnetized iron, such as a rock hammer, near the
compass. A similar effect may be produced by the electromagnetic fields associated with
nearby power lines. The standard approach to controlling systematic errors is the use
equipment which has been tested and calibrated, but this has rather limited application for
the field geologist. With awareness and care, these systematic errors may be minimized.

Random errors of both dip and trend arise from the actual process of making the mea-
surements. Even for a geometrically perfect plane, it is never possible to align the compass
and read the angles exactly. Further, inevitable natural irregularities on the surface of
naturally occuring planes make this process even more difficult. Measuring the attitude
of a stiff field notebook, map case or a small aluminum plate held tightly against the rock
surface helps eliminates the effect of small-scaled features.

There is also a way to reduce the effect of such irregularities. Stand back from the
outcrop several meters and determine the trend of a horizontal line of sight parallel to
the bedding (Fig. 1.6a), and then measure the inclination of the bedding perpendicular to
this line (Fig. 1.6b). Although it takes practice to become proficient, this is probably the
most accurate field method of determining dip and strike at the scale of a single outcrop.

(a) (b)

Bedding plane 
seen as a line

Underside 
of bed

Level line of 
sight to bed

Figure 1.6 Avoiding minor irregularities (Compton, 1985, p. 35 with permission of John Wiley): (a)
sighting a level line; (b) dip measured perpendicular to this line.

Because of such inevitable random errors, there will generally be a discrepancy
between any two measured values of the same angle on the same plane. To evaluate
such random errors, the standard procedure is to make multiple measurements. For dip
angles or any such measured quantities, the simple arithmetic mean x̄ of a series of N
measurements x1, x2, . . . , xN is found from

x̄ = x1 + x2 + · · · + xN

N
= 1

N

N∑
i=1

xi. (1.1)
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This mean is almost always the best estimate of the true value (Taylor, 1997,
p. 10, 98, 137). That is,

xbest = x̄.

The discrepancies di associated with a set of measurements xi are then

di = xi − x̄, (i = 1 to N).

These are positive or negative, depending on whether the value of xi is greater or less
than x̄.

These discrepancies give a valuable indication of the uncertainty associated with the
measurements (Taylor, 1997, p. 10). The measure of this uncertainty is most simply
approximated as the magnitude of the largest discrepancy:

�x = |di |large.

The positive number �x is termed the uncertainty, or error, or margin of error. Then
the result of any measurement is expressed in the standard form as

(measured value of x) = xbest ± �x.

This means that we can be confident that the correct value probably lies between xbest −
�x and xbest + �x, though it is possible that it lies slightly outside this range, absent
systematic errors, as we have been assuming.

While dip angles can be treated directly in this way, horizontal trend angles in gen-
eral and strike angles in particular present special problems and a different method for
calculating their mean direction must be used (see §7.4).

Rondeel and Storbeck (1978) performed a series of experiments to evaluate the magni-
tudes of the dip uncertainties. Multiple measurements were made on a 10×10 cm single,
slightly irregular bedding plane surface which was rotated into different inclinations
ranging from 5◦ to 88◦. For moderate to steep inclinations, they found that 90% of the
angles were within 2◦ of the mean. For bedding planes with greater irregularities, Cruden
and Charlesworth (1976) found that the uncertainties were also greater, and ranged up to
about 10◦. For more formal purposes, the sample standard deviation is used to express
the uncertainty and is defined as

σx =
√√√√ 1

N − 1

N∑
i=1

(di)2 =
√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2. (1.2)
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For large N the denominator N −1 can be replaced with N (Taylor, 1997, p. 97–101), and
this equation then becomes the statement of the root mean square (commonly abbreviated
RMS) of the deviations.3

In most general field-mapping projects, we probably can accept carefully made single
measurements recorded to the nearest degree because the uncertainties are probably
modest. However, if these attitude measurements are to be used for special purposes,
greater care and possibly other methods may be required.

There are certain situations where the uncertainty may be much greater. The case of a
gently dipping plane poses special problems.

If the dimension of the outcrop is sufficiently large, the inclination of a smooth plane as
small as one degree, then both the dip and the dip direction can be visually identified and
estimated. However, if the plane is irregular it is possible that one or more measurements
might yield a result such that �x > x, implying that the dip may be in the opposite of
the observed direction, which would be a huge error.

Further, in the measurement of the strike direction on such a gently dipping plane, even
a slightly incorrect placement of the compass may result in a large error. By definition, the
strike is the trend of a horizontal line on an inclined plane. If the compass is not exactly
horizontal then a direction other than the true strike will be recorded. The geometry of this
situation is shown in Fig. 1.7a where a maximum operator error εo, the largest angular
departure from horizontal, goes uncorrected. The result is that a trend OS′ rather than
the true strike OS is recorded. The angle between these two directions is the maximum
strike error εs and its magnitude as a function of the dip angle δ may be evaluated. The
three right-triangles in this figure yield the trigonometric relationships

w = d/ tan δ, l = d/ tan εo, sin εs = w/l.

Substituting the first two into the third gives4

sin εs = tan εo

tan δ
. (1.3)

This result, first obtained by Müller (1933, p. 232; see also Woodcock, 1976), is solved
for values of εs and the results displayed graphically for εo = 1–5◦ in Fig. 1.7b. It is
important to note that for very small dip angles, the maximum possible strike error is
large and approaches 90◦ as δ → 0.

3For large N , dividing by N − 1 or N makes almost no difference. The advantage of using N − 1 is that it gives a larger
estimate of the uncertainty, and especially for measurements made in the field environment this is a good thing.

4As we will see later, this equation is just a specialized version of a more general description of the relationship between
dip δ, apparent dip α and structural bearing β (compare Eq. 1.7).
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Figure 1.7 Maximum strike error: (a) geometry; (b) εs as a function of dip for values of εo = 1–5◦.
(The inset shows an example εo = 2◦, δ = 5◦, with the result that εs ≈ 24◦.)

1.5 Graphic methods

Indirect methods are also available for determining the various angles and these are the
subject of the remainder of this chapter. All the techniques dealt with here are concerned
with the relationships between the components of the attitude of planes – the angles of
true and apparent dip, and the strike.

Of several possible approaches to solving these problems we choose at the outset an
entirely graphical technique – the method of orthographic projection (see Appendix A).
There are two reasons for this choice. First, with it we may readily and simply obtain
solutions to a wide variety of problems. Second, it allows the various components of the
problems to be visualized in a three-dimensional setting. This visualization is of crucial
importance in developing the ability to solve geometrical problems in geology.

By way of introduction, consider a simple geological situation shown in the two block
diagrams of Fig. 1.8.

Problem

• The trace of an inclined plane is exposed on a flat, horizontal surface. The plane strikes
east-west and dips 36◦ to the north. Construct a vertical section showing the angle of
true dip. What is the depth to this plane at a map distance of w = 100 m measured
perpendicular to the strike line?

Approach

• On the top of the block the trace of the inclined plane is a line of strike (Fig. 1.8a).
The goal is to construct a vertical section showing the angle of true dip δ. To do this
we imagine standing at a point O on the surface trace of the plane and then walking a
distance w = 100 m due north to another surface point A.As we make this traverse, the
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Figure 1.8 Block diagrams: (a) true dip δ; (b) apparent dip α.

vertical distance to the inclined plane steadily increases from zero to a depth d directly
below A. With the dip angle and the traverse length known, we can easily make a scaled
drawing of the top surface of the block showing its proper dimensions. To depict the
vertical side, we imagine turning it upward as if it were hinged along edge OA. This
hinge is called a folding line, abbreviated FL (see §A.2). We can now easily construct
the required view.
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O
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X
δ

(c)

δ

N --
 F

L

δ

Figure 1.9 True dip: (a) map; (b) section with OA as FL; (c) visualization.

Construction

1. On a map view draw an east-west line of strike S and locate point O on it. From
O draw a line in the dip direction to locate point A at a distance of w = 100 m using
a convenient scale (Fig. 1.9a).

2. With OA as a FL draw a line on this now upturned section making angle δ = 36◦ with
the horizontal. This is the required trace of the inclined structural plane (Fig. 1.9b).

3. At surface point A on this section, draw a vertical line downward to intersect the trace
of the inclined plane at point X. Distance AX is the depth d = 73 m to the plane at
this point.

Accuracy is an important part of these constructions (see §A.3 for some general guide-
lines). It is particularly important that lines, such as OA, be long enough so that their
orientations can be measured easily to within one degree. In the previous problem this can
be accomplished by using a scale of 10 mm = 10 m. As a general rule, a single diagram
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should occupy the central part of a letter-size sheet of paper. Beginners commonly make
their constructions too small.5

A very useful aid in this kind of problem is to actually bend the drawing along the fold-
ing line over the edge of a table top (Fig. 1.9c). You can then actually see the relationship
between the map and the vertical section in three dimensions.

Once this three-dimensional visualization can be made with some confidence, we can,
of course, relate the angle δ and the lengths of sides w and d of the vertical right-triangle
OAX with the simple formula

tan δ = d/w. (1.4)

A closely related situation involves depicting the trace of an inclined structural plane
on an oblique vertical section as illustrated in the block diagram of Fig. 1.8b.

Problem

• Depict the same north-dipping structural plane on a vertical section whose trend is
N 60 W. In this direction the apparent dip α = 20◦. What is the depth to the plane
at a horizontal distance of l = 200 m from the strike line measured in this oblique
direction?

Approach

• In similar fashion, the goal now is to construct the vertical section showing the angle of
apparent dip. As before, we imagine starting at a point O on the strike line and walking
in this direction (Fig. 1.8b). As we do this the depth to the plane now increases from
zero to the same depth d at point Y directly below surface point B. With the known
apparent dip angle and the traverse length we draw the vertical section using as the
folding line OB.

Construction

1. Through surface point O on an east-west line of strike S draw a line in the direction
N 60 W and on it locate point B at a distance l = 200 m using a convenient scale
(Fig. 1.10a).

2. With OB as FL draw a line inclined at the angle α = 20◦ (Fig. 1.10b). A vertical line
downward at B then intersects this inclined line at point Y . Distance BY is the depth
d = 73 m to the plane.

5All of the figures here and throughout the book were originally constructed at such a scale, but they have been reduced
to conserve space.
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Figure 1.10 Apparent dip: (a) map; (b) section with OB as FL.

Again, as an aid to visualization we may convert this drawing to a three-dimensional
block diagram by folding the paper over the edge of a table top along the FL. We may
also relate the three elements of the vertical right-triangle OBY with the formula

tan α = d/l. (1.5)

Note that the essential features of these oblique sections remain the same no matter
how the map is oriented. For this reason it is convenient to express the trend of the
apparent dip relative to the strike direction. For this reason we refer to this angle β as
the structural bearing of the line. The length l of the oblique traverse required to arrive
at B can be obtained from the horizontal right-triangle OAB with

sin β = w/l. (1.6)

1.6 Finding apparent dip

In the previous problem, the apparent dip was given. However, this angle can not always
be measured in the field. If inclined planes are to be depicted on such oblique sections
we need a method for finding it.

Problem

• If δ = 36◦ and β = 30◦, what is α?

Approach

• The solution of this problem involves two steps: first draw the true-dip section
(Fig. 1.10a); then draw the apparent-dip section (Fig. 1.10b). As is the general practice
we combine the map and sections on a single diagram. This eliminates the need to
replicate most angles and lengths and this reduces the chance of error.
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Figure 1.11 Apparent dip from true dip and strike.

Construction

1. Through a point O on strike line S1 draw a line in the dip direction (Fig. 1.11). On
this line locate surface point A at an arbitrary but conveniently large distance w.

2. Construct a vertical section with OA as FL1 showing the trace of the inclined plane
at angle δ = 36◦ and thus determining the depth d of point X below A.

3. Through surface point A, draw a second strike line S2.
4. A line from point O making angle β = 30◦ with S1 intersects S2 at surface point B.
5. Construct a second vertical section with OB as FL2 to locate point Y at the same depth

d below B. Then OY represents the trace of the plane and its inclination is the angle
of apparent dip.

Answer

• The angle BOY is α = 20◦.

Beginners are often confused by this jumping back and forth between map and section
on the same drawing. Folding the drawing over the edge of a table top is a powerful aid
in distinguishing the two distinct views. Using different colors for lines on the map and
on the section also helps.

Several additional points should be noted. First, we need never know the actual depth d.
Its scaled length may be transferred directly from sections OA to OB on the drawing with
compass or divider. Second, in all such constructions, the direction of upward folding
is immaterial, though it is usually best to choose it in the direction of the greatest open
space on the drawing in order to avoid interfering lines.

As defined and used here, the angle of apparent dip is unambiguous and with reasonable
care no difficulties should be encountered. There are, however, some situations where
an “apparent” apparent dip may be observed (see §1.12) and this may be confusing. For
this reason some prefer to speak of a dip component rather than an apparent dip, as we
will do in §1.9.
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1.7 Analytical solutions

By combining the two-dimensional views of maps and sections, the methods of ortho-
graphic projection are an invaluable tool in learning to visualize the geometry of structures
in three dimensions.

Analytical solutions also have their place. A word of caution: both the calculator and
computer do exactly what they are told and it is remarkably easy to enter the wrong
number, use the wrong parameter or the wrong formula. The invariable result is the
display of an impressive-looking number which is utterly wrong. Be careful!

The present problem involving α, β and δ may be solved with the aid of a trigonometric
equation (Herold, 1933). From Eq. 1.4 w = d/ tan δ and from Eq. 1.5 l = d/ tan α;
substituting these into Eq. 1.6 and rearranging yields

tan α = tan δ sin β. (1.7)

Obtaining an answer to this type of problem is a procedure called, fondly, plug and chug.
Plugging in the values δ = 36◦ and β = 30◦ gives

tan α = (0.726 54)(0.500 00).

Chugging out these values, your calculator displays

tan α = 0.363 27 or α = 19.694 63.

Now what do we write down? For a proper answer we need two things: a way of identi-
fying the figures which are significant, and then a way of eliminating the non-significant
ones.6

As we have seen in §1.4, there is an inevitable uncertainty associated with any measured
angle; we expressed such an angle together with its uncertainty in the form x ± �x. On
the other hand, if we represent an angle by a single number, as we almost always do,
there is an implied uncertainty. For example, consider the angle δ = 36◦: As written, this
is taken to mean that the angle which best represents δ is probably closer to 36 than to 35
or 37, that is, it lies in the range 36 ± 0.5◦. This in turn means that the uncertainty is at
least 0.5. This number is called the implied absolute uncertainty because it is expressed
in the same units as the measured value.

We need a way of insuring that any calculated number we use takes advantage of
the information content of the original measurement, while at the same time avoids any
suggestion that it is more accurate than is justified. We do this by retaining only the
significant figures and there are several convenient, well-established Rules of Thumb for
accomplishing this.

6Vacher (1998) gives a good treatment of the use and abuse of significant figures.
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1. When numbers are added or subtracted, the result should have the same number of
decimal places as the number with the fewest decimal places.

2. When numbers are multiplied or divided, the result should have the same number of
significant figures as the number with the fewest significant figures.

3. The presence of zeros requires special care. All these numbers have two significant
figures: 20, 2.0, 0.20, 0.020, 0.0020.7 Sometimes there is a question of just how many
significant figures are there – how many are there in 320? A simple way of resolving
this ambiguity is to write 320 = 3.2 × 102 or 320 = 3.20 × 102, depending on what
is intended.

4. Exact numbers are treated as if they have an infinite number of significant figures (2
and π in the expression 2πr are examples).

Next, we need to have a systematic way of eliminating the non-significant figures.
The process of doing this is called rounding off , which is simply a way of estimating or
approximating the value of the final number as accurately as possible. First, we define
the rounding digit as the rightmost significant number. Then the general rules are:

1. If the number just to the right of the rounding digit is less than 5, round down by
dropping all the non-significant figures. The number is now slightly less than the
calculated one.

2. If the number just to the right of the rounding digit is greater than 5, round up by
adding 1 to the rounding digit and then dropping the non-significant figures. The
number is now slightly greater than the calculated one. Note that rounding 9 up gives
10, not 0.

3. If the number just to the right is equal to 5 then there are two cases.
(a) If the numbers following the 5 are all zeros, or there are no numbers, round so

that the rounding digit is even, that is, round up if it is odd and down if it is even.
Zero is treated as even for this purpose. This practice insures that on average we
round up or down half of the time.

(b) If there are any non-zero numbers to the right of the 5 this means that the total
number is greater than 5, so always round up.

In our problem the specified values of β and δ have only two significant figures, so
the answer should also have only two significant figures. Rounding then gives α = 20◦,
which is the same as obtained graphically.

Unfortunately, these conventional rules sometimes gives misleading uncertainties.
This is especially the case when numbers are multiplied or divided. An effort to improve

7We use the International System of Units (SI) throughout the book (for more details see http://physics.nist.gov/cuu/). Its
application here is the rule that a zero should be placed in front of the decimal marker in decimal fractions (for example
2/100 is written as 0.02 not .02). By convention three-digit groups in numbers with more than four digits are separated
by a thin space not a comma. This avoids any confusion with the comma sometimes used as a decimal marker.
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the rounding rules is described by Mulliss and Lee (1998) and Lee et al. (2000).8 A
workable alternative is to simply accept the fact that these rules are, and were always
meant to be, only approximate (Earl, 1988).

An additional complication occurs when numbers are combined: the uncertainties are
propagated to the final answer. An investigation of such errors is a superior way of
evaluating uncertainties, and we return to this important matter in §2.10.

1.8 Cotangent method

There is a useful short-cut method for determining the relationships between α, β and
δ which combines a simple geometrical construction with trigonometric data (Kitson,
1929).

Problem

• If δ = 36◦ and β = 30◦, what is α?

Construction

1. From point O on strike line S1 measure distance cot δ = 1/ tan δ = 1.376 38 in the
true dip direction using a convenient scale and plot point A (Fig. 1.12a).

2. Construct strike line S2 through point A parallel to S1.
3. An oblique line through O making an angle β with S1 intersects S2 at point B.
4. Using the same scale, measure distance OB = cot α.

Answer

• Length OB = cot α = 2.75 and therefore α = arctan(1/2.75) = 20◦.

In problems such as these which involve lengths calculated from angles, the plots and
measurements should generally be accurate to at least two decimal places so that angles
can be determined to the nearest degree. There are, however, some situations where
greater accuracy is desirable.
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Figure 1.12 Cotangent method: (a) apparent dip; (b) structural bearing.

8These two articles can be found at http://www.angelfire.com/oh/cmulliss/index.html.

http://www.angelfire.com/oh/cmulliss/index.html
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In terms of the fully graphical technique with folding lines, the use of the cotangent
function is equivalent to choosing depth d = 1. This short-cut gives a solution more
quickly, while still retaining the visual advantages of the completely graphical approach.
It is especially useful when dealing with small dip angles, which are difficult to construct
accurately at any reasonable scale.

If an apparent dip is known, it is a simple matter to reverse this construction to find
the angle of true dip. A closely related problem involves finding the structural bearing of
a line whose apparent dip angle is specified.

Problem

• If δ = 36◦ and α = 20◦, what is β?

Approach

• To determine the structural bearing of a line we must construct the horizontal right-
triangle OAB of Fig. 1.12a. We may easily find the length of side OB from the angle of
apparent dip. The problem is then reduced to discovering its trend. This may be done
simply with the cotangent method.

Construction

1. On a map draw a strike line S1 and line OA in the direction of true dip (Fig. 1.12b).
2. In this dip direction measure a distance OA = cot δ using a convenient scale. Through

A draw a second strike line S2.
3. We now need a line whose length is equal to cot α using the same scale. It does not

matter where we draw this line, but it is convenient to measure it along the existing
line S1.

4. With point O as center and length cot α as radius, swing an arc to locate point B on
S2. Line OB is then the trend of the line of apparent dip and the angle it makes with
S1 and S2 is β.

Answer

• The structural bearing β = 30◦. Note that two trends satisfy this angle, N 60 W and
N 60 E.

1.9 True dip and strike

In some field situations it may not be possible to measure the true dip and strike directly.
However, if apparent dips in two different directions are known, the attitude of the plane
can be determined.

Problem

• From the two apparent dips 20/296 and 30/046 determine the true dip and strike of
the plane.
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Approach

• Two lines on the plane whose inclinations are the apparent dip angles α1 and α2 intersect
at a point. Three points determine a plane, so two additional points must be found.
A second point is located from a vertical triangle containing one of the apparent dips
using a folding line. A third point, associated with the second apparent dip, could be
found in like manner. However, it is advantageous to locate this third point at the same
elevation as the second. A line joining these points of equal elevation is, by definition,
a line of strike. The true dip is then measured perpendicular to this line.

Construction

1. From a local origin O plot the trends of the two apparent dip directions in map view
(Fig. 1.13).

2. Construct vertical sections in each of these apparent dip directions.

(a) With the first line as FL1 locate B1 at an arbitrary distance l1. Construct the vertical
triangle B1OY1 using α1 and thus determine the depth d to Y1 on the plane below
surface point B1.

(b) With the second line as FL2, construct the vertical triangle B2OY2 using α2. This
time the traverse length l2 is determined by using the same depth d and this locates
surface point B2.

3. Because Y1 and Y2 have identical depths below the common point O they also have
equal elevations. A line through the two corresponding surface points B1 and B2 is
then a line of strike.

4. From O a line perpendicular to the strike and intersecting it at point A establishes
the direction of true dip. At the same depth d below A, point X lies on the horizontal
line Y1Y2. With this true dip direction as FL3 locate X at the same depth d below A.
Angle AOX is the true dip angle.

Answer

• The plane strikes east-west and dips 40◦ north.
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Figure 1.13 True dip and strike from two apparent dips using folding lines.
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This type of problem may be solved even more quickly by the cotangent method.
This is particularly useful in situations where measurements have been made by tape
because they do not have to be converted to degrees (Rich, 1932). For example, if the
map distance l and the vertical distance d are measured then

cot α = l/d,

and this length can be used directly to construct a diagram. This is also a useful way of
handling small dip angles, which are difficult to plot accurately at any reasonable scale.

Problem

• From the two apparent dips 20/296 and 30/046 determine the true dip and strike of
the plane using the cotangent method.

Construction

1. In map view, plot rays from a single point O in each of the two apparent directions
(Fig. 1.14).

2. Locate point B1 at a distance l1 = cot α1 = 2.747 48 and point B2 at a distance
l2 = cot α2 = 1.732 05 along their respective rays using a convenient scale.

3. Line B1B2 represents the strike direction.
4. The perpendicular distance OA to this strike line is cot δ = 1.19 using the same scale.

Answer

• The strike is east-west and the dip δ = arctan(1/1.19) = 40◦ due north.

AB1 B2
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cot α
1 co

t α 2

co
t δ

N

Figure 1.14 Dip and strike from two apparent dips by the cotangent method.

1.10 Dip vectors

An alternative way of representing and manipulating angles of true and apparent dip is
with vectors (Harker, 1884; Hubbert, 1931). Not only does this make use of the well-
established concepts and methods of vector algebra, but it also opens up other possibilities
which we explore in later chapters. Accordingly, we represent the attitude of a inclined
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plane on a map with the true dip vector D. This vector is horizontal and points in the
direction of true dip. Its magnitude or length is equal to the slope of the dip angle:

D = tan δ. (1.8a)

Similarly, we define the magnitude of the apparent dip vector A as

A = tan α. (1.8b)

These vectors, like the conventional dip and strike symbols, are two-dimensional repre-
sentations of lines on an inclined plane.

We may now determine the angle of apparent dip in any direction specified by a unit
vector û from the scalar or dot product of D and û. By definition

A = D · û = Du cos φ (1.9)

where φ is the angle between D and û. Geometrically, the scalar product represents
magnitude of the projection of one vector onto another (Halliday & Resnick, 1978, p. 22).
Because D = tan δ and u = 1, Eq. 1.8 becomes

tan α = tan δ cos φ. (1.10)

Because φ = 90 − β this is equivalent to Eq. 1.6.

Problem

• If δ = 36 and φ = 90◦ − β = 60◦, what is α?

Construction

1. From a point O draw D in the dip direction with scaled length tan δ = 0.726 54
(Fig. 1.15a).

2. Vector û from O with unit length and making an angle of φ with D represents the
direction of A.

3. The projection of D onto û fixes the magnitude of A.

Answer

• A = tan α = 0.36 and therefore α = 20◦. As this construction shows, A is clearly a
component of D.

We can, of course, reverse this construction to determine the magnitude of D and the
angle it makes with û from a known apparent dip vector A (Fig. 1.15b).

A straightforward extension of this construction then allows the true dip vector D to
be found from two apparent dip vectors A1 and A2. The following procedure solves the
problem of Fig. 1.13 or Fig. 1.14.
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Figure 1.15 Dip vectors: (a) A from D; (b) D from A.

Problem

• From apparent dip vectors A1(20/296) and A2(30/046) find the true dip vector D.

Construction

1. In map view draw vectors A1 and A2 radiating from point O with lengths A1 =
tan α1 = 0.363 97 and A2 = tan α2 = 0.577 35 using a convenient scale (Fig. 1.10).

2. Draw perpendiculars from the tips of each of these apparent dip vectors.
3. These projection lines intersect to locate the tip of the dip vector D and its scaled

length is tan δ = 0.84.

Answer

• The dip vector D makes an angle φ1 = 64◦ with A1 and δ = arctan(0.84) = 40◦.

This vector approach also leads to a simple analytical solution. Representing the two
apparent dips by vectors A1 and A2 then

tan α1 = D · û1 and tan α2 = D · û2

where the unit vectors û1 and û2 represent the directions of the known apparent dips.
Labeling the angles which the unknown vector D makes with each of these φ1 and φ2,
then with Eq. 1.9 we have

tan α1 = tan δ cos φ1 and tan α2 = tan δ cos φ2.

Solving each for tan δ and equating the two results gives

tan α1

cos φ1
= tan α2

cos φ2
or tan α2 cos φ1 = tan α1 cos φ2. (1.11)
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Figure 1.16 Vector solution of
true dip and strike.
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Labeling the total angle between û1 and û2 as φ we can express angle φ1 in terms of φ

and φ2. There are two cases.

1. If D lies between A1 and A2 (Fig. 1.17a), then φ = φ1 + φ2 or φ2 = (φ − φ1).
2. If D lies outside A1 and A2 (Fig. 1.17b), then φ = φ1 − φ2 or φ2 = (φ1 − φ).

Using the identity for the cosine of the difference of two angles yields the identical
results:

cos φ2 = cos(φ − φ1) = cos(φ1 − φ) = cos φ cos φ1 + sin φ sin φ1.

Substituting this result, Eq. 1.11 becomes

tan α2 cos φ1 = tan α1(cos φ cos φ1 + sin φ sin φ1).

We solve this for φ1 by expanding, dividing through by cos φ1 and rearranging. The
result is

tan φ1 = tan α2

tan α1 sin φ
− 1

tan φ
. (1.12)

With both φ1 and α1 known, the true dip can be found from (see Eq. 1.10)

tan δ = tan α1

cos φ1
. (1.13)

For Case 1 (Fig. 1.17a), from the previous problem, α1 = 20◦, α2 = 30◦ and φ = 110◦
and we find that φ1 = 64◦ and δ = 40◦.



24 Structural planes

For Case 2 (Fig. 1.17b), α1 = 20◦, α2 = 30◦ and φ = 18◦ and we find that φ1 = 64◦
and δ = 40◦. An ambiguity may arise in this case. By labeling the apparent dip angles
so that α1 < α2 the angle φ1 is always measured from A1 toward A2 and this avoids any
problem.

A1

A2

D

O
(a) (b)

A1

A2

D

O

φ2φ1

φ
φ1

φ2

φ
u1

u2

u1

u2

Figure 1.17 Analytical solution of the problem of true dip and strike: (a) Case 1; (b) Case 2.

1.11 Three-point problem

These methods can also be used to determine the attitude of a plane if the location of
three points on it are known.9 It is convenient to label the highest point O. Then from
the map distances l and elevation difference �h to each of the other points, the apparent
dip in each of these directions is calculated using

tan α = �h/l or α = arctan(�h/l). (1.14)

With both α1 and α2 known, the procedure is then just as before.
In the special case of small elevation differences over large distances, a satisfactory

solution requires that the locations of the three points be very accurately known. This
can be accomplished with modern electronic surveying equipment.10

In these circumstances a graphical solution would require a very large drawing as well
as large drafting tools and this is not practical.

9Additional details of this three-point problem are treated in Chapters 3 and 7.
10The electronic total station is a distance measurement device based on a phase comparison of reflected light from

a semiconducting laser, and an electronic theodolite for measures angles, together with the attendant electronics to
reduce and digitally record the data, as well as compute the coordinate geometry. It has wide application to mapping
(see Philpots, et al., 1997). For a typical instrument, the standard deviation of a length measurement is ±2 mm +
2 parts per million of the measurement length, and the angular measurement has a standard deviation of ±3 seconds
of arc. For a 1 km measurement, the range has a standard deviation of ±4 mm. Angles are less precisely determined:
±24.4 mm in radial distance normal to the measurement direction. For more information see www.leica-geosystems.com
and click on Products.

http://www.leica-geosystems.com
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Table 1.1 Data for the three-point problem

l �h t

P1 983.3 m −24.7 m 23.8◦
P2 1563.6 m −48.3 m 76.4◦

Problem

• Three points are located on a structural plane. From the base point O, map distances
l1 and l2 and elevation differences �h1 and �h2 together with the trends t1 and t2 to
points P1 and P2 are measured using an electronic surveying instrument (see Table 1.1
and Fig. 1.18a). Determine the dip and strike of the plane.

Answer

• From the measured data calculate the magnitudes of the apparent dip vectors in the
directions OP1 and OP2 using Eq. 1.12: tan α1 = 24.7/983.3 = 0.0251 (α1 = 1.4839)
and tan α2 = 48.3/1563.6 = 0.0309 (α2 = 1.8406). The angle between these two
apparent dip vectors φ = t2 − t1 = 52.6◦ (Fig. 1.18b). Using these values in Eq. 1.11
we find φ1 = 40.2255◦. Then Eq. 1.12 gives δ = 1.88◦ (with three significant figures
in the input data, the three figures in this answer are also significant).

500 m

O

A1

A2

O

P1

P2

(a) (b)

1.0 x 10−2

N

l1

l2
φ

Figure 1.18 Three-point problem: (a) map of surveyed points; (b) apparent dip vectors.

1.12 Observed apparent dips

The attitude of a structural plane is based on field observation and there is a case that
requires special care. Suppose that the trace of a dipping plane is exposed on a vertical
plane. With a line of sight perpendicular to this exposure, the observed angle is, in general,
an apparent dip. However, if the line of sight is oblique, either to the right or to the left,
the observed angle is no longer the apparent dip but rather an “apparent” apparent dip.
From Fig. 1.19 we have

h = l tan α, w′ = w sin β, tan α′ = h/w′,
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where α is the apparent dip, w is the outcrop width, h is the outcrop height, h′ is the
apparent height seen in the oblique view, α′ is the observed angle and β is the angle the
line of sight makes with the exposure plane. Substituting the first two relationships into
the third yields

tan α′ = tan α

sin β
. (1.15)

Figure 1.21a is a graph of this equation, where it can be seen that the observed angle α′
is always greater than α and that small angles are distorted relatively more.

A Β

Line of sightA'

ΒA'w

h

w'

h

w

w'

(a) (b) (c)

A Β
α α'β

Figure 1.19 Observed apparent dip: (a) direct view of vertical exposure plane; (b) top view of exposure
and oblique line of sight in the horizontal plane; (c) observed angle of inclination.

Similarly, if the line of sight lies in a vertical plane perpendicular to the exposure but
oblique to the plane of the exposure, the observed angle again is not the apparent dip.
From Fig. 1.20 we have

w = h/ tan α, h′ = h sin γ, tan α′ = h′/w,

where γ is the angle the line of sight makes with the exposure plane and h′ is the apparent
height. Substituting the first two expressions into the third yields

tan α′ = tan α sin γ. (1.16)

Figure 1.21b is a graph of this equation where it can be seen that the observed angle is
always less than α and large angles are distorted relatively more.

A

Line of si
ght

B'
Β

Aw

h h'

w

(a) (b) (c)

A

Β

α α'
h'

γ
h

Figure 1.20 Observed apparent dip: (a) direct view of vertical exposure plane; (b) side view of
exposure plane with oblique line of sight in vertical plane; (c) observed angle.
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Figure 1.21 Observed apparent dip: (a) α′ as a function of β ; (b) as a function of γ .

More generally, if the line of sight is neither horizontal nor in the plane perpendicular
to the exposure the resulting observed angle is mixed – for some apparent dip angles
and certain oblique lines of sight the observed angle may be either less or greater. The
essential point is that if you find yourself making such observations be careful.

1.13 Exercises

These exercise problems are meant to introduce you to the power of graphical methods
in geology and to help you learn the basic geometrical concepts of structural geology and
“see” in 3D. Neatness in the constructions is important. Showing all your construction
lines and writing a brief explanation of your steps will help make things clearer (such
notes will also be an aid for future reference).

1. Using the following data determine the unknown component graphically, and check
your results trigonometrically. Each graphical result should be within 1◦ of the cal-
culated value. If it is not then repeat your construction using greater care, making it
larger, or both.

(a) If the attitude of a plane is N 75 W, 22 N, what is the apparent dip in the direction
N 50 E?

(b) An apparent dip is 33, N 47 E, and the true strike is N 90 E. What is the true dip?

(c) The true dip is 40◦ due north. In what direction will an apparent dip of 30◦ be
found?

2. A certain bed dips 40/000. In what direction will the apparent dip be exactly half as
great. Will this same relationship hold if the bed dips 10◦, 20◦, 50◦, or 80◦? If not,
why not?
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X X'

Figure 1.22 Construction of a cross section from a simple map of dipping planes.

3. Three points A, B and C on an inclined plane have elevations of 150 m, 75 m and
100 m respectively. The map distance from A to B is 1100 m in a direction of N 10 W,
and from A to C is 1560 in a direction of N 40 E. What is the attitude of the plane?
(Hint: use Eq. 1.3 to determine two apparent dips.)

4. The most important need for the apparent dip arises during the construction of structure
sections. Figure 1.22 is a simple geology map of an inclined sequence of sedimentary
strata intruded by a basalt dike and the whole cut by a fault. Construct a vertical
section along the line XX ′ showing the traces of the three structural planes with the
correct inclination and proper position.

5. What is the maximum potential error in determining the strike direction if the dip is
5◦ and the maximum operator error is 2◦?

6. Using the following data determine the unknown component graphically and check
your results trigonometrically. Each graphical result should be within 1◦ of the cal-
culated value. If it is not, then repeat your construction using greater care, making it
larger, or both.

(a) If the attitude of a plane is N 85 E 25 NW, what is the apparent dip in the direction
N 20 E?

(b) If the strike of a bed is 350 and the apparent dip 35 in the direction 300, what is
the true dip.

(c) If the strike and dip of the bed are (N 45 E 30 SE) what is the apparent dip in the
direction S 25 W.

7. Adistinctive sandstone bed crops out at three localities in a corner of the Edmundsville
Quadrangle. Outcrops A and B are on the 240 m contour line, and point C is on the
170 m contour line. Outcrop B is 500 m to the N 40 E of outcrop A, and outcrop C
is 250 m to the N 20 W of outcrop A. Assuming that the sandstone is homoclinal
(constant dip), what is its attitude? (1) Using the following data determine the unknown
component graphically and check your results trigonometrically. Each graphical result
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should be within 1◦ of the calculated value. If it is not, then repeat your construction
using greater care, making it larger, or both. (a) If the attitude of a plane is N 85 W 19
NE, what is the apparent dip in the direction N 40 W? (b) Given the strike of a bed
350 and the apparent dip 25 in the direction 280, determine the true dip. (c) Given the
strike and dip of the bed (N 85 W 30 SW) determine the apparent dip in the direction
S 60 W. (2) A distinctive sandstone bed crops out at three localities in a corner of
the Edmundsville Quadrangle. Outcrops A and B are on the 240 m contour line, and
point C is on the 180 m contour line. Outcrop B is 400 m to the N 40 E of outcrop A,
and outcrop C is 240 m to the N 20 W of outcrop A. Assuming that the sandstone is
homoclinal (constant dip), what is its attitude?



2
Thickness and depth

2.1 Definitions

Thickness: the perpendicular distance between the parallel planes bounding a tabular
body, as displayed on any section perpendicular to these planes; also called the true
or stratigraphic thickness (Fig. 2.1).

Apparent thickness: the distance between the bounding planes measured in some other
direction, for example, the perpendicular distance between the traces of the bounding
planes on an oblique section, or in some other specified direction, as in a drill hole. It
is always greater than true thickness.

Outcrop width: the strike-normal distance between the traces of the parallel bounding
planes measured at the earth’s surface. It may be measured horizontally or on an
incline.

Depth: the vertical distance from a specified level (commonly the earth’s surface) down-
ward to a point, line or plane.

Figure 2.1 True thickness t,
apparent thickness t’, outcrop
width w and depth d.w

t'
t'

dt

30



2.3 Thickness by direct measurement 31

2.2 Thickness determination

Although geologists may determine the thickness of any stratiform body of rock, most
often the concern is with the thickness of layers of sedimentary rocks. In this context
“measuring a section” generally refers to a lithologic description of the rock strata as well
as a determination of their thicknesses (Kottlowski, 1965; Compton, 1985). Here, the
concern is with thickness alone. The thickness of a layer may be determined in a number
of ways. In special circumstances it may be possible to measure it directly, otherwise it
must be determined from indirect measurements.

2.3 Thickness by direct measurement

Several examples will illustrate how thickness may be measured directly. In a simple
case the thickness of a horizontal layer exposed on a vertical cliff face may be obtained
by hanging a measuring tape over the edge of the cliff (Fig. 2.2a). Alternatively, if the
elevations of the top and bottom of the horizontal layer can be determined accurately,
the thickness is simply the difference of the two elevations regardless of slope angle.
Another special case involves the exposure of a vertical layer on a horizontal surface;
a tape measure extended perpendicular to the strike allows the thickness to be obtained
directly (Fig. 2.2b).

(a) (b)

t

t

Figure 2.2 Direct measurement of thickness: (a) horizontal layer; (b) vertical layer.

More generally, thickness may be measured directly regardless of the relationship
between slope and dip with a Jacob’s staff (a light pole with gradations and clinometer
or Brunton compass attached at the top; see Robinson, 1959; Hansen, 1960; Freeman,
1991, p. 25). The staff is tilted toward the dip direction through the dip angle (Fig. 2.3a)
and a point on the ground is sighted in. The thickness of the layer or portion of the layer
between the base of the staff and the sighted point is equal to the length of the staff
(Fig. 2.3b). For layers less than staff height the gradations are used, and by occupying
successive positions units of any thickness may be measured (Fig. 2.3c).

The principle common to each of these approaches is that if a line of sight can be
obtained parallel to the dip direction, the layer appears in edge view, and the true thickness
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(a)

(b) (c)

Figure 2.3 Thickness with a Jacob’s staff: (a) simple clinometer; (b) sighting down the dip; (c) stepwise
course of measurements (from Compton, 1985, p. 230, with permission of John Wiley).

can be obtained by measuring across this view perpendicular to the two parallel bounding
planes.

2.4 Thickness from indirect measurements

When direct measurement of thickness is not possible, there are several alternatives.
Which of these is adopted depends on the field situation, on the equipment at hand, on
the accuracy required, and finally on personal preference. Given a choice, it is always
desirable to make the most nearly direct measurements possible.

All the solutions of true thickness require an edge view of the layer, that is, the image
of the layer on a plane perpendicular to bedding. Of the many such planes one can always
be readily found or constructed – it is the vertical plane parallel to the line of true dip.

O

B

Aw

l
O Aw

FL

δ

(a) (b)

β
δ

t

Figure 2.4 Thickness from horizontal, strike-normal traverse of length w: (a) map; (b) strike-normal
section.

The simplest of the indirect approaches is to measure the width of the exposed layer
perpendicular to the strike direction on a horizontal plane (OA in Fig. 2.4a). Two mea-
surements are required: the outcrop width w of the layer and the dip angle δ. Then the
thickness t can be determined graphically in either of two ways.

1. With the map, a folding line can be used to construct a strike-normal section, a proce-
dure which is virtually identical to that used in problems of dip and strike in Chapter 1.

2. The field measurements can be used to plot the required section directly (Fig. 2.4b).
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The thickness may also be calculated from

t = w sin δ. (2.1)

Because of obstructions or lack of exposure it is not always possible to make measure-
ments in the strike-normal direction. For an oblique horizontal traverse (OB in Fig. 2.4a),
a correction is required.1 In effect, the traverse length l is too long and must be reduced
to the equivalent outcrop width w. This adjustment can be made with a scaled drawing of
the horizontal right triangle OAB. Then just as in the previous case the thickness can be
measured on the strike-normal section (Fig. 2.4b). The correction may also be calculated
from

w = l sin β,

where β is the structural bearing of the traverse. A complete analytical solution can be
obtained by substituting this result into Eq. 2.1 giving

t = l sin β sin δ. (2.2)

In the more general case, thickness is determined from measurements made on sloping
ground. We first consider the case where it is possible to measure the outcrop width
directly. There are two alternatives.

1. Thickness can be determined from the slope distance and slope and dip angles along
the measured strike-normal traverse.

2. It can also be found from the vertical and horizontal distances between the two ends
of the traverse if the slope angle is known.

Each approach has advantages. The first method yields simpler relationships. The second
is convenient when highly variable slopes are involved and it can also be used to obtain
thickness from measurements made directly on a geological map.

When the outcrop width is measured directly, the approach is closely related to the
result of Fig. 2.4, except that thickness is now a function of both dip angle δ and slope
angle σ (sigma). There are seven cases, and all are easily solved graphically from a
simple scaled cross section based on the field measurements (see Fig. 2.5). Analytical
solutions are also available for all cases.

1. Slope and dip are in the same direction, δ < σ (Fig. 2.5a),

t = w sin(σ − δ). (2.3a)

1Note that a vertical section constructed in the direction OB using the apparent dip angle would show the apparent
thickness not the true thickness.
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Figure 2.5 Thickness determination from a strike-normal traverse on a slope.

2. The bed is horizontal, δ = 0◦ (Fig. 2.5b),

t = w sin σ. (2.3b)

3. Slope and dip are in the opposite directions, (δ + σ) < 90◦ (Fig. 2.5c),

t = w sin(δ + σ). (2.3c)

4. Slope and dip are in the opposite directions, (δ + σ) = 90◦ (Fig. 2.5d),

t = w. (2.3d)

5. Slope and dip are in the opposite directions, (δ + σ) > 90◦ (Fig. 2.5e),

t = w sin [180 − (δ + σ)] = w sin(δ + σ). (2.3e)

6. The bed is vertical, δ = 90◦ (Fig. 2.5f),

t = w sin(90 − σ) = w sin(90 + σ). (2.3f )

7. Slope and dip are in the same direction, δ > σ (Fig. 2.5g),

t = w sin(δ − σ). (2.3g)

All these separate cases can be expressed as a single equation by adopting a special sign
convention.

1. If the slope and dip are in opposite directions the sum (δ + σ) is used.
2. If the slope and dip are in the same direction the difference (δ −σ) or (σ − δ) is used.
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Figure 2.6 Thickness from horizontal h and vertical v components.

The general equation is then

t = w sin |δ ± σ | (2.4)

where, because a negative thickness has no meaning, the absolute value of the angle is
used.

The second approach involves determining the horizontal h and vertical v distances
between two end points of a strike-normal traverse (Fig. 2.6). Again the stratum may be
dipping in the same direction as the slope and/or the dip and slope directions may be
opposite. In each case it is a simple matter to plot the field data on a scaled vertical section
and measure the thickness. Thickness may also be computed. The general approach
requires expressions for two partial thicknesses:

t1 = h sin δ and t2 = v cos δ.

There are two main cases.

1. If the slope and dip are in opposite directions then t = (t1 + t2) (Fig. 2.6a).
2. If the slope and dip are in the same directions the total thickness is the difference of

the two partial thicknesses. There are two subcases:

(a) If (δ < σ) then t = (t1 − t2) (Fig. 2.6b).
(b) If (δ > σ) then t = (t2 − t1) (Fig. 2.6c).

Using the same sign convention as before all three cases can then be written as

t = |h sin δ ± v cos δ|. (2.5)

The more general case involves an oblique traverse (Fig. 11). From the horizontal
right-triangle ABD, the horizontal distance h in the strike-normal direction between the
two stations is given by

sin β = h/h′ or h = h′ sin β, (2.6)
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where h′ is the horizontal distance in the oblique direction between the two stations. If
a graphical solution is desired, first obtain the distance h from the map and then plot the
data on a strike-normal section. The full analytical solution is obtained by substituting
Eq. 2.6 into Eq. 2.5 to give

t = |h′ sin β sin δ ± v cos δ|. (2.7)

If the slope length and slope angle, rather than the horizontal and vertical distances,
are measured in an oblique direction, it would seem to be a simple matter to introduce
a similar correction, but there is no easy way of measuring the appropriate angle in the
field (∠BAC of Fig. 11). It is therefore necessary to take a different approach. From the
vertical triangle ACD

cos σ = h′/l or h′ = l cos σ,

where l is the slope length and σ is now the slope angle in the direction of this oblique
traverse. Combining this with Eq. 2.6 then gives

h = l cos σ sin β.

Again from the vertical triangle ACD,

sin σ = v/l or v = l sin σ.

Using these expressions for h and v in Eq. 2.5 then yields the equation, first derived by
Mertie (1922, p. 41),

t = l| cos σ sin β sin δ ± sin σ cos δ|. (2.8)

This general equation for stratigraphic thickness is easily applied in the field. By
identifying relatively uniform slope segments exposing strata with constant attitude, lay
a tape measure along the surface and directly measure l for each lithologic unit. With a
compass measure the slope σ , structural bearing β, and dip δ. Computing the thickness of
the individual beds using a spreadsheet on a laptop computer is then easy. By occupying
successive slope segments one can rapidly construct a full stratigraphic column of the
exposed rocks.

2.5 Apparent thickness

In all the previous cases, the true thickness was derived from a measured apparent
thickness. In some situations is necessary to determine the apparent thickness from the
true thickness, for example, as displayed on an oblique section.
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Figure 2.7 Thickness from an
oblique traverse on a slope.
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Problem

• If the true thickness t = 50 m and the dip δ = 30◦, what will be the apparent thickness
t ′ on a vertical section making an angle φ = 40◦ with the dip direction?

Construction

1. In a map view represent the outcrop trace of the lower boundary of the layer by strike
line S1 (Fig. 2.8). From a local origin O on this line draw lines in the true dip direction
and the required oblique section line.

2. With the dip line as FL1 and using δ = 30◦ draw the trace of the lower boundary
OX. With a convenient scale construct the trace of the upper boundary at a distance
t = 50 m from OX. This locates point A on the dip line and the outcrop width w = OA.

3. On the map draw a second strike line through A to represent the trace of the upper
boundary, thus locating point B at the intersection of the oblique section. Now the
traverse length l = OB.

4. Using Eq. 1.8 find the angle of apparent dip α = 23.9◦ in this direction. With OB as
FL2 draw the trace of the lower boundary inclined OY at this angle.

5. The perpendicular distance from this inclined trace to point B is the apparent thick-
ness t ′.

Answer

• The apparent thickness t ′ = 53 m.

An analytical relationship between true and apparent thickness is also useful (Coates,
1945, p. 7; De Paor, 1988, p. 77; De Paor, 1997, personal communication). From Fig. 2.8
the vertical apparent thickness t ′v , which is the same in triangles OAX and OBY, we have

t = t ′v cos δ and t = t ′v cos α.
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Figure 2.8 Apparent thickness
in an oblique section.
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Solving both for t ′v , equating and rearranging gives

t ′ =
[cos α

cos δ

]
t.

Substituting the identities

cos α = 1/ sec α = 1/
√

1 + tan2α and 1/ cos δ = 1/
√

cos2δ

we then obtain

t ′ =
[

1√
1 + tan2α

][
t√

cos2δ

]
.

From Eq. 1.8

tan α = tan δ cos φ or tan2α = tan2δ cos2 φ,

where φ is the angle between the true and apparent dip directions. With this the expression
for t ′ becomes

t ′ =
[

1√
1 + tan2δ cos2φ

][
t√

cos2δ

]
or t ′ = t√

cos2δ + (tan2δ cos2δ) cos2φ
.
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Then with the identities tan δ cos δ = sin δ and cos2 δ = (1 − sin2 δ) this becomes

t ′ = t√
cos2 δ + sin2 δ cos2 φ

= t√
(1 − sin2 δ) + sin2 δ(1 − sin2 φ)

.

Expanding and combining terms we finally have

t ′ = t√
1 − sin2δ sin2φ

. (2.9)

From the example problem t = 50 m, δ = 30◦ and φ = 40◦, then t ′ = 52.8 m, which is
essentially the result obtained graphically.

2.6 Thickness between non-parallel planes

Previously the measured layer was taken to be strictly homoclinal, that is, the two bound-
ing planes had identical attitudes. Often, however, the attitudes at the upper and lower
ends of a traverse are different. Besides measurement error, which we treat later, there
are two possible reasons for such divergencies: The bounding planes may not in fact be
parallel because the rock body is wedge-shaped rather than tabular, or the layer may be
folded.

If the departure from parallelism is small, thickness may be approximated by using
the mean of the two dip angles and the mean of the two structural bearings

δ = 1
2(δ1 + δ2) and β = 1

2(β1 + β2) (2.10)

in Eqs. 2.2 or 2.8. If the deviation from parallelism is greater, shorter intervals with more
nearly parallel boundaries can be treated separately, and the results summed to give an
estimate of the total thickness.

If the beds are folded, then the boundaries are curved surfaces rather than planes and
the matter is considerably more complicated. If it can be assumed that these bounding
surfaces are still parallel, that is, the distance between the two surfaces measured perpen-
dicular to them is constant, then the thickness can be estimated by a simple construction
involving tangent arcs (Hewett, 1920).2

Problem

• Astrike-normal traverse is made on a slope. The measured strike directions at the upper
and lower ends of the traverse are the same, but the dip angles are not. Estimate the
thickness of the folded bed.

2Following Busk (1929) we use an extended version of this method in §15.3 to reconstruct folds in cross section.
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Figure 2.9 Thickness of a
folded layer.
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Construction

1. Draw a scaled cross section showing the slope angle σ along the traverse line and
the two measured dip lines at stations A and B, where the measured slope distance
w = AB (Fig. 2.9).

2. At each station construct the dip normals r1 and r2 to the dip lines to intersect at
common point C.

3. With C as center, draw an arc with radius of BC. The thickness t is the distance
between A and this arc measured in the direction of r2.

The thickness in this case may also be obtained trigonometrically. Labeling the dip
angles so that δ1 > δ2 and the corresponding radii r1 > r2, then by the Law of Sines for
the oblique triangle ABC we have

r1

sin A
= r2

sin B
= w

sin C
.

The lengths of the two radii are then

r1 = w sin A

sin C
and r2 = w sin B

sin C
.

Because the total thickness t = (r1 − r2) we have

t = w

[
sin A − sin B

sin C

]
. (2.11)

With the angular relationships

sin A = sin
[
90◦ + (δ2 + σ)

] = cos(δ2 + σ),

sin B = sin
[
90◦ − (δ1 + σ)

] = cos(δ1 + σ),

sin C = sin
[
180◦ − A − B

] = sin(δ1 − δ2),
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and Eq. 2.11 becomes

t = w

[
cos(δ2 + σ) − cos(δ1 + σ)

sin(δ1 − δ2)

]
. (2.12)

An important consequence of this construction is that if the dip angles at each end of
the traverse are known, all intermediate dips are fixed. The dip at any intermediate point
D can be found as the tangent of the concentric arc with C as center and CD as radius.

If the actual dip angles at intermediate points differ then the thickness determina-
tion using parallel arcs will be in error. One approach is to treat adjacent pairs of dips
separately and sum the incremental thicknesses so determined. Mertie (1940) described
the use of parallel curves of a more general nature, which takes into account additional
dip measurements. This gives a better representation of the thickness of the layers, but
constructing these curves is involved and the method is little used.

Another limitation is imposed if the two strike directions differ, a situation which
suggests that the fold is not horizontal. True thickness then can no longer be represented
in a vertical section. This and other matters related to fold geometry are considered in
greater detail in later chapters.

2.7 Thickness in drill holes

In subsurface exploration by drilling it is important to determine the thickness of strata
from measurements made in the drill holes or in recovered cores. This is especially impor-
tant in the petroleum industry and Tearpock and Bischke (1991) give a comprehensive
treatment.

Figure 2.10 Thickness in
vertical drill hole.
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If the hole is vertical then the determination of the thickness of a layer penetrated by
the drill is particularly straightforward. From Fig. 2.10

t = t ′v cos δ, (2.13)
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where δ is the dip of the bed and t ′v is the apparent thickness as measured in the vertical
drill hole.

Holes which are exactly vertical are difficult to drill, especially if the beds are steeply
dipping. The measure of the angular departure of a drill hole from vertical is termed drift,
measured by the drift angle ψ . There are two cases. If the drift is exactly in the down-dip
direction (Fig. 2.11a),

t = t ′m cos(δ + ψ),

where t ′m is the measured apparent thickness in the inclined hole. If the hole is exactly
in the up-dip direction (Fig. 2.11b)

t = t ′m cos |δ − ψ |.

These two can be written as a single equation:

t = t ′m cos |δ ± ψ | (2.14)

where the positive sign is used if the drift has an down-dip component and the negative
sign is used if it has a up-dip component.

If the drift is oblique to the true dip direction then the apparent dip in the vertical plane
containing the drill hole is used giving

t = t ′m cos |ψ ± α|. (2.15)

D
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Figure 2.11 Thickness in inclined drill hole: (a) down-dip drift; (b) up-dip drift.
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2.8 Depth to a plane

Once the relationships involved in the determination of thickness can be visualized,
problems of determing depth should present little additional difficulty for they follow
closely same the methods.
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Figure 2.12 Depth: (a) map; (b) strike-normal section; (c) oblique section.

As with thickness, the simplest case is the depth to an inclined plane from a horizontal
surface at a distance m measured from a point on the outcrop trace of the plane in a
strike-normal direction to the surface point where depth is required. The depth may be
found by constructing a scaled triangle, as in the map of Fig. 2.12a, or by using the
formula

d = m tan δ. (2.16)

If distance l is measured oblique to the strike, the apparent dip in the traverse direction
is used giving

d = l tan α. (2.17)

From the previous result of Eq. 1.7

tan α = sin β tan δ.

Using this in Eq. 2.17 we have an expression for the depth directly in terms of the true
dip angle and structural bearing of the drill hole

d = l sin β tan δ. (2.18)

The next case involves the depth from a point on a slope. When slope and dip are in
opposite directions (Fig. 2.13a)

d1 = h tan δ and d2 = m sin σ.
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Figure 2.13 Depth: (a) slope and dip in opposite directions; (b) slope and dip in same direction.

Because h = m cos σ and the total depth d = (d1 + d2) we then have

d = m(cos σ tan δ + sin σ).

If the slope and dip are in the same direction and (δ > σ) (Fig. 2.13b), the total depth
d = (d1 − d2). Then

d = m(cos σ tan δ − sin σ).

Combining gives

d = w|cos σ tan δ ± sin σ |. (2.19)

If (δ < σ) then “depth” is measured upward, as might occur in a mine. This will be
signaled by −d.

When the measurements are made oblique to the strike, Eq. 2.19 can be written in
terms of the traverse length and the apparent dip

d = l|cos σ tan α ± sin σ |,

and with Eq. 1.7 this becomes (after Mertie, 1922, p. 48)

d = l|cos σ tan δ sin β ± sin σ |. (2.20)

2.9 Distance to a plane

A closely related measure is the distance to a plane in a direction other than vertical,
as, for example, along an inclined drill hole. This distance may be found graphically by
constructing a scaled section, or it may be calculated.

The simpler situation occurs when the trend of the inclined hole is normal to the strike
of the plane at a known slope distance from the plane. We first express the depth of the
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plane below the site of the drill hole (surface point A in Fig. 2.14) by the two partial
depths

d1 = h tan p and d2 = h tan δ

where h is the horizontal projection of the drill hole and p is its plunge angle.
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Figure 2.14 Distance in vertical, strike-normal section: (a) δ and p in opposite directions; (b) δ and p in
same direction.

There are two cases. In the vertical plane containing the drill hole the plunge and dip
may be opposite in direction or the plunge and dip may be in the same direction.

1. In the first case, from Fig. 2.14a, h = s cos p and d = d1 + d2 = h(tan p + tan δ).
Combining these, using the identity sin p = cos p tan p, and solving for the inclined
distance s we have

s = d

sin p + cos p tan δ
.

2. In the second case, from Fig. 2.14b, where d = d1 − d2, we obtain

s = d

sin p − cos p tan δ
.

These two expressions can be combined into a single equation using the same sign
convention for dip and plunge directions:

s = d

sin p ± cos p tan δ
. (2.21)

If the vertical plane containing the drill hole is oblique to the strike, then the apparent
dip in this direction can be used:

s = d

sin p ± cos p tan α
,
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or the correction of Eq. 1.4 can be incorporated directly (after Mertie, 1922, p. 48) giving

s = d

sin p ± cos p sin β tan δ
. (2.22)

Note that neither the slope angle nor the slope length enters into this equation. However,
both are accounted for in the expression for d of Eq. 2.20 which, when used in conjunction
with Eq. 2.22, gives the required inclined distance to the plane.

2.10 Error propagation

As we have seen in §1.4, any measured quantity x will be subject to an error or uncertainty
�x. It then follows that the calculation of any derived quantity – an angle, a depth, a
thickness or a distance – will also be uncertain. In other words, the measurement errors
will propagate through the calculations. We give a brief introduction to the methods of
determining these propagated errors.3

There are several ways of representing the uncertainty associated with a given mea-
surement (Taylor, 1997, p. 26–29). For example, if measured length lbest = 50 m has an
uncertainty �l = 2 m then:

1. The absolute uncertainty (or simply uncertainty) is expressed in the same units as the
measurement

lbest ± �l = 50 ± 2 m.

2. The fractional uncertainty, also called the relative uncertainty or precision, is the
dimensionless number

�l

|lbest | = 1 m

50 m
= 0.02,

and this gives an estimate of the quality of the measurement.
3. The percentage uncertainty is just the fractional uncertainty expressed as a percentage

�l

|lbest | × 100% = 2%.

As a starting point we review some fundamental concepts of differential calculus.
Given a function of a single variable

y = f (x), (2.23)

3Taylor (1997, p. 45f) gives the basic theory in an easily accessible form and Vacher (2001b, 2001c) treats several
geological applications.
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an infinitesimally small change dx in the independent variable x results in an infinites-
imally small change dy in the dependent variable y. The quantities dx and dy are
differentials.

A derivative is a rate of change. The first derivative f ′(x) is the ratio of these two
infinitesimal changes. This derivative of f with respect to x is written as

f ′(x) = dy/dx,

where the ratio of these infinitesimals describes the rate of change of y with respect to
x. Geometrically this is the slope of the curve representing y = f (x). Rearranging we
have

dy = f ′(x) dx, (2.24)

which makes the distinction between differentials and the derivative clear. The official
definition of a derivative is

f ′(x) = lim
�x→0

f (x + �x) − f (x)

�x
.

If we remove the limit, this holds only approximately, that is,

f ′(x) ≈ f (x + �x) − f (x)

�x
.

With �y = f (x + �x) − f (x) we write

�y ≈ f ′(x) �x. (2.25)

Note the formal similarity of the exact version (Eq. 2.24) and the approximate version
(Eq. 2.25). We can illustrate the relationship between these two versions graphically.

Figure 2.15 Graph of y
=f(x) vs. x.
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Suppose we measure variable x and its value is a. This value of x and the corresponding
best value of y are represented by the coordinates of point O on the curve representing
the function f (x) (Fig. 2.15). Also suppose that this measured value has an uncertainty
of �x. This results in a propagated uncertainty �y. We write this condition as

�y ≈
∣∣∣∣dy

dx

∣∣∣∣�x, (2.26)

where the absolute value is used because the relationship is the same whether the slope
is positive or negative. This says that for an uncertainty �x in x, there will be a corre-
sponding uncertainty �y in y, and these two uncertainties are related by the slope dy/dx

at point O.
Points P and Q on the line tangent to the curve at O approximate points on the curve

itself, and the smaller �x is, the closer these points will be to this curve, and therefore
the better the approximation.

In our applications it will be useful to adopt the notation which explicitly recognizes
that �y and �x are errors, as we have in §1.4 (see also Vacher, 2001b, p. 310). We
express this as εx = �x and εy = �y. Then Eq. 2.26 becomes

εy =
∣∣∣∣dy

dx

∣∣∣∣ εx. (2.27)

Because angles play a prominent role in many situations, we start by examining how
the uncertainty associated with a single measured angle is propagated.

Problem

• If the measured angle θ = 20 ± 3◦, what is the best estimate of cos θ and what is the
uncertainty (after Taylor, 1997, p. 65)?

Solution

1. The best estimate is, of course, cos θ = cos 20 = 0.939 69.
2. Then according to Eq. 2.27

εcos θ =
∣∣∣∣d cos θ

dθ

∣∣∣∣ εθ = |− sin θ | εθ (εθ in radians).

3. Because εθ = 3◦ = 0.052 36 rad we have εcos θ = (sin 20)(0.052 36) = 0.017 91.4

Rounding to significant figures gives εcos θ = 0.02.
4. For θ = 20 ± 3◦, we have cos θ = 0.94 ± 0.02.

Measurement errors which are propagated to such trigonometric functions are, of
course, also propagated to calculations which use these functions.

4Multiply by π/180 = 0.017 453 292 52 . . . to convert degrees to radians.
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Figure 2.16 Depth to a plane
(after Vacher, 2001b, p. 312): (a)
map; (b) true dip section.
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Problem

• How will the uncertainty in the measurement of the dip angle εδ = 1◦ influence the
calculation of the depth to a plane at point A (Fig. 2.16a)?

Solution

1. From the vertical section containing the true dip angle the depth d is given by
(Fig. 2.16b)

d = m tan δ, (2.28)

and assume that the horizontal strike-normal distance m = 100 m exactly.
2. From Eq. 2.27

d(tan δ)

dδ
= sec2δ = 1

cos2δ
.

3. Then

d = m
[
tan δ ± εδ

cos2δ

]
. (2.29)

4. The fractional uncertainty is given by

εd

d
= 1

tan δ cos2 δ
.

5. The results for a range of dips are shown in Table 2.1.

For problems involving multiple variables there are several simple rules for the arith-
metic involved (for details see Taylor, 1997, p. 49–53; Vacher, 2001c, p. 390–392). In
the case of two variables these rules are:

1. If two quantities x and y are measured with uncertainties �x and �y and the measured
values are used to compute a sum or difference

q = x + y or q = x − y,
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Table 2.1 Calculated depths for uncertainty εδ = 1◦

δ d εd εδ/d

10 17.6 ±1.8 10%
30 58.0 ±2.3 4.0%
45 100 ±3.5 3.5%
60 173 ±7 4.0%
80 567 ±58 10%

then the uncertainty in the value of q is the sum of the original uncertainties

�q = �x + �y,

that is, “the absolute propagated error for the sum and for the difference of two numbers
is the sum of the absolute errors of those numbers” (Vacher, 2001c, p. 393).

2. If two quantities x and y are measured with uncertainties �x and �y and the measured
values are used to compute a product or quotient

q = xy or q = x/y,

then the uncertainty in the value of q is the sum of the original fractional uncertainties

�q

|q| = �x

|x| + �y

|y| ,

that is, the relative propagated error for the product and for the quotient of two numbers
of the sum of the relative errors for those numbers (Vacher, 2001c, p. 393).

To summarize, this means that the uncertainty in q(x, y) is

�q =
∣∣∣∣∂q

∂x

∣∣∣∣�x +
∣∣∣∣∂q

∂y

∣∣∣∣�y. (2.30)

Problem

• What will the uncertainty in the depth to a plane be if the uncertainty in the dip is
δ ± εδ = 60 ± 1◦ and the uncertainty in the distance is m ± εm = 100 ± 2 m.

Solution

1. Adapting Eq. 2.30 we have

εd =
∣∣∣∣ ∂d

∂m

∣∣∣∣ εm +
∣∣∣∣∂d

∂δ

∣∣∣∣ εδ.
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2. Performing the partial differentiations on Eq. 2.28 yields

∂d

∂m
= tan δ and

∂d

∂δ
= m

cos2δ
.

3. The uncertainty in the depth is then

εd = εm tan δ + εδ

m

cos2 δ
= 2(tan 60) + π

180

[
100

cos2 60

]
= 11 m.

This pattern of combining uncertainties is easily extended to errors associated with
more than two measurements. For three variables the formula is

εf =
∣∣∣∣∂f∂x

∣∣∣∣ εx +
∣∣∣∣∂f∂y
∣∣∣∣ εy +

∣∣∣∣∂f∂z

∣∣∣∣ εz. (2.31)

Problem

1. If l = 125 m, δ = 22◦ and β = 15◦, what is the depth d to an inclined plane at point
B (Fig. 2.17a)?

2. Now suppose that the uncertainty associated with each of these measures is l =
125 ± 3 m, δ = 22 ± 3◦ and β = 15 ± 1◦, what now can be said about the depth d

(after Vacher, 2001c, p. 394–395)?
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Figure 2.17 Angles and distances (after Vacher, 2001c, p. 394): (a) map; (b) true dip section.

Exact solution

1. From the map view (Fig. 2.17a) and the dip section (Fig. 2.17b) we have the expres-
sions

m = l sin β and d = m tan δ.

2. Combining gives

d = l sin β tan δ, (2.32)

and we can calculate the depth using l = 125 m, β = 15◦ and δ = 22◦. The answer
is d = 13.1 m.
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Solution with uncertainties

1. From Eq. 2.31 the propagated error εd is given by

εd =
∣∣∣∣∂d

∂l

∣∣∣∣ εl +
∣∣∣∣∂d

∂β

∣∣∣∣ εβ +
∣∣∣∣∂d

∂δ

∣∣∣∣ εδ. (2.33)

2. Using Eq. 2.32, form the three partial derivatives and plug in values of l, β and δ

giving

∂d

∂l
= sin β tan δ = 0.104 57,

∂d

∂β
= l cos β tan δ = 48.786 42,

∂d

∂δ
= l sin β

cos2δ
= 37.633 49.

3. Using these values in Eq. 2.33, together with

εl = 2 m, εβ = rad (2◦) = 0.013 49, εδ = rad (3◦) = 0.052 36.

gives εd = 3.8 m. Thus d = 13.1±3.8 m, and the minimum and maximum estimates
of the depth are

dmin = 13.1 − 3.8 = 9.3 m and dmax = 13.1 + 3.8 = 16.9 m.

Just how good are these calculated uncertainties? If they are small and independent
and random, Eq. 2.30 is likely to overstate the total uncertainty, for there is a 50% chance
that an underestimate of x will be accompanied by an overestimate of y, or vice versa. In
such a case, the probability of underestimating or overestimating both x and y by the full
amounts �x and �y is small, and therefore the calculated �q overstates the probable
total error.

Under these circumstances, is there a better estimate of �q? If both x and y are
measured independently then an estimate of the uncertainty is given by

�q =
√

(�x)2 + (�y)2. (2.34)

This is called the sum in quadrature (Taylor, 1997, p. 57–62, 141–143), and it is widely
used for calculating the uncertainties associated with careful measurements made under
controlled conditions in the laboratory.

On the other hand, Vacher (2001c, p. 396) makes the important point that the uncertain-
ties associated with measurements made by geologists in the field may not be sufficiently
small for Eq. 2.34 to be valid.
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Under these circumstances, there is an alternative approach (Courant & John, 1965,
p. 490–492; Vacher, 2001b, 2001c): any function of a single variable f (x) can be repre-
sented by the Taylor series over some interval in the neighborhood of the specified point
x = a. The resulting expression is

f (x) = f (a)+f ′(a)(x −a)+ f ′′(a)

2! (x −a)2 +· · ·+ f (n)(a)

n! (x −a)n +· · · . (2.35)

The first term f (a) identifies the point on the curve. The second term f ′(a)(x − a)

represents the slope of the line tangent to the curve at this point. The addition of each of
the higher order terms brings the sum into closer correspondence with f (x). If �x =
(x − a) is small, then powers of �x will be very much smaller and can be neglected.
With �y = f (x) − f (a), Eq. 2.35 reduces to the approximation

�y ≈ f ′(a)�x,

which is the same as Eq. 2.25, and we now see that it is just an approximation of Eq. 2.35.
But if the uncertainty is not small, then the second-derivative term in the Taylor series

may not be negligible. We then have

�y ≈ f ′(a)�x + 1
2f ′′(a)(�x)2. (2.36)

In an earlier example, we found that if θ = 20 ± 3◦ then cos θ = 0.94 ± 0.02. If instead
there is a larger uncertainty, for example θ = 20 ± 6◦, what then is the propagated error
for cos θ? Using the earlier method, we obtain

εcos θ = |sin θ | εθ = (0.342 02)(0.104 72) = 0.035 82 or εcos θ = 0.04,

and cos θ = 0.94 ± 0.04. Note that for an uncertainty of 6◦ the error is just twice the
uncertainty for 3◦ found earlier. The reason is that both use the same sloping tangent line.

Alternatively, adapting Eq. 2.36

εcos θ = | − εθ sin θ + 1
2ε2

θ cos θ | = 0.030 66,

that is, cos θ = 0.94 ± 0.03. Note that this uncertainty is 25% less than that obtained by
the use of only a single term.

This brief treatment together with the illustrative examples should make clear to geol-
ogists that the inevitable uncertainty associated with any calculation is important, and in
particular that they have an obligation to make explicit such uncertainty, especially when
the results of calculations have a bearing on the detailed understanding of the structural
geometry.
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2.11 Exercises

1. A strike-normal traverse OA crosses an inclined layer δ = 36◦ of length w = 42 m
(Fig. 2.18a).

(a) Graphically determine the thickness of the layer and check your result using Eq. 2.1.
(b) Graphically determine the depth to the lower bounding plane at point A and check

your results using Eq. 2.16.
(c) If the uncertainty of the dip angle �δ = 2◦ and the traverse is accurate enough to

be considered exact, what is the uncertainty in the calculated thickness �t?

2. An oblique traverse OB β = 60◦ crosses an inclined layer δ = 23◦ of length l = 54 m
(Fig. 2.18b).

(a) Graphically determine the thickness and check your result using Eq. 2.3.
(b) Graphically determine the depth to the lower bounding plane at point B. Chek your

result using Eq. 2.18.
(c) If the uncertainties �δ = 2◦, �β = 1◦ and �l = 0.5% what is the uncertainty in

the calculated thickness �t?

O Aw

(a) (b)
O

B

l

β

36 23

Figure 2.18 Thickness from horizontal traverses: (a) strike-normal traverse; (b) oblique traverse.

3. A south-to-north, strike-normal traverse made across a series of badland beds uni-
formly dipping 50◦ due north yielded the following data given in Table 2.2 (the setting
is shown in Fig. 2.19). Determine the total thickness.

Table 2.2 Total thickness

Unit Lithology Slope distance Slope angle

5 upper sandstone 6.7 m 0◦
4 upper red mudstone 17.7 m 18◦
3 lower sandstone 8.8 m −13◦
2 pink claystone 8.0 m 15◦
1 lower purple mudstone 8.2 m 10◦

4. The attitude of a sandstone unit is N 65 E, 35 N. A horizontal traverse with a bearing
of N 10 E made from the bottom to the top measured 125 m.

(a) Graphically determine the thickness.
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Figure 2.19 Cross section.
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(b) Calculate the thickness using Eq. 2.3.

(c) If the uncertainty in the dip is 2◦, the uncertainty of the traverse direction is 1◦
and the uncertainty in the measured length is 0.5%, what is the uncertainty in the
thickness calculation?

5. The following information is from a geological map. The attitude of a basalt sill is
N 5 W, 38 W. An eastern point on the lower contact has an elevation of 900 m, and a
western point on the upper contact has an elevation of 1025 m. The line connecting
these two points has a bearing of N 85 W. Determine the thickness of the sill graphically
and check your result using Eq. 2.7.

6. A mineralized vein with an attitude of N 37 W, 50 SW is exposed on a ridge crest.
How far down a 22◦ slope in a N 82 W direction would it be necessary to go to find a
point at which the vein lies at a depth of 100 m? At that point, what is the minimum
inclination and length of a shaft to reach the vein?

Figure 2.20 Geological sketch
map.
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7. The geological sketch map of Fig. 2.20 shows a thick shale formation between two
limestone units exposed on a south-facing slope. A trail angles up a brushy slope in
a N 30 E direction at a nearly constant 20◦ angle. The traverse length in crossing the
entire shale unit is 366 m. The beds have a consistent attitude of N 80 E, 35 N. If
the shale–limestone contact lines are approximately horizontal how steep is the shale
slope? What is the difference in elevation between the beginning and ending of the
traverse? What is the thickness of the shale?
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8. A 125 m long strike-normal traverse made up a 15◦ slope between the bottom and top
of a limestone stratum gave the following information: the dip at the bottom of the
unit is 55◦ and at the top it is 65◦, both in a downslope direction. The strike directions
at both points are the same. Using the method of tangent arcs estimate the thickness
of the unit; check your result with Eq. 2.11. Compare this with the result obtained
from Eq. 2.10 using the mean of the two dip angles.



3
Lines and intersecting planes

3.1 Definitions

Line: the geometrical element generated by a moving point; it has only extension along
the path of the point. Lines may be rectilinear (straight) or curvilinear (curved). Only
straight lines are treated here.

Plunge: the vertical angle measured downward from the horizontal to a line (Fig. 3.1a).
Pitch: the angle between the strike direction and a line in a specified plane (Fig. 3.1b).

Rake is synonymous.
Trend: the horizontal direction of the vertical plane containing the line, specified by its

bearing or azimuth.

Figure 3.1 Inclination of a
line: (a) plunge p; (b) pitch r.

(a) (b)

r
p

3.2 Linear structures

There are two types of structural lines. They may exist in their own right, such as the long
axes of mineral grains or streaks of mineral aggregates; elongate rock bodies and drill
holes may also be considered linear for some purposes. Other lines occur in conjunction

57



58 Lines and intersecting planes

with structural planes; examples include striations on fault surfaces, mineral lineation on
foliation planes and lines formed by the intersection of planes.

The orientation of a line in space is specified by its trend and plunge. As with planes,
there is a set of map symbols for structural lines, also with three parts.

1. A trend line.
2. An arrowhead giving the direction of downward inclination.
3. A plunge angle written near the arrowhead.

The arrow should be uniform in length and long enough so that its trend can be accurately
measured on the map. Because its length is not scaled, this symbol is not a vector.

The most common symbols are shown in Fig. 3.2. Special symbols may be invented
when needed, and all symbols used must be explained in the map legend.

40

25
10

20

35

40

Trend and plunge of a line

Horizontal line

Vertical line

Double lines

Plunge of a line in
combination with
bedding attitude

Attitude of mineral grain

Attitude of elongate
pebble

Pitch of a line in the
plane of bedding

Trend and plunge of 
intersecting cleavages

Trend and plunge of
intersecting bed and foliation

Figure 3.2 Map symbols for structural lines.

The plunge and trend of a line may also be written out. The notation has two forms
depending on whether the trend is expressed as a bearing or an azimuth.

1. The plunge angle is followed by the trend expressed as a bearing, as in 30, S 45 W,
meaning that the line plunges 30◦ toward S 45 W.

2. The trend is given as an azimuth, as in 30/225. The order is sometimes reversed as
225/30 and expressing the azimuth with three digits even if this requires leading zeros
avoids any possible confusion.

Again, the difference depends of the type of compass used and on personal preference.
The azimuth form is particularly useful for computer processing of orientational data.
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3.3 Plunge of a line

A plunging line is accurately depicted in the vertical section parallel to the trend of the
line. If a line is to be depicted on any other section, the angle of apparent plunge must
be used. The need for such an angle arises if an inclined drill hole and the rock units it
penetrates are to be shown on a section oblique to the line of section (Fig. 3.3). Because
such displays inevitably involve distortions, it is better to project over small distances
and small angles if possible.

Figure 3.3 Plunge p and
apparent plunge p’.
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This angle is analogous to apparent dip except that the apparent plunge p′ is always
greater than the true plunge p. When the section line is parallel to the trend of the line,
the true plunge is shown and this is the minimum value. If the section is perpendicular
to the trend of the line, then the apparent plunge is 90◦ and this is its maximum value.

Problem

• Project the inclined drill hole whose attitude is 30/150 onto a north-south section
(Fig. 3.4a).
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Figure 3.4 Apparent plunge p’: (a) map; (b) construction.

Construction

1. In map view, draw a line of section parallel to the trend of the hole (Fig. 3.4b). With
this line as FL1 draw a section showing the true plunge.
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2. With the angle of true plunge p find the depth d to point X at some convenient
horizontal distance OA, or use the actual depth at the end of the hole to fix OA.

3. Project this surface point A back to the section line to locate point B.
4. With the line of the section as FL2, locate point Y at the same depth d below point B.

The ∠BOY is the apparent plunge p′.

Answer

• The inclination of the drill hole to the vertical north-south section is p′ = 35◦.

The trigonometric expressions for solving this same problem can be derived from the
map of Fig. 3.3a,

b/a = cos φ,

and the block diagram of Fig. 3.3b,

a = d/ tan p, b = d/ tan p′.

Substituting the expressions for a and b in the first equation and rearranging then gives

tan p′ = tan p/ cos φ. (3.1)

From the previous problem p = 30◦ and φ = 35◦, and therefore p′ = 35◦.
When projected to a vertical plane of section, any original length l measured along the

plunging line is shortened to l′. Again from Fig. 3.3b

d = l/ sin p and d = l′/ sin p′.

Equating these two and rearranging yields

l′ = l(sin p /sin p′). (3.2)

Our only concern in the remainder of this chapter is with lines lying in planes. For such
lines the plunge angle is, in effect, an apparent dip. Therefore, all the graphical techniques
of §1.5 are applicable with little modification to problems involving the relation of the
plunge and trend of a line and the dip and strike of the plane. For the same reason, an
expression for the plunge can be obtained directly from Eq. 1.4, which we rewrite as

tan p = tan δ sin β (3.3)

where p is the plunge and, as before, δ is the dip of the plane and β is the structural
bearing measured from the strike direction.
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3.4 Pitch of a line

The pitch is measured in a plane containing the line (Fig. 3.1b). Therefore it may range
in value from r = 0◦ when the line is horizontal, to r = 90◦ when the line is in the dip
direction. In describing pitch it is necessary only to give the angle and the direction in
which the acute angle faces. For example, 35 N means that the pitch angle r = 35◦ is
measured downward from the northern end of the strike line.

In the field, the pitch of a line on an exposed plane is determined by first marking a
horizontal line on the inclined plane and then measuring the angle between this line of
strike and the linear structure with a protractor. If, however, the plane is not well exposed,
the pitch angle may be determined from the dip of the plane and the structural bearing
of the line. First, we treat the problem of determining the pitch from the known dip of
the plane and a specified structural bearing. We do this by converting β to r .

Problem

• What is the pitch angle of a line with structural bearing β = 35◦ on a plane with dip
δ = 40◦?

Approach

• In the map view of an inclined plane containing a line we see directly the angle of the
structural bearing β, which is the orthographic projection of the pitch angle r to the
horizontal plane of the map (Fig. 3.5a). In order to determine this angle, we must obtain
a direct view of the inclined plane and the line it contains. This is done by rotating
the structural plane into a horizontal position using the strike direction as a folding
line (Fig. 3.5b). This procedure can be usefully illustrated by unfolding a small paper
model.
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δ
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Figure 3.5 Pitch: (a) projection of plane; (b) direct view of plane.

Construction

1. Draw a map showing a strike line, the trend of the inclined line and a line in the true
dip direction. At a convenient distance OA draw a second line of strike AB (Fig. 3.6a).
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2. With the dip line OA as FL1, construct a vertical section showing the angle of true
dip and determine the depth d of point X directly beneath the surface point A.

3. With the strike line through O as FL2, using a compass rotate the inclined plane
through the angle of dip thus locating points X and Y on the now horizontal structural
plane.

4. In this upturned plane the angle line OY makes with the strike direction is the pitch
angle r .

Answer

• The pitch of the line in the plane is r = 42◦.
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Figure 3.6 Finding pitch: (a) map; (b) construction.

A more useful version of this problem is to determine the plunge of the line whose
pitch has been measured and this requires the conversion of r to β. The construction is
the reverse of that used in Fig. 3.6.

Problem

• What is the plunge of a line whose pitch r = 42◦ on a plane with dip δ = 40◦?

Construction

1. Draw a direct view of the plane representing the pitch by the line OY which makes
an angle of r = 42◦ with the strike direction through O (Fig. 3.7a).

2. With the dip line as FL1 construct a vertical section showing the angle of true dip.

3. In this section and using a compass, rotate point X downward to fix its location at
depth d below point A. Draw the line AB as a second line of strike.

4. Construct two lines perpendicular to the dip line, the first through A to intersect the
trend line at A′.

5. The angle between the strike line through O and line OB is the structural bearing β.

6. With β we can find the plunge using the same construction used to find the apparent
dip (Fig. 3.7b).
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Figure 3.7 Finding plunge from pitch.

Figure 3.8 Parameters used in
expressions for the angle of
pitch.
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Answer

• The bearing of the line is β = 35◦ and its plunge is p = 25◦.

There are two useful formulas which can be used to solve problems involving pitch
angles. The first relates the pitch of a line to its structural bearing and the dip of the plane.
From Fig. 3.8

w = c cos δ, x = c/ tan r, tan β = w/x.

Substituting the first two of these in the third and rearranging gives

tan r = tan β /cos δ. (3.4)

From the previous problem, r = 42◦ and δ = 40◦. Therefore β = 35◦. The second
formula relates pitch to the structural bearing and plunge angle of the line. Again from
Fig. 3.8

x = l′ cos β, l = l′/ cos p, cos r = x/l.

Substituting the first two of these into the third gives

cos r = cos p cos β. (3.5)
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3.5 Intersecting planes

Two non-parallel planes intersect in a line and in a number of situations it is important
to determine the attitude of this line.

Before describing the construction, it is useful to visualize the geometry of intersecting
planes and it helps to practice with the aid of flattened hands held parallel to the two
planes. Folded paper models also can be used with advantage.

Problem

• What is the attitude of the intersection of Plane 1 (N 20 W, 36 E) with Plane 2 (N 42 E,
20 W)?

Approach

• A view of the map as if one were looking down a V-shaped trough indicates that
the line of intersection trends in a northerly direction (Fig. 3.9a). From this view and the
previously established relationship between true and apparent dip, we then see that the
line of intersection, being common to both planes, can not have a plunge angle greater
than the smaller of the two dip angles.

The trend of the line of intersection exactly bisects the angle between the strike
directions only if the two dip angles are identical. Otherwise the trend of the line will
be closer to the strike of the steeper plane. In this problem the plunge of the line of
intersection must be less than the 20◦ dip of Plane 2 and its trend is closer to the strike
of steeper Plane 1.
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Figure 3.9 Line of intersection: (a) map; (b) construction.



3.6 Cotangent method 65

Construction

1. In map view plot a strike line for each of the two planes and label their intersection
O which represents one point common to both planes and therefore lies on the line
of intersection (Fig. 3.9b).

2. To obtain another point on the line of intersection a second pair of intersecting strike
lines at a known vertical distance below the intersecting first pair are needed.

(a) With FL1 perpendicular to the strike of Plane 1, construct a vertical section showing
the true dip δ1. Locate surface point A with a convenient distance w1 from the
strike line. Then plot the trace of the inclined plane and determine the depth d to
point X below surface point A.

(b) With FL2 perpendicular to the strike of Plane 2, construct a second vertical section
showing the true dip δ2. Using the same depth d to point Y , determine the length
w2 and locate the surface point B.

3. Through both points A and B draw a second pair of lines parallel to the strike directions
of the respective planes intersecting at point C. Direction OC represents the trend of
the line of intersection which can be measured.

4. With FL3 perpendicular to OC, construct a vertical section again using the same depth
d to locate the point Z below at the surface point C. Vertical ∠COZ is the angle of
plunge p.

Answer

• The attitude of the line of intersection is 14/000.

3.6 Cotangent method

This orthographic construction may be simplified by adapting the semi-graphical cotan-
gent method used in §1.8. As before this is equivalent to choosing the depth d = 1.
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Figure 3.10 Line of intersection by cotangent method.
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Problem

• Find the intersection of the planes with dip lines D1(36/070) and D2(20/312)

(Fig. 3.10a).

Construction

1. Plot rays from a common point O in each of the dip directions (Fig. 3.10b).
2. Using a convenient scale measure lengths OA = cot δ1 = 1/ tan δ1 = 1.376 38 and

OB = cot δ2 = 1/ tan δ2 = 2.747 48 along the respective rays.
3. Through both A and B draw lines perpendicular to the respective rays. The point C at

their intersection is a second point on the line of intersection. Line OC fixes its trend
and its length is cot p = 4.0.

Answer

• The line of intersection has a plunge of p = arctan(1/4.0) = 14◦ and its trend is 000.
This is the same as found by the full graphic construction of Fig. 3.9b.

3.7 Structure contours

So far we have been concerned only with the orientation of a line of intersection. Its map
location is an additional important property.

By definition points on a line of strike have the same elevations and there are an infinite
number of such lines on any inclined plane. When the elevation is known or specified
for a particular strike line then it becomes a structure contour on the plane. The map
location of a point on a line of intersection requires two such contour lines, one on each
plane.

If the elevations of the two strike lines are identical, then point O of the previous
construction represents a point in space on the line. On the other hand, if the two structure
contours do not have the same elevations then an auxiliary construction is needed to find
a point which is exactly on the line.

Problem

• Given the map location of a point on plane A with attitude N 25 W, 20 W at an elevation
of hA = 200 m and the location of point B on a second plane at an elevations of
hB = 150 m with attitude N 48 E, 30 S, locate the line of intersections in space
(Fig. 3.11).

Approach

• Because they have different elevations, structure contours through A and B cross on
the map but do not intersect in space. We need to locate a second contour with the
same elevation of one of these and there are two choices: locate the 150 m contour for
plane A, or the 200 m contour for plane B.



3.8 Line vectors 67

Construction

1. To find an intersection we need a structure contour on one of the planes with the same
elevation as the other. Our choice is to construct the structural contour on plane B at
the same elevation as the plane at A.

2. With a FL perpendicular to the strike of plane through B, draw the inclined trace of
the plane on the vertical section. Note that this trace must be projected upward, not
downward.

3. On this trace locate a point at a scaled distance of 50 m higher than B, project this
back to the map, and draw in the required structure contour. The intersection of this
200 m contour with the 200 m through A locates the required point O.

4. Using point O, we can then find the attitude of the line of intersection with the
construction of Fig. 3.9 or Fig. 3.10.

Figure 3.11 Line of
intersection when points have
different elevations.

O

A
2030

B

50
 m

200 m
  contour

20
0 m

  c
on

tou
r

15
0 m

  c
on

tou
r

30

3.8 Line vectors

Just as we have represented the orientation of planes with two-dimensional vectors so
too can we represent lines by such vectors (see §1.8). The direction of these vectors is
established by trend of the line and the length is equal to tan p. We can then obtain the
orientation and length of the intersection vector I from dip vectors representing the two
intersecting planes.

Problem

• From dip vectors D1(36/070) and D2(20/312) determine the intersection vector I.

Construction

1. Draw the dip vectors from a common point O with lengths tan δ1 = 0.726 54 and
tan δ2 = 0.363 97 using a convenient scale (Fig. 3.12).
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2. Draw a line connecting the end points of these two vectors.
3. The intersection vector I is established by drawing the perpendicular from O to this

line. This gives its trend; its length is tan p.

Figure 3.12 Intersection vector
from two dip vectors.
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Answer

• The measured length of I is tan p = 0.25, hence p = 14◦ and its measured trend is
000.

From this vector method we may also obtain an analytical solution (Fig. 3.13). From
the dot product of each of the two dip vectors D1 and D2 with the unit vector û in the
direction of the unknown intersection vector I we have

D1 · û = D2 · û.

Using the form of the dot product from Eq. 1.9 gives

tan δ1 cos φ1 = tan δ2 cos φ2

where φ1 and φ2 are the angles each dip vector makes with û. Labeling the angle between
D1 and D2 φ, then φ = φ1 + φ2, and we have

φ2 = (φ − φ1).

Substituting this and using the identity for the cosine of the difference of two angles

cos(φ − φ1) = cos φ cos φ1 + sin φ sin φ1,

we obtain

tan δ1 cos φ1 = tan δ2(cos φ cos φ1 + sin φ sin φ1).

Rearranging then yields the expression for the trend of the line measured from D1

tan φ1 = tan δ1

tan δ2 sin φ
− 1

tan φ
. (3.6)
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The angle of plunge can then be obtained by recasting Eq. 1.11 into a more useful
form. Substituting β = 90◦ − φ and α = p we obtain

tan p = tan δ1 cos φ1. (3.7)

Using the values from the previous problem δ1 = 36◦ and δ2 = 20◦ and φ = 118◦ in
Eq. 3.6 gives φ1 = 70.2974◦. Using this, Eq. 3.7 gives p = 13.7633◦. These results are
essentially the same as found graphically in Figs. 3.9 and 3.12.

Figure 3.13 Analytical solution
of the line of intersection.
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3.9 Accuracy of trend determinations

As with dip and strike, the angles of plunge and trend can not be measured without error,
and as before, situations where small measurement errors may become magnified are of
special concern.

In measuring the trend of a line on a structural plane it is common practice to align
the compass in the direction of the horizontal projection of the line. As a result of an
inevitable operator error, the measured trend as given by the angle β ′ will differ from the
true trend given by the angle β. We seek an expression for the maximum trend error εT ,

εT = |β − β ′|, (3.8)

in terms of the angle εO which the measured line makes with the true line as measured in
the inclined plane which results from the maximum operator error. That is, we compare
the true trend of a line as given by β with β ′ found from the pitch angle (r ± εO) on the
same plane, where r is the true pitch angle.

There are two cases depending on whether the measured trend is on the down-dip
(β ′ > β) or on the up-dip (β ′ < β) side of the line. The results are show graphically in
Fig. 3.14.

1. If β ′ > β, to find an expression for this error we use Eq. 3.4, giving

tan β = tan r cos δ and tan β ′ = tan(r + εO) cos δ.
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Figure 3.14 Maximum trend error as a function of pitch and dip for εO = 3◦.

Substituting these into the equation for the tangent of the difference of two angles

tan(β ′ − β) = tan β ′ − tan β

1 + tan β tan β ′ ,

we have (after Woodcock, 1976, p. 352)

tan εT = [tan(r + εO) − tan r] cos δ

1 + [tan(r + εO) tan r] cos2 δ
. (3.9)

The graph of this equation for εO = 3◦ shows that a combination of a steep plane and
a large pitch angle may result in a large trend error.

2. For the case β ′ < β we proceed in a similar way by expressing the maximum trend
error associated with the smaller pitch angle (r − εO). The resulting formula in this
case is

tan εT = [tan r − tan(r − εO)] cos δ

1 + [tan r tan(r − εO)] cos2 δ
(3.10)

and the corresponding graph shows that, other things being equal, the maximum
trend error in this case is less. This means that repeated measurements will not be
symmetrically distributed about the true trend.

To avoid such errors it is advisable to measure the pitch of the line in the dipping plane
directly and then determine its attitude either graphically or with the aid of Eq. 3.4.

A second type of error magnification occurs in determining the attitude of the line of
intersection of two planes. Because the dip and strike measurements of both planes are
subject to their own errors, the derived attitude of the line of intersection will also be
in error and this error may be large if the angle between the two planes is small. This
problem is treated in detail in Chapter 5.
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3.10 Exercises

1. Determine the attitude of the line of intersection of the two planes A (N 66 E, 50 S)
and B (N 22 W, 40 W). What is the pitch of this line in plane B?

2. Plane A is a narrow shear zone and plane B is the top of a mineralized limestone
bed. The locations of their outcrops are shown on the map of Fig. 3.15 and their
elevations are hA = 770 m and hB = 710 m. Where in Boulder Creek would a drill
hole encounter the vein system, and what would its depth be?

Figure 3.15 Vein in Boulder Creek.
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Planes and topography

4.1 Exposures on horizontal surfaces

In Chapter 2 the simplest examples of the determination of thickness assumed that the
earth’s surface was a horizontal, geometrically perfect plane. The intersection of inclined
layers with this surface results in an outcrop pattern. Represented in map view this pattern
is a simple geological map.

In this case the width of the outcrop bands depends on two factors: the actual thickness
of the layers and the angle of dip of each layer. The separate effect of each of these factors
is shown in Fig. 4.1. In essence, these same relationships also apply to less-than-perfect
real horizontal topographic surfaces.

(a) (b)

Figure 4.1 Outcrop width: (a) varies with thickness; (b) varies with dip.

In the special case of a vertical layer, the outcrop width in map view is equal to the
thickness of the layer. This unique relationship results from the fact that the map shows
such a layer in edge view, that is, a line of sight in viewing the map coincides with a
line which is parallel to the vertical layer. In estimating thickness of tabular objects, one
instinctively seeks just such a view.

In the more general case of an inclined layer, one line of sight is always identifiable
on a geological map; it is in the dip direction. For inclined layers an auxiliary view
perpendicular to this line could easily be constructed that would show the layers in edge
view and therefore in true thickness (Fig. 4.2a).

However, it is unnecessary to make this construction because the same information
can be obtained directly from the map itself. Simply rotate the geological map so that

72
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the dip direction is “north” and then view the map pattern along a line of sight inclined
to the plane of the map at the dip angle. In this view the outcrop width, which is always
greater than the thickness, is foreshortened by just the right amount to appear as true
thickness (Fig. 4.2b). In adopting this oblique, down-dip view of the map it may help
to reduce your depth perception by closing one eye. Clearly, this method of viewing the
outcrop bands of inclined layers is limited to cases involving significant dip angles, for
it is physically impossible to view horizontal strata in edge view along any line of sight
of a map.
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Figure 4.2 True thickness: (a) plane normal to dip line; (b) down-dip view.

This principle is used in reverse for traffic signs painted on streets. By purposely dis-
torting the letters as viewed vertically (map view) the foreshortening which accompanies
the driver’s oblique view of the road surface exactly compensates for the distortion and
the warnings appear in normal proportions and are perfectly readable (see Fig. 4.3).STOP
Figure 4.3 View from the left along a line inclined to the page.

In effect, twisting such simple geological maps so that the inclined strata are viewed in
the down-dip direction restores the sedimentary beds to their original horizontal attitude.
Contacts on the map then cease to be just lines separating stratigraphic units on the earth’s
surface; they can be seen to come to life as the depositional and erosional surfaces which
they once were. A map viewed down-dip represents a kind of cross section, such as might
be seen in the walls of the Grand Canyon. As such, the important dimension of sequence
of deposition in time is added to the map. Unconformities become buried landscapes,
and this view facilitates comparisons with the present earth’s surface and the erosional
processes responsible for its form. Certainly the possibility of completely overturned
beds should be recognized, especially in areas of complex structure. In such cases, the
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down-dip view yields a picture of the strata which is upside-down, but such a view may
actually help the interpretation of overturning if other obvious evidence is lacking.

4.2 Effect of topography

In areas of sloping terrain, additional factors are involved in determining the character
of outcrop patterns, and these include topographic slope angle and direction relative to
the attitude of the strata, and variations in slope angle and direction. In other words,
in addition to thickness and dip, the map pattern also depends on the details of the
topography. The relationships between dip and topography have been formalized into a
series of statements, collectively called the Rule of Vs, by which the direction of dip can
be estimated directly from the outcrop patterns. Wherever the trace of a plane crosses a
valley, the resulting pattern is characteristic of the attitude of the plane. There are several
distinct types of patterns.

1. Horizontal planes: Topographic contour lines can be thought of as the surface traces
of imaginary horizontal planes. The outcrop traces of real horizontal planes there-
fore exactly follow the topographic contours. Such patterns are completely controlled
by the topography; the outcrop trace faithfully reflects the local contour lines in
every detail. Therefore, the outcrop pattern Vs upstream, just as the contour lines do
(Fig. 4.4a).

2. Planes inclined upstream: As the attitude departs from the horizontal, with the dip
direction in the upstream direction, the pattern made by the traces of the structural
planes is progressively modified into a blunter V, still pointing upstream (Fig. 4.4b).
With steepening dip, the outcrop pattern is an increasingly subdued reflection of
topographic detail.

3. Vertical planes: In the special case of a 90◦ dip, the outcrop traces are straight and
parallel to the strike direction, regardless of topographic detail. There is no V at all,
and thus no control on the pattern by the topography (Fig. 4.4c).

4. Planes inclined downstream: There are two general cases and one special boundary
case.
(a) With dip greater than valley gradient, the pattern Vs downstream (Fig. 4.5a).
(b) If the dip angle and valley gradient are exactly equal, the outcrop trace will not

cross the valley axis, and there is no V (Fig. 4.5b). However, streams generally
steepen headward and a continuous planar structure will therefore cross some-
where upstream.

(c) If the dip is less than the valley gradient, but still in a downstream direction, the
pattern will V upstream (Fig. 4.5c).

As stated, these rules assume that the strike direction is at a right angle to the valley
axis. The result is that the V patterns are approximately symmetrical. With other strike
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(a) (b) (c)

Figure 4.4 Rule of Vs: (a) horizontal layer; (b) layer dipping upstream; (c) vertical layer.

(a) (b) (c)

Figure 4.5 Rule of Vs: (a) layer dipping downstream; (b) layer and valley axis with equal slopes; (c) layer
dipping downstream at an angle less than valley gradient.

directions, asymmetrical Vs are produced, but in essence the rule still applies. In the
limiting case when the valley and strike are parallel there is no V at all.

There is a simple, easily remembered statement which summarizes all these relation-
ships: the V of the outcrop trace points in the direction in which the formation underlies
the stream (Screven, 1963).

Better yet, however, is to visualize the geometrical relationship between the structural
planes and topography in three dimensions. In an area of topographic relief the outcrop
pattern of uniformly dipping beds is irregular, yet if these same beds were viewed from
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an airplane in an oblique, down-dip direction, they would appear in edge view (the block
diagram of Fig. 4.4b is very nearly in this orientation). The irregularities due to the
topography are then eliminated and the traces of the inclined planes are straight; true
thickness appears directly. This same relation would, of course, hold true for a scaled
topographic relief model with the outcrop pattern included. By perceiving the earth’s
surface depicted by the topographic contour lines on the map as a relief model, the
mind’s eye can accommodate the influence of the topography of the outcrop pattern.
This technique takes some effort to learn and practice is the key. Once the ability is
attained, however, it is an enormously powerful aid in map interpretation, for even in
areas of considerable and varied relief, and therefore of highly irregular map patterns,
the structure can be viewed on the map in a down-dip direction with a great conceptual
simplification.

4.3 Dip and strike from a geological map

In previous examples we treated the attitude of inclined planes in semi-quantitative terms
only. However, the actual dip and strike can be found if the spatial locations of three
points on the plane are known. In the simplest case, two of the points with the same
elevation can often be recognized.

Problem

• In Fig. 4.6, the trace of the lower bounding plane of the inclined layer cuts the topo-
graphic contours at points A, B and C with elevations hA = hB = 620 m and hC =
610 m. What are the dip and strike?

Solution

1. Draw line AB connecting the two points of equal elevation. This is, by definition, a
line of strike.

2. Draw a perpendicular line from AB to point C. This is the true dip direction. The true
dip angle is measured in the vertical section containing this line.

3. Draw a line parallel to this dip direction as a horizontal FL. Extend the strike line AB
and draw a second strike line through C to intersect this FL.

4. These two points on FL represent the map locations of the line AB and the point C.

5. At a vertical distance below the map point C of �h = hA − hC = 10 m plot the
actual outcrop point C using the map scale. The inclined line of dip can be drawn and
the dip angle measured.

Answer

• The attitude of the true dip is D(15/270).
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Figure 4.6 Dip and strike from the outcrop pattern.

The dip angle can also be found from the map distance D from the strike line AB to C

and the vertical distance �h using

tan δ = �h/D. (4.1)

Either graphically or analytically, choosing as widely spaced points as possible improves
accuracy.

4.4 Linear interpolation

More generally, the three points will have different elevations. We then need a way of
locating a point with specified elevation lying on a line between two known ends. This
involves linear interpolation and there are two complementary graphical approaches.
The first uses previously established methods, while the second is simpler.

Problem

• Points O and A have elevations hO = 296 m and hA = 178 m. Map distance DOA =
300 m. Locate point B on OA with elevation hB = 225 m (Fig. 4.7a).
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Construction I

1. With horizontal line OA as FL, construct a section showing a vertical line directly
below surface point A (Fig. 4.7a). Using the map scale locate two points on this line:
(a) Point X at a depth �hA = (hO − hA) = (296 − 178) = 118 m.
(b) A point at an intermediate depth �hB = (hO − hB) = (296 − 225) = 71 m.

2. Draw line OX to represent the inclination of the line between map points O and A.

3. A horizontal line from the intermediate point intersects this inclined line OX at Y .

4. ProjectY vertically back to OA to locate pointB on the map with the required elevation.

This construction is based on the fact that right triangles OAX and OBY are similar
and a property of such triangles is that the lengths of corresponding pairs of sides have
the same ratios – as Y divides AX in the ratio �hB/�hA = 71/118, so too B divides
OA in this same ratio.

O B

Y

X

A FL O B A

X

Y118 m(a) (b)

71 m 71 

118 

α

α

100 m

Figure 4.7 Linear interpolation: (a) folding line; (b) scaled line.

In practice two problems arise with this construction. First, the map scale may be such
that the depths to X and Y are difficult to plot accurately. Second, if the angle of dip,
true or apparent, is small, locating point Y commonly involves a small angle intersection
which is subject to a large error. An alternative method minimizes both these difficulties.

Construction II

1. At a convenient but arbitrary angle draw a line from O oblique to the map line OA
(Fig. 4.7b). The exact angle does not matter, but it should generally be modest (neither
very small nor very large).

2. Locate two point on this line:

(a) Point X at a distance of �hA = 296 − 178 = 118 units.
(b) Point Y at a distance of �hB = 296 − 225 = 71 units.

3. Choose an arbitrary scale so that distance OX is roughly equal to OA. With a millimeter
or engineers triangular scale this is easily accomplished. Using this scale plot point
X at a distance of 118 units and point Y at a distance of 71 units.

4. Connect points A and X and then draw a parallel line through Y to locate point B on
OA. With an appropriately chosen scale the angles at A and X will be approximately
equal and they will be large if α is small.
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In this construction triangles OAX and OBY are similar. Therefore as Y divides OX
in the ratio �hB/�hA = 71/118, so B divides OA in this same ratio.

The location of the intermediate point B on line OA can also be found by calculating the
distance DOB knowing the distance DOA. In Fig. 4.7a OBY and OAX are right-triangles
and therefore

�hB

�hA

= DOB

DOA

or DOB = DOA

[
�hB

�hA

]
. (4.2)

In the example problem, distance DOY divides DOX in the ratio �hB/�hA = 71/118,
then B also divides OA in this same ratio. That is

DOB = 300(71/118) = 181 m,

and we can then locate point B on map line OA using the map scale.
There are two situations where such an analytical solution is useful. First, if the loca-

tions of points O and A have been determined using modern electronic surveying tech-
niques and therefore are very accurately known and a similar accuracy for the location
of point B is required, then the graphical methods are probably inappropriate.

Second, if several related interpolation problems have to be solved routinely then even
if great accuracy is not needed an answer can be obtained quickly with a calculator.

B

Y
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A

X

(a) (b)

A

X

Figure 4.8 Simple methods of drawing parallel lines.

4.5 Parallel lines

In several constructions we need to accurately draw parallel lines. Using a protractor to
measure the orientation of the first line AX and then plotting the second line BY using
this measured angle is not satisfactory because small errors are inevitable and the lines
will not be exactly parallel. There are several alternative ways of drawing such lines
more accurately.

1. The easiest way is to use a drafting machine.
2. A T-square and an adjustable triangle on a drafting board is almost as effective.
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3. A specialized drafting tool called a parallel glider (essentially a straight edge attached
to a pair of small wheels) can also be used. This device has the advantage of portability.

4. There are simple, serviceable alternatives.
(a) Using two identical triangles, place the side of one triangle along the line AX.

With the second triangle in contact along their hypotenuses slide this triangle and
draw the parallel line BY (Fig. 4.8a).

(b) Using a triangle and a straight edge, place one side of the triangle along the line
AX. Then place a straight edge along the base of the triangle, and shift it along
this base and draw the required parallel line BY (Fig. 4.8b).

4.6 Three-point problem

With the accurate location of such an intermediate point with known elevation established
by linear interpolation on a line with known end points, we are now prepared to determine
the strike and dip of a plane from three general points whose map locations and elevations
are known.

Figure 4.9 Strike and dip from
three points on a plane.
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Problem

• From the map location of points O, A and B on a plane and their elevations hO =
296 m, hA = 178 m and hB = 225 m, determine the attitude of the plane (Fig. 4.9).

Construction

1. Label the highest point O which serves as a local origin, the lowest point A and the
intermediate point B. Draw line OA.

2. Locate point B ′ with elevation hB = 296 m between points O and A by linear
interpolation (as in Fig. 4.7). Line BB ′ is then a line of strike.

3. From O a perpendicular line intersects BB ′ at point C. Line OC is then the dip
direction. As in Fig. 4.5 a vertical section parallel to this direction can be constructed
giving the dip of the plane, or Eq. 4.1 can be used to calculate it.



4.6 Three-point problem 81

Answer

• The attitude of the plane is N 50 W, 26 N.

The three-point problem may also be viewed as an exercise in finding the true dip and
strike from two apparent dips. First, the inclinations in directions OA and OB are found
from the map distances DOA and DOB and elevation differences �hA and �hB either
by the graphical construction of Figs. 1.11 or 1.12 or with

αA = arctan(�hA/DOA) and αB = arctan(�hB/DOB). (4.3)

In the example problem

αA = arctan(118/300) = 21.5◦ and αB = arctan(71/150) = 25.3◦.

If, as in this case, the distances are measured to the nearest meter, then the tenths of a
degree are significant. The dip and strike can then be found with the constructions of
Figs. 1.12, 1.13 or 1.15, or they may be calculated using Eqs. 1.10 and 1.11.

Figure 4.10 Elevation of a
fourth point on the plane.
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A closely related problem is to determine the elevation of a fourth point on the plane
with known dip and strike from its map location.

Problem

• What is the elevation of point E on the plane, where DOE = 250 m on a line bearing
N 65 E (Fig. 4.10)?

Construction

1. From the known dip of the plane, determine the apparent dip in the direction OE
graphically or with Eq. 1.5 or 1.8. The result is αE = 23.5◦.

2. With the apparent dip αE in the direction OE, the elevation difference between O and
E can be found graphically or computed from

�hOE = DOE tan αE. (4.4)
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With DOE = 250 m, then �hOE = 109 m.
3. The elevation of the fourth point E is

hE = hO − �hOE = 296 − 109 = 187 m. (4.5)

The three-point and related problems can also be solved analytically. As in the case of
interpolation these may be used when greater accuracy is required or a number of similar
problems have to be solved quickly. These are treated in some detail in §7.8.

4.7 Structure contours

In some applications we need to depict an inclined plane on a map with structure contours
(see §3.7), that is, by a series of parallel lines of equal elevation drawn on its surface at
a fixed interval, each line representing a specified vertical distance from an established
datum. To draw these contours a series of points must be interpolated corresponding to
multiples of the contour interval. Again there are two ways of constructing such structure
contours, corresponding to the two methods of graphic interpolation.

Problem

• Represent the inclined plane of Fig. 4.9 by structure contours with a contour interval
of 20 m.

Construction I

1. As in Fig. 4.7a, construct a section with the horizontal line OA as FL and along the
vertical line AX plot a series of points with elevations 280–160 m at intervals of 20 m
using the map scale. Note that horizontal line OA has an elevation of 296 m so that
the 280 m contour is just 16 m below it (Fig. 4.11a).

2. From these points draw a series of horizontal lines to intersect the inclined line OX.
3. Project these points back to OA to intersect it at 90◦.
4. From these points add the structure contours parallel to the known strike direction.

In some cases structure contours may be required on both top and bottom of an inclined
layer. Given that the contours of Fig. 4.11a represent the bottom of such a layer, we now
require contours on its upper bounding plane (Fig. 4.11b). The construction proceeds
exactly as before, except now the inclined line representing the top is used instead.

This method suffers from the same problems noted in Fig. 4.7a, and the use of the scaled
line avoids small angle intersections. It also requires fewer steps. Further, contours above
or below the two known points can also be easily established by linear extrapolation.
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Figure 4.11 Structure contours: (a) the scaled line; (b) structure contours.

Construction II

1. Draw a line at a convenient angle through point O, and locate point X on this line at
a distance DOX = hO − hX = 118 units using a convenient scale (Fig. 4.12a).

2. As before locate a series of points along this line corresponding to the actual contour
values. It is possible to start measuring from point O, but a useful strategy is to
shift the scale so point O matches its elevation on the scale. In this example hO =
296, so the scale is shifted 4 units to the left. Then all points at 20 unit increments
can be easily marked. It is also easy to include contours beyond the end points O

and A.
3. Project these points back to QA parallel to the line AX.
4. Then, as before, draw the contours parallel to the known strike.

Instead of locating these contours graphically, it may be easier and faster, especially
for small dip angles, to calculate the map spacing �DCI between the contours along a
line of true or apparent dip using

DI = �hI/ tan δ or DI = �hI/ tan α, (4.6)

where �hI is the contour interval. One way of using this result is to set a pair of dividers
to this calculated distance and to step off a series of points along a line in the true or



84 Planes and topography

O
300

280

260

240

220

200

180

300 220 200240 220280 180 160

O

A

0 80 10040 6020 120 140

(a)

(b)

X

160

118

0 80 10040 6020 120 140

Figure 4.12 Structure contours: (a) contours on lower surface; (b) contours on upper surface.

apparent dip direction. However, a small error in the original setting will be compounded
as the number of contours increases. For example, if the setting has a 1% error, the tenth
contour will be 10% in error. A better way is to determine multiples of �DCI and plot
these distances without moving the scale. There will inevitably be small plotting errors
associated with each of these points but these errors will be independent.

4.8 Predicting outcrop patterns

We may also reverse the processes of determining the attitude of a plane from known
points and construct the outcrop trace of an inclined plane from its attitude at a single
point. The earth’s surface is represented on a map by topographic contours. As we have
seen, structural surfaces can be similarly represented by structural contours. If both are
represented by contours with the same interval and datum, points of intersection of
corresponding contour lines represent points common to the topographic and structure
contours, that is, outcrop points of the structural plane.

The technique for accomplishing this is illustrated with the block diagram (Fig. 4.13).
Knowing the attitude of the structural plane at a single point O, a vertical section per-
pendicular to the strike direction is established and topographic contours are added to
this section. Starting at the known point on this section, the trace of the dipping plane is
then drawn. The intersection of this inclined line and the topographic contours fixes the
locations of each structural contour (Points 1, 2, 3, 4).



4.8 Predicting outcrop patterns 85

Projecting these contours in the strike direction then locates points of intersection
with the topographic contours on the earth’s surface. The outcrop trace is completed by
connecting these points. Note that not all of the structure contours are used; the contour
associated with Point 4 remains totally underground. In other cases, the contours may be
completely in the air.

1
2

3
4

δ

Figure 4.13 Geometrical basis for predicting the outcrop trace of an inclined plane.

Problem

• Given a topographic map and a single outcrop point Z on a structural plane whose dip
is 20◦ due north, construct the outcrop trace of the plane in the map area.

ZZ

Figure 4.14 Outcrop pattern of an inclined plane exposed at point Z (SE corner of map).
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Construction

1. As in Fig. 4.12 construct a series of structure contours representing the inclined plane
on the section showing the true dip angle. The contour interval must be the same as
on the topographic map, that is 10 m, and the 1260 m structure contour must pass
through known point Z (Fig. 4.14).

2. Each intersection of a structure contour with its matching topographic contour is an
outcrop point, and these should be marked distinctly. An easy way to avoid mismatch-
ing these contours is to start at the known point, drop down one structure contour
and one topographic contour and mark the point. Repeat this until you run out of
topographic contours and then reverse the direction and move up one contour at a
time. Continue this up and down process until all points have been marked.

3. Complete the outcrop trace of the plane by joining successive outcrop points. This
line must cross at and only at these marked points. If the contour spacing is wide, the
outcrop trace can usually be sketched across the gap by visual interpolation.

Drawing the outcrop trace should be something more than an exercise in connecting
points, as in a child’s work book; they should certainly not be straight lines. Especially at
breaks in slopes, in valley bottoms and on ridge crests it may be necessary to interpolate
intermediate structure and the topographic contours, at least mentally, in order to achieve
the desired sensitivity to the effects of topography on the outcrop pattern.

If both the upper and lower bounding planes of a layer are to be shown it is a simple
matter to add the second boundary to the section using the thickness of the layer, then
construct a second set of structure contours and repeat the procedure for the outcrop trace
of this other boundary.

(a) (b)

Figure 4.15
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4.9 Exercises

1. Determine the attitude of the mapped unit of Fig. 4.15a. With this result view the map
in a down-dip direction and, in combination with a visualization of the topography,
try to see the unit as a layer in edge view. The topography of Fig. 4.15b is identical.
With your visualization of the first map as a reference, now try to look down the dip
of this layer, and estimate its different attitude and thickness. Check your results.

2. With the following information and the topographic map of Fig. 4.16, construct a
geological map. The base of a 100 m thick sandstone unit of lower Triassic age is
exposed at point A; its attitude is N 70 W, 25 S. Point B is on the east boundary of
a 50 m thick, vertical diabase dike of Jurassic age; its trend is N 20 E. At point C,
the base of a horizontal Cretaceous sequence is exposed and at point D the base of a
conformable sequence of Tertiary rocks is present.

Figure 4.16
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Stereographic projection

5.1 Introduction

For any problem involving distances an orthographic construction is always required.
For purely angular relationships, however, there is an alternative approach which is both
quick and efficient. It also provides a means of solving more advanced problems which
would otherwise be quite difficult.

Given an inclined plane containing a line (Fig. 5.1a), imagine a sphere of unit radius
centered at a point O on the outcrop trace of an inclined structural plane containing
a structural line (Fig. 5.1b). This plane passes through the center and therefore con-
tains a diameter of the sphere and every such diametral plane intersects the sphere as a
great circle. The line in this plane intersects the sphere as a point on this circle. This is
called the spherical projection of the plane and line. We now require a way of reducing
this three-dimensional representation to two dimensions. The choice is dictated by the
desire to preserve angles and this is best accomplished with the method of stereographic
projection.1 It is treated in most introductory structural geology texts. The books by
Phillips (1971) and Lisle and Leyshon (2004) are particularly useful.

5.2 Stereogram

The geometrical basis of this method involves the projection of a point on the sphere to the
horizontal diametral plane. Consider the structural line whose attitude is 30/090. On the
east-trending vertical diametral plane of the sphere the line is represented by the radius
OP with plunge p = 30◦ (Fig. 5.2a). Its spherical projection on the lower hemisphere
is the point P and this is then projected to point L on the horizontal diameter using the
zenith point Z. Point L then represents the inclined line in stereographic projection. We

1This method of projection was already known to Hipparchus of Nicaea [c. 190–220 BC], the great Greek astronomer of
antiquity.

88
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Figure 5.1 Structural plane and line: (a) outcrop; (b) unit sphere.

can obtain an expression for the location of this point on the horizontal diametral plane
(Fig. 5.2b). If the line OP makes angle θ = 90◦ − p with the vertical, then the line ZP
makes angle 1

2θ with the same vertical.2 Then the radial distance OL is

r = tan 1
2θ = tan 1

2(90 − p). (5.1)
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Figure 5.2 Inclined line: (a) vertical section; (b) stereogram.

As this result shows we may now easily construct a view of the horizontal projection
plane depicting the line as a point. This representation plotted inside the horizontal great
circle, called the primitive, together with one or more of the cardinal compass directions
constitutes a stereogram (Fig. 5.2b).

In this same way we may also easily represent a family of lines on a single structural
plane as a series of points (Fig. 5.3a). These fall on a circular arc which represents a great
circle on the sphere. An important property of the stereographic projection is that great
circles on the sphere project as circles on the stereogram.

In a similar way we may represent lines of constant pitch on a series of inclined planes
with common strike (Fig. 5.3b). These points fall on a small circle on the sphere. This
also projects as the arc of a circle whose angular radius is the pitch angle.

2Here and elsewhere we make use of the fact that an inscribed angle is half the central angle when both intercept the same
arc (see §9.7 for details).
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(a) (b)

Figure 5.3 Locus of points: (a) great circle; (b) small circle.

Because both great and small circles on the sphere are represented by circular arcs
in projection it is especially easy to construct these on a stereogram. This permits the
representation of any structural plane or line to be obtained quickly and easily. We now
illustrate the techniques for doing this.

Problem

• Represent the plane dipping δ = 30◦ due east as a great circle on a stereogram.

Construction

1. On a circle of unit radius representing the vertical east-west diametral plane draw
the radius OP representing the trace of the dipping plane inclined to the horizontal
diameter at δ = 30◦ (Fig. 5.4a). Projection line PZ crosses the horizontal diameter at
point D which represents the line of true dip on the horizontal projection plane.

2. On a second unit circle representing the horizontal projection plane, the required great
circle must pass through D and points on the primitive representing both ends of the
horizontal strike lines on the primitive (Fig. 5.4b). To locate its geometrical center
C on the diameter through OD, draw a line from north making an angle δ with the
north-south diameter and with a compass complete the circular arc with CD as radius.

(a)

Z
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P

(b)

N

DOD
Cδ

δ

Figure 5.4 Great circle construction: (a) inclined plane; (b) stereogram.
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From this figure the expression for the radial distance r = OC is given by

r = tan δ. (5.2)

In the special boundary case of δ = 45◦ the center lies on the primitive. If δ < 45◦ the
center is inside the primitive and if δ > 45◦ it is outside.

Problem

• Represent the locus of lines of constant pitch ρ = 30◦ on a series of planes of variable
dips which strike due east.

Construction

1. On a unit circle representing the vertical diametral plane draw the radius OP represent-
ing the trace of the line at pitch angle ρ = 30◦ and intersecting the lower hemisphere
at P (Fig. 5.5a). Line ZP intersects the horizontal projection plane at L.

2. On a second unit circle representing the horizontal projection plane locate the trend
points T1 and T2 on the primitive at horizontal angles ρ = 30◦ on both sides of the
east point (Fig. 5.5b).

3. The small circle passes through points T1, T2 and L. To locate its geometrical center
C draw a line through either T1 or T2 tangent to the primitive circle to intersect the
extended radius through OL. With a compass complete the circular arc with CL as
radius.

From this figure the radial distance r = OC is given by

r = 1/ cos ρ. (5.3)
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Figure 5.5 Small circle construction: (a) vertical section; (b) stereogram.

In both of these constructions separate vertical and horizontal diametral circles were
used in order to make the steps clearer. In practice, however, the entire construction
may be completed quickly and efficiently on just one such circle. With their common
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diameter as a folding line, a single circle is first viewed as a vertical section and then as
the horizontal projection plane.

In all of these constructions only the lower hemisphere is used in order to maintain
the correspondence between the representation of lines and planes and the previously
established convention for giving their trend as the direction of downward inclination.
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Figure 5.6 Opposite of a line: (a) upper hemisphere; (b) lower hemisphere.

There are, however, some situations where the upper hemisphere must also be used. In
Fig. 5.6a, the inclined radius OP is extended upward to intersect the upper hemisphere
at P ′, the opposite of P . As before we project P ′ to the projection plane using point Z.
This locates point L′, the opposite of L, outside the primitive and this is the required
representation of P ′. Note that because PP ′ is a diameter of the circle ∠PZP ′ = 90◦.
The radial distance OL′ is given by

r ′ = tan(90◦ − 1
2θ) = 1/ tan 1

2θ. (5.4)

As the angle of inclination of radius OP approaches 90◦, the distance OL′ approaches
infinity. An alternative may then be used. This time we locate the projection of upper
hemisphere point P ′ using the nadir point Z′, which is the opposite of Z (Fig. 5.6b). Note
that L′ now lies within the primitive and is symmetrical with L. With this second method
it is essential to clearly label the upper hemisphere point L′ in some special way to avoid
confusion with points actually in the lower hemisphere. This is a particularly useful
approach because the point L′ can be treated and manipulated in a manner similar to L.

5.3 Stereonet

By constructing families of great and small circles we have the equatorial stereographic
net (Fig. 5.7). This is also referred to as the Wulff net3 or by the descriptive phrase
equal-angle net, but more commonly it is simply called the stereonet.

3Named after the Russian mineralogist G.V. Wulff who first used it for these purposes in 1902.
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It is useful to think of each great circle as a protractor. The primitive is a full-circular
protractor with a range of trends expressed as azimuths from 0 to 360◦ measured clock-
wise. The great-circular arcs within the primitive are viewed as inclined semi-circular
protractors and the small circle intersections are the gradations on these. There are two
great circles which appear as mutually perpendicular diameters of the primitive.

1. One trends toward 0◦ (or 180◦) and represents the great circle trace of a diametral
vertical plane.

2. The other trends toward 90◦ (or 270◦) and represents the special case of a small circle
whose angular radius is 90◦.

We will call these the principal diameters and one of them is used in almost all construc-
tions. We will carefully identify which diameter and which end to use by its azimuth.

In practice the net is drawn large enough to be accurate and small enough to be portable.
This is easily accomplished by multiplying the radial distances given in Eqs. 5.2 and 5.3
by the desired radius of the net. A net with a radius of 7.5 cm with great and small circles
drawn every 2◦ meets these requirement.4

The printed net is a great aid in many constructions and greatest benefit is gained if
one is always at hand. This is easily accomplished if the printed form is permanently
mounted on a rigid backing and its surface protected with a sheet of clear plastic. In use
structural data are plotted and problems solved on an overlay sheet of tracing paper. This
overlay is affixed to the net by a single pin placed exactly at its center in order to allow
the sheet to revolve freely. A small piece of clear plastic tape on the back of the tracing
sheet to reinforce the pin hole prevents tearing or enlarging of this pivot point. Once
the overlay sheet is in place, the north point on the primitive is marked N to coincide
with the 0◦ point on the net. This starting point for all constructions is called the home
position. It is also useful to add the primitive circle to the tracing sheet with a compass.

5.4 Plotting techniques

There are two techniques on which everything else is based: plotting lines and plot-
ting planes. Especially when starting out, it is important to view the stereonet as a
hemispherical-shaped bowl and to imagine the great and small circular arcs inscribed
on its inner surface like the lines of latitude and longitude on a globe viewed from the
inside. Structural elements can then be visualized as passing through the center of the
sphere and intersecting its lower surface. Recording the results of this visualization with
a quick sketch is also useful. This sketch makes the plotting easier and also serves as
an important check on the proper location of the plots and on the general correctness of

4A full-scale printed stereonet can be found at the end of the book. It, and other plotting nets, can also be downloaded
from the website www.cambridge.org/ragan.

http://www.cambridge.org/ragan
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Figure 5.7 Equatorial stereographic net.

the various manipulations. To actually plot structural lines and planes on the stereogram
there are two ways of proceeding.

1. Rotate the underlying net while holding the tracing fixed. Although a little awkward,
especially in the field, the important virtue of this method is that the representation
of structural elements on the tracing sheet remains in constant orientation and this is
especially useful for beginners. It also emphasizes the fact that the underlying net is
simply a tool which facilitates plotting and measuring.

2. Alternatively, the underlying net is held fixed and the tracing sheet is rotated. Once
a degree of competence and confidence in the plotting is attained there is not a great
difference between these two methods and one may choose whichever seems most
comfortable. We will illustrate the basic methods of plotting using both techniques.

Problem

• On a stereogram represent the line whose attitude is 30/120.

Visualization

• With the aid of a sketch map showing the attitude of the plunging line (Fig. 5.8a), and
with the stereonet in front of you, hold a pencil over its center with the given attitude
and visualize its intersection with the lower hemisphere in the southeast quadrant.
Make a sketch of this visualization (Fig. 5.8b).

Plotting a line I

1. With the overlay in the home position count off 120◦ clockwise from 0◦ on the net
and make a tick mark on the primitive at this point to represent the trend of the line
and label it T (Fig. 5.9a).
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Figure 5.8 Plunging line: (a) sketch map; (b) sketch stereogram.

2. Revolve the underlying net 30◦ clockwise so that T lies on the 90◦ principal diameter
and count off p = 30◦ inward from the primitive along this radius. Mark this point
and label it L (Fig. 5.9b).

3. Compare your result with the sketch obtained by visualization.
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Figure 5.9 Inclined line I: (a) mark trend; (b) revolve net.

Plotting a line II

1. As before, locate the trend of the line by counting off 120◦ clockwise from 0◦ and
mark this T (Fig. 5.10a).

2. Revolve the overlay 30◦ anticlockwise so that T coincides with the 90◦ principal
diameter and count off p = 30◦ inward from the primitive. Mark this L (Fig. 5.10b).

3. Return to the home position and recheck by visualization (see Fig. 5.9b).

In both of these procedures the graduations along the 90◦ principal diameter were used
for the plunge angle. However, either end of any principal diameter could just as easily
have been used. Assure yourself that this is so by revolving L to any other principal
diameter and checking that the plunge angle measured there is identical. Thus we see
that there is a choice of plotting positions. This is sometimes a source of confusion for
beginners and it is advisable to follow the listed steps closely until confidence develops.
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Figure 5.10 Inclined line II: (a) mark trend; (b) revolve overlay.

Once the process becomes familiar, however, the use of such alternatives increases the
ease and speed of plotting.

Problem

• Represent the plane whose strike and dip is N 30 E, 40 NW by a great circle on a
stereogram.

Visualization

• With a sketch map showing the attitude of the plane line (Fig. 5.11a) and with the
stereonet in front of you, hold your left hand, palm downward, over the center of the net
with horizontal fingers pointing toward N 30 E and the plane of the hand inclined 40◦
toward the northwest. This plane can be imagined to intersect the lower hemisphere.
Make a sketch of the great circle representation (Fig. 5.11b).

Figure 5.11 Inclined plane: (a)
sketch map; (b) sketch
stereogram.

N

(a)

40

(b)

N
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Plotting a plane I

1. In the home position count off 30◦ clockwise from north and mark this strike direction
S (Fig. 5.12a).

2. Revolve the underlying net so that 0◦ diameter coincides with S, that is, turn the net
clockwise 30◦ (Fig. 5.12b).

3. Count off 40◦ from the primitive inward along the 270◦ diameter of the left side of
the net and mark this point D, representing the line of true dip. Carefully trace in the
arc of the great circle through D. If you are left handed you may find it easier to trace
in this arc by turning the overlay 180◦ and using the curves on the right side of the
net.

4. Compare this result with the sketch (Fig. 5.11b).

90
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S S

90

180

270

(a) (b)

N N

D

Figure 5.12 Inclined plane I: (a) strike mark; (b) revolve net.

Plotting a plane II

1. As before, in the home position count off 30◦ clockwise from north and mark this
strike direction S (Fig. 5.13a).

2. Revolve the overlay 30◦ anticlockwise so that S coincides with 0◦ on the net
(Fig. 5.13b).

3. Count off 40◦ from the primitive on the left side of the net inward along the 90◦
diameter of the net and mark this point D, representing the line of true dip. Carefully
trace in the arc of the great circle through D.

4. Return the overlay to the home position and check the result by visualization (see
Fig. 5.12b).

In common with other methods of projections, the dimensions of elements are
reduced – the hemisphere is reduced to a plane, a plane to a curve and a line to a point.
A further advantage of this projection is that a plane can be plotted as a point which
represents the unique normal, called its pole.
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Figure 5.13 Inclined plane II: (a) strike mark; (b) revolve overlay.

Problem

• Represent the plane whose attitude is N 30 E, 40 W by its pole.

Figure 5.14 Pole: (a) sketch
map; (b) stereogram.N

(a) (b)
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N
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D

Visualization

• With the aid of a sketch map showing the dip and strike of the plane and its pole
(Fig. 5.14a), and with the stereonet in front of you, hold your left hand oriented as
before, but with a pencil between the fingers so that it is perpendicular to the plane
of the hand. The line of the pencil will pierce the lower hemisphere at a point in
the southeast quadrant. This point is 90◦ from the plane. Make a sketch stereogram
(Fig. 5.14b).

Plotting a pole

1. Repeat the construction steps to plot the plane as a great circle (Fig. 5.15).
2. From the line of true dip D count off 90◦ inward from along the same principal and

mark point P . Also mark T on the primitive representing the trend of the pole.
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3. Check the result with your sketch obtained by visualization.

Answer

• Read off the plunge angle inward from the primitive along this same diameter. Return
to the home position and read off the trend T . The attitude of the pole is P(50/120).

Figure 5.15 Pole of a plane.
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Note that we can easily find the great circle representation of a plane from its pole by
reversing this procedure. With P on one of the principal diameters, count off 90◦ in the
opposite direction to locate the dip direction D and then trace in the corresponding great
circle.

5.5 Measuring angles

Each of these plotting techniques also makes clear that we can determine the attitude of a
line, as represented by a point on a stereogram, and the attitude of a plane, as represented
by a great circle, simply by returning them to their plotting positions and reading off the
trends and inclinations.

Further, once the structural elements of a problem have been plotted, then the angles
between these elements can be easily determined on the stereonet. The fundamental basis
is the determination of the angle between two lines.

Problem

• What is the angle θ between the line L1(40/140) and line L2(30/040)?

Method

1. Plot points L1 and L2.
2. Turn the net or overlay so that these points lie on the same great circle (Fig. 5.16a).
3. Count off the angle θ between the points L1 and L2 along this arc.
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Figure 5.16 Angles: (a) between two lines; (b) between line and plane.

Answer

• The angle between L1 and L2 is θ = 78◦.

This method may be extended to the angle between a line and a plane. By definition,
this angle is measured in the plane containing the line which is perpendicular to the given
plane. This is the smallest angle between the given line and any line in the given plane.

Problem

• What is the angle θ between line L(60/100) and plane whose pole is P(50/030)?

Method

1. Plot points L, P and trace in the great circle representing the specified plane.

2. Turn the net or overlay so that L and P lie on the same great circle; this represents
the plane on which θ must be measured. Mark the point of intersection of this circular
arc with the great circle representing the given plane and label it I (Fig. 5.16b).

3. Count off the angle along this arc between L and I .

Answer

• The angle between the line and the plane is θ = 51◦. Note that the angle between L

and P is 90◦ − 51◦ = 39◦ so that this angle may be determined from a plot of the line
and the pole of the plane alone.

Problem

• Determine the angle θ between the two planes whose dip directions are D1(50/070)

and D2(60/290). There are two ways to do this.
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Figure 5.17 Angle between two planes: (a) great circles; (b) poles.

Method I

1. Represent the two planes as great circles and label the point of intersection I

(Fig. 5.17a).
2. Trace in the great circle whose pole is I .
3. Count off θ between the points A1 and A2 where this arc cuts the great circles repre-

senting the two planes.

Method II

1. Represent the planes by their poles P1(40/250) and P2(30/110) (Fig. 5.17b).
2. Turn these two points so they lie on the same great circle and count off the angle

between them.

Answer

• By the first method the angle between the planes is 79◦. By the second method the
angle between the poles is 101◦. Note that 79◦ + 101◦ = 180◦ so that the results
are interchangeable. By convention the dihedral angle is acute so the smaller angle is
reported.

5.6 Attitude problems

With these basic plotting and measuring techniques, problems dealing with the orientation
of lines and planes using orthographic methods in Chapters 1 and 3 can now be solved
simply and directly on the stereonet.

Problem

• What is the apparent dip in the 080 direction on the plane N 40 E, 60 SE, and what it
the pitch of this line?
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Figure 5.18 Line of apparent
dip and its pitch.
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Apparent dip and pitch

1. In the home position, mark the strike S of the plane and the trend T of the apparent
dip direction on the primitive (Fig. 5.18).

2. Revolve either the net or overlay so that S coincides with 0◦ on the net and trace the
great circle representing the plane.

3. Similarly revolve T mark to the 90◦ point of the net and mark the point where the
great circle crosses the east-west diameter and label it A. Read its angle of inclination
by counting inward from the primitive.

4. Return the great circle to the plotting position and read off the pitch angle between S

and A along the arc of the great circle.

Answer

• The angle of apparent dip in this direction is α = 48◦. The pitch angle ρ = 59◦.

Figure 5.19 True dip and strike.
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Problem

• From the apparent dips A1(30/300) and A2(20/010) determine the attitude of the
plane.

True dip and strike

1. Plot the points A1 and A2 representing the two known lines of apparent dip (Fig. 5.19).
2. Revolve the net or overlay so that these two points lie on the same great circle. Trace

in this arc and mark its strike direction S. Without moving the overlay, mark the point
D where this arc crosses the 270◦ diameter. Read the dip angle.

3. Return to the home position and read the angle S makes with N .

Answer

• The strike and dip of the plane is N 47 E, 31 N.

I
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I

P1
P2

Figure 5.20 Line of intersection: (a) great circles; (b) poles.

Problems involving the attitude of the line of intersection of two planes may be solved
in two different ways. The first represents the planes as great circles and the second
represents them by their poles.

Problem

• Given the planes N 30 E, 50 E and N 20 W, 30 W, find the attitude of the line of
intersection.

Intersection I

1. Plot the lines of true dip D1(50/120) and D2(30/250) and through each trace in the
corresponding great circles. Label the point of intersection I (Fig. 5.20a).

2. Read the plunge and trend of I .
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Intersection II

1. Plot the corresponding poles P1(40/300) and P2(60/070) (Fig. 5.20b).
2. Revolve the net or overlay so that these points lie on the same great circle. The pole

of this circle is I .

Answer

• Both constructions give the same attitude I (18/194).

(a) (b)

N N

L

P

Figure 5.21 Polar net: (a) basic graph; (b) plotting points L and P.

5.7 Polar net

There is an alternative to the equatorial net which is advantageous for display purposes
(see also Lisle & Leyshon, 2004, p. 42). The planes represented by the great circles of the
standard net are now vertical. Small circles are concentric about the center (Fig. 5.21a);
their radii are given by Eq. 5.1. Lines and poles can be plotted directly without rotating
the overlay and this makes the plotting of numerous data points more efficient. We will
make special use of this property in later chapters.

Problem

• Plot the line L(20/070) and the pole P(40/330) on the polar net (Fig. 5.21b).

Procedure

1. For L(20/070) count off 70◦ clockwise from north and then 20◦ inward along the
radius with this trend.

2. For P(40/330) count off 330◦ clockwise (or 30◦ anticlockwise) from north, and then
40◦ inward along the radius with this trend.
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5.8 Dip and strike errors

Even on a geometrically perfect inclined plane, an error in placing the compass will result
in a strike error (see §1.4).As a result, repeated measurements of the same plane will show
a scatter which can be depicted by plotting the pole representing each measured attitude.
There is another factor which also contributes to such a scatter – local irregularities on the
plane which cause departures of the attitude from some mean value. Assuming that these
measured poles are symmetrically distributed about this mean and that the probability
of finding a pole of given angular distance from this mean pole decreases with increased
angular distance, a simple expression for the maximum strike error can be obtained.
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Figure 5.22 Maximum strike errors εs : (a) geometry; (b) graph.

Accordingly, the true position of the pole must lie within a small circle whose angular
radius is the maximum operator error εo about the mean pole P . In situations like this, the
angular relations can be obtained from right-spherical triangle OPF shown in Fig. 5.22a.
In this triangle (shown shaded) side OP is equal to the dip δ of the plane, side PF is the
angular radius of the error circle and this is the maximum observer error εo and ∠POF

is the maximum error in the trend of P , which is also the maximum strike error εs . From
this triangle (see details of the derivation in §B.4.4)

sin εs = sin εo/ sin δ. (5.5)

A graph of this equation, first obtained by Pronin (1949; see Vistelius, 1966, p. 51) is
shown in Fig. 5.22b for values of the maximum operator error εo = 1–5◦. Cruden and
Charlesworth (1976) tested this result against field measurements. Making the reasonable
assumption that εo is small, they found that Eq. 5.5 gave better results than the Müller
hypothesis (see Eq. 1.3), and that it can be considered an adequate description of the
data. They also noted that lithology, and presumably the character of the surfaces of
the structural planes, affected the scatter of the dip measurements more than the strike
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measurements. They also found that for 10 measurements, at 95% confidence, the values
of the total error in measuring a bedding pole ranged from ±3.4◦ to ±9.5◦.

5.9 Intersection errors

Because errors are inevitable when determining the attitude of planes in the field, it
follows that when two measured planes intersect the attitude determined for the line of
intersection will also be in error. The basic construction of an intersection is illustrated
in Fig. 5.23a. With perfect measurements of the orientations of the poles A and B of the
two planes, the constructed point of intersection would be located at I .

However, because of measurement errors, each of these poles lies within a small circle
whose angular radius is the maximum observer error εo. Correspondingly, we know only
that the line of intersection lies somewhere in the vicinity of the constructed point I .
We now wish to find an expression for the maximum trend error εt associated with this
location.
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Figure 5.23 Intersection errors: (a) geometry; (b) graph.

There are four limiting cases involving these two error circles and these are represented
by the four great circles tangent to the two small error circles; these are labeled Planes 1,
2, 3 and 4. The poles of each of these planes P1, P2, P3 and P4 bound a diamond-shaped
area within which the line of intersection actually lies and we wish to determine its size.
To do this, we construct two right-spherical triangles at the common point B (shaded in
Fig. 5.23a). For the angle B1 (the angle at B in Triangle 1 with a 90◦ angle) and angle B2

(the angle at B in Triangle 2 with a 90◦ side). From spherical trigonometry (see details
of the derivation in §B.4.5)

cos B1 = tan εo/ tan 1
2d and cos B2 = cos εt/ cos εo,
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where d is the angle between A and B. Because B1 + B2 = 90◦, then cos B2 = sin B1

and we can eliminate B2 from the second equation. Then squaring each and summing
the two equations and using the identity sin2x + cos2x = 1 we have

tan2εo

tan2 1
2d

+ cos2εt

cos2εo

= 1,

or after rearranging

cos2 εt = cos2εo − (cosεo tanεo)
2

tan2 1
2d

.

Substituting the identities sin x = cos x tan x and cos2x = 1 − sin2x, this becomes

sin2εt = sin2εo

(
1 + 1

tan2 1
2d

)
.

Finally, with the identities 1/ tan x = cot x and 1 + cot2x = 1/ sin2x, and taking the
square root we have

sin εt = sin εo/ sin 1
2d. (5.6)

A graph of this equation is given in Fig. 5.23b for values of εo = 1–5◦ (see also
Ramsay, 1967, p. 14). As can be seen the maximum trend error may be large for small
dihedral angles. A common situation where this is a problem is the intersection of two
gently dipping planes and a special effort is required to determine the attitudes of the
planes as accurately as possible, perhaps with surveying instruments.

5.10 Exercises

1. Construct a stereogram with a radius of 7.5 cm showing the 45◦ small and great circles.
Compare your result with a printed net.

2. Repeat the dip and strike problems of Chapter 1. Compare the methods of orthographic
and stereographic projections for speed and accuracy.
(a) If the attitude of a plane is N 75 W, 22 N, what is the apparent dip in the direction

N 50 E?
(b) An apparent dip is 33, N 47 E, and the true strike is N 90 E. What is the true dip?
(c) The true dip is 40◦ due north. In what direction will an apparent dip of 30◦ be

found?
3. A plane contains two lines: L1(30/320) and L2(20/020). What is the attitude of the

plane, what is the pitch of each line in that plane and what is the angle between the
two lines measured in the plane?



108 Stereographic projection

4. Two intersection planes have attitudes N 5 E, 15 W and N 15 E, 10 W. Determine
the orientation of the line of intersection and the angle between the two planes. If the
maximum operator error in measuring attitude is 2◦, what is the maximum strike error
for each of the planes, and what is the maximum β error for the line of intersection?
How do these errors affect the calculated dihedral angle?



6
Rotations

6.1 Introduction

In a number of geological situations structural lines and planes have been rotated from
some initial orientation. One of our tasks is to describe such rotations and this can be
done with the aid of the stereonet. Every rigid rotation can be defined by an angle and
sense of rotation about a specified axis.

The most general case involves rotation about an inclined axis, but we start with the
simpler cases of rotations about vertical and horizontal axes. We do this because it is
a good way to introduce the techniques of rotations and because a sequence of such
rotations is equivalent to a rotation about a single inclined axis. In all cases, the sense
of rotation is described as clockwise or anticlockwise when looking along the rotation
axis, whether horizontal, inclined or vertical.

6.2 Basic techniques

As an aid to visualization consider a turntable (Fig. 6.1). As the base rotates about its
axis R through some angle ω the locus of an oblique line L through its center O is a
right-circular cone of rotation Angle φ between R and L is the semi-vertex angle of this
cone. The intersection of this cone with the sphere will, in general, be a small circle, one
in the lower and one in the upper hemisphere. There are, however, two limiting cases: if
φ = 0 the surface degenerates to a line and if φ = 90◦ it becomes a plane.

Rotation about a vertical axis is the easiest to perform. To visualize imagine the
turntable with its vertical axis downward as in Fig. 6.1a. The cone of rotation intersects
the lower hemisphere as a small circle at the center of the net and the sense of rotation
can be immediately and directly seen as either clockwise or anticlockwise.

109
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Figure 6.1 Cone of rotation:
vertical axis; (b) horizontal axis.
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Problem

• What is the orientation of the horizontal line L(00/150) after an anticlockwise rotation
ω = 70◦ about a vertical axis?

Construction

1. Mark R at the center of the net and plot point L on the primitive representing the line
(Fig. 6.2a).

2. From L count off ω = 70◦ anticlockwise along the primitive to locate the point L′
representing the rotated line.

Answer

• After rotation the orientation of the line is L′(00/080).

Because φ = 90◦, in this special case the trace of the cone of rotation is a great circle.
Note too that the trend changed but the line remained horizontal. The construction is
only slightly more involved if an inclined line is rotated about vertical axis.

Problem

• What is the orientation of inclined line L(30/150) after an anticlockwise rotation
ω = 70◦ about a vertical axis?

Construction

1. Mark R at the center of the net and plot point L representing the inclined line
(Fig. 6.2b).

2. From the trend of L count off ω = 70◦ anticlockwise along the primitive to locate
the trend of the rotated line. With the original plunge angle plot L′ representing the
rotated line.
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Answer

• After rotation the orientation of the line is L′(30/080).

Again, note that the trend changed but the plunge remained the same, that is, the initial
L and final L′ lie on the same small circle. Both L and L′ lie on a small circle which
represents the intersection of the vertical cone of revolution and the lower hemisphere.
As a visual aid, this circle may be added to the stereogram; with a compass draw a circle
about the center of the net with angular radius φ = (90◦ − p); in this example φ = 60◦.
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ω

Figure 6.2 Rotations about a vertical axis.

Rotation about a horizontal axis can also be performed readily on the stereonet
(Fig. 6.1b). Unlike the case of the vertical axis, there are many possible horizontal axes.
Rotations about such axes are always performed with R on the overlay coincident with
the north or south point to take advantage of the small circles printed on the net. We
illustrate with two examples.

Problem

• What is the attitude of the horizontal line L1(00/030) after a 110◦ clockwise rotation
about a horizontal axis which trends due north?

Visualization

• Looking north, a clockwise rotation about R moves L from right to left along its small
circle.

Construction

1. Mark R(00/000) representing the rotation axis and plot point L1(00/030) represent-
ing the horizontal line (Fig. 6.3a).

2. Along the small circle on which L1 lies count off ω = 110◦ from right to left to locate
point L′

1.
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Answer

• The attitude of the line after rotation is L′
1(28/349).

(a)

R
L1 L1

L�1

L�1

L2 L2L�2

L�2

(b)

R

Figure 6.3 Rotations about a horizontal axis: (a) clockwise; (b) anticlockwise.

Note that both the trend and plunge of the line changed as the result of this rotation.
The second example involves the more general case of a rotation of an initially inclined
line.

Problem

• What is the attitude of line L2(40/120) after the same rotation ω = 110◦?

Construction

1. Again mark R(00/000) and plot point L2(40/120).
2. Along the small circle on which L2 lies count off 110◦ from right to left to locate point

L′
2 (Fig. 6.3a).

Answer

• The attitude of the rotated line is L′
2(24/245).

In both these examples the lines remained in the lower hemisphere. Every such struc-
tural line has another end, called its opposite, which intersects the upper hemisphere
and therefore normally remains out of sight. With other senses and angles of rotation,
however, the initially downward end may move into the upper hemisphere. When this
happens its opposite immediately moves into the lower hemisphere. Two closely related
examples will illustrate the treatment (Fig. 6.3b).

1. If the horizontal line L1(00/030) is rotated ω = 110◦ anticlockwise instead, it imme-
diately moves into the upper hemisphere. At the same instant its opposite moves
into the lower hemisphere diametrically opposite and thereafter along the same small
circle. The final attitude is L′

1(28/169).
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2. If the plunging line L2(40/120) is similarly rotated ω = 110◦ anticlockwise it moves
first along its small circle 44◦ to the primitive and then its opposite continues the
rotation along the same small circle an additional 66◦. The total rotation is thus made
up of two parts. The final attitude is L′

2(57/315).

In addition to lines, we can also rotate planes and there are two ways of doing this.
First, several points along the great circle trace of the plane may be rotated individually
to establish the great circle representation of the rotated plane.

Problem

• Rotate the plane N 18 W, 50 W clockwise ω = 40◦ about a horizontal axis which
trends N 30 E.

Method I

1. Trace in the great circle representing the given plane (Fig. 6.4a).
2. Mark R(00/030) and revolve the overlay so that this point coincides with north on

the net.
3. In this position, arbitrarily locate three points L1, L2 and L3 on the arc of the great

circle. These should be widely spaced and it simplifies things if each is located at the
intersection of a small circle.

4. Without moving the overlay count off ω = 40◦ from each of these points along the
small circles in the direction given by the sense of rotation, that is, from right to left.
Doing this for L1 and L2 locates the rotated points L′

1 and L′
2 directly. Point L3,

however, is carried to the primitive and beyond, which means that it moves into the
upper hemisphere and its opposite L′

3 into the lower hemisphere.
5. Revolve the overlay so that L′

1, L′
2 and L′

3 lie on a great circle which can then be
traced in.

Answer

• The strike and dip of the plane after rotation is N 62 W, 35 S. Note that two points
would have sufficed to fix the great circle but the third serves as an important check.

With the second method, the plane is represented by its pole and this is rotated in a
single step.

Method II

1. Mark R(00/030) and plot the pole of the plane P(40/072) (Fig. 6.4b).
2. Revolve R to north and count off ω = 40◦ from P along its small circle to locate the

rotated pole P ′.
3. Trace in the corresponding great circle representing the plane and read its attitude.
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Answer

• The attitude of the pole of the rotated plane is P ′(55/028) and this is the same attitude
as before.

L�1

L�3

L3

L2

L1

L�2

R R

P

P�

(a) (b)

N N

Figure 6.4 Rotation of a plane: (a) points on plane; (b) poles.

Clearly, it is far easier to treat the single point representing the pole of the plane rather
than several points on the great circle, although this requires that the dip and strike of
the plane be converted to plunge and trend of the pole. Bengtson (1983) described an
alternative plot which avoids even this step.

As emphasized by Phillips (1971, p. 5) these rotational techniques involve two closely
related but geometrically different and distinct manipulations. The procedure of turning
the overlay about its center to align a horizontal axis with north or south on the net is
one of convenience, but the overlay always carries with it the N mark so that the original
orientations never really changed. The term revolve is used specifically to describe this
manoeuvre. On the other hand, as the result of a rotation, lines and planes have entirely
new orientations relative to a fixed geographical direction.

6.3 Sequential rotations

A line of any initial orientation can be rotated into any final orientation by a sequence of
these simple rotations. To illustrate we rotate an initially horizontal plane, represented
by its vertical pole, containing a line in two steps: first about horizontal axis RH , then
about vertical axis RV .

Problem

• A horizontal plane contains line L(00/320). What is the attitude of the plane and line
after a two-step rotation:

1. rotate first about axis RH which trends due south by a clockwise angle ωH = 60◦,
2. then rotate about axis RV by an anticlockwise angle ωV = 40◦.
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Visualization

• Looking due south in the direction of RH we see that a clockwise rotation moves pole
P and line L to the east (Fig. 6.5a). Alternatively, looking due north in the direction
of the opposite of RH , we see that this is equivalent to an anticlockwise rotation. This
illustrates a general rule: a clockwise rotation about an axis produces the same results
as an anticlockwise rotation about its opposite, and vice versa.

Construction

1. On the primitive, mark points RH(00/180) and L(00/320), and at the center the
coincident points P(90/000) and RV (90/000) (Fig. 6.5a).

2. There are two ways of performing the first rotation.
(a) Turn RH to north. As the horizontal plane tilts clockwise about this axis, its pole

P moves 60◦ to the left from the center along the east–west diameter of the net
to P ′, and line L moves 60◦ in the same sense along its small circle to L′.

(b) Leave RH at the south point; its opposite is now at north. An anticlockwise tilt
moves the pole and the line 60◦ to the right from the center along the east–west
diameter of the net to P ′ and L by the same amount and sense to L′.

3. The second rotation about RV changes the trends of both the once rotated pole P ′ and
line L′ by a anticlockwise angle of 40◦, but their inclinations remain the same.

Answer

• After two rotations, the attitude of the pole is P ′′(30/050) and the attitude of the line
is L′′(34/297). The corresponding dip and strike of the plane is N 40 W, 60 W and the
line trends toward N 63 W.

(a) (b)
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Figure 6.5 Two rotations: (a) about RH then RV; (b) about RV then RH.

If the order is reversed, that is, the rotation about RV by ωV = 40◦ is performed
before the rotation about RH by ωH = 60◦, the result is different (Fig. 6.5b). Because a
rotation about a vertical axis does not change the orientation of a vertical line, the pole
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has been, in effect, only rotated once. Its final attitude is P ′′(30/090). The line has been
rotated twice and its orientation is L′′(59/289). This demonstrates that in finite rotations
the order of the steps is important, that is, they are not generally commutative.

6.4 Rotations about inclined axes

The general case involves a rotation about an inclined axis. As before, the locus of a
line rotated about such an axis is a small circle on the stereonet. We start with the basic
geometry of the case in order to establish a visual picture of the process.

Problem

• Rotate the horizontal line L(00/050) about the inclined axis R(30/090) anticlockwise
ω = 90◦.

Construction

1. Plot inclined axis R and horizontal line L. The angle between these two points mea-
sured along the common great circle is φ = 48◦ (Fig. 6.6).

2. About R draw the small circle representing the cone of rotation with angular radius
φ (see §6.9).

3. As L rotates 90◦ about R it moves along this small circle to L′(63/033).

Figure 6.6 Rotation about an
inclined axis.

L

L�

N

R

Besides requiring the extra effort of constructing this small circle, there is, unfortu-
nately, no direct way of measuring the angle of rotation on it. This is not, therefore,
a practical approach to performing rotations graphically. The diagram is, however, an
important aid to visualizing the effects of a rotation about such an inclined axis. In
practice, there are two alternative constructions.

The first depends on previous methods and consists of rotating the inclined axis R

about a horizontal axis so that it is either horizontal or vertical. The advantage of adopting
a vertical axis is that rotations into the upper hemisphere are commonly avoided. Then
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the required rotation is performed as in the previous examples. Finally, R is returned to
its original inclination by reversing the first rotation.

(a) (b)
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L
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L���
R

L

N
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18
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− 
ω

φ
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Figure 6.7 Inclined axis: (a) sequential rotations; (b) direct rotation.

Problem

• Rotate the horizontal line L(00/050) anticlockwise ω = 90◦ about the inclined axis
R(30/090).

Construction I

1. Plot points R and L (Fig. 6.7a).
2. To bring R to the center of the net we need to rotate about an auxiliary horizontal axis

whose trend is perpendicular to the trend of R, that is, due north. Mark this point R1.
3. As R moves ω = (90◦ − 30◦) = 60◦ to the center of the net, L moves by the same

amount and sense along its small circles to L′.
4. Performing the ω = 90◦ anticlockwise rotation about the now vertical axis R2, point

L′ moves to L′′ along a small circle concentric with the center of the net.
5. Reverse the rotation about R1 of Step 3 to return R to its original orientation and with

it L′′ to L′′′.

Answer

• The attitude of the line after this sequence of rotations is L′′′(63/033).

In serial constructions such as this, the potential errors increase with the number of steps,
so this is not the preferred method. However, it is important because it forms the basis
of methods which are treated in the next chapter.

The second method involves the direct rotation about the inclined axis using an aux-
iliary construction (Turner & Weiss, 1963, p. 69). An important advantage is that by
reducing the number of steps the plotting errors are also reduced. Imagine the turntable
with its axis pointing in the direction of inclined axis R. The plane of the turntable is
now inclined and its great circle representation is easily drawn with R as its pole.
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Construction II

1. As before plot R and L. Then trace in the great circle normal to R (Fig. 6.7b).

2. Revolve the overlay so that R and L lie on the same great circle on the net. Trace in
this arc to intersect the first great circle whose pole is R at I .

3. The angle between L and R along this arc is φ = 48◦.

4. As I rotates anticlockwise about R it moves first to the primitive and then its opposite
to I ′. Therefore count off ω = 90◦ from right to left in two increments. Alternatively,
count 180◦ − 90◦ = 90◦ back from I to locate I ′.

5. Revolve overlay so that I ′ and R lie on the same great circle and count off φ = 48◦
from R to locate L′.

Answer

• The attitude of the line after this single rotation is L′(68/033), which is the same as
before.

That the rotation of Fig. 6.7b about a single inclined axis produces the same results
as the sequence of rotations of Fig. 6.7a illustrates an important fact. By a theorem due
to the famous Swiss mathematician Leonard Euler [1707–1783] any sequence of rigid
body rotations about a series of differently oriented axes can always be described by a
single rotation by a single angle about a single axis.

6.5 Rotational problems

These several rotational techniques solve a class of forward problems. In each case, we
started with a known initial state, applied a specified rotation, tracked the lines and poles
along small circle paths to arrive at the final state. In effect, these model the rotations as
they occur in nature.

In contrast, the geologist is faced with quite a different problem. In the field, we observe
the orientation of planes and lines which have been rotated in the geological past. From
measurements of such features we wish to determine the rotations which are responsible
for these changes in orientation and thus to recover the initial state. These are examples
of a class of inverse problems. Generally, these are commonly much more difficult to
solve.

In particular, the fact that the rigid rotation of a body, no matter how complex, can
always be described by a single Euler axis and Euler angle leaves us, in general, with
only a description of the angular relation between the initial and final states. It could have
been the result of a simple rotation about a single axis or the progressive rotation about a
constantly shifting axis. There is no way to distinguish between these cases on the basis
of the measurement of the orientation of line and planes alone. We take up some of these
questions again in §7.5–7.6.
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6.6 Tilting problems

Atypical problem involves the restoration of tilted beds and sedimentary lineations which
they contain to their pre-tilt orientation. For example, a solution of this problem would
aid in the paleogeographical reconstruction of current directions in some past geological
time. We can easily restore the plane to horizontality because it involves the rotation
about a horizontal axis, but what about a possible rotation about a vertical axis? We could
determine this rotation if we knew the pre-tilt trend of a line, but this is the very question
that we are trying to answer.

Knowing only the final state, we usually do not have enough information to recover
multiple rotations and the problem is therefore not solvable. What to do? As the con-
struction using sequential rotations indicates, the horizontal component of rotation is
parallel to the strike of the tilted beds. As a partial solution we therefore choose R in this
direction and then proceed with the restoration on this basis. This is the conventional tilt
correction (MacDonald, 1980).

Problem

• A dipping bed N 40 W, 60 W contains a sedimentary lineation which trends N 63 W.
Restore the bed to horizontality and estimate the original trend of the lineation. Note
that the attitude of this inclined plane and line are identical with the forward results
obtained in Fig. 6.5a by a sequence of rotations.

Visualization

• Hold the right hand with palm upward and inclined to the west with fingers pointing
toward the northwest over the net; also hold a pencil on the palm in the direction of
the line. Now rotate the hand through an angle of 60◦ into a horizontal position and
observe the final position of the line.

(a) (b)
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Figure 6.8 Restoration of a plane and line: (a) upright; (b) overturned.
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Construction

1. Trace in the great circle representing the inclined plane and on it locate line L(34/297)

(Fig. 6.8a).
2. Plot point P(30/050) representing the pole of the plane.
3. Label the strike direction R(00/340) and turn it to north.
4. As pole P moves 60◦ to the center of the net (and the bed to horizontality) line L

moves along its small circle to L′ on the primitive.

Answer

• The restored orientation of the line is L′(00/280).

As we have seen, the rotation of planes generally requires the use of poles. However,
in cases such as this where the strike direction is taken as a rotation axis, the line of true
dip remains fixed as the line of steepest inclination as if it were a physical line. In this
case it is then simpler to rotate this line D(60/230) directly to the primitive, rather than
plot and use the pole.1 We will use this method in the next example.

Clearly, if the tilt correction is not made and the measured trend of the line on the
inclined plane is used an error will result. In this example, the difference between the
measured trend t and the restored trend t ′ is �t = t − t ′ = 17◦. However, if the angle of
dip is small and the line is close to the dip direction this trend error �t may be negligible
(Ten Haaf, 1959, p. 72; Ramsay, 1961). If this approximation is seriously considered it
should always be tested with a plot on the stereonet.

Note carefully that this restoration using the conventional tilt correction is not the
same as the starting state illustrated in Fig. 6.5. We have not recovered the trend of the
line because we have not taken into account the component of rotation about a vertical
axis.

Without additional information any such rotation about a vertical axis remains
unknown. One way of obtaining such information is to compare the results of the
restoration with undisturbed beds nearby. Ten Haaf (1959, p. 78) used this technique
to demonstrate that kilometer-scale coherent slabs in the Apennines of northern Italy
rotated about vertical axes through large angles during gravitational sliding. Another
approach is to use paleomagnetic vectors to assist in identifying the axis of rotation
which restores the tilted beds to their actual initial orientation (Tauxe & Watson, 1994;
Weinberger, et al., 1995).

There are certainly situations where beds have been tilted about axes which were
horizontal or nearly so and this conventional approach will then produce acceptable
results. In the face of the general uncertainties, however, it is prudent to remain cautious.
All the remaining problems in this chapter involve these same uncertainties.

1That this is not true for rotations about other axes see Fig. 6.4 where point L2 is located on the line of true dip on its
plane but the rotated point L′

2 is not on the line of true dip of the rotated plane.



6.7 Two tilts 121

There is an additional special case. If the plane returned to horizontality was overturned,
then the resulting orientation of the associated linear structure obtained using this method
would be incorrect. An alternative construction must be used.

Problem

• An overturned sedimentary bed N 40 W, 60 W contains a sedimentary lineation trending
N 63 W. Restore the bed to horizontality and determine the original trend of the lineation
using the conventional tilt correction.

Visualization

• Hold the left hand, palm downward with a pencil in the proper orientation over the
net. Now rotate the hand through an angle of 120◦ into a horizontal position with the
palm upward and observe the position of the line.

Construction

1. Trace in the great circle representing the inclined plane and on it locate the line of
true dip D(60/230) and the line L(34/297) (Fig. 6.8b).

2. Label the strike direction R(00/340) and turn this mark to north.

3. As D moves 120◦, first to center of the net and then to the primitive (and the bed to
horizontal), L moves along its small circle to L′ in the same sense and angle, also to
the primitive.

Answer

• The attitude of the restored line is L′(00/000), that is, horizontal and due north. This
is a quite different result from the restoration in the upright case.

6.7 Two tilts

A closely related situation involves the restoration of a structural plane that has been
tilted twice, called the problem of two tilts. The goal is to determine the attitude of the
plane after the first but before the second tilt.

Problem

• The attitude of beds above an angular unconformity is N 20 E, 30 E and the attitude of
the beds below the unconformity is N 70 E, 50 S. What was the attitude of the lower
beds before the tilt of the upper beds?
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Figure 6.9 Problem of two tilts.
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Method

• Because this correction of the tilt of the lower beds involves rotation about an axis
which is oblique to the strike direction we can not used the line of true dip. The
representation of the planes by their poles is required. Plotting the tilted planes by
great circles is not necessary for a solution but they are helpful in the visualizing the
procedure and result.

Construction

1. Plot the poles of the once tilted upper beds PU(60/290) and the twice tilted lower
beds PL(40/340) (Fig. 6.9).

2. Mark the strike direction of the upper beds as the rotation axis R(00/020) and turn it
to north.

3. In restoring the upper beds to horizontality, pole PU moves 30◦ inward to the center
of the net and pole PL moves 30◦ in the same direction along its small circle to P ′

L.

Answer

• The restored pole P ′
L(53/010) of the lower beds corresponds an attitude of N 80 W,

37 S.

6.8 Folding problems

These same techniques can also be used to restore the attitude of folded beds. We describe
the details of fold geometry in Chapter 13. Here it is sufficient to treat folds as two
planes whose line of intersection represents the fold axis. In such applications there is
an important caveat. If the folding is accompanied by distortion of the bedding planes,
the angular relationships change and this requires a more involved treatment (see §12.9;
also Ramsay, 1961). The following treatment assumes that such distortions are absent.
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If the folds are horizontal, the conventional tilt correction suffices to return the beds to
horizontality. If the folds plunge, the tilted beds can be considered to have two rotational
axes: one of them is the fold axis and the other is a horizontal axis perpendicular to the
trend of the fold axis (Ramsay, 1961). Reversing the rotations on both these then unrolls
the folded beds to their original orientation. Using the previous approach, a sequence of
rotations is used. First, the beds are unrolled about the plunging fold axis and then about
the resulting strike direction to bring the beds back to horizontal.

(a) (b)
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Figure 6.10 Restoring folded beds: (a) upright limb; (b) overturned limb.

Problem

• The fold axis plunges 31◦ due north. On the west limb of an anticline, inclined beds
whose attitude is N 20 E, 60 W contain sole markings which trend due west. Determine
the prefolding orientation of this sedimentary lineation.

Visualization

• With the left hand represent the plane on the west limb with the index finger in the
direction of the fold axis. Similarly, with the right hand represent a similarly oriented
plane on the east limb. Now rotate both planes about your index fingers to bring the
two planes into parallelism. Now perform the tilt correction to bring this plane into
horizontality.

Construction

1. Plot the fold axis F(30/000) and draw in the great circle representing the inclined
plane and locate the east-trend line L on its trace. Note that this great circle must pass
through F (Fig. 6.10a).

2. Read off the angle φ between L and F .
3. Unrolling the beds about the plunging fold axis results in a plane dipping 30◦ due north.

The angle between F and L, φ = 55◦, remains constant. Thus, after unfolding, L′
can be located at the same angle along the great circle representing this north-dipping
plane.
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4. The tilt correction then brings the plane to horizontal and the line toL′′ on the primitive.

Answer

• The restored orientation of the sedimentary lineation is L′′(00/056).

If the beds are overturned this simple restoration will be in error and an adjustment
must be made. With the same visualization as before, now rotate your hand about the fold
axis so that the palm is downward. The angle φ remains the same, but now L′ is on the
opposite side of F . The tilt correction then gives L′′′ with a trend of N 56 E (Fig. 6.10b).

6.9 Small circles

Throughout this chapter we have made use of small circles on the stereonet. It is a
fundamental property of the stereographic projection that circles on the sphere project as
circles (see §5.1). Here we show how to construct small circles about any inclined axis.
We also prove that they are indeed circles.

As we have seen, a small circle is the intersection of the sphere and a right-circular
cone. A vertical diametral plane of the sphere containing the inclined axis OP displays a
section MON of this cone (Fig. 6.11a). The cone axis makes an angle θ with the vertical
and its vertex angle is 2φ. Line MN is the trace of the circular section of this cone.
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Figure 6.11 Small circle: (a) on sphere; (b) in projection.

We project the small circle on the sphere to the horizontal projection plane using the
zenith point Z. The center of the circle P projects to R, the lowest point M and highest
point N on the circle project to points A and B (Fig. 6.11b). With these two points any
small circle may be drawn on the stereonet. There are two important cases. The circle may
be wholly within the lower hemisphere or it may be partially in the upper hemisphere.
We start with the simpler case when the cone is entirely within the lower hemisphere.
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Problem

• Construct the small circle whose angular radius φ = 35◦ about inclined axis
R(45/140).

Construction

1. Plot the axis R(45/160). On a radius of the net through R plot points A downward
and B upward from R at an angular distance of φ = 35◦.

2. Bisect the linear distance AB to locate the center C and complete the circle with radius
AC = BC using a compass. Note that C does not coincide with R (Fig. 6.12).

Figure 6.12 Construction of a
general small circle.
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If the small circle overlaps the primitive, that is, if it extends partially into the upper
hemisphere it is then necessary to construct the arc of its opposite. This requires additional
steps because there is no direct way of plotting points outside the primitive.

On the vertical diametral section of the sphere, the trace of the cone is MON and its
opposite is M′ON′ (Fig. 6.13). Points M and N are projected using Z to points A and
B on the projection plane in the usual way, A inside and B outside the primitive. In the
same way the opposite points M ′ and N ′ are projected to A′ outside and B ′ inside the
primitive. Note that ∠NZN′ = ∠MZM′ = 90◦.

Just as before, segments AB and A′B′ are bisected to locate centers C and C′ and the
two circles are completed with a compass. Although it is in two parts, the small circle is
now complete in the lower hemisphere (and also in the upper hemisphere).

Expressions for the location of the center of the small circle and its radius can also be
obtained. For a sphere of unit radius, and in the notation of Fig. 6.11b,

OA = tan 1
2(θ − φ) and OB = tan 1

2(θ + φ),
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Figure 6.13 Small circle and its
opposite.
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where θ is the supplement of the plunge of the cone axis and φ is the semi-vertex angle
of the cone. With these the distance from O to the geometrical center of the small circle
on the projection plane is then

c = 1
2(OB + OA) = 1

2

[
tan 1

2(θ + φ) + tan 1
2(θ − φ)

]

and its radius is

r = 1
2(OB − OA) = 1

2

[
tan 1

2(θ + φ) − tan 1
2(θ − φ)

]
.

Substituting the identities

tan 1
2(θ + φ) = sin θ + sin φ

cos θ + cos φ
and tan 1

2(θ − φ) = sin θ − sin φ

cos θ + cos φ

and rearranging, these two expressions become

c = sin θ

cos θ + cos φ
and r = sin φ

cos θ + cos φ
.

These equations can also be used to locate earthquake epicenters (Garland, 1979, p. 54).
Because θ = (90◦ − p) a more convenient form for our purposes is

c = cos p

sin p + cos φ
and r = sin φ

sin p + cos φ
. (6.1)

With these the location and size of a circle which is mostly in the lower hemisphere can
be easily determined for a stereogram of any size. Just multiply the values of both c and
r by the desired radius of the primitive.
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These two parameters can also be used to calculate the location and size of the opposite
small circle by using −p (indicating an upward inclination of the cone axis) in Eqs. 6.1,
or by using

c = cos p

− sin p + cos φ
and r = sin φ

− sin p + cos φ
. (6.2)

Both the graphical and analytical methods illustrate two aspects of opposite small
circles which have some practical importance.

1. As the opposite point M ′ approaches the projection point Z both c and r become very
large and drawing the opposite arc is difficult or impossible.

2. Opposite small circles have two basic configurations:

(a) If (p + φ) < 90◦ its arc is convex toward the center of the net (Fig. 6.14a);

(b) If (p + φ) > 90◦ its arc is concave toward the center (Fig. 6.14c).

The boundary case occurs when the low point on the cone coincides with the center
of the net, that is, when (p + φ) = 90◦ (Fig. 6.14b). In the graphical construction of its
opposite A′, the projector from Z is parallel to the projection plane and both c and r are
infinite. In Eqs. 6.2 this state is indicated when the denominator (− sin p + cos φ) = 0.
The representation of the opposite of such a circle is particularly easy to construct – it is
a straight line.

(a) (c)(b)

Figure 6.14 Types of small circles.

We now demonstrate that circles on the sphere do, in fact, project as circles, following
Phillips (1963, p. 24–25). As we have seen, any small circle is the intersection of a sphere
and a right-circular cone with vertex at the center of the sphere (Fig. 6.11a). The axis of
this cone OP makes angle θ with the vertical and ∠MON = 2φ. The small circle on the
sphere has a diameter of MN and the point P is at its center.

The projection of points P , M and N on the sphere to the projection plane uses the
zenith point Z. The resulting three points A, B and R define a second cone whose axis
ZP makes an angle 1

2θ with the vertical and ∠MZN = φ (Fig. 6.11b).
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Figure 6.15 A small circle and
its projection.
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Proof

1. On the vertical plane containing the cone axis, chord KN is drawn parallel to the
projection plane, hence also perpendicular to OZ. Right triangles ZKJ and ZNJ are
congruent and so ∠ZKJ = ∠ZNJ (Fig. 6.15, where black dots mark equal angles).

2. Because they subtend these equal angles, the lengths of arcs ZK and ZN are equal.
Then the inscribed angles which subtend these equal arcs are also equal, so ∠ZMN =
∠ZNJ.

3. Line MN, which is oblique to axis ZP, is the trace of a circular section of cone MZN.
Therefore the right section of this cone MT is an ellipse.

4. By construction TS makes the same angle with axis ZP as the circular section MN.
Therefore TS is a conjugate circular section.

5. Therefore ∠ZTS = ∠ZMN, and also ∠ZNJ = ∠ZTS. Lines TS and NJ are then parallel
and also parallel to the projection plane.

6. Parallel sections of a cone are similar. Therefore the section in the projection plane is
also a circle and the proof is complete.

6.10 Exercises

1. A horizontal plane contains a line whose trend is N 48 E.
(a) Rotate the plane and line about a vertical axis 50◦ anticlockwise.
(b) From the same starting position, rotate the plane and line about a north-trending

horizontal axis 60◦ clockwise.
2. Sequence of rotations.

(a) Rotate the same horizontal plane and line first about a vertical axis 50◦ anticlock-
wise and then about a north-trending horizontal axis 60◦ clockwise.

(b) Rotate the horizontal plane and line first about a north-trending horizontal axis
60◦ clockwise and then about a vertical axis 50◦ anticlockwise.

3. Rotate the same plane and line about an axis whose plunge and trend is 30/200 40◦
clockwise.
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4. The beds below an angular unconformity have an attitude of N 30 W, 40 W. The strata
above the unconformity have an attitude of N 20 E, 30 E. What was the attitude of
the lower beds before the tilting of the younger bed occurred?

5. An anticlinal fold axis plunges 24/040. On the east limb where the beds have an
attitude of N 5 W, 32 E, the crest line of current ripple marks pitches 70 N in the plane
of the bedding. What was the pre-tilt orientation of these marks? Compare your result
with the assumption that the tilted orientation of the lineation adequately represents
the original direction.

6. An anticline plunges 50/025. The eastern limb is overturned, and at one point the
attitude is N 45 E, 50 W. At this same locality a sedimentary lineation plunges due
west. What was the orientation of the lineation before folding?

7. Rotate the plane whose attitude is N 10 E, 30 E, fifty degrees anticlockwise as viewed
down the plunge of an axis whose attitude is 30/340 in two ways: (1) as a series of
steps involving rotation of the axis to the primitive, rotating the line about the now
horizontal axis, and then returning the axis to its original orientation; (2) as a single
rotation about the inclined axis.



7
Vectors

7.1 Introduction

Vectors play a prominent role in many geometrical and physical applications. We have
seen several simple examples in Chapters 1 and 3 where the attitudes of planes and lines
were represented and manipulated using two-dimensional vectors. We now extend the
treatment to three dimensions, and to several additional applications.

As we have seen, the stereonet is a useful way of displaying and manipulating structural
lines and planes easily and directly in a three-dimensional setting. For the same reasons,
we can use the stereonet to introduce an analytical approach involving vectors which is
a powerful method for solving these same types of problems (see also Sprenke, 1992).

Because the orientations of planes are defined by their poles, we can represent all
structural elements by lines. There are two types of such lines.

1. Axes have orientation but no sense. Lineations in metamorphic rocks, lines of inter-
section and poles of fracture planes are examples.

2. Vectors have both orientation and sense. Examples include some linear sedimentary
structures and paleomagnetic directions.

Some structural lines may be treated in either way. For purely geometrical purposes
the pole of sedimentary bedding is commonly treated as an axis, but for other purposes
the pole in the direction of younging has sense and therefore is a true vector.

In many applications it is convenient to represent axes by vectors. In fact, we have
already done this in Chapters 1 and 3 by choosing to represent lines of true and apparent
dip as horizontal vectors which point in the direction of downward inclination. As before,
the sense of these vectors is arbitrarily but conveniently chosen to point downward, thus
we can always plot them on the lower hemisphere. If we encounter an upward pointing
axis-as-vector we can immediately convert it to a downward pointing one.

These vectors can then be manipulated by taking advantage of the well-established
vector formalism encountered in introductory courses in calculus and physics. Not only

130
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is this a particularly powerful way of solving a number of structural problems but it also
lays the groundwork for more advanced applications (Goodman, 1976, p. 217f; Priest,
1985; Wallbrecher, 1986).1

We need a coordinate system. For problems involving conditions within the earth, it
is nearly universal to measure depth along a downward pointing z axis. Accordingly,
we define a right-handed set of axes with +x = north, +y = east and +z = down
(Fig. 7.1a).2 The equation of the unit sphere is then

x2 + y2 + z2 = 1, (7.1)

and the directions of vectors can be represented by points on the surface of this sphere.
In many applications it is necessary to use vector components. Following common

practice we take unit base vectors i, j and k to be parallel to the coordinate directions
+x, +y and +z, respectively. Then any vector V is the sum of its components in each
of these directions.3 We write this sum as

V = Vx i + Vyj + Vzk. (7.2)

Following common practice, we represent such a vector by its three scalar components
(Vx, Vy, Vz). The length or magnitude of vector V is, from a three-dimensional version
of the Pythagorean theorem,

|V| = V =
√

V 2
x + V 2

y + V 2
z . (7.3)

When used to represent the orientation of lines and poles we are interested in the
directions not magnitudes of the associated vectors. It is then convenient to use only
vectors of unit magnitudes. To find the unit vector with the same direction as a general
vector, we normalize its components by dividing each by the magnitude. The three scalar
components of this unit vector are called direction cosines and they are commonly given
the symbols l, m and n, where

l = Vx/V, m = Vy/V, n = Vz/V . (7.4)

With these, Eq. 7.3 reduces to the useful identity

l2 + m2 + n2 = 1. (7.5)

1Wallbrecher’s book contains the listing of a number of useful programs for structural geology. These are now available
as the package Fabric8 at www.geolsoft.com.

2In contrast, for problems involving surface or near surface features a geographical coordinate system with +x = east,
+y = north and +z = up is generally used (see §7.8).

3We use the symbol V to represent a generic vector. It should not be confused with the commonly used symbol for volume.

http://www.geolsoft.com.
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Figure 7.1 Coordinate axes: (a) lower hemisphere; (b) stereogram and direction angles of line vector L.

With any two direction cosines this relationship yields the magnitude but not the sign of
the third.

For use in plotting vectors as points on the stereonet, direction angles are more useful
and these are defined as

α = arccos l, β = arccos m, γ = arccos n. (7.6)

From the point plotted using its plunge and trend we can measure these three direction
angles on a stereogram (Fig. 7.1b).

Problem

• Find the direction angles of the vector V(30/300).

Solution

1. Using its plunge and trend plot the point representing V in the usual way (Fig. 7.2a).
2. Measure α from +x, β from +y, and γ from +z to V along great circular arcs.

Answer

• The direction angles are α = 64◦, β = 139◦ and γ = 60◦.

These angles can be checked by using Eq. 7.5, but note that this identity will rarely be
exactly satisfied because of inevitable errors in plotting the points and reading the angles.
In the previous example the sum is 1.011 76, and this is about as close to confirmation
as one can get when reading angles from the net to the nearest degree.

A closely related problem is to plot a vector on a stereogram given its direction angles.

Problem

• Plot the point representing V using its direction cosines l = 0.433 01, m = −0.750 00,
n = 0.500 00.
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Figure 7.2 Direction angles: (a) reading angles; (b) plotting angles.
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Figure 7.3 Direction cosines from plunge and trend.

Solution

1. With Eqs. 7.6, the three direction angles are α = 64.3◦, β = 138.6◦, γ = 60.0◦.

2. About the point on the primitive representing the +x axis trace in the small circle
with angular radius α = 64.3◦ (Fig. 7.2b).

3. About the point representing the +y axis trace in the small circle with angular radius
β = 138.6◦.Alternatively, this small circle can be located 180◦−138.6◦ = 41.4◦ from
−y. Even simpler, just change the sign of m and then arccos(+0.750 00) = 41.4◦.

4. The small circle for γ = 60.0◦ about +z can be added to the diagram with a compass
but it is usually unnecessary. It is, however, a good idea to check that angle γ between
+z and the intersection of the other two small circles is correct.

As with structural lines generally, we may also express the orientation of vectors by
their plunge p and trend t . Note that in our adopted coordinate system positive trend
angles are measured clockwise from+x = north and positive plunge angles are measured
downward from the horizontal xy plane, as is standard. On the stereonet these angles are
closely related to spherical coordinates: θ = t , φ = 90◦ − p and r = 1.
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From plunge and trend we can also compute the direction cosines (Fig. 7.3a). The
horizontal component of the inclined unit vector A with length OA = 1 is vector B
where B = cos p. From Figs. 7.3b and 7.3c, the direction cosines of A are

l = cos p cos t, m = cos p sin t, n = sin p. (7.7)

These may also be converted back to plunge and trend with

p = arcsin n, t = arctan m/l. (7.8)

The arctan function on hand-held calculators and in most programming languages returns
angles in the range −90◦ < t < 90◦, that is, only trend angles in the NE and NW
quadrants are reported. If l < 0 then the actual angle is in the range 90◦ < t < 270◦
and it is necessary to add or subtract 180◦ to get the correct trend. In most programming
languages and spreadsheet programs, the alternative function atan2(m,l) gives the
trend without need for this correction.

7.2 Sum of vectors

There are many physical and geometrical situations where two or more vectors must be
combined by addition, as we will see later. The equation expressing the addition of two
vectors to give a third is

A + B = C. (7.9)

Given vectors A and B we can determine their sum C either geometrically or analytically.
The geometrical method uses the parallelogram rule: Place the tail of B at the head of
A. Then draw the vector from the tail of A to the head of B; this is C (Fig. 7.4a). Note
that B + A gives the same result – vector addition is commutative. Note too that C is the
diagonal of the parallelogram with sides parallel to A and B, hence the name of the rule.

The difference of two vectors can also be found. The solution of Eq. 7.9 for A can be
written in two ways

A = C − B or A = C + (−B).

The vector −B has the same length as B but points in the opposite direction. The graphical
solution proceeds just as before (Fig. 7.4b).

The analytical method involves representing vectors as matrices. This enumerates the
components and at the same time emphasizes that they represent a single entity. Even
more important is that such matrices can be manipulated directly using matrix algebra.4

4Good geologically oriented introductions to matrix algebra are given by Ferguson (1994) and Davis (2002, p. 123–158).
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Figure 7.4 Parallelogram rule:
(a) addition; (b) subtraction.
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In a simple example we represent them as column matrices. Then we form the sum of
two vectors by adding components (Fig. 7.5). This is expressed by the matrix equation

A + B = C =
[
Ax

Ay

]
+
[
Bx

By

]
=
[
Ax + Bx

Ay + By

]
=
[
Cx

Cy

]
. (7.10)

The extension to three dimensions is straightforward.

⎡
⎣Cx

Cy

Cz

⎤
⎦ =

⎡
⎣Ax + Bx

Ay + By

Az + Bz

⎤
⎦ . (7.11)

Figure 7.5 Vector addition
using components.
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A useful application involves finding the vector which bisects the angle between two
given vectors. If A = B then C divides the parallelogram whose sides are A and B into
two congruent triangles. Therefore the angles between A and C and between B and C
are equal (Fig. 7.6a).

Problem

• Bisect the angle between vectors A(30/310) and B(60/030) (Fig. 7.6b).

Solution

1. From plunge and trend of each vector, the direction cosines are A(0.556 67, −0.663 41,
0.500 00) and B(0.433 01, 0.250 00, 0.866 03).
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Figure 7.6 Bisector of two vectors: (a) two dimensions; (b) three dimensions.

2. From Eq. 7.11 we then have

⎡
⎣Cx

Cy

Cz

⎤
⎦ =

⎡
⎣ 0.989 68

−0.413 41
1.366 03

⎤
⎦ . (7.12)

3. Normalizing these components of C we obtain the direction cosines C(0.569 84,
−0.238 03, 0.786 53).

Answer

• The plunge and trend of the bisector is C(52/337). If vectors A and B represent the
poles of planes, then vector C bisects the angle between the two planes.

7.3 Products of vectors

Important relationships between two vectors can be found by forming the scalar or dot
product and the vector or cross product.

Dot product

The first and simpler product of two vectors A and B is defined in terms of their magni-
tudes A and B and the angle φ between them as

A · B = AB cos φ, (7.13)

where 0 ≤ φ ≤ 90◦. This has a useful geometrical interpretation: B cos φ is the projection
of B onto A and A cos φ is the projection of A onto B. The dot product can also be
expressed in component form as

A · B = AxBx + AyBy + AzBz. (7.14)
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From these two versions it should be apparent that the order in which the vectors are
taken makes no difference, that is, A · B = B · A. The dot product, like the sum, is
commutative.

As before, it is convenient to write such expressions as matrix equations. Here A is
represented by a row matrix and B by a column matrix. Thus

A · B = [Ax Ay Az

]⎡⎣Bx

By

Bz

⎤
⎦ = AxBx + AyBy + AzBz. (7.15)

In this easily remembered form the resulting scalar quantity is obtained by summing the
products of the corresponding elements of the row and the column matrices. This is an
example of row times column multiplication (Boas, 1983, p. 115–116), and we will use
it repeatedly.

If both vectors have unit magnitudes then Eqs. 7.13 and 7.14 combine to give the
useful formula for finding the angle between them

û1 · û2 = cos φ = l1l2 + m1m2 + n1n2, (7.16)

where (l1, m1, n1) and (l2, m2, n2) are the two sets of direction cosines. With this formula
the angle between any two directions represented by unit vectors may be easily found.
If θ = 90◦, that is the two vectors are mutually perpendicular, this equation reduces to

l1l2 + m1m2 + n1n2 = 0 (7.17)

and this can be used as a test for orthogonality.
The dot product can also be used if the two unit vectors lie in one of the coordinate

planes. For example, in the xy plane, the direction angles measured from +z are γ1 =
γ2 = 90◦ and therefore n1 = n2 = 0. Then Eq. 7.16 reduces to

cos φ = l1l2 + m1m2, (7.18)

and similar results can be obtained for vectors in the yz and zx coordinate planes.

Problem

• What is the angle between the pole vectors P1(30/310) and P2(60/030)?

Solution

1. From each plunge and trend, using Eqs. 7.7, the direction cosines are

P1(0.556 67,−0.663 41, 0.500 00) and P2(0.433 01, 0.250 00, 0.866 03)
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Figure 7.7 Dot product: (a) angle between vectors; (b) pitch of a line.

2. With Eq. 7.16 cos φ = 0.598 20 or φ = 59◦. This angle may be acute or obtuse; if
acute, as here, it is the dihedral angle between the two planes (Fig. 7.7a).

In exactly the same way the angle between two lines L1 and L2 or between a line L
and a pole P may also be found from the dot product.

This technique can also be used to calculate the pitch of a line in a specified plane.
There are several ways of doing this but the one which corresponds most closely with
the previous graphical method requires the direction of the strike of the plane – it is
perpendicular to the trend of the pole vector or, equivalently, perpendicular to the trend
of the dip vector. The orientation of this strike vector can be obtained in either of two
ways.

1. From the trend t of either the pole or the dip vector, the strike direction is simply
t + 90◦ or t − 90◦.

2. The direction of the strike may also be determined from the direction cosines (l, m, n)

of either the pole or dip vector. From Eqs. 7.8, trend depends on m/l. The strike is
then obtained from the negative reciprocal −(l/m). This horizontal strike vector has
two forms corresponding to its two equivalent ends

S1(−m, l, 0) and S2(m, −l, 0). (7.19)

Problem

• The orientation of a plane is given by its pole vector P(30/310). Determine the pitch
of the apparent dip vector A(48/080) (Fig. 7.7b).

Solution

1. The two possible strikes of the plane are S1(00/040) and S2(00/220). From Eqs. 7.7,
the components of the unit strike vectors are S1(0.766 04, 0.642 79, 0.000 00) and
S2(−0.766 04,−0.642 79, 0.000 00).
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2. From its plunge and trend, the components of the apparent dip vector are A(0.116 19,
0.658 97, 0.743 14).

3. Equation 7.16 gives cos φ1 = 0.512 58 or φ1 = 59◦ measured from S1 and cos φ2 =
−0.521 58 or θ2 = 121◦ measured from S2. Note that φ1 +φ2 = 180◦. By convention
the pitch angle is acute.

Cross product

The second way of forming the product of two vectors is written

C = A × B. (7.20)

The product vector C is perpendicular to the plane of A and B and its direction is
determined by the right-hand rule: if the fingers of the right hand point from A toward B
through the smaller angle, the thumb points in the direction of C. If the order is reversed,
the direction of C is also reversed, hence the order does make a difference. This condition
can be expressed as A × B = −(B × A). In other words, the cross product is not
commutative.

The magnitude of the cross product vector is defined as

C = AB sin φ, (7.21)

where, as before, φ is the smaller angle between the two vectors.
In component form, the cross product may be expressed as the easily remembered

determinant

A × B =
∣∣∣∣∣∣

i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ .
For computational purposes this 3 × 3 determinant can be reduced to the sum of three
2×2 determinants by the method of expansion by cofactors, which follows a simple rule:
for each scalar coefficient cross out in turn the row and column containing the unit base
vectors i, j or k and in each case form the determinant of the remaining four elements.
For example, crossing out the first row and first column gives the 2 × 2 determinant
composed of the four remaining elements times i (Fig. 7.8a). The other cofactors are
found in similar fashion. The full result is

A × B =
∣∣∣∣Ay Az

By Bz

∣∣∣∣ i −
∣∣∣∣Ax Az

Bx Bz

∣∣∣∣ j +
∣∣∣∣Ax Ay

Bx By

∣∣∣∣ k. (7.22)

Note that the way the signs alternate follows a simple pattern: if the sum of the row
number and the column number is even the sign is positive and if odd the sign is negative.
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Figure 7.8 Cofactors and determinants.

Expanding these three separate 2 × 2 determinants also follows an easily remembered
pattern: form the product of the upper-left and lower-right elements and subtract the
product of the upper-right and lower-left elements (Fig. 7.8b). Applying this rule we then
obtain

C = A × B = (AyBz − AzBy)i − (AxBz − AzBx)j + (AxBy − AyBx)k. (7.23)

Thus

Cx = AyBz − AzBy, Cy = AzBx − AxBz, Cz = AxBy − AyBx. (7.24)

These expressions apply fully to any set of coordinate axes. As is often the case a special
set of axes brings out some important aspects simply and clearly. Thus it is convenient to
choose axes so that the plane of the two vectors A and B coincides with the xy coordinate
plane. We can then see that the cross product has an important geometrical interpretation:
in Fig. 7.9a the magnitude of vector C represents the area of the parallelogram with sides
parallel to A and B, that is

C = Ah = AB sin φ.

This is identical with the definition of Eq. 7.21. Thus the vector C represents the orien-
tation of the plane of the parallelogram and its magnitude C represents its area.

It is also of some interest to express this area in terms of the components of the vectors
A and B. Dividing the parallelogram into two parts by a diagonal gives two congruent
isosceles triangles which have identical areas (Fig. 7.9b). The area of these identical
triangles is found from the sum of a right triangle (Fig. 7.9c) and a trapezoid (Fig. 7.9e)
less the area of a second right triangle (Fig. 7.9d). From these three figures:

1. Area of the first sub-triangle is equal to half the base times the height +1
2(BxBy)

(Fig. 7.9c).
2. Area of the trapezoid is equal to the base times the mean height +1

2(Ax−Bx)(Ay+By)

(Fig. 7.9e).
3. Area of the second sub-triangle is −1

2(AxAy) (Fig. 7.9d).



7.3 Products of vectors 141

After summing these three expressions, multiplying by 2, expanding and collecting terms,
the total area of the parallelogram is then given by

BxBy + (Ax − Bx)(Ay + By) − AxAy = AxBy − AyBx, (7.25)

and this is just the determinant for Cz given in Eqs. 7.24.
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Figure 7.9 Area of the parallelogram from A × B.

Several important problems are easily solved using the cross product. The attitude of
a plane, as represented by its pole vector P, can be obtained directly from two apparent
dip vectors A1 and A2. This is written as

P = A1 × A2. (7.26)
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Figure 7.10 Cross product: (a) pole of a plane P; (b) line of intersection I; (c) apparent dip α.

Problem

• From apparent dip vectors A1(20/286) and A2(30/036) determine the attitude of the
plane (Fig. 7.10a).
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Solution

1. From the plunge and trend of each apparent dip vector, the two sets of direction cosines
are

A1(0.305 93,−0.888 50, 0.342 02) and A2(0.700 63, 0.509 04, 0.500 00).

2. Perform the multiplication and then the normalized components of the resulting pole
vector are P(-0.618 35, -0.086 66, 0.778 24).

Answer

• The plunge and trend of the pole is P(50/170); the attitude of the dip vector is therefore
D(40/350).

In these types of problems it is convenient to choose the order, as we have here, so that
the product vector points downward. If the reverse order is taken it will be immediately
signaled by Pz < 0 or n < 0. This upward-pointing vector can be converted to the
equivalent downward-pointing one by changing the signs of all three direction cosines
or by changing the sign of the plunge and adding 180◦ to the trend.

The same procedure can be used to determine the orientation of the line of intersection
of two planes. The intersection vector is given by

I = P1 × P2. (7.27)

Problem

• From two pole vectors P1(70/146) and P2(50/262) determine the line of intersection
of the two planes (Fig. 7.10b).

Solution

1. The components are P1(−0.262 00, 0.219 85, 0.939 69) and P2(−0.089 46, −0.636 53,
0.766 04).

2. The normalized components of the intersection vector are I(0.961 22, −0.146 26,
0.233 79).

Answer

• The attitude of the line of intersection is I(14/009).

The cross product can also be use to find the apparent dip in a specified direction. The
line of apparent dip is the intersection of the inclined plane and the vertical plane whose
trend is in the apparent dip direction. From the poles of these two planes

A = P1 × P2, (7.28)

where one of the poles is that of a vertical plane which contains the required direction.
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Problem

• Find the apparent dip A in the direction 080 from the dip vector D(60/130) (Fig. 7.10c).

Solution

1. The pole of the inclined plane is P1(30/310), and the pole of the vertical plane
containing A is P2(00/350). The two sets of direction cosines are then

P1(0.556 67,−0.663 41, 0.500 00) and P2(0.984 81,−0.173 65, 0.000 00).

2. From the cross product, after normalization, we have A(0.116 04, 0.658 07, 0.743 96).

Answer

• The plunge and trend is A(48/080) and the plunge angle is the required apparent dip.

7.4 Circular distributions

The statistical treatment of orientation data relies heavily on vector methods. We first
treat the two-dimensional case. Cheeney (1983, p. 22–26, 93f), Middleton (2000, p. 161–
167) and Borradaile (2003, Chapter 9) give good introductions to the subject and the
book by Fisher (1993) contains a comprehensive treatment. The use of a spreadsheet is
a convenient way to manipulate such data (Tolson & Correa-Mora, 1996).

By way of introduction, we illustrate several problems associated with determining
the mean direction of measured strike lines. To do this we use a small invented data set
(see Table 7.1).

1. The northeast trending strike lines (Column A of Table 7.1) are represented by points
on the circumference of a unit circle (Fig. 7.11a). A straightforward calculation of the
arithmetic mean gives the correct value of 025, that is, N 25 E (shown by the filled
circle).

2. Because strike lines are axes, the trend of either end is an equally valid statement
of orientation. Column B of Table 7.1 gives the same data with one trend reversed
(Fig. 7.11b). Now the calculated mean of 061 is not correct.

3. The five strike lines are rotated 30◦ anticlockwise (30◦ subtracted from each strike
direction (Column C of Table 7.1), and plotted as vectors (Fig. 7.11c). Again, the
arithmetic mean of −005, that is N 5 W, is correct.

4. Trends are not commonly given by negative angles; azimuths are more appropriate
(Column D of Table 7.1). The mean of these gives the wildly erroneous trend of 221.

The representing of horizontal vectors by points on the circumference of a circle of
unit radius may display a wide variety of forms, including uniform, unimodal, bimodal
and multimodal patterns. Here we confine our treatment to the simple but important case
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Table 7.1 The mean direction of measured strike lines

A B C D

1 005 005 −025 335
2 015 015 −015 354
3 025 205 −005 355
4 035 035 005 005
5 045 045 015 015

Mean 025 061 −005 211
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Figure 7.11 Strike Lines: (a) lines as vectors; (b) lines as axes; (c) lines rotated anticlockwise 30◦.

of a single cluster, that is with a unimodal distribution, and the determination of its mean
direction.

As we have seen the arithmetic mean of trend angles expressed as azimuths generally
gives erroneous results. The reason is simple: consider two vectors with trends of 350
and 010. Clearly, the true mean direction is due north, but their arithmetic mean is 180◦
or due south.

Figure 7.12 Components of
trend vectors.
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The correct way to combine a collection of N unit vectors is by vector addition, and
we do this by summing their components (Fig. 7.12).

C =
N∑

i=1

cos θi and S =
N∑

i=1

sin θi, (7.29)

where the θi (i = 1, 2, . . . , N) are the orientation angles of the individual vectors. The
magnitude of the resultant vector R is given by

R =
√

C2 + S2, (0 ≤ R ≤ N). (7.30)

Alternatively, the mean resultant length R̄ is

R̄ = R/N, (0 ≤ R̄ ≤ 1). (7.31)

R̄ = 1 implies that all points are coincident and R̄ = 0 implies a uniform distribution,
but only if the data make up a single group. The orientation of R, which is the mean
direction, is given by

θ̄ = arctan S/C. (7.32)

As we have also seen, axial data present another problem: because the ends of axes
are interchangeable there is an inherent ambiguity. The solution is to convert the axes to
true vectors by doubling the orientation angles (Krumbein, 1939; Pincus, 1956), which
are now given by 2θ (mod 360) (Fisher, 1993, p. 37).5

Table 7.2 Calculation of the mean of the trends of two-dimensional vectors

i θ sin θi cos θi

1 245 −0.906 31 −0.422 62
2 254 −0.961 26 −0.275 64
3 272 −0.999 39 0.034 90
4 277 −0.992 55 0.121 87
5 281 −0.981 63 0.190 81
6 294 −0.913 55 0.406 74
7 301 −0.857 17 0.515 04
8 315 −0.707 11 0.707 11
9 329 −0.515 04 0.857 17
10 334 −0.438 37 0.898 79

Sums −8.272 36 3.034 17

5In modular arithmetic the expression m (mod n) gives the remainder after integer division of m by the modulus n; for
example, 466 (mod 360) = 106. This is sometimes called clock arithmetic by analogy with arithmetic on a clock face
which has a modulus of n = 12.
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Problem

• From 10 measured azimuths of the long axes of beach pebbles, determine the mean
trend (Table 7.2).

Method

1. A plot using azimuths in the range 0–360◦ shows that the trend angles lie in two
distinct groups: seven in the NE quadrant and three in the SW quadrant (Fig. 7.13a).

2. By doubling the orientation angles and representing each resulting vector as a point on
the circumference of a unit circle they now form a single group with a range 0–180◦
(Fig. 7.13b).

3. From each transformed trend angle 2θi , compute the values of cos 2θ and sin 2θ for
each vector. The sums are then C = 8.257 38 and S = 3.298 17.

4. From Eq. 7.29 we then have components of the resultant vector R(0.265 15, 0.817 56).
Then from Eqs. 7.30, 7.31, R̄ = 0.86, which also indicates a fairly strong concentra-
tion.

5. With Eq. 7.32 we have 2θ̄ = 72.03 113◦ or θ̄ = 36◦, and this is the mean orientation
of the axes.
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Figure 7.13 Circular distributions of axes: (a) plot; (b) conversion to vectors.

The size of the samples in this illustrative problem is small; even a single additional
point might be expected to change the mean direction, possibly significantly. In practice,
more measurements are needed for greater confidence.

If the analysis of problems such as these is to be extended to other statistical attributes
and tests we need to take into account the entire population from which the sample was
taken and in particular the way the data points representing this population are distributed
on the circle. The circular normal or von Mises distribution6 is the most useful way
of treating points which tend to cluster symmetrically about a single point. With this,
a number of useful properties of such unimodal distributions can be found, but these

6This distribution is named for its formulator, the Austrian mathematician Richard von Mises [1883–1953], younger
brother of the respected economist Ludwig von Mises.
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matters would take us well beyond the level of this book. Cheeney (1983, p. 98–106)
gives an easily followed discussion.

7.5 Spherical distributions

The extension to three dimensions is straightforward. Cheeney (1983, p. 107f), Middleton
(2000, p. 167–180) and Borradaile (2003, Chapter 10) give good introductions and the
books by Mardia (1972), Watson (1983), Fisher, et al. (1987) and Mardia and Jupp (2000)
contain advanced treatments.

Three-dimensional orientation data are represented by points on a unit sphere. As in
the two-dimensional case, such a collection of points can display uniform, unimodal,
bimodal and girdle patterns (Mardia, 1972, p. 222; Mardia & Jupp, 2000, p. 161). We
return to some related matters in Chapter 18.

As in the two-dimensional case, we treat a simple but important problem involving the
distribution of points in a single cluster to illustrate the basic approach. If the cluster is
approximately equidimensional it is said to be unimodal and the mean direction is given
by the resultant vector R of the N unit vectors. Its components are

Rx =
N∑

i=1

li , Ry =
N∑

i=1

mi, Rz =
N∑

i=1

ni, (7.33)

where the (li, mi, ni), i = 1, 2, . . . , N are the direction cosines of the individual vectors.
The resultant length or magnitude of this vector is

R =
√

R2
x + R2

y + R2
z , (7.34)

and its direction cosines are

l̄ = Rx/R, m̄ = Ry/R, n̄ = Rz/R. (7.35)

R is also a measure of the concentration of the points about the mean. It will be nearly
as large as N if the points are tightly clustered and will be smaller if they are dispersed. If
data sets with different numbers of measurements are to be compared, the mean resultant
length R̄ is a more useful measure. This is defined as

R̄ = R/N, where 0 ≤ R ≤ N and 0 ≤ R̄ ≤ 1. (7.36)

Problem

• From 10 measured poles of bedding, determine the mean attitude (Table 7.4.
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Method

1. Convert the plunge p and trend t of each pole to direction cosines (l, m, n) and
calculate the totals. From Eq. 7.33 we then have vector R(−6.388 09, −3.673 84,
6.249 20),

2. From Eq. 7.34, R = 9.662 16 and from Eqs. 7.35 the direction cosines of R are then

l̄ = −0.661 15, m̄ = −0.380 23, n̄ = 0.646 77.

3. The attitude of the mean is R(40/210) (shown as an open diamond in Fig. 7.14).
4. With R = 9.7 and R̄ = 0.97 the points are tightly clustered about the mean, as can

be seen.

Table 7.3 Calculation of the mean of three-dimensional
vectors

i p t li mi ni

1 32 206 −0.762 22 −0.371 76 0.529 92
2 30 220 −0.663 41 −0.556 67 0.500 00
3 46 204 −0.634 60 −0.282 54 0.719 34
4 40 198 −0.728 55 −0.236 72 0.642 79
5 20 200 −0.883 02 −0.321 39 0.342 02
6 32 188 −0.839 79 −0.118 03 0.529 92
7 54 192 −0.574 94 −0.122 21 0.809 02
8 56 228 −0.374 17 −0.415 56 0.829 04
9 36 236 −0.452 40 −0.670 71 0.587 79
10 44 218 −0.566 85 −0.442 87 0.694 66

Sums −6.388 09 −3.673 84 6.249 20

Figure 7.14 Unimodal
distribution of poles and its
mean.

N

As in the previous example problem of a circular distribution, in practice a larger
number of measurements will increase confidence.
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It should also be noted that the mean direction of any collection of points on the
sphere may be calculated with this method, but in many situations this direction will have
little or no geometrical meaning. For example, if the data are approximately uniformly
distributed on the sphere, the mean vector may have almost any orientation.

If the analysis of this problem is to be extended to other statistical attributes, such
as confidence limits, we need to take into account the entire population from which the
sample was taken and in particular on the way the data points representing this population
are distributed on the sphere. Because poles of bedding can be considered to be true
vectors, the spherical normal or Fisher distribution7 is the most useful way of treating
points which tend to cluster symmetrically about a single point. With this, a number of
useful properties of such unimodal distributions can be found, but to pursue these matters
would take us well beyond the level of this book. Cheeney (1983, p. 112) and Middleton
(2000, p. 167–180) give easily followed discussions.8

7.6 Rotations

The rotations performed graphically on the stereonet can also be accomplished analyti-
cally. To do this we need expressions which relate the initial vector r(x, y, z) and final
vector r′(x′, y′, z′) in terms of an axis and angle of rotation.

Just as rotations on the stereonet may be performed simply and easily about horizontal
and vertical axes, so too is it easy to describe rotations about the three axes of our
coordinate system. With these descriptions we may then develop procedures for the more
general cases.

Before starting we need a sign convention for the sense of a rotation about an axis
and we use the right-hand rule – when the thumb of the right hand points in the positive
direction of an axis, the fingers indicate the sense of a positive rotation.

Expressions for the rotation of a position vector r about the +x axis are obtained from
a view of the vertical yz plane looking north, that is, in the direction of +x (Fig. 7.15a).
Rotating about this axis, the x component remains unchanged, that is, x′ = x, but the y

and z components do change. In this plane, the orientation of r is given by the angle θ

measured from +y and the orientation of r′ is given by the angle θ + ωx also measured
from +y. Note that the length of the vector is unchanged by rotation, that is, r = r ′.
Then

cos θ = y/r and cos(θ + ωx) = y′/r,

sin θ = z/r and sin(θ + ωx) = z′/r.

7This distribution is named for its originator, the celebrated English statistician Ronald A. Fisher [1890–1962]. He
published the description of this distribution in response to the needs of paleomagnetic studies which were then in their
infancy, and it has been used extensively for this purpose ever since (see Fisher, 1953).

8Smith (1994) describes an interesting way of using the sphere as a tool to teach some additional and important statistical
concepts to geology students.
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Substituting these into the identities for the cosine and sine of the sum of two angles

cos(θ + ω) = cos θ cos ω − sin θ sin ω and sin(θ + ω) = sin θ cos ω + cos θ sin ω

(7.37)
and multiplying through by r yields expressions for y′ and z′. These, plus the equality
x = x′, are

x′ = x,

y′ = y cos ωx − z sin ωx,

z′ = y sin ωx + z cos ωx.

With these equations we may obtain the components of the rotated vector from initial
components x, y, z and ωx by simple substitution. We may also represent the rotation
represented by these three equations with the matrix equation⎡

⎣x′
y′
z′

⎤
⎦ =

⎡
⎣1 0 0

0 cos ωx − sin ωx

0 sin ωx cos ωx

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ (7.38)

where the vectors r(x, y, z) and r′(x′, y′, z′) are represented by column matrices and the
rotation by the 3 × 3 square matrix. An important advantage of this type representation
is that we can now think of the square matrix as a vector processor which changes
one vector into another, and this focuses our attention on the entities rather than on
their components. Such representations and their manipulation by matrix algebra have
compelling advantages for many closely related problems in structural geology. The
book by Ferguson (1994) gives a good introductory treatment for geology students. We
illustrate a few simple applications here and in several later chapters.

The three algebraic equations can be obtained directly from the matrix equation of
Eq. 7.38. To do this, we think of each row of the square matrix as a vector. Then row
times column multiplication corresponds to finding the dot product of each row and the
column vector (see Eq. 7.15). The basic method follows an easily remembered pattern.
Consider the first row of the square matrix and ignore the other two. We then have⎡

⎣a b c

· · ·
· · ·

⎤
⎦
⎡
⎣u

v

w

⎤
⎦ =

⎡
⎣au + bv + cw

·
·

⎤
⎦ . (7.39a)

The second element of the resulting column vector is obtained in the same way by forming
the dot product using the second row of the square matrix⎡

⎣ · · ·
d e f

· · ·

⎤
⎦
⎡
⎣u

v

w

⎤
⎦ =

⎡
⎣ ·

du + ev + f w

·

⎤
⎦ , (7.39b)
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and finally, the third element of the resulting column vector is the dot product using the
third row

⎡
⎣ · · ·

· · ·
g h i

⎤
⎦
⎡
⎣u

v

w

⎤
⎦ =

⎡
⎣ ·

·
gu + hv + iw

⎤
⎦ . (7.39c)

With a little practice the pattern of making each of these combinations becomes automatic.
In forming the three dot products it helps to keep track of each product by stepping along
each of the rows with the left index finger while stepping down the column with the right
index finger.

(a) (c)(b)
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Figure 7.15 Positive rotations: (a) about + x; (b) about + y; (c) about + z.

For a rotation about the y axis we obtain expressions for the changes in the x and z

components on the vertical xz plane looking east, that is, in the +y direction (Fig. 7.15b).
In this plane the orientation of r is given by the angle θ it makes with the +x axis and
the orientation of r′ by the angle ωy it makes with r. Then

cos θ = x/r and cos(θ − ωz) = x′/r,

sin θ = z/r and sin(θ − ωz) = z′/r.

Using these expressions in the identities for the cosine and sine of the difference of two
angles,

cos(θ − ω) = cos θ cos ω + sin θ cos ω and sin(θ − ω) = sin θ cos ω − cos θ cos ω,

(7.40)
yields the three equations

x′ = x cos ωy + z sin ωy,

y′ = y,

z′ = −x sin ωy + z cos ωy.
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In matrix form this rotation is given by

⎡
⎣x′

y′
z′

⎤
⎦ =

⎡
⎣ cos ωy 0 sin ωy

0 1 0
− sin ωy 0 cos ωy

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ . (7.41)

Finally, the rotation about the z axis is described on the horizontal xy plane looking
down (Fig. 7.15c). In this plane the orientation of r is given by the angle θ it makes with
the +x axis and the orientation of r′ by the angle ωz it makes with r. Then

cos θ = x/r and cos(θ + ωz) = x′/r,

sin θ = y/r and sin(θ + ωz) = y′/r.

From the identities of Eqs. 7.37 we have the three equations

x′ = x cos ωz − y sin ωz,

y′ = x sin ωz + y cos ωz,

z′ = z,

or the single matrix equation

⎡
⎣x′

y′
z′

⎤
⎦ =

⎡
⎣cos ωz − sin ωz 0

sin ωz cos ωz 0
0 0 1

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ . (7.42)

These results are fully general in the sense that they apply to the rotation of vectors of
any magnitude. In all our examples, however, we treat only unit vectors as represented
by direction cosines.

We represent each of the three square rotational matrices of Eqs. 7.38, 7.41 and 7.42
by the symbols Rx(ωx), Ry(ωy) and Rz(ωz).9 Each of these rotations represents a cor-
responding graphical procedure used to rotate about vertical and horizontal axes on the
stereonet. As we have indicated, each of these may be treated either as a set of three
equations which can be manipulated by simple substitution or as a matrix multiplication.

We may also combine several separate rotation matrices into a single rotation matrix
R. For example, the sequence of rotations, first about +z and then about +x, may be
written in this notation as

R = Rx(ωx)Rz(ωz),

9The symbol R here should not be confused with the resultant vector of the previous sections.
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where Rz is applied first and then Rx , that is, the order is taken from right to left.Adhering
to this order is important because finite rotations are not commutative.

The product matrix R represents the single equivalent rotation. With the square matri-
ces of Eqs. 7.38 and 7.42, representing rotations about the x and z axes, we then have⎡

⎣1 0 0
0 cos ωx − sin ωx

0 sin ωx cos ωx

⎤
⎦
⎡
⎣cos ωz − sin ωz 0

sin ωz cos ωz 0
0 0 1

⎤
⎦

=
⎡
⎣ cos ωz − sin ωz 0

cos ωx sin ωz cos ωx cos ωz − sin ωx

sin ωx sin ωz sin ωx cos ωz cos ωx

⎤
⎦ .

The elements of this resulting 3 × 3 product matrix are obtained by an extension of
the pattern of Eqs. 7.39 again using row times column multiplication. To see this more
clearly focus on the first row of the left-hand matrix and the first column of the right-hand
matrix, disregarding all the others. We then see only⎡

⎣a b c

· · ·
· · ·

⎤
⎦
⎡
⎣p · ·

q · ·
r · ·

⎤
⎦ =

⎡
⎣ap + bq + cr · ·

· · ·
· · ·

⎤
⎦ .

The resulting element in the product matrix is the dot product of this row and this column.
Note that this element is located in the position common to the row and column, that is,
in the first row and first column.

All the elements of the product matrix are obtained in this same way: put your left
index finger against any row of the square matrix on the left and your right index finger
against any column of the square matrix on the right; the three pairs of elements so
identified appear in a single element of the product matrix as the sum of the products of
corresponding elements. The position of each product element is the one common to the
selected row and column.

Problem

• Rotate line L(00/320), first with Rz(−60◦) then with Rx(−40◦) (see Fig. 6.5b).

Solution

1. First, convert the plunge and trend of L into direction cosines expressed as a column
matrix.

2. Then substitute the rotational angles into the single product matrix of Eq. 7.43.
3. The full equation is then⎡

⎣x′
y′
z′

⎤
⎦ =

⎡
⎣ 0.766 04 0.642 79 0.000 00

−0.321 39 0.383 02 0.866 03
0.556 67 −0.663 41 0.500 00

⎤
⎦
⎡
⎣ 0.766 04

−0.642 79
0.000 00

⎤
⎦ =

⎡
⎣−0.173 65

−0.492 40
0.852 87

⎤
⎦ .
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Answer

• After the combined rotations, the attitude is L′(59/289) and this is the same result
obtained graphically.

This same procedure can be extended to any number of rotations. By hand such mul-
tiple rotations require a tedious series of computations but the sequence can be easily
programmed.

7.7 Rotational problems

With these matrix representations of rotations about the coordinate axes we can solve
all the rotational problems of the previous chapter. As we have just seen any sequence
of rotations can be combined by matrix multiplication into an equivalent single rotation
matrix that produces the same result.

A simple but important geological problem is the restoration of the pre-tilt orientation
of a line in an inclined plane by the conventional tilt correction. Following the procedure
used in Fig. 6.8, we specify the attitude of the plane by the plunge and trend of the dip
vector D. To form the rotation matrix which restores the plane to horizontality by rotation
about the strike direction then requires three steps.

Steps

1. Rotate vector D about +z into the vertical xz plane by Rz(−t).
2. Rotate D about +y to horizontal by Ry(δ).
3. Return D its original trend by Rz(+t).

This sequence can be represented by the equation

R(ω) = Rz(+t) Ry(δ) Rz(−t), (7.43)

where again the order is taken from right to left. If the bed is overturned then the rotation
about y is given by Ry(δ − 180◦).

Problem

• A plane whose attitude is given by D(60/230) contains line L with t = 297◦. What
was the pre-tilt trend of the line? (Fig. 7.16a; see also Fig. 6.8a).

Solution

1. The single equivalent rotation is found from the sequence of rotations

R = Rz(−230◦) Ry(+60◦) Rz(+230◦).

2. Using Eq. 1.8, the angle the trend of L makes with the dip direction is φ = 297−230 =
67◦. Then the plunge of this line is α = 34.088 81◦.
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Figure 7.16 Conventional tilt correction: (a) upright; (b) overturned.

3. Its plunge and trend give L(0.375 98,−0.737 90, 0.560 48).

4. The full rotation matrix equation is then

⎡
⎣x′

y′
z′

⎤
⎦ =

⎡
⎣ 0.793 41 −0.246 20 −0.556 67

−0.246 20 0.706 59 −0.663 41
0.556 67 0.663 41 0.500 00

⎤
⎦
⎡
⎣ 0.375 98

−0.737 90
0.560 48

⎤
⎦ =

⎡
⎣ 0.515 93

−0.856 63
0.000 00

⎤
⎦ .

Answer

• The estimated pre-tilt attitude of the line is L′(00/280).

Problem

• If the beds in the previous problem are overturned what was the pre-tilt trend of the
line? (Fig. 7.16b; see also Fig. 6.8b).

Solution

1. The single equivalent rotation is found from the sequence

R = Rz(−230◦) Ry(−120◦) Rz(+230◦).

2. As before, using the given trend and Eq. 1.8, determine the plunge of the line in the
plane and then its direction cosines.

3. In matrix form the set of equations representing the single rotation is then

⎡
⎣x′

y′
z′

⎤
⎦ =

⎡
⎣ 0.380 24 −0.738 61 0.556 67

−0.738 61 0.119 76 0.663 41
−0.556 67 −0.663 41 −0.500 00

⎤
⎦
⎡
⎣ 0.375 98

−0.737 90
0.560 48

⎤
⎦ =

⎡
⎣0.999 98

0.005 75
0.000 00

⎤
⎦ .
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Answer

• The estimated pre-tilt attitude was L′(00/000), that is, horizontal and trending due
north.

In both these solutions the plunge of the line in the inclined plane was calculated from
its trend using the apparent dip formula. If a measured plunge angle is used or its value
is read from a plot it may not lie exactly in the plane and this may result in the corrected
attitude departing slightly from horizontal. Even if the plunge is accurately calculated,
a tiny round-off error may produce the same result. If, because of these errors, the restored
line ends up in the upper hemisphere and it is reversed into the lower hemisphere the
trend will be 180◦ in error. In such cases, some care is required when interpreting the
results.

The case of a rotation about an inclined axis requires a sequence of five coordinate
rotations. There are several equivalent ways of ordering these and the one we choose is
closely related to the procedure used graphically in the previous chapter.

Steps

1. Rotate axis R about the +z axis by angle −t to bring it into the vertical xz plane.
2. Rotate this R about the +y axis by angle (p − 90◦) to bring it into coincidence with

the +z axis.
3. Rotate about the +z axis by the specified angle ω to perform the required rotation.
4. Rotate R about the +y axis by angle (90◦ − p) as the first step in returning it to its

original orientation.
5. Finally, rotate R about the +z axis by angle +t to return it to its initial orientation.

We may also express this sequence of five rotations in short-hand as

R(ω) = Rz(+t) Ry(90◦ − p) Rz(ω) Ry(p − 90◦) Rz(−t). (7.44)

Figure 7.17 Single rotation
equivalent to a sequence of
rotations.

R
L�

LN
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Problem

• Rotate line L(00/020) about the inclined axis R(25/330) by ω = +40◦ (Fig. 7.17;
see also Fig. 6.8).

Solution

1. The complete sequence of rotations is given by

R(ω) = Rz(330◦) Ry(65◦) Rz(40◦) Ry(−65◦) Rz(−330◦). (7.45)

2. Performing the multiplication of the five matrices, together with the direction cosines
of the line, yields⎡
⎣x′

y′
z′

⎤
⎦ =

⎡
⎣0.910 17 −0.354 87 −0.213 68

0.188 44 0.814 09 −0.549 32
0.368 89 0.459 71 0.807 83

⎤
⎦
⎡
⎣0.939 69

0.342 02
0.000 00

⎤
⎦ =

⎡
⎣0.733 91

0.455 51
0.503 87

⎤
⎦ .

Answer

• From these direction cosines, the plunge and trend of the line after rotation is
L′(30/032).

7.8 Three-point problem

The three-point problem may be solved analytically in several ways. Haneberg (1990)
described a technique involving Lagrangian interpolation and De Paor (1991) used
barycentric coordinates. Here we illustrate two additional, vector-related ways.

Coordinate geometry

The first method uses coordinate geometry to determine the components of the vector
normal to the plane. Because elevations on land are almost always positive numbers it is
convenient, and universal, to adopt the right-handed system of geographical coordinate
axes with +x = east, +y = north and +z = up. Note that in contrast to our previ-
ous coordinate system positive vertical angles are now measured upward and positive
horizontal angles are measured anticlockwise from +x.

We need the equation of the plane passing through three non-collinear points
P1(x1, y1, z1), P2(x2, y2, z2) and P3(x3, y3, z3), and this requires the solution of the
system of homogeneous equations (see Vacher, 2000)

Ax + By + Cz + D = 0,

Ax1 + By1 + Cz1 + D = 0,

Ax2 + By2 + Cz2 + D = 0,

Ax3 + By3 + Cz3 + D = 0.



158 Vectors

The first of these is the general form of the equation of the plane. The other three express
the conditions that the three points lie on this plane. We may also write these in the form
of a matrix equation

⎡
⎢⎢⎣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

A

B

C

D

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

This equation always has the trivial solution A = B = C = D = 0, but this case has
no physical meaning. A non-trivial solution exists if and only if the determinant of the
4 × 4 matrix is equal to zero ∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣
= 0.

Expanding by the method of cofactors gives the required equation of the plane∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣ x −
∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣ y +
∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ z −
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ = 0.

There are two ways of expanding these 3 × 3 determinants.

1. If there are all 1s in any column, as in the first three terms, the method of cofactors is
particularly easy to apply.

2. In the more general case a simple extension of the method used for a 2×2 determinant
is perhaps the easiest approach. Copy the first two columns to the right. Then the three
triple products from the upper left to lower right are positive (Fig. 7.18a) and the three
triple products from upper right to lower left are negative (Fig. 7.18b).

Applying these yields

A = +
∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣ = +[(y2z3 − z2y3) − (y1z3 − z1y3) + (y1z2 − z1y2)], (7.46a)

B = −
∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣ = −[(x2z3 − z2x3) − (x1z3 − z1x3) + (x1z2 − z1x2)], (7.46b)

C = +
∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = +[(x2y3 − y2x3) − (x1y3 − y1x3) + (x1y2 − y1x2)], (7.46c)
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D = −
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ =−[(x1y2z3 + y1z2x3+ z1x2y3)−(z1y2x3+ x1z2y3+ y1x2z3)].

(7.46d)

Geometrically, the coefficients A, B and C are the components of a vector N normal
to the plane. The constant D is related to the distance from the origin to the plane in
this direction (which we don’t need in this application). With A, B and C evaluated, the
equation of the normal vector is then

N = A i + B j + C k. (7.47)

x1 y1

x2 y2

x3 y3

+x1y2z3  + y1z2x3  + z1x2y3 −z1y2x3  − x1z2y3  − y1x2z3

+ + +

x1 y1

x2 y2

x3 y3

− − −

x1 y1

(a) (b)

y2

z3

y1 z1

z2 x2

x3 y3

x1z1

y2 z2 x2

x3 y3 z3

Figure 7.18 Evaluating a 3 × 3 determinant.

Problem

• From points P1, P2 and P3 on a plane, determine its attitude (see Fig. 7.19 and
Table 7.4).

Table 7.4 Dip and strike from coordinate geometry

x y z

P1 100 m 60 m 535 m
P2 350 m 16 m 415 m
P3 156 m 214 m 440 m

Solution

1. From Eqs. 7.47 the values of the coefficients are A = 226 60, B = 170 30 and
C = 409 64. These are direction numbers of the vector N normal to the plane.

2. Normalizing these numbers, the direction cosines are N(0.454 88, 0.341 86, 0.822 32).
Note that because the direction of +z is taken upward, these represent an upward
pointing vector which is plotted in the upper hemisphere in Fig. 7.20a.
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3. The opposite of N is the downward pointing pole vector P, that is, P = −N. This
vector is plotted in the lower hemisphere in Fig. 7.20b.

4. The trend of the dip vector D and the trend of N are the same.

Figure 7.19 Three-point
problem by coordinate
geometry.

35

y

xO

100 m

P2

P1

P3

Answer

• Using Eqs. 7.8 gives the correct plunge of the dip vector but its trend is measured from
+x = east. We need its complement and we thus have D(35/053).

(a) (b) (c)

y

x

y

x x

y

D

P

N

D

Ay

Ax

D

P

Figure 7.20 Three-point problem: (a) N and D in the upper hemisphere; (b) P and D in the lower
hemisphere; (c) true dip D from apparent dips Ax and Ay.

Fienen (2005) extended this treatment to the case of more than three points using a
least-squares technique to find the best-fit plane.

Vector analysis

The second method uses elementary vector analysis. Not only does this provide a simple
solution but the basic approach is directly applicable to a wide variety of other physical
problems. The treatment closely follows Vacher (1989).

Associated with every point on a map depicting an inclined plane is a number represent-
ing its height h. The functional relationship between the elevation and these geographical
points is written h(x, y).
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In mathematical terms h(x, y) is a two-dimensional scalar field . At every point in this
field the rate of change of h with distance s depends on direction. This is the directional
derivative and it is denoted dh/ds. The difference �h in the heights between any two
points on the inclined plane is found from the slope and map distance between the points,
that is,

�h = (dh/ds)s.

There is a direction in which dh/ds has a maximum value, and this direction of
maximum slope is represented by a vector called the gradient ofh, written grad hor∇h.10

In component form this gradient vector is given by the sum of the vector components in
each of the coordinate directions.

∇h = ∂h

∂x
i + ∂h

∂y
j,

where i and j are the unit base vectors in the +x and +y directions and the partial
derivatives ∂h/∂x and ∂h/∂y are the slopes of the plane in each of these directions. We
can now express the directional derivative in any direction as the dot product

∇h · û = dh

ds
,

where û is the unit vector in the required direction.
This gradient vector exists at every point in the field, expressed as ∇h(x, y), and this

is the description of a vector field .11
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Figure 7.21 Structure contours and the gradient vector ∇h.

10The vector operator symbol ∇ was introduced by the Irish mathematician and physicist William Rowan Hamilton
[1805–1865], and called nabla after a Hebrew harp of similar shape. It is now commonly termed del, but do not confuse
the name or symbol with the Greek delta.

11In this application the scalar field h(x, y) describes an inclined plane and therefore the vector ∇h has constant magnitude
and direction everywhere in the field. But the analysis also applies to more general situations where h(x, y) describes
a curviplanar surface; ∇h still exists at every point, but both its magnitude and direction will vary.
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Because vector ∇h is the steepest direction its magnitude is also the slope of the line
of true dip. The dip direction is given by −∇h, that is, opposite the direction of ∇h. The
reason for the change of sign is that ∇h refers to the maximum increase while the dip
refers to the maximum decrease of h. We can avoid this minus sign by defining the dip
vector as

D = −∇h. (7.48)

The components of this vector in each of the coordinate directions give the magnitudes
of the apparent dip vectors Ax and Ay (Fig. 7.21a). Thus

Ax = −∂h/∂x and Ay = −∂h/∂y. (7.49)

The magnitude of the dip vector is then

D =
√

A2
x + A2

y, (7.50)

and the angle of true dip is

δ = arctan D. (7.51)

The angle vector D makes with +x is given by

θx = arctan(Ay/Ax). (7.52)

In order to find the gradient vector ∇h we need to express its components in terms of the
coordinates of the three known points P1(x1, y1, h1), P2(x2, y2, h2) and P3(x3, y3, h3)

on the plane. We may relate these components to the horizontal and vertical distances
between pairs of these known points, and we do this for lines P1P2 and P1P3 (Fig. 7.21b).

1. The vertical distance between points P1 and P2 is �h12 = (h2 −h1). This is made up
of two parts: �hx is associated with line parallel to the x axis and �hy is associated
with line parallel to the y axis (Fig. 7.21c). In terms of the coordinates of points P1

and P2 these are

�hx = ∂h

∂x
(x2 − x1) and �hy = ∂h

∂y
(y2 − y1).

The total �h is the sum of these two parts

�h12 = ∂h

∂x
(x2 − x1) + ∂h

∂y
(y1 − y2) = (h2 − h1). (7.53a)
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Table 7.5 Dip vector from ∇h

x y h

P1 100 m 60 m 535 m
P2 350 m 16 m 415 m
P3 156 m 214 m 440 m

2. Similarly, the vertical distance between points P1 and P3 is �h13 = (h3 − h1). It too
is made up of two parts and the sum of these parts is

�h13 = ∂h

∂x
(x3 − x1) + ∂h

∂y
(y3 − y1) = (h3 − h1). (7.53b)

We now have two equations for the two unknown slopes ∂h/∂x and ∂h/∂y. Solving
for these using Cramer’s rule12 gives

∂h

∂x
=

∣∣∣∣(h2 − h1) (y2 − y1)

(h3 − h1) (y3 − y1)

∣∣∣∣∣∣∣∣(x2 − x1) (y2 − y1)

(x3 − x1) (y3 − y1)

∣∣∣∣
and

∂h

∂y
=

∣∣∣∣(x2 − x1) (h2 − x1)

(x3 − x1) (h3 − h1)

∣∣∣∣∣∣∣∣(x2 − x1) (y2 − y1)

(x3 − x1) (y3 − y1)

∣∣∣∣
.

Expanding these determinants we have

∂h

∂x
= (h2 − h1)(y3 − y1) − (h3 − h1)(y2 − y1)

(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)
, (7.54a)

∂h

∂y
= (h3 − h1)(x2 − x1) − (h2 − h1)(x3 − x1)

(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)
. (7.54b)

Problem

• Solve the same three-point problem using this vector approach (see Fig. 7.21 and
Table 7.5).

Solution

1. With coordinates (x, y) and heights h (Table 7.5) Eqs. 7.55 yield the slopes in each
coordinate direction ∂h/∂x and ∂h/∂y.

2. Eqs. 7.50 yield the corresponding downward slopes Ax(0.553 17) and Ay(0.415 73).
The apparent dip angles are then αx = 28.95◦ and αy = 22.57◦.

3. From Eqs. 7.51 and 7.52, D = 0.691 97, hence the dip of the plane δ = 34.68◦.

12Named after the Swiss mathematician Gabriel Cramer [1704–1752], a contemporary of Leonard Euler.
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4. From Eq. 7.53, θx = 36.93◦ and this is the trend of the direction of true dip measured
from east.

Answer

• The attitude of the dip vector is D(35/053), which is the same as obtained by coordinate
geometry (see Fig. 7.20c).



8
Faults

8.1 Definitions

Fault: a surface along which appreciable displacement has taken place; this surface may
be planar or curviplanar.

Fault zone: a zone containing a number of parallel or anastomosing faults.
Echelon faults: relatively short, parallel faults of a zone which display an overlapping

or staggered pattern.
Shear zone: a zone across which two blocks have been displaced in fault-like manner,

but without development of visible fractures.
Footwall: the surface bounding the body of rock immediately below a non-vertical fault.

The body of rock itself is called the footwall block.
Hangingwall: the surface bounding the body of rock immediately above a non-vertical

fault. The body of rock itself is called the hangingwall block.
Cut-off line: the trace of a displaced plane on the fault surface; these lines occur in pairs,

one on the footwall and one on the hangingwall.
Slip: the relative displacement of formerly adjacent points (Fig. 8.1a); also called the

net slip. It is represented by the relative slip vector, usually of the hangingwall block
relative to the footwall block. Dip slip and strike slip are components. This total
displacement is the result of the accumulation of a number of small slip events, which
are not necessarily parallel to the slip vector.

Separation: the distance between two displaced planes. It may be measured on the fault
perpendicular to the cut-off lines, but more commonly in the strike or dip directions
(Fig. 8.1b). On the other hand, stratigraphic separation is measured perpendicular to
the displaced strata, not in the plane of the fault.

Contractional fault: a fault which produces horizontal shortening as measured across
the trace of the fault.

Extensional fault: a fault which produces horizontal lengthening as measured across
the trace of the fault.

165
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Figure 8.1 Fault and displaced marker plane: (a) possible slip vectors 1–5; (b) A = separation, B = strike
separation; C = dip separation (after Hill, 1959, 1963).

8.2 Fault classification

Although we will treat faults as surfaces along which slip has taken place, many faults
are accompanied by comminuted rock material which may or may not be chemically
altered or recrystallized (Wise, et al., 1984). Although we do not consider these products
further, their character gives important information on the processes of faulting and the
environments in which it occurs.

The most important aspect of fault geometry is slip. We treat first translational faults
where the relative slip vector has a constant magnitude and orientation everywhere on the
fault plane or a specific portion of it. There are two important special cases: slip parallel
to the dip of the fault or slip parallel to the strike of the fault. Combined with the two
possible senses of displacement for each, this leads to a fourfold classification of slip.

1. Dip slip

(a) Normal slip: hangingwall block has moved down relative to the footwall block.1

(b) Reverse slip: hangingwall block has moved up relative to the footwall block.

2. Strike slip

(a) Right slip: standing facing the fault, the opposite block has move relatively to the
right.

(b) Left slip: the opposite block has moved relatively to the left.

The names of the two corresponding types of dip-slip faults are usually shortened to
normal faults and reverse faults.

Right-slip faults are also called right-lateral or dextral faults and left-slip faults are
also called left-lateral or sinistral faults. Note that vertical and horizontal faults require
special treatment. It is important to emphasize that all four of these special types and
combinations are slip-based names (Table 8.1).

1An extended glossary of terms applied to various aspects of normal faults is given by Peacock, et al., (2000).
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Table 8.1 Types of translational faults

Dip slip Normal-slip fault
Reverse-slip fault

Strike slip Right-slip fault
Left-slip fault

Oblique slip Dip- and strike-slip terms combined

The attitude of the fault plane is an important second factor in describing the relative
displacement of the two fault-bounded blocks. For example, the dominantly horizontal
displacement associated with a reverse fault with a dip of 20◦ differs considerably from
that associated with the dominantly vertical displacement associated with a reverse fault
with a dip of 70◦. It is, therefore, useful to introduce dip into the classification of fault
displacements.

Several ways of graphically depicting fault classes have been proposed (Rickard,
1972; Threet, 1973a). Rickard’s approach combines the fault dip with the pitch of the
net slip on a triangular diagram, and this leads to a graphical classification scheme. Each
possible dip-pitch pair is assigned a unique index; for example, for a fault dipping 60◦ on
which the net slip pitches 80◦ the index symbol would be D60R80 (R for rake, to a void
confusion with plunge). This is then represented by a point on the triangular grid (see
plot, Fig. 8.2a). Four separate triangles are necessary to represent normal and reverse
slips, and right and left slips (Fig. 8.2b).
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Figure 8.2 Translational fault: (a) dip-pitch grid; (b) categories: dip- and strike-slip faults (shaded), and
oblique-slip faults (blank) (after Rickard, 1972).
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In this way all possible translational faults can be plotted. Further, the main categories
of faults can be added to the full diagram as an aid to classification. Rickard also suggests
that the special cases of dip slip and strike slip be restricted to faults with pitch angles of
80–90◦ and 0–10◦, respectively.

By including the dip of the fault plane in the classification, several additional categories
are needed. It is useful and common to distinguish high-angle faults and low-angle
faults, depending on whether the dip is greater or less than 45◦. A low-angle reverse
fault is called a thrust. The term overthrust is commonly used for a thrust with dip
δ = 0–10◦. The prefix over is used to emphasize the dominantly horizontal component
of the relative displacement of the hangingwall block, and not to imply a direction of
absolute movement. Low-angle normal faults also exist but there is no agreed special
name.

To depict the various faults and their slip directions on geological maps, special sym-
bols are used. Figure 8.3 shows a number of such symbols for the combinations of slip
and dip which cover most situations.

Figure 8.3 Map symbols for faults (after Hill, 1963).

8.3 Slip and separation

Unfortunately, slip can not always be determined. It is separation which is more often
measurable, and, in fact, observed separation is commonly the field evidence for the
existence of a fault. However, a clear distinction must be maintained between these two
terms because an observed separation may result from many possible orientations of the
slip vector (see Fig. 8.1b). In order to emphasize this important distinction, two parallel
classifications have evolved; one based on slip and the other on separation (Hill, 1959,
1963). Table 8.2 gives the terms for describing the sense of separation.

Because of these two ways of describing aspects of fault displacement it is crucially
important to develop a clear understanding of the geometry of slip and separation and
especially the relationships between them. A good way of doing this is by constructing a
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Table 8.2 Types of separation

Right separation Standing on a displaced marker plane on one block and facing the fault,
the trace of the marker plane is to the right across the fault.

Left separation The trace of the marker plane is to the left on the opposite block.

Normal separation In a vertical section, the cut-off line of a marker plane on the hangingwall
is below the cut-off line of the same marker on the footwall.

Reverse separation The cut-off line on the hangingwall is above the cut-off line on the footwall.
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Figure 8.4 Direct view of fault plane: (a) FW = footwall side; (b) HW = hangingwall side.

direct view of a fault plane in order to describe the geometrical effects of the displacement.
With such a view, slip and separation can be modeled in a simple way.

Procedure

1. On a sheet of paper representing the footwall side of the fault draw a horizontal line
of strike and a cut-off line inclined to the left. Label the intersection of these lines X

(Fig. 8.4a).

2. On a sheet of tracing paper representing the hangingwall side of the fault make a copy
and label the point of intersection Y (Fig. 8.4b).

3. Place the hangingwall sheet on the footwall sheet with the lines and points coinciding.
Possible slips are modeled simply by translating the tracing sheet. Line XY represents
the relative slip vector D.

4. Two sets of experiments will illustrate the method.

(a) Move the hangingwall sheet directly downward to model normal slip (Fig. 8.5a).
Note the normal separation (the HW cut-off line is below the FW cut-off line) and
the left separation (the FW cut-off line is to the left of the HW cut-off line).

(b) Returning to the initial position now move the hangingwall sheet to the right to
model left slip. Note the normal separation and left separation (Fig. 8.5b).

5. Make a second set of drawings, but this time with the cut-off lines inclined to the
right.
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(a) Normal slip produces normal separation (as before the HW cut-off line below the
FW cut-off line), but right separation (the FW cut-off line to the right of the FW
cut-off line) (Fig. 8.6a).

(b) Left slip produces left separation and reverse separation (Fig. 8.6b).
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(a) (b)

X Y
FW HWD

D

Figure 8.5 Model I: (a) normal slip; (b) left slip.

Depending on the orientation of the cut-off lines, pure dip slip produces left separation
(Fig. 8.5a) or right separation (Fig. 8.6a), and pure strike slip produces normal separation
(Fig. 8.6b) or reverse separation (Fig. 8.6b). These results show that the sense of dip and
strike separation may agree or disagree with the sense of the dip and strike slip. Similar
experiments may be repeated for a variety of differently oriented slips, including oblique
slip. In this way, three general rules can be confirmed (Threet, 1973b).

1. If the slip vector pitches in a direction opposite to that of the cut-off lines the sense
of each component of slip will agree with the respective senses of separation.

2. If the slip pitches in the same direction but at a smaller angle than the cut-off lines the
sense of dip separation will disagree with the sense of dip-slip component, while the
sense of the strike separation will agree with the sense of the strike-slip component.

3. If the slip pitches in the same direction but at a greater angle than cut-off lines the
sense of strike separation will disagree with the sense of strike-slip component while
the sense of dip separation will agree with the sense of dip-slip component.

While it is important to understand the implications of these rules it is not necessary to
memorize them because the same information can be obtained directly from observations
of a geological map. We show how to do this in the next section.

Because of these ambiguities a separation-based scheme is not really a description of
displacement at all and any classification based on it is inherently misleading (see also
Gill, 1935, 1941, 1971). If the separation is to be described it must be spelled out in terms
of the attitude of the disrupted plane and the direction in which it is measured and its
sense.
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Figure 8.6 Model II: (a) normal slip; (b) left slip.

There is another difficulty – the discrepancy between the amounts of slip and sepa-
ration. This problem is particularly clear if the slip vector and cut-off lines are parallel
(Fig. 8.7). There is no separation at all. The geometrical factors which lead to this situ-
ation are termed the null combination (Redmond, 1972). A potentially important case is
a strike-slip fault cutting horizontal beds.

Figure 8.7 Model of slip with
zero separation.
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At the opposite extreme, there are conditions where the measured separation is very
much larger than the slip. For a unit of strike slip, the dip separation SD is, from Fig. 8.8a,

SD = tan r, (8.1)

where r is the pitch of the cut-off lines on the fault plane. Similarly, for a unit of dip slip
the strike separation SS is, from Fig. 8.8b,

SS = 1/ tan r. (8.2)

For a pure strike-slip fault, the dip separation SD becomes very large as the pitch angle
approaches 90◦ (Eq. 8.1), and for a pure dip-slip fault, the strike separation SS becomes
very large as the pitch angle approaches 0◦ (Eq. 8.2).
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Figure 8.8 Magnitude of separation: (a) unit strike slip; (b) unit dip slip.

While the accurate observation and description of separation is important, we see that
the sense and amount of the separation are unreliable guides to interpreting the sense and
magnitude of slip.

8.4 Faults in three dimensions

The down-structure method of viewing geological maps allows one to see some of these
same relationships in a three-dimensional setting (Mackin, 1950; Threet, 1973b). The
geological map of Fig. 8.9 shows three vertical faults displacing inclined strata. From
the map the senses of strike separation can be immediately determined. Fault L shows
right separation, and Faults M and N show left separation. But what about the sense of
dip separation?

Adopting a down-dip view of the beds in the vicinity of Fault L reveals that Bed 2 is
higher on the west side of the fault. Therefore, the sense of dip separation is up on the
west (the terms reverse or normal do not apply here because the fault is vertical).

As an aid to this visualization, it is useful, especially for beginners, to represent the two
sides of the fault by holding the two flattened hands with the fingers in the dip direction
of the beds. Starting with the hands together move one hand parallel to the plane of the
fault to reproduce the observed separation in two special ways.

1. Move the left hand representing the west block upward in pure dip-slip displacement.

2. Move the left hand northward in pure strike-slip displacement.

It can then also be seen that many differently oriented oblique slips are also possible, all
of which can be easily modeled.

For Fault M the sense of dip separation can also be seen in a down-dip view; in
contrast, it is up on the east. There is, however, a better way of viewing the map of such
a fault, and it is in the direction of the line of intersection of the fault and the displaced
plane. For Fault M the trend of the cut-off line is parallel to the strike of the vertical fault
and its plunge is the apparent dip of the bed in this direction, that is, 28/350.

For Fault N the attitude of the line of intersection is 18/295, and looking in this
direction gives quite a different picture but with essentially the same meaning.
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Figure 8.9 Down-structure view of faults (after Mackin, 1950).

The utility of this down-plunge view is illustrated even better when the fault plane is
inclined. Figure 8.10a shows a map of an east-dipping fault which obliquely cuts a bed
inclined at 40◦. As shown in the stereogram (Fig. 8.10b), the intersection I of the bed
and fault is parallel to the line of dip on the fault, that is, the pitch of the cut-off lines
lHW and lFW is 90◦. The map clearly shows left separation. The dip separation, however,
is infinite and we can see this clearly in a down-dip view of the fault plane (see also
Fig. 8.10c).
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Figure 8.10 Case r = 90◦: (a) map; (b) stereogram; (c) direct view.

In this example the attitude of the bed is such that the line of intersection is exactly
parallel to the dip of the fault, and this illustrates the boundary between two general
cases.

1. If the dip of the beds is less than 40◦ then the cut-off lines pitch to the north and the
dip separation is reverse (Fig. 8.11a).

2. If the dip of the beds is greater than 40◦ the cut-off lines pitch to the south and the dip
separation is normal (Fig. 8.11b).
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In such cases the down-plunge view immediately reveals two important aspects of fault
geometry.

1. The hangingwall block is seen to be above the footwall block, that is, they are in their
correct vertical relationships.

2. The cut-off lines on the hangingwall and footwall sides are also seen to be in their
correct vertical relationships. If the hangingwall cut-off line is below the footwall
cut-off line the dip separation is normal, and if it is above the dip separation is reverse.

Thus in all cases a down-plunge view of the cut-off lines shows the correct sense of dip
separation.

30
Bed

Bed

20 20

B

A

20

20

(a) (b)

30

60

60

B

A
28

28

Fa
ul

t

Fa
ul

t

Bed

Bed

N

Figure 8.11 Down-plunge views: (a) reverse separation; (b) normal separation.

Clearly it is slip, not separation, which most fundamentally describes the displacement
on a fault, and a classification based on it is the only meaningful way of categorizing this
information.

8.5 Slip and its determination

Because of its importance, we need to be able to deal with the geometry of slip. In order
to introduce the approach used in the analysis of fault displacement, we start with the
simpler situation where the direction and amount of the slip on a fault are given.

Problem

• A normal fault dips 60◦ due east (Fig. 8.12a). It cuts a vein whose attitude is N 50 E,
40 N which is exposed only on the west side. The slip is 100 m. Locate the vein on the
opposite side of the fault.
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Figure 8.12 Displaced vein: (a) map; (b) stereogram.

Approach

• As always, visualize the elements of the problem. First, view the map by looking down
the dip of the fault. See that the east side overlies the west side and is, therefore, the
hangingwall block. Second, estimate the attitude of the line of intersection of the fault
and the vein: it trends somewhat east of north and plunges less than dip of the vein.
Now view the map in this direction and imagine the continuation of the map trace of
the vein before faulting. Normal slip brings the hangingwall block directly down the
dip of the fault. Therefore the vein will show normal separation, and its cut-off line
on the hangingwall will appear below the cut-off line on the footwall side. This also
means that the vein will show right separation.

Construction

1. On a stereogram plot the plane of the fault and the vein as great circles (Fig. 8.12b).
Their intersection I (25/016) gives the attitude of the cut-off line and its pitch r = 29◦
on the plane of the fault.

2. To construct a direct view of the fault plane from the FW side, draw a line of strike,
plot point A representing the surface point common to the fault and vein. With the
pitch angle draw in the cut-off line on the footwall (Fig. 8.13a).

3. Draw a slip vector D perpendicular to the strike line through A. From point A scale
off 100 m along this line to locate a point on the hangingwall cut-off line. Through
this point draw a parallel cut-off line to intersect the strike line at point B which is to
the left on the hangingwall.

4. AB is the strike separation. Measure its scaled length to locate point B on the map
trace of the fault and complete the outcrop trace of the vein on the hangingwall block
(Fig. 8.13b).
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Answer

• The measured strike separation is 180.4 m.
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Figure 8.13 Known slip: (a) direct view of fault from the HW side; (b) map of fault and vein.

This problem is not very realistic because the direction and amount of slip was given.
We need to determine its orientation, sense and amount from field observations and there
are several ways of doing this.

There may be features on the plane of the fault called slickenstructures (Fleuty, 1974,
1987b; see Table 8.3), which include slickenplanes and slickenlines. These are formed
by abrasional or depositional processes acting during slip. In detail, these may take a
variety of forms (Means, 1987).

Table 8.3 Slickenstructures

Generic term Abrasion Growth

Planar feature Slickenplane Slickenside Slickenzone
Linear feature Slickenline Slickenstriae Slickenfiber

Polished fault surfaces produced by wear during slip are called slickensides. If present,
grooves or scratches on these surfaces are slickenstriae (Weaver, 1975) and these give
the direction of slip, although if there have been several differently oriented episodes of
movement, only the last will be recorded. There also may be minute step-like features
on these polished planes called slickensteps, which are approximately perpendicular to
the slickenlines. The direction in which these steps face has been used as an indication
of the sense of slip, but counter examples are known (Hobbs, et al., 1976, p. 303–305).

Thin fibrous coatings or slickenzones are found on some movement planes. These are
formed by the deposition, commonly of calcite or quartz, from aqueous solutions during
sliding, and the orientation of the slickenfibers identifies the latest slip direction and in
some cases also the sense of slip.
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Figure 8.14 Known slip direction: (a) map; (b) stereogram; (c) fault plane.

Problem

• A fault dips 60◦ due east (Fig. 8.14a). A displaced bed with attitude N 60 E, 40 S
shows 400 m of left separation. Slickenlines on the fault plane plunge toward N 75 E.
Determine the amount and sense of slip.

Visualization

• The attitude of the line of intersection I of the fault and the bed is 40/151. A down-
plunge view in this direction shows that the cut-off line on the hangingwall side is
below the cut-off line on the footwall side, that is, the dip separation is normal.

Construction

1. On a stereogram plot the planes of the fault and bed as great circles, and the slickenlines
as point D on the fault. The two planes intersect at I giving the pitch of the bed in the
fault plane as rB = 40 S. Measure the pitch of D as rD = 80 N (Fig. 8.14b).

2. Using pitch angle rB , construct a direct view of the fault plane from the hangingwall
side showing the scaled separation AB. Draw the FW cut-off line through point A

and the HW cut-off line through point B (Fig. 8.14c). Note that these two lines show
normal separation thus confirming the results of the down-plunge view.

3. With its pitch angle rD , draw the slip vector D through point A to intersect the
hangingwall cut-off line. Measure its scaled length.

Answer

• The amount of the slip is 377 m, and its sense is dominantly normal. This sense can
be indicated on the stereogram by a small split circle with the dark half on the down
side.

Without such direct information of its direction, determining the slip requires the
recognition of two originally adjacent points on the fault surface or the equivalent. Strictly,
geological examples of such points do not exist, and, therefore, other features from which
points may be derived must be found. In practice, displaced lines may be recognized in
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several situations. These lines intersect or pierce the fault plane, one on the footwall and
one on the hangingwall, to give the required points. These are called piercing points. In
Fig. 8.15, X is the piercing point of line WX and Y is the piercing point of line YZ.

Such lines may be represented by a variety of physical structures, including intersecting
planes, the trace of one plane on another (e.g., beds truncated against an unconformity),
linear geological bodies (shoe-string sands, linear ore veins, etc.), and stratigraphic lines
(pinch-out lines, ancient shorelines, etc.). Or the required lines may be constructed from
field data, such as isopachous or isochore lines, lithofacies lines, or hinge lines of folds.

Figure 8.15 Piercing points X
and Y; segment XY represents
the slip vector D (after Crowell,
1959).
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lane

Y

XW

Z

D

Problem

• A fault dips 30/090 and displaces both a bed and a vein (Fig. 8.16a). The distances
A1A2 = 120 m, A2B1 = 180 m, and B1B2 = 105 m. Find the slip vector.
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Figure 8.16 Displaced planes: (a) map; (b) stereogram; (c) direct view of fault.

Construction

1. A stereogram of the three planes yields the intersection of the bed with the fault IB

and the intersection of the vein with the fault IV . From these we measure the pitch of
the bed lB(33 N) and of the vein lV (60 N) in the plane of the fault (Fig. 8.16b).
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2. Using these pitch angles and the measured strike separations, the cut-off lines are then
drawn on a direct view of the fault, first on the footwall side giving the piercing point
X and then on the hangingwall side giving piercing point Y (Fig. 8.16c). Note that
locating point Y requires that the cut-off lines be projected upward.

3. The line XY is the slip vector D and its length and pitch angle are easily measured.

Answer

• The net slip is 330 m, and the pitch of the slip vector on the fault is 82 S. The fault is
a thrust with a small right-slip component.

8.6 Overthrusts

Low-angle thrusts have a number of special and important features which deserve addi-
tional treatment. There are also some special problems – because of their flat-lying nature,
structures below the thrust sheet are usually concealed. Slips of tens of kilometers are
not uncommon and such large displacements compound the problem of trying to match
features above and below the fault plane.

Because of the low angle, the outcrop pattern of the thrust plane is strongly influenced
by erosion. One result is that an erosional outlier, called a klippe, may be produced.
Similarly, erosion may also expose the footwall block in a window. These two features
are illustrated in Fig. 8.17.
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Figure 8.17 Klippe and window: (a) cross section; (b) map showing both features depicted by closed
curves (after Ramsay, 1969, p. 63).

The determination of the slip for an overthrust sheet is often difficult. In principle, the
methods used for other types of faults are also applicable to overthrusts. For example,
the slip could be obtained from two originally adjacent points. Unfortunately, such a
situation where this method could be used has apparently not yet been found.
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One guide is that thrust sheets commonly move approximately up the dip direction in
their central parts. This direction can be established by an application of the bow and
arrow rule (Elliott, 1976, p. 298). A straight line is drawn connecting the two ends of
the outcrop trace of a single thrust. The perpendicular bisector of this line then gives an
estimate of the slip direction, and the length of the line is an estimate of its magnitude
(Fig. 8.18). If possible, this determination should be tested by independent evidence.

Figure 8.18 Bow and arrow
rule (after Elliott, 1976, p. 298).

100 km

N

D

Additional techniques for estimating the slip direction use the orientation of folds and
slaty cleavage in the thrust sheet (Pfiffner, 1981), and the orientation of the foliation and
lineation in mylonites (Butler, 1982a,b). The basis for some of these methods is treated
in later chapters.

Knowing the slip direction, the total displacement may then be estimated in several
ways. A simple approach is to draw a cross section parallel to this direction along a line
across the exposed thrust plane, intersecting a klippe and a window. The maximum width
of the exposure of the thrust then gives a measure of the minimum displacement (see
distance X in Fig. 8.17).

The window-to-klippe method of putting a limit on thrust displacement breaks down
entirely if rocks beneath the thrust are older than those above it, or if stratigraphic
inversion occurred prior to thrusting by recumbent folding, or if a line drawn from
window to klippe is not at least approximately parallel to the direction of displacement.

If a single displaced plane can be identified in both the footwall and hangingwall, the
amount of slip can be determined using the previous methods.

Problem

• An overthrust sheet was emplaced by slip due west (Fig. 8.19a). A displaced marker
plane is found in two places: at points A on the hangingwall block, and B on the
footwall block. Find the slip.
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Figure 8.19 Slip from separation on an overthrust (after Elliott & Johnson, 1980).

Construction

1. In a plan view of the thrust plane (not the plane of the map), determine the orientation
of the cut-off line on the thrust plane from both the hangingwall and footwall sides
(Fig. 8.19b).

2. From B on the footwall side draw a line parallel to this trace to intersect the slip vector
at C.

3. The length AC represents the magnitude of the slip.

The magnitude of the slip can also be calculated from these same measured quantities.
From the map, the line AB is the oblique separation S. This line makes an angle α with
the slip vector D, and an angle β with the cut-off line of the displaced plane. Then

A = 180 − α, B = β, C = 180 − (A + B) = |α − β|.

From the oblique triangle ABC and the Law of Sines

D = S
sin β

sin |α − β| . (8.3)

There may also be a number of major or minor thrusts on the hangingwall side. Such
additional faults commonly display two distinct styles. One of these involves the presence
of minor thrusts which root in the main basal thrust and curve upward to the surface; these
shovel-shaped faults are called listric thrusts. If a number of such thrusts are present, the
effect is to break the hangingwall block into a series of curved slabs, and this is described
as imbricate structure (Fig. 8.20).

In the more complicated case, a body of rock bounded on all sides by minor faults is
termed a horse. A duplex is an imbricate family of horses – “a herd of horses” (Boyer
& Elliott, 1982, p. 1202). The faults bounding a thrust duplex top and bottom are called
roof and floor thrusts (Fig. 8.21). The lowest thrust of the group is commonly referred
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Figure 8.20 Imbricate thrusts in the Canadian Rocky Mountains.
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Figure 8.21 Thrust duplex.

to as the sole thrust. One way of determining the total displacement is to sum the slips
on each member fault, but this may be difficult.

8.7 Fault terminations

The slip which accompanies the first increment of movement on a new fault, or the
renewed slip on an established fault has only finite extent. The region of slip can be
pictured as an area inside a closed curve on the fault surface which may or may not
intersect the earth’s surface. Figure 8.22a shows such a patch associated with an increment
of slip on a normal fault. Along line AB the motion is perpendicular to the edge (see
Fig. 8.22b) and along line CD the motion is parallel to the edge (see Fig. 8.22c). In these
places a small slip over a large area is accommodated by small distortions.

A

B C
D

(a) (b)
A

B C

D(c)

Figure 8.22 Normal fault: (a) dislocation; (b) edge dislocation AB; (c) screw dislocation CD.

Another way of accommodating misfits is by developing branch faults at the termina-
tion of the main fault (Fig. 8.23a). For large displacements, subsidiary structures develop
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by secondary faults or folds or both. A strike-slip fault may end by transverse normal
faulting (Fig. 8.23b) or by transverse folds and thrusts (Fig. 8.23c). Note, however, that
in such cases which structure developed to accommodate the movement on the other
may not be clear.

(a) (b) (c)

Figure 8.23 Terminations on a strike-slip fault: (a) splay strike-slip faults; (b) normal faults; (c) folds and
thrusts.

Another type of terminations occurs in fault zones made up of echelon faults. The
displacement on one, relatively short fault is picked up by a similar fault nearby. These are
commonly observed in zones of strike-slip faulting, such as the SanAndreas of California.
The description of such faults involves both the sense of slip and the relationship between
adjacent faults. Standing on one of the faults facing in the strike direction the next fault
is seen to step to either the right or left. In combination with the two possible senses of
slip, this leads to four cases (Fig. 8.24). The inevitable distortions associated with such
terminations requires distortion in the area of overlap: extension resulting in an irregular
basin (Fig. 8.24a,d), or contraction resulting in a domal structure (Fig. 8.24b,c).

Figure 8.24 Four patterns of
echelon faults.

Right slip

Left slip

Right step Left step

a b

c d

The mode of termination gives important information on the nature of the faulting
mechanism, including the slip rate (Williams & Chapman, 1983) and should be examined
carefully wherever possible.
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Unfortunately, the ends of faults are not always seen in the field. Sometimes the trace of
the fault extends well beyond the particular area being mapped. Other times the exposure,
lithologic contrasts or geomorphic expressions are insufficient to permit the faults to be
traced onward. This presents the field geologist with a dilemma (Gage, 1979). On one
hand, it is not desirable to show a fault where it can not be found. On the other hand,
it is equally undesirable to suggest that the fault termination was observed at the place
where the mapped trace ends. One way of resolving the matter is with the use of question
marks in the general locality where the fault “disappears”, together with an appropriate
comment in the map legend.

8.8 Faults and folds

Faults and folds are often found together. Of particularly interest here are situations where
there is a genetic relationship between faulting and folding, and there are two important
cases.

First, the folds may result directly from the fault movement. During slippage of one
block past the other, frictional drag on the fault plane may produce certain effects in the
blocks themselves. One of these is the dragging of preexisting layers into folds, called
fault-drag folds. Where present, they represent a displacement along the fault zone in
addition to the slip. The total displacement, measured outside the zone of disturbance
associated with the fault is termed shift.

The presence of such drag folds gives slightly more information concerning the fault
movement than in cases where they are absent; the sense of fault separation can be
determined from observations made on only one side of the fault.

Caution is, however, necessary. The presence of fault-drag folds tends to encourage
an impulse to read into the pattern something more than the limited measurement of
separation. For example, the map patterns shown in Fig. 8.25 have been mistakenly
used as an indication of strike slip. While this is certainly one possibility, there is no
more evidence of such slip than if the folds were absent. This fact can be verified by a
down-plunge view of the line of intersection of the fault and the fold.

Further, considerable care is needed in interpreting the genesis of such folds. Similar
final results can be obtained from an initial flexure which developed into a fault at a
late stage, and the simultaneous development of folds and faults has been demonstrated
experimentally (Dubey, 1980).

The second association occurs when the fault surface is curved.As a result of movement
on a generally curved fault, at least one of the blocks must deform in order to maintain
contact across the fault. These are fault-bend folds (Suppe, 1983).

An instructive special case involves structures which develop during slip on a listric
normal fault. As a result of slip on the detachment part of the surface, the hangingwall
block tends to be pulled away from the steeper, near-surface portion of the fault. If the
block was completely rigid a crevasse-like gap would form (Fig. 8.26a), but because
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Figure 8.25 Shift by fault drag.
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Figure 8.26 Rollover anticline.

rocks are weak the block sags into the potential opening and the resulting fold is called
a rollover anticline (Fig. 8.26b).

An even more important example is the association of folds with changes in dip
on thrust faults. It is common for thrust in bedded rocks to have alternating flats and
ramps. A consequence is that a ramp anticline develops in the hangingwall block
(Fig. 8.27). Ramsay (1992) makes the important point that both blocks may be involved
in deformation.

Figure 8.27 Ramp anticline.

8.9 Extension and contraction

Slip vectors also have horizontal components. This component, together with the slip
sense, is a measure of the extension or contraction associated with the fault. Determina-
tion of this component requires a view of the vertical plane containing the slip vector.
Examples for pure dip slip will illustrate the method.

1. Extension associated with a normal fault (δ = 60◦), assuming unit slip (D = 1) is
0.50 (Fig. 8.28a).
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2. Contraction associated with the thrust fault (δ = 30◦) with unit slip is 0.87 (Fig. 8.28b).

More generally, the magnitude of the horizontal component DH of slip may also be
calculated from

DH = D cos δ, (8.4)

where D is the magnitude of the slip vector and δ is its dip. If the fault has an oblique
component, the apparent dip α of the slip vector in the fault plane should be used in this
formula.

DH

(b)(a)

D

DH

A,B A'

B'

A,B

A'

B'

δ δ δ

δ

D

Figure 8.28 Extension and contraction: (a) normal fault; (b) reverse fault.

Both horizontal extension and contraction are associated with strike-slip faults.Agood
example is the Jura Mountains of France and Switzerland (Fig. 8.29): faults which trend
in a northerly direction are left-slip faults and those trending in a westerly direction are
right-slip faults. Both indicate that there is an increase in length parallel to the arcuate
fold belt.

In several situations when dealing with the displacement on faults it is convenient
to introduce a parameter of change in overall length. The extension e is defined as the
fractional change in length or

e = (l′ − l)/ l. (8.5a)

Note that extension now has two meanings. In the narrow sense, as in ordinary English,
it means an increase in length. In the broader technical sense it means a change in length,
whether a decrease or increase. It is important to make clear which is meant explicitly
or by context. A closely related measure is the stretch S defined as

S = l′/l = e + 1. (8.5b)

With these measures the cases of decrease and increase in length are:
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Figure 8.29 Horizontal extension and contraction with strike-slip faults: (a) Jura fold-thrust belt; (b)
schematic extension parallel to folds.

1. If the line is contracted (l′ > l), then e < 0 and S < 1. For example, if e = −0.3 the
line has been reduced by 30% of its original length. Correspondingly, S = 0.7 means
that the length of the shortened line is 70% of its original length. Figure 8.30 shows
the extension associated with a series of normal faults.

2. If the line is elongated (l′ < l), then e > 0 and S > 1. For example, if e = 0.3 the
line is 30% longer than its original length. Correspondingly, S = 1.3 means that the
line is now 130% of its original length. Although it is usually much more difficult to
evaluate, Fig. 8.20 is an example where such an approach is applied.

l

l'

(a)

(b)

Figure 8.30 Extension associated with a group of normal faults: (a) horizontal length l before faulting;
(b) horizontal length l′ after faulting.
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8.10 Rotation

Rotation of one or both fault blocks may also occur and there are two important classes.
The first involves rotation about an axis perpendicular to the plane of the fault. Such
rotational faults include hinge and pivotal faults (Donath, 1963); Fig. 8.31 illustrates
both of these types of rotation. Some care is required to distinguish between these two
cases if exposures are not complete. Such ideally rigid rotations can not characterize
a whole or even a significant part of a fault because the displacement away from the
rotation axis would rapidly become excessive.

Further a rotational component must be present on all translational faults where they
die out. Table 8.4 gives the terminology for describing the sense of rotation.

(a) (b)

Figure 8.31 Rotational faults: (a) hinge fault; (b) pivotal fault.

Table 8.4 Types of rotation on planar faults

Clockwise rotation Clockwise rotational fault (opposite block
rotated relatively clockwise).

Anticlockwise rotation Anticlockwise rotational fault (opposite block
rotated relatively anticlockwise).

The rotational component can be determined if a plane has been displaced across the
fault. The paper models used to illustrate the relationships between slip and separation
can also be useful for showing the effects of a rotational component. As before, make
separate drawings depicting the footwall and hangingwall sides of a fault each with a
single cut-off line. From the starting position simply use a pin to act as an axis and
rotate the hangingwall sheet (Fig. 8.32a). Such a rotation can also be combined with
a translation (Fig. 8.32b), but note that the order of rotation and translation makes a
difference.

Problem

• Determine the angle and sense of rotation for the planar fault shown in the map of
Fig. 8.33a.
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Figure 8.32 Model of rotation: (a) pure rotation; (b) rotation plus translation.

Method

• The cut-off lines on the footwall and hangingwall sides of the fault can be plotted
from their pitch determined on the stereonet and the angle between them is the angle
of rotation. More directly, the rotation angle is simply the difference of the two pitch
angles.

Answer

• The fault displays clockwise rotation through an angle of ω = 30◦.

(a) (b)
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Figure 8.33 Rotational fault: (a) map and direct view; (b) center of rotation.

If two piercing points can also be located (X and Y of Fig. 8.33b), a center of rotation
R can also be found. It lies at the apex of the isosceles triangle whose base is XY and apex
angle is the rotational angle. If rotation and translation are combined, this construction
always locates a center, which would account for the displacement by rotation alone.
Thus if a rotational component is present, and only two piercing point are known, the
translational component remains indeterminate.

Despite this limitation, the construction of the rotation center R of Fig. 8.33b can be
used to locate any structure on the opposite block. If sets of point could be found at two
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different locations, and the angle of rotation is constant, the rotational centers will coin-
cide in the case of rotation only, but will differ if a component of translation is involved.
It should then be possible to separate the rotational and translational components.

In the second class, rotation occurs about an axis which is parallel to the fault surface,
and the conditions under which it can occur are fairly restrictive.

Figure 8.34 Rotation on a
curved fault.ω

One situation where rotation as a rigid body can occur is when the fault surface has the
form of a cylinder of circular cross-sectional shape. Any other shaped curve requires that
one or both of the blocks deform during slip, and we treat this case in the next section.

Figure 8.34 illustrates a normal faulting with a curved fault, and the result is a tilted
fault block. Note that the fault has a high angle at the surface and a lower angle at depth.
Probably no fault has such an ideal shape but it may be closely approximated, especially
near the surface. Such rotation is described by the angle ω between an initial and final
line in the plane perpendicular to the rotation axis. If the fault displaces horizontal beds
it is then just the final dip angle.

The geometry of rotation on near-circular faults has two important implications. The
first is that the tilted block must be fault-bounded, otherwise the displacement will be
excessive and a consequence is that such faults occur in sets. The second implication is
that there must be a change in the shape of the fault at depth, and the presence of a flat
or gently dipping detachment fault is implied. The result is then a listric normal fault.

The importance of recognizing the true shape of listric faults in estimating slip is
shown in the geological sketch map and accompanying cross section of Fig. 8.35, which
shows a low-angle normal fault dipping 5◦ due east displacing Tertiary volcanic rocks
and underlying Precambrian basement rocks. Point Y at depth represents one piercing
point. We need a second. Because the exposed fault is planar and the bedding in the two
blocks has the same attitude, it is attractive to project the fault as a straight line to find
the point X; the distance XY is then an estimate of the slip. However, if the exposed fault
is actually the flat portion of a listric fault which originally steepened above the cross
section, the slip is considerably less.

A second important type of rotation involves both the fault and the fault-bounded
blocks (Fig. 8.36). It should be noted that the rotation of the fault significantly increases
the horizontal component of the slip. As before, such faults tend to occur in groups, and
the geometrical problems at depth imply the existence of a detachment surface at depth.

If a tabular body is extended in this way, rotation of the faults or beds will occur. Two
separate cases arise. In the first, planar faults, together with the displaced beds, rotate.
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Figure 8.35 Low-angle normal
fault (after Wernicke & Burchfiel,
1982).

(a) (b)
gaps

Fig. 8.37b
Fig. 8.37a

Figure 8.36 Rotation on multiple planar normal faults.

This geometry is shown in Fig. 8.36. Following Thompson (1960) we may obtain an
expression for the combined effects of slip and rotation. From Fig. 8.37b, ω is the angle
of rotation of the originally horizontal bedding, δ is the dip of the fault before and δ′ is
the dip of the fault after rotation. Then from the Law of Sines applied to triangle A′B ′C′

l′/ sin θ = l/ sin δ′ or l′/l = sin θ/ sin δ′.

Also from this figure θ = 180◦ − (ω + δ′), hence sin θ = sin(ω + δ′). Then

l′/l = sin(ω + δ′)/ sin δ′. (8.6)

With the definitions of Eq. 8.5a we have

e = sin(δ′ + ω)

sin δ′ − 1. (8.7)

Figure 8.37c is a graph of this equation.
In the second case, we model a listric normal fault by assuming that the traces of both

the fault and folded bedding in cross section are represented by circular arcs (Fig. 8.38a).
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Figure 8.37 Slip and rotation: (a) initial geometry; (b) final geometry; (c) values of e = 0.1–5.0 (note
that the limiting case occurs when ω + δ′ = 90◦).

If the original length l is represented by the length of arc BQ with radius of curvature r2

and

l = ωr2 (ω in radians),

the extended equivalent l′ is represented by the straight line segment AB. From right
Triangle I in Fig. 8.38b, and noting that point Q is the midpoint of the segment AB hence
AQ = QB,

l′ = 2r1 sin δS,

where δS is the dip of the fault at surface point A. With both l and l′ known, the horizontal
extension due to the listric fault is

e = 2r1 sin δS

ωr2
− 1 (ω in radians). (8.8)

We can also express radius r2 in terms of radius r1 and use the result to eliminate from
this expression r2. From right Triangle II

b = r1 cos δS tan 1
2ω

and from right Triangle III

c = r2 tan 1
2ω.
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Because AB = 2(b + c)

2r1 sin δS = 2
[
r1 cos δS tan 1

2ω + r2 tan 1
2ω
]
. (8.9)

Solving this for r2 gives

r2 = r1

[
sin δ − cos δ tan 1

2ω

tan 1
2ω

]
. (8.10)

Using this in Eq. 8.8 and noting that ω = δS − δD , where δD is the dip of the fault at
point D, we finally obtain

e = 2

ω
[
cot 1

2ω − cot(ω + δ]
] (ω in radians). (8.11)
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Figure 8.38 Model listric normal fault (after Wernicke & Burchfiel, 1982, p. 107).

Figure 8.39 graphically illustrates the difference between the extension associated with
rotated planar faults (Eq. 8.7) and listric normal faults (Eq. 8.11) in otherwise similar
situations. Note that the rotation of the faults greatly increases the overall extension.
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Figure 8.39 Extension for listric and planar normal faults (after Wernicke & Burchfiel, 1982, p. 108).

8.11 Facing on faults

Measures of slip and separation are purely geometrical aspects of the description of fault
displacement. Where possible additional geological information should be incorporated
into such descriptions. One of these is the facing on the fault. A fault is said to face in the
direction in the fault plane which is at right angles to the trace of the bedding and towards
the younger beds (Lisle, 1985b; also Holdsworth, 1988). The two faults illustrated in
Fig. 8.40 are geometrically identical but they face in opposite directions and therefore
they are geologically distinct.
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Figure 8.40 Facing on faults: (a) upward facing; (b) downward facing.

(a) (b)

Figure 8.41 Continuous change in facing directions (after Lisle, 1985b).
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There are two general patterns exhibited by changes in facing directions. First, the
changes may be continuous.

1. If a curved fault cuts individual beds in a particular section just once, the facing
directions along the fault will change continously (Fig. 8.41a).

2. A fault which cuts beds which are folded has a continuously changing facing direction
which indicates that the fault has been folded (Fig. 8.41b).

On the other hand the changes in the facing direction on a fault may be discontinuous,
and this may arise in several ways.

1. A curved fault may cut individual beds more than once and show discontinuous
changes in facing direction (Fig. 8.42a).

2. A fault which cuts folded beds with discontinuous facing direction implies that the
folding preceded the faulting (Fig. 8.42b).

(a) (b)

xx

x

x

Figure 8.42 Discontinuous change in facing directions (after Lisle, 1985b).

8.12 Dilation of dikes

A closely related problem concerns the direction and amount of the displacement of the
emplacement of a dike (Bussell, 1989; Kretz, 1991). This is described by the orientation
and length of a relative dilation vector D. Like the relative slip vector, this gives the
displacement of one wall relative to the other. Also like slip, D is the line joining two
formerly adjacent points on opposite walls of the dike.

This problem is easily solved if the dike cuts two intersecting planes. A line joining
corresponding points at the intersection of the dike and such a plane across the dike is an
offset line (which need not be horizontal). The dilation vector D is parallel to the plane
containing an offset line and the trace of the plane on the wall of the dike. The line of
intersection of two such planes then fixes the angle φ D makes with the pole of the wall.
If φ = 0, then D coincides with the pole vector P and the dike made space for itself by
simple widening.
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Problem

• A dike with outcrop width w = 10 m strikes due north and dips 70◦. Plane A (N 40 W,
60 S) and Plane B (N 60 E, 50 N) are offset across the dike (Fig. 8.43a). Determine
the orientation and length of the dilation vector associated with the dike.

Solution

1. Plot the trace of the parallel walls of the dike as a great circle on a stereogram and
add its pole P (Fig. 8.43b).

2. Also plot the great circles representing the offset planes A and B. These intersect the
two offset planes at points IA and IB to give the orientation of the cut-off lines on
both the hangingwall and the footwall.

3. Plot the orientation of offset line a (here horizontal) as a point and trace in the great
circle through a and A. Repeat for offset line b (also horizontal).

4. The intersection of these two arcs fixes the orientation of the dilation line D and its
plunge and trend can be read. Also measure the angle φ between pole P and line D.

Answer

• The orientation is D(09/116) and φ = 26◦. There are two possible interpretations:
emplacement of the dike was accomplished by oblique dilation or the fracture into
which the dike intruded was a fault.

The magnitude of the vector is found by combining t = w sin δ (Eq. 2.1) and t =
D cos φ to give

D = w sin δ

cos φ
. (8.12)

With w = 10.0 m, this gives D = 10.5 m.
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Figure 8.43 Dilational dike: (a) geological map; (b) stereogram.
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8.13 Exercises

1. The plane of a normal slip fault strikes due north and dips 60◦ to the west. The fault
displaces a structural plane whose attitude is N 90 W, 30 N and which shows 100 m
of left separation. What is the slip?

2. A fault whose attitude is N 90 W, 60 N cuts two structural planes: Plane 1 has an
attitude of N 45 W, 30 NE, and Plane 2 has an attitude of N 50 E, 45 NW. The
amounts and senses of separation are shown in Fig. 8.44a. What is the orientation and
magnitude of the relative slip vector, and what is the slip-based name of the fault?

3. A fault whose attitude is N 30 E, 60 W displaces two planes as shown in Fig. 8.44b.
What is the angle and sense of rotation? Locate the center of rotation which will
account for the observed displacements.
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Figure 8.44



9
Stress

9.1 Introduction

By Newton’s Second Law force F is the product of mass m and acceleration a. With
both magnitude and direction, it is a vector quantity. If a mass of one kilogram is given
a linear acceleration of one meter per second per second, the magnitude of the force is
one newton (1 N = 1 kg· m/s2).1

The moment of a force or torque M is also a vector quantity. If a force of one newton
acts perpendicular to a moment arm one meter long, the torque is one newton meter
(1 N m). As vectors, forces and torques can be manipulated according to the rules of
vector algebra.

If the surface and body forces acting on a material body are balanced in such a way
that it is at rest, the body is said to be in a state of static equilibrium. Two conditions
must prevail for this state to exist. The first is that the total force must vanish, or in other
words, the vector sum of all the N forces must be zero. This condition is expressed by
the vector equation

F1 + F2 + F3 + · · · + FN = 0.

Resolving each force into its components in each coordinate direction we have a necessary
condition for equilibrium in the form of three scalar equations in terms of the magnitudes
of these force components

∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0. (9.1)

1The newton is named after the English physicist and mathematician Isaac Newton [1642–1727] who established the
modern concept of force and used it in formulating the laws of motion. He also confounded the calculus with the German
philosopher, mathematician and logician Gottfried Wilhelm Leibniz [1646–1716].

198
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The second condition is that the total torque must also vanish, that is, the vector sum
of all the N moments of the forces must be zero, or

M1 + M2 + M3 + · · · + MN = 0.

This leads to a second necessary condition in the form of three scalar equations for the
magnitudes of the torque components∑

Mx = 0,
∑

My = 0,
∑

Mz = 0. (9.2)

Figure 9.1 Applied forces: (a)
static equilibrium; (b) forces
acting on a plane.

(a) (b)

F1
F2

F3

F4
F5

F6

9.2 Traction

Consider a body subjected to several forces and in a state of static equilibrium (Fig. 9.1a).
Due to these external forces, there will be internal forces acting between various parts
of the body. We wish to determine the nature of these internal forces, and we start by
examining the effect on a plane, real or imagined, within the body.

Across any such plane there will exist a field of forces equivalent to the loads exerted
by the material on one side of the plane onto the material on the other (Fig. 9.1b). In
general, these forces will not be uniform in either direction or magnitude. However, if
we consider smaller and smaller areas in the vicinity of some point O the variation in
direction and magnitude will also be smaller. Then, as the area in the neighborhood of
this point becomes very small, the ratio of force �F to area �A tends to a finite limit
called the traction T at that point, that is,

T = lim
�A→0

�F
�A

= dF
dA

. (9.3)

In this context “at a point” means on the infinitesimal area dA surrounding the point.
The traction may, of course, be homogeneous over a larger area. The equation simply
insures that T can always be defined.2

2This definition is an idealization. In reality, if the area is so small that the adjacent volume of material contains only a
few individual atoms it is the attractive and repulsive atomic forces that are important. The analysis of such forces is
much more complicated. Thus the area dA should be small but not too small. We return to this important matter in §11.3.
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Traction has the dimensions of force per unit area. A force of one newton acting
on one square meter is one pascal (1 N/m2 = 1 Pa).3 A pascal is very small, so it is
convenient in geology and geotechnical engineering to use kilopascals (1 kPa = 103 Pa)
or megapascals (1 MPa = 106 Pa). A megapascal is equivalent to 1 N/mm2 making
this a particularly useful multiple. In geophysical studies of the deeper parts of the
earth, gigapascals are appropriate (1 GPa = 109 Pa). In the past much of the geological
literature has expressed tractions in bars and kilobars. The factors for converting these
to pascals are easily remembered:

1 bar = 105 Pa = 0.1 MPa and 1 kilobar = 100 MPa.

The orientation of dA is specified by the unit vector n̂ normal to its plane. To distinguish
the two sides of this plane n̂ is chosen to point toward either part. Once this choice is
made, the part toward which n̂ points is identified as the positive side and the traction
which the material on this side exerts on the opposite side is T. Equilibrium requires
that there be an equal and opposite traction −T acting on the other side of dA whose
orientation is given by the unit vector −n̂.

Generally the directions of T and n̂ do not coincide (Fig. 9.2a), and it is then con-
venient to resolve T into a normal component TN perpendicular to the plane, and a
shearing component TS tangential to the plane (Fig. 9.2b). These two components are
also called, loosely, the normal stress and shearing stress acting on the plane. In much
of the engineering and geological literature the symbol for the magnitude of the normal
component is σ (sigma) and for the magnitude of the shearing component it is τ (tau),
and we will follow this usage.

Similarly, −T also has equal and opposite normal and shearing components. If the
normal components of T and −T are directed away from each other the material across
the plane is in tension and if they are directed toward each other the material across the
plane is in compression.

Figure 9.2 Element dA: (a) T
and −T; (b) TN and TS.

T

O O

T

(b)(a)

TN

TS

−T

n

−n

3The pascal is named after the French polymath Blaise Pascal [1622–1662] whose experiments led to the invention of
the barometer, which he then used to demonstrate that atmospheric pressure decreases as elevation increases.
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9.3 Stress components

For a given set of applied forces, the traction T at a point depends on the orientation of
n̂ and thus for different orientations the traction will, in general, also be different. The
totality of the tractions for all orientations constitutes the stress in the material at that
point.

If the tractions on three mutually perpendicular planes are known, the traction acting
on any other plane can then be found. For these it is convenient to adopt planes which
are related to our chosen coordinate system. Thus we represent these three planes by the
faces of a volume element dx dy dz whose edges are parallel to the x, y and z axes of a
Cartesian coordinate system (Fig. 9.3).

On each of the three visible faces of this volume element the components of each
traction act in a coordinate direction. The corresponding components acting on the three
concealed faces are antiparallel. In all there are nine pairs of these, called the Cartesian
stress components, which may be written as the ordered array or matrix

⎡
⎣σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

⎤
⎦ .

This is the stress matrix. Writing the components in this way it is easy to keep track of
them. It also emphasizes the important fact that stress is a single entity, albeit with nine
components.

In this notation, the first subscript identifies the coordinate direction in which the
component acts and second identifies the plane by giving the coordinate direction of its
outward normal (Nye, 1985, p. 82; Oertel, 1996, p. 46).4

As can be seen, each column contains the components which act on a single face
and each row of the matrix contains the components which act in a single coordinate
direction. Note too that the subscripts for the normal components are the same and the
subscripts for the shearing components are different, hence it is not really necessary to
use separate symbols for the normal and shearing components. In most of this chapter we
will continue to use them, however, in order to maintain continuity with the previously
established symbols for the traction components.

Because each of these components may act in either of two directions, signs are
used to distinguish their sense. The most widely used convention throughout mechanics
assigns a positive sign to a component which acts in a positive coordinate direction on
a face whose outward normal is in a positive coordinate direction or which acts in a
negative coordinate direction on a face whose outward normal is in a negative coordinate
direction. Accordingly, all the nine components on the three visible faces of Fig. 9.3 are

4Others reverse the meaning of these subscripts (e.g., Johnson, 1970, p. 182; Jaeger & Cook, 1979, p. 18; Middleton &
Wilcock, 1994, p. 119; Davis & Selvadurai, 1996, p. 19), but this causes some difficulties later (see §9.12).
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Figure 9.3 Volume element
dx dy dz and the stress
components.
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positive, as are the corresponding nine components on the three concealed faces. This
sign convention is required for a variety of purposes, including computing the traction
acting on a specified plane from the stress matrix (see §9.12) and in more advanced
applications for describing the relationship between stress and strain or strain rate.

For the volume element to be in a state of static equilibrium certain restrictions must be
placed on the shearing components. Equilibrium is expressed in terms of forces (Eq. 9.1)
and moments (Eq. 9.2). To apply these conditions it is necessary to convert each traction
component to a force and this is accomplished by multiplying each by the corresponding
area on which it acts. To convert back to tractions, the forces are then divided by this
area. We will use both of these conversions repeatedly in the following derivations.

Figure 9.4 Shearing
components: (a) τyx; (b) τxy.
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Only two pairs of traction components contribute to the moment about a line parallel
to any coordinate axis. For example, the moment about a line through the center of the
volume element in the z direction is due to the shearing components τyx and τxy . The
tangential force in the y direction on the front face is τyx dy dz, and a tangential force
of equal magnitude acts in the opposite direction on the rear face. The moments due to
these tangential forces are found by multiplying each by the length of the moment arm
1
2dx (Fig. 9.4a). The magnitude of the moment due to these two tangential forces is then

Mz = 2τyx dy dz(dx/2) = τyx dx dy dz.
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By the right-hand rule, the moment vector associated with this pair of forces points in
the +z direction.

In a similar way, the force in the x direction associated with the pair of shearing
tractions τxy on the right face is τxy dx dz, and a force with equal magnitude acts in the
opposite direction on the left face. The lengths of the moment arms are 1

2dy (Fig. 9.4b).
The magnitude of the moment due to these two forces is then

Mz = 2τxy dx dz(dy/2) = τxy dx dy dz

and the associated moment vector points in the −z direction. Equilibrium requires that
the magnitudes of these two oppositely directed vectors be equal. That is

τyx dx dy dz = τxy dx dy dz,

and this reduces to

τyx = τxy.

Similar relationships hold for the shearing components acting on the two other pairs of
parallel faces. Thus

τxz = τzx and τyz = τzy.

A matrix for which these three equalities hold is symmetric and only six of the elements
are independent.

The choice of coordinates is a matter of convenience only. If a different set of axes are
chosen the stress components will be different. For example, in the x′y′z′ system axes
the components are ⎡

⎣σx′x′ τx′y′ τx′z′
τy′x′ σy′y′ τy′z′
τz′x′ τz′y′ σz′z′

⎤
⎦

but the state of stress in the material will be identical. Of particular interest is the fact that
there is a special set of axes which results in an important simplification – only normal
components act on the corresponding faces of the volume element. In this system the
stress matrix is then reduced to ⎡

⎣σx′x′ 0 0
0 σy′y′ 0
0 0 σz′z′

⎤
⎦ .

These non-zero components are the principal stresses and the three mutually perpendic-
ular directions in which they act are the principal directions. Such a matrix is said to be
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in diagonal form. These principal stresses are also the greatest, intermediate and least
normal stresses and they are labeled

σ1 ≥ σ2 ≥ σ3.

With only three components there is a great advantage in adopting this system with
coordinate axes in the principal directions wherever possible. We now show how to do
this for the two-dimensional case.

9.4 Stress in two dimensions

If the stress components in one of the coordinate directions vanish, the body is said to
be in a state of plane stress. Strictly, this condition holds for thin plates only, but it is a
convenient way to introduce the geometry of the stress state and, as we will see later, the
formulation has a more general meaning which makes it particularly useful. Following
the usual practice we take all the components in the z direction to be zero (Fig. 9.5a).
This reduces the total number of components from nine to four. This two-dimensional
state of stress is represented by the matrix

[
σxx τxy

τyx σyy

]
.

Because τxy = τyx this matrix is also symmetric and only three of these components are
independent. Though the magnitudes of the two shearing components are equal, they are
geometrically distinct and we will, in general, retain their separate identities.

We now wish to determine the normal and shearing components of the traction acting
on an inclined plane AB whose orientation is given by the angle θ the normal vector n̂
makes with the x axis (Fig. 9.5b). To do this, we first imagine a wedge-shaped free body
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Figure 9.5 Plane stress: (a) positive components; (b) inclined plane; (c) free body.
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cut and isolated from the element (Fig. 9.5c). To restore this body to equilibrium we
must replace the action of the material originally adjacent to the inclined plane with
equivalent forces. To describe these forces it is convenient to adopt an auxiliary right-
handed coordinate system with +x′ in the direction of n̂ and +y′ parallel to the trace
of the plane. We specify the orientation of these axes by the angle θ which +x′ makes
with the +x axis. As in coordinate geometry this angle is positive if measured in an
anticlockwise sense and negative if measured in a clockwise sense.

Our approach will be to derive expressions for σ and τ in several simple situations
separately. Then the total traction acting on the inclined plane is the sum of these separate
tractions. Except that it fills out many of the steps, our approach closely follow that
generally found in books in the first course on the mechanics of materials (e.g., see Gere,
2001, p. 479f).5

Uniaxial stress

In the first case, the element is subjected to only one principal stress, and we choose this
to be in the x direction (Fig. 9.6a). This state is uniaxial and the stress matrix is

[
σxx 0
0 0

]
.

If the area of the inclined plane AB is a, the corresponding area of side AC is a cos θ

(Fig. 9.6b). The magnitude of the force Fx acting on side AC is then equal to the product
of the normal component and this area, or

Fx = σxx(a cos θ), (9.4)

and an opposite force of equal magnitude must also act on the inclined plane. We are
especially interested in the magnitudes of the normal component Fx′ and tangential com-
ponent Fy′ of this force. From the triangle involving these force components (Fig. 9.6b),
we have

Fx′ = Fx(a cos θ) and Fy′ = −Fx(a sin θ).

Note that for a positive σxx and a positive θ , the component Fy′ acts in the −y′ direction,
hence the minus sign in the second of these equations. Substituting the expression for Fx

from Eq. 9.4 and converting back to tractions by dividing by area a we obtain expressions
for the magnitudes of the normal and shearing components of the traction acting on this

5On a first reading you may wish to skip the derivations and go directly to the results in §9.5. There is, however, much
to be learned by working through the details.
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inclined plane in terms of the applied uniaxial normal stress and the orientational angle.
These are

σx′x′ = σxx cos2 θ and τx′y′ = −σxx sin θ cos θ. (9.5)
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(b)
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B

τ

σ

σ

τ

(a)

σxx σxx σxx

Fx' Fy'

Fx

θ

Figure 9.6 Uniaxial Case 1: (a) component σxx; (b) free body and forces.

Biaxial stress

If only normal components act in the coordinate directions the state is biaxial and the
corresponding stress matrix is [

σxx 0
0 σyy

]
.

To find the traction on the inclined plane in this case we determine the effects of a
pair of uniaxial states in the x and y directions separately. Already having obtained the
results for the first, we now consider the second (Fig. 9.7a). Proceeding as before, the
magnitude of the force Fy on side BC of the free body is

Fy = σyy(a sin θ) (9.6)

and an equal and opposite force must act on the inclined plane AB (Fig. 9.7b). From
the triangle of forces, the normal and shearing components of the traction due to this
force are

Fx′ = Fy(a sin θ) and Fy′ = Fy(a cos θ).

Substituting the expression for Fy from Eq. 9.6 and dividing by area a gives the corre-
sponding traction components

σx′x′ = σyy sin2θ and τx′y′ = σyy cos θ sin θ. (9.7)

On summing corresponding pairs in Eqs. 9.5 and 9.7 the combined components are

σx′x′ = σxx cos2θ + σyy sin2θ and τx′y′ = (σyy − σxx) cos θ sin θ. (9.8)
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Figure 9.7 Uniaxial Case 2: (a) component σyy; (b) free body and forces.

Pure shear stress

Finally, we seek the effects of shearing components acting alone, a condition called pure
shear (Fig. 9.8a). The stress matrix is now[

0 τxy

τyx 0

]
.

Considering each pair of tractions acting on the free body separately, triangles of forces
are constructed. First, from Fig. 9.8b the magnitude of Fx which balances the force due
to the shearing component τxy is

Fx = τxy(a sin θ).

Second, from the triangle of forces involving this force the normal and tangential com-
ponents acting on side AB are

Fx′ = Fx(a cos θ) and Fy′ = −Fx(a sin θ).

Again, Fy′ acts in the −y′ direction, hence the minus sign. Combining these and dividing
by area a, the corresponding traction components are then

σx′x′ = τxy sin θ cos θ and τx′y′ = −τxy sin2θ. (9.9)

Second, from Fig. 9.8c, the magnitude of Fy which balances the force due to the shearing
component τyx is

Fy = τyx(a cos θ),

and its normal and tangential components are

Fx′ = Fx(a sin θ) and Fy′ = Fx(a cos θ).

The traction components are then

σx′x′ = τyx cos θ sin θ and τx′y′ = τyx cos2θ. (9.10)
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Combining Eqs. 9.9 and 9.10 and utilizing the equality of the two shear components, we
have

σx′x′ = 2τxy cos θ sin θ and τx′y′ = τxy(cos2θ − sin2θ). (9.11)
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Figure 9.8 Pure shear: (a) τxy and τyx; (b) Fx; (c) Fy.

General two-dimensional stress

The contribution of the full complement of applied stress components to the normal
and shearing tractions acting on the inclined plane can now be found by summing the
expressions for the biaxial case of Eqs. 9.8 and pure shear case of Eqs. 9.11, giving

σx′x′ = σxx cos2θ + σyy sin2θ + 2τxy cos θ sin θ, (9.12a)

τx′y′ = (σyy − σxx) cos θ sin θ + τxy(cos2θ − sin2θ). (9.12b)

Of special interest are the extreme values of the normal component σx′x′ as a function
of the orientation angle θ and these are found by setting

dσx′x′

dθ
= 0.

Differentiating Eq. 9.12a with respect to θ , setting the result equal to zero and dividing
by 2 gives

(σyy − σxx) cos θ sin θ + τxy(cos2θ − sin2θ) = 0. (9.13)

Comparing this result with Eq. 9.12b we see that when the normal component σx′x′ has an
extreme value the shear components τx′y′ = τy′x′ = 0, that is, when the plane is oriented
such that the normal component σx′x′ has a maximum or minimum value, the shearing
traction is zero. We can find the orientation of the normals to the planes on which these
extreme normal tractions act by using the identities

cos θ sin θ = 1
2 sin 2θ, cos2θ − sin2θ = cos 2θ, sin 2θ/ cos 2θ = tan 2θ,
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in Eq. 9.13. After some manipulation we obtain

tan 2θ = 2τxy

σxx − σyy

. (9.14)

Two angles θ and θ + 90◦ satisfy this expression, hence the maximum and minimum
values occur on two mutually perpendicular planes. These extreme normal tractions are
the principal stresses. We label them σ1 ≥ σ3 for two reasons. First, we wish to emphasize
that in reality we always deal with a three-dimensional setting. Second, we are especially
interested in the greatest and least principal values.

We now choose our coordinate axes to coincide with these two principal directions,
x parallel to σ1 and y parallel to σ3. We may then make the following replacement of
symbols

σxx = σ1, σyy = σ3, τxy = τyx = 0.

When referred to these principal axes the stress matrix has the diagonal form

[
σxx 0
0 σyy

]
=
[
σ1 0
0 σ3

]
.

Also, reverting to the earlier notation σ = σx′x′ and τ = τx′y′ Eqs. 9.12 become

σ = σ1 cos2θ + σ3 sin2θ (9.15a)

τ = −(σ1 − σ3) cos θ sin θ. (9.15b)

When using the symbols σ and τ for the traction components it must be understood that
they act on the plane whose normal is specified by the angle θ , otherwise the symbols
have no meaning.

9.5 Mohr Circle for stress

Before we show how these final results can be put into a special form which leads directly
to a graphical representation, we introduce two adjustments of the sign convention to be
used in conjunction with this construction.

1. Because normal stresses are predominantly compressive within the earth, the common
(but not universal) practice in geology and geotechnical engineering is to reckon
compression positive and tension negative, thus avoiding the minus sign in most cases
(Jaeger & Cook, 1979, p. 10). Adopting this convention reverses the labels given to
the principal stresses: σ1 is now the greatest compressive or least tensile stress and
σ3 is the least compressive or the greatest tensile stress. This also reverses the sign in
the expression for τ in Eq. 9.15b.
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2. For use with the graphical representation we need a special sign convention for the
shear components. We now define the sense of shear as positive if a pair of shearing
tractions act in an anticlockwise sense and as negative if they act in a clockwise sense.
Accordingly, the magnitudes of τxy and τyx are the same but their signs are different.

We now cast Eqs. 9.15 (using the new signs) into a more useful form. By substituting
the double angle identities

cos2θ = 1
2(1+cos 2θ), sin2θ = 1

2(1−cos 2θ), cos θ sin θ = 1
2 sin 2θ, (9.16)

and rearranging we obtain the important results

σ = 1
2(σ1 + σ3) + 1

2(σ1 − σ3) cos 2θ, (9.17a)

τ = 1
2(σ1 − σ3) sin 2θ. (9.17b)

These have the form

x = c + r cos α and y = r sin α,

which are the parametric equations of a circle of radius r , centered on the x axis at a
distance c from the origin (Fig. 9.9a). The angle α which a radius of this circle makes
with the +x axis locates a point P(x, y) on the circumference. This property of Eqs. 9.17
allows a variety of problems involving σ and τ to be solved graphically with a Mohr
Circle for stress (Fig. 9.9b). For this circle the location of its center and its radius are
given by

c = 1
2(σ1 + σ3) and r = 1

2(σ1 − σ3). (9.18)

The coordinates of each point P on this circle associated with any radius CP which makes
an angle 2θ with the σ1 direction represent the normal and shearing components of the
traction acting on a plane whose normal makes angle θ with the σ1 direction.

The Mohr Circle and the equations from which it is derived represent a transformation
of the physical plane to the Mohr Circle plane. To go to the Mohr Circle plane the
orientation angle θ is doubled. To return to the physical plane the angle 2θ is halved.
This simple rule is an important key to understanding the Mohr Circle construction.

Representing the orientation of the inclined plane by its unit normal vector is funda-
mental. Often, however, it is the orientation of the plane itself which is of interest and
there is a shortcut which gives the angle β this plane makes with the σ1 direction. On the
physical plane θ + β = 90◦ (Fig. 9.10a) and on the Mohr Circle plane 2θ + 2β = 180◦
(Fig. 9.10b). Thus angle β which the plane makes with the σ1 direction can be obtained
directly from the diagram. Note, however, that β is measured on the physical plane from
σ1, not from σ3 as the Mohr Circle diagram might suggest, and that β is measured in a
sense which is opposite to that of θ .
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Figure 9.9 Mohr Circle: (a) basic features; (b) traction components.
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Figure 9.10 Angle β : (a) physical plane; (b) Mohr Circle plane.

Solving two-dimensional stress problems graphically involves constructing the Mohr
Circle and then extracting the required information from it. The simplest case involves
first drawing the circle from given principal stresses. The traction components on any
inclined plane are obtained by plotting the radius with slope angle 2θ .
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P(σ,τ)

θ 2θ

n

Figure 9.11 Traction: (a) physical plane; (b) Mohr Circle plane.

Problem

• If σ1 = 150 MPa and σ3 = 50 MPa (Fig. 9.11a), what are the traction components on
a plane whose normal makes angle θ = +34◦ with the σ1 direction?
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Construction

1. Draw a pair of axes with σ horizontal and τ vertical (Fig. 9.11b).
2. Plot the points (σ1, 0) = (150, 0) and (σ3, 0) = (50, 0) using a convenient scale.

Bisect the distance between these points to locate the center C and draw the circle
with radius Cσ1 = Cσ3. Alternatively, with Eqs. 9.18 c = 1

2(σ1 + σ3) = 100 and
r = 1

2(σ1 − σ3) = 50, which can then be used to draw the circle directly.
3. Locate point P on the circumference of the circle by drawing a radius making an

angle of 2θ = +68◦ measured in the same sense as θ from σ1, that is, anticlockwise.
4. The coordinates of P are the values of the normal and shearing tractions acting on

the specified plane.

Answer

• Measuring the coordinate of P using the same scale gives σ = 119 MPa and τ =
+46 MPa. The shearing traction is positive and therefore acts in an anticlockwise sense
on the specified plane.

It is useful to check these results by using Eqs. 9.17 to assure yourself that the diagram
gives the correct answer. Doing this gives σ = 118.730 33 and τ = 46.359 20. Because
the decimal parts are not significant, these results are the same as found graphically.

In constructing these diagrams, the scale should be chosen so that the circle is large
enough to plot and read the values of the stress components accurately to the appropriate
significant figures. In this example, a scale of 1 mm = 1 MPa satisfies this requirement.

If the plotting conventions are correctly and consistently applied, the Mohr Circle gives
the proper signs unambiguously. However, the sense of the shear can also be obtained
by inspection and this serves as a useful check. To do this imagine that the inclined plane
of interest is a frictionless cut. The force equivalent to the maximum principal stress σ1

will then cause the two pieces of the block to slip in the correct sense.
The Mohr Circle may also be constructed from the general stress components. From

this circle we may then find the magnitude of the principal stresses and their orientations.

Problem

• Determine the values of σ1 and σ3, and their orientations from the stress components
(Fig. 9.12a).

Construction

1. Pair the components so that Px(σxx, τyx) = (+310, +100) and Py(σyy, τxy) =
(+150, −100), where Px and Py represent, respectively, the traction components on
the planes whose normals are in the x and the y coordinate directions.

2. Plot Px and Py as a pair of points on a set of στ axes using a convenient scale
(Fig. 9.12b).
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Figure 9.12 Principal stresses: (a) physical plane; (b) Mohr Circle plane.

3. Because x and y are orthogonal, line PxPy is a diameter of the circle and its intersection
with the horizontal σ axis marks its center C. With radius PxC = PyC complete the
circle.

4. The two intercepts on the σ axis represent the principal stresses. The orientation of
σ1 is found by measuring 2θ = −52◦ from Px toward σ1, that is, clockwise.

Answer

• The principal stresses are σ1 = 358 MPa and σ3 = 102 MPa and the σ1 direction
makes an angle of θ = −26◦ measured in the same sense, that is, clockwise from the x

axis. Note that both θ and 2θ are measured from a known coordinate direction toward
the unknown principal direction.

These principal directions can also be estimated by inspection. This is done by consid-
ering separately the normal and shearing components. Without the shearing tractions, σxx

is σ1 and σyy is σ3 (Fig. 9.13a). With only the shearing tractions, two principal stresses
make angles of 45◦ with the coordinate axes (Fig. 9.13b). These two separate sets of
principal stresses can not be combined directly because they act on different planes, but
the orientation of σ1 for the total stress will lie between them (cf. Fig. 9.12a).

It is sometimes useful to express the stress components in a differently oriented coordi-
nate system. The change from one set of mutually perpendicular axes to another set with
the same origin is a transformation of axes (see §7.8). Expressing the stress components
relative to transformed axes is easily accomplished with the aid of a Mohr Circle. Indeed,
this is the underlying basis of the diagram.

Problem

• Starting with the stress components expressed in the xy coordinates of Fig. 9.12a, find
the components in the x′y′ axes rotated anticlockwise φ = +50◦ (Figure 9.14a).
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Figure 9.13 Inspection: (a) normal components; (b) shear components.

Construction

1. As before plot points Px(310, 100) and Py(150, −100) and draw a line connecting
them as a diameter (Fig. 9.14b), and draw the Mohr Circle passing through these two
points.

2. Draw a second diameter Px′Py′ at an angle 2φ = +100◦ measured anticlockwise
from the first.

3. The coordinates of the points Px′ and Py′ are the stress components relative to the
new axes.

Answer

• The new components are Px′(66, 23) and Py′(84, −23).
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Figure 9.14 Transformed axes: (a) physical plane; (b) Mohr Circle plane.

Note carefully that the components have changed because they are now referred to a
different set of axes; the state of stress they describe has not – the Mohr Circle is the
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same. In particular, the principal stresses have the same magnitudes and orientations in
the fixed element on the physical plane.

(a) (b)
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σ
σ3 σ1 σ
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P

P

Figure 9.15 Alternative circles: (a) compression positive; (b) tension positive.

Because the tension positive sign convention is used throughout the literature of
mechanical engineering (e.g., Drucker, 1967, p. 226), it is useful to compare and contrast
these results with the compression positive convention adopted here. With compression
positive we find, as we have throughout this section, point P(σ, τ) by drawing a radius
at angle 2θ measured anticlockwise from σ1 (Fig. 9.15a).

With tension positive, the labels are reversed – σ1 is the greatest tensile or least com-
pressive stress and σ3 is the least tensile or greatest compressive stress. So that angles can
be measured in the same sense on both the physical and Mohr Circle planes, negative or
clockwise shears are plotted upward. Then point P(σ, τ) is located by drawing a radius
at angle 2θ measured anticlockwise from σ3 (Fig. 9.15b). Except for these two changes
the basic construction is the same, as are the results.

9.6 Superimposed stress states

Traction vectors, hence also their normal and shearing components, can be added vecto-
rially only if they act on the same plane, or equivalently, if the components are expressed
in a common coordinate frame.

Problem

• Combine the given gravitational and tectonic states of stress, each referred to different
coordinate system, to determine the total state (Fig. 9.16). Find the magnitude and
orientation of the principal stresses for the combined state.

Approach

• To superimpose the two states of stress, both must be expressed in a common coordinate
system, and there are three choices. We can use either of the given coordinates and
express the other stress state in it, or we can choose a third independent set of axes and
express both states in it. Here we choose to transform the tectonic stress components
into the gravitational frame.
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Figure 9.16 Superimposed states: (a) gravitational stress; (b) tectonic stress.

Construction

1. Construct a Mohr Circle for the tectonic stresses σ ′
1 = 100 and σ ′

3 = 0 in the usual
way (Fig. 9.17).

2. Draw a diameter of this circle making an angle of +40◦ with the tectonic σ1 direction.
This locates points P ′

x and P ′
y , which are the components in the gravitational frame.

3. To P ′
x add the gravitational σ3 = 20 and to P ′

y add the gravitational σ1 = 60, giving
two new points Px and Py on the circle for the total stress.

4. Draw a second circle through Px and Py and determine the principal stresses and their
orientation.

Answer

• The principal stresses due to the combined states are σ1 = 127 MPa and σ3 = 54 MPa,
and the σ1 direction makes an angle of θ = −30.5◦ with the horizontal.

Figure 9.17 Mohr Circles for
superimposed stress states.
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Py' Py
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9.7 Pole of the Mohr Circle

The role of the double angles in relating the physical and Mohr Circle planes is funda-
mental because it allows the terms in the basic equations to be displayed in a simple way.
There is, however, an auxiliary construction which bypasses their use with the advantage
of a closer correspondence between the two representations.

An elementary property of a circle is that a central angle is exactly twice the inscribed
angle when both subtend the same arc.6 There are three cases (Gelfand & Saul, 2001,
p. 62–63).

1. One side of the inscribed angle is a diameter (Fig. 9.18a). The inscribe angle ∠PAB
and the corresponding central angle ∠POB subtend the same arc. Because all radii
have equal lengths, the triangle AOP is isosceles. Therefore, the two base angles are
equal. The interior angle at O is therefore 180 − 2θ and the exterior angle is then
180 − (180 − 2θ) = 2θ .

2. The center of the circle O is inside the inscribed angle ∠PAB (Fig. 9.18b). Diameter
AC divides this angle into ∠PAC and ∠BAC each of which has a diameter as one side

and these are covered by Case 1. Then ∠PAC = 1
2

�

PC and ∠CAB = 1
2

�

CB and we have

∠PAB = ∠PAC + ∠CAB = 1
2

�

PC + 1
2

�

CB = 1
2

�

PB.

3. The center O is outside the inscribed angle ∠PAB (Fig. 9.18c). Diameter AC divides

this angle into ∠PAC and ∠BAC each with a diameter as one side. Then ∠PAC = 1
2

�

PC

and ∠CAB = 1
2

�

CB which yields

∠PAB = ∠PAC − ∠CAB = 1
2

�

PC − 1
2

�

CB = 1
2

�

PB.
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Figure 9.18 Inscribed and central angles intercepting the same arc.

This fact can be used when plotting or measuring any angle. For example, the orien-
tational angle θ appears directly on the Mohr Circle (Fig. 9.18a). The angle β giving the

6This is Proposition 20 of Book III of Euclid’s Elements. That for a given circle all inscribed angles subtending the same
arc are equal is Proposition 21.
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orientation of the plane can be found in a similar way. In the important special case, an
angle inscribed in a semicircle is always a right angle (Fig. 9.18d).7

Next, we use this geometrical fact to relate the orientations on the physical and Mohr
Circle planes with the aid of a special point on the circumference of the circle. There are
two versions.

1. One is the pole for normals (Drucker, 1967, p. 228–229). We refer to this point as the
origin of normals, which is a useful short definition because the normals to all planes
are drawn passing through it. Denoted ON it has a useful property: A line through ON

and any point P on the circumference of the Mohr Circle is parallel to the normal of
the plane on which the components of the traction given by the coordinates of P act.

2. The other, by analogy, is the pole for planes. This point is the origin of planes (Lambe &
Whitman, 1979, p. 107) because the traces of all planes are drawn passing through
it. Denoted OP it has a useful property: A line through OP and any point P on the
circumference of the Mohr Circle is parallel to the trace of the plane on which the
traction components given by the coordinates of P act.

Either of these poles can be used, but each has some advantages. The first is consistent
with the established convention for identifying the orientation of a plane by its normal.
The second emphasizes the plane itself. The two poles are diametrically opposite one
another, so if the location of one is known the other can be found immediately. For
problems involving principal directions it is advantageous to use pole ON . For problems
which require the traction components on a specified plane pole OP is superior. We will
illustrate both usages.
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Figure 9.19 Pole ON: (a) physical plane; (b) Mohr Circle plane.

7The fact that inscribed angles subtending a diameter are right angles is said to have been proved by Thales of Miletus
(ca. 625–546 BC), although it was already known to the Babylonians a thousand years earlier (Maor, 1998, p. 87).
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Problem

• Represent the state of stress of Fig. 9.19a by a Mohr Circle, and determine the principal
stresses and their directions.

Approach

• Because the principal directions are required, the pole for normals ON is appropriate.

Construction

1. Plot points Px(+48, −16) and Py(+20, +16), construct a Mohr Circle through them
and determine the values of σ1 and σ3 (Fig. 9.19b).

2. To locate ON draw line XX through Px parallel to the x axis or line YY through Py

parallel to the y axis (only one is needed).
3. Line ONσ1 gives the σ1 direction and line ONσ3 gives the σ3 direction and these can

be transferred directly to the physical plane.

Answer

• The principal stresses are σ1 = 55 MPa and σ3 = 13 MPa. The principal directions
are given by the angles θ1 = +24◦ and θ3 = −66◦ measured from the x axis.
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Figure 9.20 Rotated body: (a) physical plane; (b) new pole ON.

If this same physical body is rotated anticlockwise +20◦ (Fig. 9.20a), the construction
proceeds in exactly the same way (Fig. 9.20b). In the result, however, the pole is in a
new place – it has rotated anticlockwise +40◦. We then see that the Mohr Circle itself
represents the two-dimensional state of stress while the pole represents orientation of the
axes to which the components are referred.
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Problem

• For the same state of stress (see Fig. 9.21a), determine the traction components on a
plane making angle β = 60◦ with the x direction using pole OP .

Approach

• Because the traction components on a plane are required, the pole for planes OP is
used.

Construction

1. As before, plot pointsPx(+48, −16) andPy(+20, +16) and complete the Mohr Circle
(Fig. 9.21b).

2. Locate OP on the circumference by drawing line XX through Px parallel to the vertical
face or line YY through Py parallel to the horizontal face (again only one is needed).

3. Through OP draw a line parallel to the trace of the inclined plane AB to locate point
P on the circle. The coordinates of P are the required traction components.

Answer

• The traction components are σ = +27 MPa and τ = −20 MPa.

20

4848

16
16

16

(a)

16

20

A

B

(b)

σ

τ

P

Y Y

X

X

OP

Px

Py

σ3 σ1

Figure 9.21 Pole OP: (a) physical plane; (b) Mohr Circle plane.

These methods of locating poles ON and OP work generally. There are, however, two
special cases which deserve attention.

1. If σ1 is horizontal then ON coincides with σ3 and OP with σ1 (Fig. 9.22a).
2. If σ3 is horizontal then ON coincides with σ1 and OP coincides with σ3 (Fig. 9.22b).

We can use these special cases to simplify the construction of the Mohr Circle and
its use in finding the traction components acting on a given plane (W.D. Means, 1996,
personal communication). There are several possible variants but we will describe only
one to illustrate the method.
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σ3

σ1
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τ

Figure 9.22 Special cases: (a) σ1 horizontal; (b) σ3 horizontal.

Problem

• Given σ1 = 80 MPa and σ3 = 20 MPa and their orientation on the physical plane
(Fig. 9.23a), determine the traction components acting on a fault making an angle of
β = 25◦ with the σ1 direction.

Procedure

1. Draw the σ axis parallel to the σ1 direction on the physical plane (Fig. 9.23b).
2. Using the principal stresses, construct the Mohr Circle in the usual way.
3. In this orientation, the pole for planes OP automatically coincides with σ1.
4. Draw a chord through OP parallel to the trace of the fault on the physical plane to

locate point P on the circle.

Answer

• The coordinates of P are the required components: σ = 31 MPa and σ3 = 23 MPa,
and the sense of shear on the fault is clockwise.

(a) (b)

σ1
σ3 fau

lt στ

P

OP

β

β

Figure 9.23 Traction on plane from a special Mohr Circle.

Finally, having found the poles, we can now bring the representations on the physical
and Mohr Circle planes into even closer correspondence. By centering the figure repre-
senting the physical plane on the pole of the circle we can immediately determine the
components of the traction acting on any plane of interest. Again, there are two cases.

1. With the physical representation centered at the pole ON the normal to the plane
intersects the circle at point P which gives the components of the traction acting on
the plane (Fig. 9.24a).
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2. With the representation centered at the pole OP the trace of the plane of interest
extended intersects the circle at the same point P (Fig. 9.24b).

(b)

σ

τ

P

OP

σ3 σ1

(a)

σ

τ

P

σ3 σ1

ON

Figure 9.24 Physical plane and Mohr Circle plane combined: (a) pole ON; (b) pole OP.

9.8 Role of pore pressure

If a porous medium contains a fluid under hydrostatic pressure p, the state of stress is
altered. As shown in Fig. 9.25a, this pressure in the pore fluid tends to counteract the
effects of both principal stresses due to the applied loads. Hence

σ1 = S1 − p and σ3 = S3 − p,

where S1 and S3 are the principal stresses due to these external loads. Substituting these
two expressions into Eqs. 9.17 yields

σ ′ = 1
2(S1 + S3) + 1

2(S1 − S3) cos 2θ − p, (9.19a)

τ ′ = 1
2(S1 − S3) sin 2θ, (9.19b)

where σ ′ and τ ′ are the effective stresses, meaning that the pore pressure has been taken
into account. In other words, the normal traction on any plane is reduced by the pressure
p, while the shearing traction remains unchanged. We can write this relationship in the
form of the matrix equations as

[
σ ′

1 0
0 σ ′

3

]
=
[
σ1 0
0 σ3

]
−
[
p 0
0 p

]
.

Because it applies to every normal component, we can express this even more simply as

σ ′ = σ − p. (9.20)
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This partitioning of applied stress and fluid pressure in porous solids is called Terzaghi’s
relationship.8

In terms of the Mohr Circle diagram, a change in the pore fluid pressure shifts the
circle along the horizontal axis — to the left for an increase and to the right for a decrease
by the amount of p without altering the size of the circle (Fig. 9.25b).

τ

p

(b)(a)

S1

S3

S1

S3 σp

Figure 9.25 Pore fluid pressure: (a) porous rock; (b) state of effective stress.

9.9 Deviatoric and hydrostatic stress

There is another way of partitioning a general state of stress which is useful in some appli-
cations (Engelder, 1993, p. 16, 80; 1993). First, the mean normal stress σm is defined as

σm = 1
3(σ1 + σ2 + σ3).

This part is viewed as causing a volume change and is commonly referred to as the
hydrostatic component.

The other part or deviatoric stress is then defined as the difference between a normal
component and this mean stress. That is,

σdev = σ − σm.

This part is viewed as causing distortion. Thus any general state of stress can then be
factored into the sum of two stress matrices⎡
⎣σ1 0 0

0 σ2 0
0 0 σ3

⎤
⎦ =

⎡
⎣σ1 − σm 0 0

0 σ2 − σm 0
0 0 σ3 − σm

⎤
⎦+

⎡
⎣σm 0 0

0 σm 0
0 0 σm

⎤
⎦ . (9.21)

8The celebrated civil engineer Karl Terzaghi [1883–1963] is widely considered to be The Father of Soil Mechanics (see
Gretener, 1981).
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Again, because it applies to every normal component we may express this simply as

σ = σdev + σm.

For the special case of plane stress, there is a simple graphical representation of these
two parts: the Mohr Circle for a typical compressive state of stress (Fig. 9.26a). The
center of this circle represents the mean stress. The deviatoric state is then represented
by a circle centered at the origin (Fig. 9.26b).

σσm
σσm

(a) (b)

τ τ

Figure 9.26 Deviatoric stress: (a) standard circle; (b) deviatoric circle.

9.10 Stress ellipse

The Mohr Circle construction is indispensable for solving two-dimensional stress prob-
lems graphically in the simplest way. There is, however, an additional figure which aids
the visualization of some two-dimensional states of stress.

The first step in constructing this figure is to express the x and y components of the
traction vector acting on an inclined plane in terms of the orientational angle θ and the
principal stresses (Fig. 9.27). The procedure is identical to the one used before: convert
applied stresses to forces, apply the condition of equilibrium and then convert forces
back to traction components. The result is

cos θ = x/σ1 and sin θ = y/σ3. (9.22)

Using these in the identity cos2θ + sin2θ = 1 we then have

x2

σ 2
1

+ y2

σ 2
3

= 1, (9.23)

which is the equation of the stress ellipse. This figure represents the loci of the end points
of all the possible traction vectors. These vectors point inward if the state is compressive
and outward if it is tensile. The lengths of its semi-axes are the magnitudes of the principal
stresses |σ1| and |σ3|.

There are several cases, but the geologically important one is when both principal
stresses are compressive. Given a stress ellipse and a particular traction represented by
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Figure 9.27 Traction
components x and y in terms of
principal stresses.

y

T θ
θ y
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σ1

σ3

O

the radius vector OP (Fig. 9.28a), what is the orientation of this vector on the physical
plane?

We first show how the magnitude and orientation of a traction vector are represented
directly on the Mohr Circle constructed from the principal stresses. With a compass,
transfer length of radius OP on the stress ellipse to find point P on the circumference of
the circle (Fig. 9.28b; note the scale change in this figure). Line OP on the Mohr Circle
diagram then is equal to the magnitude of the traction vector and its normal and shear
components are represented by the coordinates of P . Also from this diagram T acts on
the plane whose normal makes an angle θ with the σ1 direction. The slope angle ψ is the
angle between T and n̂. From this diagram we obtain

T =
√

σ 2 + τ 2 and ψ = arctan(σ/τ).

O

P

T

O

T

τ

σ

(a) (b)

P(σ,τ)

θψ

Figure 9.28 Traction vector: (a) stress ellipse; (b) Mohr Circle (double size).

From these results it is clear that the stress ellipse does not directly give the orien-
tation of the plane on which the traction acts. It can, however, be found with a simple
construction (Durelli, et al., 1958, p. 145; Means, 1976, p. 55).
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Problem

• For a given a stress ellipse and a radius vector OP, determine the orientation of the
plane on which this traction acts.

Construction

1. Draw either of the two auxiliary circles centered at the origin (only one is needed):

(a) a large circle with a radius equal to |σ1| (Fig. 9.29a),
(b) a small circle with a radius equal to |σ3| (Fig. 9.29b).

2. From the given point P on the ellipse draw a line parallel to the minor axis to intersect
the larger circle at A and a line parallel to the major axis to intersect the smaller circle
at B.

3. The identical slope angles of OA and OB represent the angle θ which the traction
vector makes with the σ1 direction. Further, ∠AOP = ∠BOP is the angle ψ which
T makes with n̂.

The validity of this construction is easily demonstrated. From Fig. 9.29

xA = xP = |σ1| cos θ and yB = yP = |σ3| sin θ, (9.24)

where the subscripts A, B and P identify the associated points. A comparison with
Eqs. 9.22 shows that xP and yP are the components of the traction in the coordinate
directions. These two are the parametric equations of an ellipse. By letting the eccentric
angle θ range from 0 to 360◦ the coordinates of a series of closely spaced points on the
ellipse can be calculated. These coordinates can then be used to draw an ellipse on a
computer screen or plot one on paper (see also De Paor, 1994).

P

O

B

O

A

(a) (b)

|σ1|

|σ3|

θ
P

θ

Figure 9.29 Normal direction from the stress ellipse.

This construction can easily be reversed to find the traction acting on any plane as
specified by the angle θ its normal makes with the σ1 direction.

Problem

• Given a stress ellipse, construct the traction vector acting on a plane whose normal
makes an angle θ measured from σ1 (as in Fig. 9.28).
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Construction

1. Only one auxiliary circle is needed and the larger one is the easier to draw accurately.
2. A line with slope angle θ intersects this circle at point A.
3. A line parallel to the minor axis through A locates point P on the ellipse.

Answer

• Radius vector OP represents the magnitude of the traction acting on this specified
plane.

Depending on the signs of the two principal stresses there are two contrasting orien-
tations of the stress ellipses.

1. If the principal stresses are both compressive then |σ1| > |σ3| and the major axis is
parallel to x and the radius vectors point inward (Fig. 9.30a). This is the case we have
treated.

2. If the principal stresses are both tensile then |σ1| < |σ3| and the major axis of the
stress ellipse is parallel to y and the radius vectors point outward (Fig. 9.30b). This
switch in orientation reduces its aid to visualization somewhat but otherwise its basic
properties are the same.

Figure 9.30 Stress ellipses: (a)
compression; (b) tension.

y

x
T

x
T

y

(b)(a)

|σ1|

|σ3|

|σ1|

|σ3|

It is also possible to construct an ellipse if the signs of the principal stresses are
mixed but the result is useless. Because the absolute magnitudes of the principal stresses
are used, the construction can not distinguish between states when σ3 is positive or
negative. Figure 9.31 shows two Mohr Circles with identical magnitudes of σ1 and σ3.
The corresponding stress ellipses representing these two quite different stress states are
identical. Only for the case where σ3 > 0 does the ellipse describes the actual distribution
of the traction vectors (Fig. 9.31a).

9.11 Tractions versus forces

This description of stress was essentially established over 150 years ago by the celebrated
French mathematician and physicistAugustine-Louis Cauchy [1789–1857]. Historically,
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Figure 9.31 Two stress states,
one stress ellipse: (a) σ3 > 0;
(b) σ3 < 0.

τ

(a)

σ

(b)

τ

σ

however, it has not always been applied correctly to geological problems. The first clear
statement in the geological literature was given by Anderson (1951) and reemphasized
by Hubbert (1951) and by Hafner (1951).

Unfortunately, errors persist and they usually root in the manipulation of stress com-
ponents as force vectors. An example from a structural geology text will illustrate how
and why this approach goes wrong. Figure 9.32a shows a thrust fault with a dip of 12◦
and with σ1 horizontal and σ3 vertical (Badgley, 1965, p. 219). The principal stresses are
treated as force vectors and the components of each in the plane of the fault are found.
If σ1 = 40 and σ3 = 28 (scaled from Badgley’s figure in arbitrary units) the magnitudes
of the two opposed “tangential force vectors” on the fault plane are 39.1 and 5.8. The
vector sum of these is equal to 33.3 and this, the author supposes, is the shearing force
which drives the thrust.

Figure 9.32b shows the Mohr Circle for the same problem. For the given principal
stresses, the shearing traction on the fault plane making an angle of β = 12◦ with the
σ1 direction is τ = 2.4 units. Not only is there a great discrepancy between these two
results, but because τmax = 6.0 units, the value obtained by the vector treatment is not
possible for any orientation of the fault plane. Further, the vector treatment would give
a net tangential force on the plane even if σ1 = σ3, in which case the circle shrinks to a
point and then τ = 0 on all planes.

Stress components are not force vectors. To treat them as such is a serious error and
any conclusion based on such a treatment is invalid.

(a)

τ

σ

P

(b)

OP

σ1

σ3

40

28

Figure 9.32 Thrust fault: (a) tractions as force vectors; (b) Mohr Circle solution.
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9.12 Stress tensor

The stress matrix represents a member of a class of entities called tensors of second
rank.9 We can think of such tensors as vector processors which operate on an input vector
to produce an output vector (Means, 1996, p. 6). In the case of stress, these are the unit
normal vector n̂ and traction vector T.

If we represent vectors T and n̂ by their components in each of the coordinate directions
and write them as column matrices, we can then express this process by the matrix
equation

[
Tx

Ty

]
=
[
σxx 0
0 σyy

] [
nx

ny

]
.

Writing in this way makes clear that the stress matrix operates on vector n̂ to yield vector
T. Using the row times column rule of matrix multiplication (see §7.3) we then have

[
Tx

Ty

]
=
[
σxxnx

σyyny

]
. (9.25)

With these components the magnitude of T is

T =
√

T 2
x + T 2

y (9.26)

and its orientation is given by the angle φ it makes with the x axis

φ = arctan(Ty/Tx). (9.27)

The direction cosines of T are obtained by normalizing its components, which are then
(Tx/T , Ty/T ). With these the dot product yields the angle ψ between T and n̂.

cos ψ = (Tx/T )nx + (Ty/T )ny. (9.28)

With this angle ψ the normal and shearing components are

σ = T cos ψ and τ = T sin ψ. (9.29)

When using these equations to find T it is necessary to revert to the engineering
sign convention with tension positive and compression negative. Otherwise the sense of
the calculated traction vector will be reversed. This changes the labels of the principal
stresses, but this affects neither the basic geometry nor physics of the problems.

9The terms second order is also used, but as Nye (1985, p. 5) observes this has another common meaning, as in second
order effect, and so prefers rank. The number of subscripts denoting the components indicates the rank of a tensor.
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Problem

• If σxx = 150 MPa and σyy = 50 MPa (see Fig. 9.11a), what are the traction com-
ponents on a plane whose normal makes an angle of θ = +34◦ with the +x axis
(Fig. 9.33a)?

Solution

1. The stress tensor is represented by the matrix[
σxx 0
0 σyy

]
=
[−150 0

0 −50

]
.

(Note that the tensor sign convention is used.)
2. With Eq. 9.25, the components of the traction vector are[

Tx

Ty

]
=
[−150 cos 34◦

−50 sin 34◦
]

=
[−124.355 64

−27.959 65

]
.

3. Then with Eq. 9.26 the magnitude of the traction vector is

T =
√

T 2
x + T 2

y = 127.460 06.

4. With Eq. 9.27 the angle the traction vector makes with the x axis is given by

φ = arctan(Ty/Tx) = −167.328 55◦.

Note that it may be necessary to correct this angle by adding ±180◦, just as we did to
calculate the trend of a vector from its direction cosines in §7.1.

5. With Eq. 9.28 the angle between T and n̂ is

ψ = arccos
[
(Tx/T ) cos 34◦ + (Ty/T ) sin 34◦] = 158.671 45◦.

Note that the dot product takes into account both the direction and sense of the two
vectors (Fig. 9.33b).

6. With Eqs. 9.29 the normal and shearing components of the traction are

σ = T cos ψ = −118.7 MPa and τ = T sin ψ = +46.3 MPa.

These results are identical to those found from the Mohr Circle equations.
This same approach can also be used to determine the traction when all stress com-

ponents are present and the stress matrix is in its most general form (Fig. 9.34a). The
matrix equation representing the process is then[

Tx

Ty

]
=
[
σxx τxy

τyx σyy

] [
nx

ny

]
. (9.30)
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Figure 9.33 T and n̂: (a) biaxial stress; (b) traction vector and its components.

To evaluate the components of T we balance the forces due to the stress components in
each coordinate direction. The force in the x direction is due to components σxx and τxy

(Fig. 9.34b). Then ∑
Fx = Txa − σxx(a cos θ) − τxy(a sin θ) = 0. (9.31)

The force in the y direction is due to components σyy and τyx (Fig. 9.34c) and

∑
Fy = Tya − τyx(a cos θ) − σyy(a sin θ) = 0. (9.32)

Dividing each of these by the area a, using nx = cos θ and ny = sin θ , rearranging and
writing the results as two column vectors we have

[
Tx

Ty

]
=
[
σxxnx + τxyny

τyxnx + σyyny

]
.

This result can also be obtained directly from Eq. 9.30 using, again, row times column
multiplication.

As elsewhere in this chapter, these derivations employ the convention that the first
subscript identifies the direction in which the stress component acts and the second
identifies the direction of the normal to the plane on which it acts (see Fig. 9.35a). This is
important for several reasons. First, it allows the standard rules of matrix multiplication to
be applied. Second, the formula also makes no physical sense if the opposite convention
is adopted. For example, if the reverse convention is adopted the component σxy then
acts in the y direction and orthogonal forces can never balance each other (Means, 1996,
p. 9).10

10Because τxy = τyx , the calculation gives the correct result but this does not make things any clearer.
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Figure 9.34 Traction components: (a) stress components; (b) Tx; (c) Ty.
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Figure 9.35 Conversion to tensor notation.

By hand a solution is more easily obtained with a Mohr Circle construction so it is
not generally practical to use the analytical expression. However, the relation between
the components of the two vectors can be easily programmed. To do this, we relabel
the coordinate axes x → x1 and y → x2. We then also exchange letter subscripts x

and y with numbers 1 and 2 in the vector and tensor components (Fig. 9.35b). This is
commonly called the tensor notation. In this form we can now take advantage of arrays
with subscripted variables which are part of all programming languages. Making this
conversion to numerical subscripts Eq. 9.30 becomes

[
T1

T2

]
=
[
σ11 σ12

σ21 σ22

] [
n1

n2

]
. (9.33)

Performing the multiplication then yields

[
T1

T2

]
=
[
σ11n1 + σ12n2

σ21n1 + σ22n2

]
.
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This result can also be written compactly using symbolic subscripts in two ways:

Ti =
2∑

j=1

σijnj (i = 1, 2) or Ti = σijnj (i, j = 1, 2). (9.34)

Each of these has identical meaning. The second, which often appears in the technical
literature, uses the Einstein summation convention: when a letter subscript (here j ) is
repeated twice (and only twice) in a single term, summation is automatically understood
with respect to that subscript (Nye, 1985, p. 7).11

Both versions represent Cauchy’s formula which is fundamental to the theory of stress.
It is, in effect, also the definition of the stress tensor.

Finally, we can find the principal stresses, called eigenvalues, and their orientations,
called eigenvectors, directly from the stress matrix. The condition that T is a principal
stress is that it acts in the same direction as n̂. That is,

[
T1

T2

]
= λ

[
n1

n2

]
=
[
λn1

λn2

]
,

where λ is an as yet unknown scalar multiplier. We then write Eq. 9.33 as

[
σ11 σ12

σ21 σ22

] [
n1

n2

]
=
[
λn1

λn2

]
. (9.35)

Performing the multiplication and collecting terms we have the pair of homogeneous
equations

(σ11 − λ)n1 + σ12n2 = 0, (9.36a)

σ21n1 + (σ22 − λ)n2 = 0. (9.36b)

Such a system of equations has a solution other than the trivial solution n1 = n2 = 0 if
and only if the determinant of the coefficients is equal to zero. Applying this condition
gives

∣∣∣∣σ11 − λ σ12

σ21 σ22 − λ

∣∣∣∣ = 0. (9.37)

Expanding and collecting terms yields

λ2 − (σ11 + σ22)λ + (σ11σ22 − σ12σ21) = 0. (9.38)

11This convention is named for the famous physicist Albert Einstein [1879–1955] who invented it.
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This is the characteristic equation and its roots are called the characteristic or latent
roots.12 Forming this equation follows a simple, easily remembered recipe:

1. The coefficient of the λ2 term is always 1.
2. The coefficient of the λ term is the sum of the elements in the main diagonal, called

the trace, with its sign changed.
3. The constant is the determinant of the stress matrix.

The characteristic equation and its roots are a property of the stress tensor and are inde-
pendent of the coordinate axes to which the components of the stress matrix are referred.
This means that the trace and determinant are invariant properties of the tensor.

We now write the pair of homogeneous equations of Eqs. 9.36 in the form of the matrix
equation

[
σ11 − λ σ12

σ21 σ22 − λ

] [
v1

v2

]
=
[

0
0

]
, (9.39)

where (v1, v2) are the components of an eigenvector. We know that the determinant of
the square matrix is equal to zero because this is exactly the condition which led to the
eigenvalues. Homogeneous equations with a vanishing determinant are not independent;
if one of the equations is satisfied the other will be also. Therefore, we may choose either
the first (Eq. 9.36a) or second (Eq. 9.36b), that is, either

v1

v2
= σ12

λ − σ11
or

v1

v2
= λ − σ22

σ21
. (9.40)

We will illustrate the use of both.
An infinite number of vectors satisfy these equations – they are the vectors of all

possible magnitudes parallel to a principal direction. However, we are interested only
in the orientation of these vectors not their magnitudes. There are two simple ways of
determining these.

1. Let the numerator and denominator of these fractions serve as representative values
of v1 and v2 [

v1

v2

]
=
[

σ12

λ − σ11

]
or

[
v1

v2

]
=
[
λ − σ22

σ21

]
. (9.41)

These components can then be normalized to direction cosines by dividing each

component by
√

v2
1 + v2

2.
2. Alternatively, the orientation angles can be determined directly from θ = arctan(v2/v1).

12Hence the commonly used symbol λ (lambda).
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Problem

• Determine the eigenvalues and the corresponding eigenvectors associated with the
following matrix representing the stress tensor (Fig. 9.36a; this is the problem of
Fig. 9.20a). Note that the tensor sign convention is required.

[
σ11 σ12

σ21 σ22

]
=
[−48 −16
−16 −20

]
.

(b)

σ

τ

16

16

16

16

20

20

4848

(a)

Y

Y

X X

σ3
σ1

σ1σ3

Px

Py

ON

σ3 direction
θ3 θ1

Figure 9.36 Graphical solution: (a) physical plane; (b) Mohr Circle plane.

Solution

1. With these components σij the characteristic equation is

λ2 + 68λ + 704 = 0.

2. Using the quadratic formula its roots are λ1 = −12.739 71 and λ2 = −55.260 29 and
these are the principal stresses.

3. Using the first of Eqs. 9.40, the components of the eigenvector associated with λ1 is

[
v1

v2

]
=
[

σ12

λ1 − σ11

]
=
[ −16
−12.739 71 + 48

]
=
[ −16

35.260 29

]
.

Normalizing these gives the direction cosines v1 = −0.413 22 and v2 = 0.910 63.
4. Using the second of Eqs. 9.40, the components of the eigenvector associated with

λ2 are [
v1

v2

]
=
[
λ2 − σ22

σ21

]
=
[−55.260 29 + 20

−16

]
=
[−35.260 29

−16

]
.

Normalizing these gives the direction cosines and v1 = 0.413 22 and v2 = 0.910 63.
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5. The principal stresses are σ1 = −12.7 MPa and σ3 = −55.3 MPa and the corre-
sponding orientation angles are θ1 = −65.5◦ and θ3 = 24.4◦. The reversal of labels
of the principal stresses and change in measuring the orientation angles result from
the use of the tensor sign convention.

The Mohr Circle solution of this same problem is shown in Fig. 9.36b.The basic method
follows closely that of Fig. 9.20 but with two important differences (see Fig. 9.15b).

1. With the tension positive sign convention the circle plots to the left of the τ axis and
the positions of the principal stresses are reversed.

2. The clockwise-up convention for values of τ is used for plotting the points
Px(−48, −16) and Py(−20, 16).

Figure 9.37 Three-dimensional
Mohr Circle diagram.

τ

σ3 σ1 σ
σ2

There is also a Mohr Circle construction for three-dimensional stress problems (Jaeger
& Cook, 1979, p. 27f). It is especially useful for graphically presenting three-dimensional
states of stress – points representing traction components plot on one of the three circles
or in the area between them (shown shaded in Fig. 9.37). But as an analytical tool it is
cumbersome.

The relation between the traction vector T and the unit normal vector n̂ can also be
written as a matrix equation. For the simpler case of a stress matrix in diagonal form the
equation has the form

⎡
⎣T1

T2

T3

⎤
⎦ =

⎡
⎣σ11 0 0

0 σ22 0
0 0 σ33

⎤
⎦
⎡
⎣n1

n2

n3

⎤
⎦ =

⎡
⎣σ11n1

σ22n2

σ33n3

⎤
⎦ . (9.42)
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For the stress matrix in its most general form it is⎡
⎣T1

T2

T3

⎤
⎦ =

⎡
⎣σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦
⎡
⎣n1

n2

n3

⎤
⎦ =

⎡
⎣σ11n1 + σ12n2 + σ13n3

σ21n1 + σ22n2 + σ23n3

σ31n1 + σ32n2 + σ33n3

⎤
⎦ . (9.43)

Cauchy’s formula for this completely general form is (cf. Eq. 9.34)

Ti = σijnj (i, j = 1, 2, 3). (9.44)

As before, performing the matrix multiplication gives the components of the traction
vector. Its magnitude is then obtained from

T =
√

T 2
1 + T 2

2 + T 2
3 (9.45)

and its direction cosines are (T1/T , T2/T , T3/T ). The angle ψ between T and n̂ can be
obtained from the dot product (see Eq. 7.13). Then the normal and shearing components
can be found using Eqs. 9.29.

Problem

• For principal stresses σ11 = −35 MPa, σ22 = −15 MPa and σ33 = −75 MPa, what
is the traction acting on a plane whose pole is P(35/065), and in what direction does
the shearing component act on this plane?

(a) (b)
S

N

T

N
T

S

x1

x2

Figure 9.38 T and n̂: (a) stereogram; (b) inclined diametral plane containing NTS.

Solution

1. On a stereogram plot the pole to the specified plane and label it n̂; by this choice the
lower, or footwall is the positive side. Also trace in the great circle representing the
plane (Fig. 9.38a).
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2. With Eqs. 7.7 the direction cosines of N are n1 = 0.346 19, n2 = 0.742 40 and
n3 = 0.573 58,

3. With these and the principal stresses in Eqs. 9.26 the traction components are
T1 = −12.116 60, T2 = −11.136 06 and T3 = −43.018 23. Then by Eq. 9.37,
T = 46.058 57 MPa.

4. The direction cosines are T1/T = −0.263 07, T2/T = −0.241 78 and T3/T =
−0.933 99. Because T3 is negative T points upward below the plane (and downward
above it).

5. To plot on the lower hemisphere, replace T with its opposite by changing the signs of
all these cosines. From Eqs. 7.8 its attitude is T (69/043) and we add this point to the
stereogram.

6. Through N and T trace in the great circle to intersect the specified plane at S, which
is the direction of the shearing component.

7. Now construct a direct view of the steeply inclined plane containing N , T and S

(Fig. 9.38b). Because the calculated T below the plane points upward (and therefore
above the plane points downward) the sense of shear on the plane is seen to be
dominantly normal. Because S is close to the line of true dip, the fault is essentially
a normal fault.

The procedure of obtaining the eigenvalues and eigenvectors from a 3×3 stress matrix
is essentially the same as used for the 2×2 matrix, though more involved computationally.
The characteristic equation is a cubic equation with three roots:

σ 3
p − I1σ

2
p + I2σp − I3 = 0,

where the coefficients and the constant are the three stress invariants

I1 = σ11 + σ22 + σ33,

I2 = σ11σ22 + σ22σ33 + σ33σ11 − σ 2
12 − σ 2

23 − σ 2
13,

I3 = σ11σ22σ33 + 2σ12σ23σ13 − σ11σ
2
23 − σ22σ

2
13 − σ33σ

2
12.

There is an algorithm for obtaining the roots of a cubic equation, but a much easier
approach is to take advantage of the MATLAB command (see Middleton, 2000, p. 93):
[V,D] = eig(S), whereS is the stress matrix;V contains the normalized components
of the three eigenvectors and D is the diagonal matrix with the three eigenvalues.

9.13 Exercises

1. For σ1 = 150 MPa and σ3 = 80 MPa, use the following pair of equations to calculate
the values of (σ, τ ) for θ = 0–90◦ at 10◦ intervals. Plot each of these pairs as point
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on a set of axes x = σ and y = τ . What is the form of the locus of these points?

σ = σ1 cos2θ + σ3 sin2θ,

τ = (σ1 − σ3) sin θ cos θ.

2. Determine the principal stresses and their orientation (Fig. 9.39).
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Figure 9.39

3. Determine the traction components acting on the oblique plane (Fig. 9.40).

(a) (b) (c)
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Faulting

10.1 Introduction

An important goal of structural geology is to determine the nature of the stress field
together with the mechanical properties of the rock material at the time of the formation of
structures. In the case of faults, some of this information may be obtained by combining
data obtained from experiments with a detailed field study of their geometrical features.1

10.2 Experimental fractures

To learn how rocks behave under various states of stress it is necessary to perform exper-
iments which reproduce natural conditions as closely as possible. Ideally, the magnitudes
of all three principal stresses should be independently controlled, but this is difficult to
accomplish. In the conventional triaxial test a load is applied to the ends of a carefully
prepared cylinder of rock jacketed with copper foil and immersed in a pressurized fluid.
In this configuration, σ1 is parallel to the axis of the cylinder. The magnitudes of the
other two principal stresses are equal to the pressure in the confining medium and this is
commonly termed the confining pressure.

At low confining pressures the rock specimen fractures and there are two types: exten-
sion fractures perpendicular to σ3 (Fig. 10.1a) or shear fractures related to but not
identical with the planes of maximum shearing stress. If fracture occurs before perma-
nent distortion, the material is brittle (Fig. 10.1b); if a small permanent distortion (≤5%)
precedes fracturing, it is semi-brittle (Fig. 10.1c). At higher confining pressures, the
deformational mode is entirely ductile (Fig. 10.1d).

1The physical process of fault formation involves a complex sequence of nucleation, propagation and linkage of numer-
ous diversely oriented microscopic flaws (see Reches & Lockner, 1994). We are concerned here only with the final
macroscopic state.

240
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(a) (b) (c) (d)

Figure 10.1 Failure of limestone as a function of confining pressure (Verhoogen, et al., 1970, p. 458):
(a) extension fractures (0.1 MPa); (b) brittle shear fractures (3.5 MPa); (c) semi-brittle shear fractures
(30 MPa); (d) ductile failure (100 MPa).

10.3 Role of friction

What conditions must exist for a brittle rock to fail in shear? To approach this question
we first consider the case of frictional sliding on a single preexisting plane in a rock
mass. A simple model is a block on a table top (Fig. 10.2a). At rest, the forces acting
on the block are its weight W which by Newton’s third law is balanced by an opposite
normal force N of equal magnitude. If a small horizontal force F is applied to the block
a frictional resistive force f arises which exactly equals this applied force.

Figure 10.2 Sliding block: (a)
forces; (b) resultant.

N RF

N

W

f

(a) (b)

fmax

φs

With an increase in F, at a certain magnitude the block breaks contact and accelerates.
At this instant the resistance f has its maximum magnitude which is proportional to N .
Thus

fmax = µsN, (10.1)

where the constant of proportionality µs is the coefficient of static friction. This is Amon-
tons’s law, named for its modern formulator (Suppe, 1985, p. 289).

Once sliding is initiated the situation becomes more complicated. The coefficient of
dynamic friction is less than µs so that the resistance to sliding once in motion is less.2

The result is a series of irregular slip-stick episodes which can be modeled with sliding
blocks with springs attached (Turcotte, 1997, p. 245–255).3 Our concern here is solely

2When trying to stop an automobile quickly, this is why it is desirable to avoid braking so hard that skidding results. The
difficulty in doing this led to the development of automatic braking systems.

3The presence of gouge on the fault plane complicates this behavior (see Muhuri, et al., 2003).
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with the static case, but such detailed studies of fault motion are important because they
lead to a deeper understanding of faulting and earthquakes.

Amontons’s law also has a geometrical interpretation. From a triangle of forces, the
angle the resultant vector R makes with N is called the angle of static friction φs

(Fig. 10.2b). Then

µs = tan φs = fmax/N. (10.2)

The value of φs depends on the physical nature of the sliding surfaces and must be
determined empirically. For sandpaper it is about 45◦ and for Teflon it is close to zero.
In rocks, it is about 30◦ (Byerlee, 1978). If clay minerals are present on the fault plane it
may be much lower. In most of our treatments it is convenient to assume that φs = 30◦
exactly.

An even more useful model is the familiar experiment of a block on a plane inclined
at angle α (Fig. 10.3a). With coordinate axes x parallel and y normal to the plane the
force W has scalar components in each of these direction which we obtain from the dot
products of W and the unit vectors ûx and ûy giving

Wx = W · ûx and Wy = W · ûy.

Thus

Wx = W sin α and Wy = W cos α.

At rest, equilibrium requires that the sum of all the forces is equal to zero (Fig. 10.3b).
This in turn requires the sum of the components in the x direction to be

f − Wx = f − W sin α = 0 or f = W sin α, (10.3)

and the sum of the components in the y direction to be

N − Wy = N − W cos α = 0 or N = W cos α. (10.4)

With increasing slope a point is reached where the block breaks contact and, again,
the frictional resistive force has its maximum value fmax . Dividing Eq. 10.3 by Eq. 10.4
gives

fmax

N
= W sin α

W cos α
.

From the definition of µs in Eq. 10.2 we then have

µs = tan α, (10.5)
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that is, the block starts to slide when the slope angle is equal to the angle of static friction.
A natural counterpart of this simple experiment is the failure of a slope in dry rock by
block sliding into a road cut (see Rahm, 1986, p. 172).

N

W

f

(a) (b)

F

W

Wx

x

y

Wy

α α α
α

Figure 10.3 Block on incline: (a) components of W; (b) forces at equilibrium.

In these examples we determined the condition which simultaneously satisfies both
equilibrium and the criterion of sliding. This limiting equilibrium analysis is widely used
in soil and rock mechanics and it also forms the basis of our treatment of faults.

For problems of faulting it is convenient to express Amontons’s law in terms of the
normal and shearing components of the traction acting on the plane of sliding. Dividing
Eq. 10.1 by the area of contact gives

τ = µsσ. (10.6)

In this form it can be depicted on a Mohr Circle diagram (Fig. 10.4). Because slip depends
on the magnitude, not sign of τ , there are two conditions which satisfy Eq. 10.5 and these
can be represented by a pair of lines passing through the origin with slope angles ±φs .

With this representation of Amontons’s law, we can now graphically determine the
conditions which will cause slip. Consider a body of rock at depth containing a plane of
weakness whose physical properties are determined solely by friction. As the differential
stress (σ1 −σ3) increases from some initial state, the traction on this plane will ultimately
slip. The problem is to find the point on the Mohr Circle which simultaneously satisfies
both the orientation of the plane and the slip condition.

The first possibility of slip occurs when the Mohr Circle is tangent to the two lines
whose slope angles are ±φs . However, it will occur only on the planes making an angle
β with the σ1 direction. From the two congruent right triangles OCP1 and OCP2 of
Fig. 10.4

φs = 90◦ − 2β or β = 45◦ − 1
2φs. (10.7)

Because β = 90◦ − θ we also have

θ = 45◦ + 1
2φs. (10.8)
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Planes whose orientations are given by these angles are said to have the optimum orien-
tation. Coincidentally, if φs = 30◦ then β = 30◦.

We now need a way of locating the point common to the circle and the line. The trick
is to find a pole of the Mohr Circle using the known traction component and this usually
requires that the representation on the physical plane be reoriented.

Figure 10.4 Slip condition for
optimally oriented planes.
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Problem

• The physical property of an existing fault AB is given by φs = 30◦ (Fig. 10.5a). If
σ3 = 60 MPa what will be the value of σ1 for slip if the orientation of the plane is
given by θ = +60◦?

Construction

1. On a set of axes draw a line through the origin with slope angle +φs (only this line
is needed because θ is positive). Using a convenient scale plot the point representing
the known value of σ3 on the σ axis (Fig. 10.5b).

2. Because σ3 is known, the physical representation must be rotated so that the plane
on which it acts is vertical (as shown). Then the pole OP coincides with σ3 (see
Fig. 9.22b).

3. A line through OP parallel to the trace of the fault on the physical plane intersects the
sloping φs line at P . Line OP P is a chord of the circle.

4. The perpendicular bisector of this chord intersects the σ axis at center C and the circle
is drawn with CP as radius.

Answer

• For this circle σ1 = 180 MPa. The circle is tangent to the slip line, hence the plane is
optimally oriented.
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Under such conditions, the measure of the strength of the rock mass containing this
plane of weakness is the differential stress σ1 − σ3 = 120 MPa. Geometrically this is
represented by the diameter of the limiting Mohr Circle.

τ

σ

P

C

σ1

σ1

σ3 σ3

θ

(a) (b)

σ3 = OP
A

B

φs
2θ

σ1

n

Figure 10.5 Construction I: (a) physical plane; (b) Mohr Circle plane.

There is a simple analytical relationship between the two principal stresses for the case
of renewed sliding on an optimum plane. From Fig. 10.4

sin φs =
1
2(σ1 − σ3)

1
2(σ1 + σ3)

or
σ1

σ3
= 1 + sin φs

1 − sin φs

. (10.9)

If φs = 30◦ the minimum ratio of principal stresses for renewed sliding is

Rmin = σ1/σ3 = 3.0. (10.10)

This is a useful (and easy) number to remember. Other angles of friction will, of course,
give different values of this ratio though they won’t differ greatly.

If the preexisting plane of weakness has some other orientation, a further increase in
the differential stress is required to produce slip.

Problem

• The property of an existing fault AB is given by φs = 30◦ (Fig. 10.6a). If σ1 = 100 MPa
what will the required value of σ3 for slip be if the orientation of the plane of the fault
is given by θ1 = −50◦?

Construction

1. On a set of axes draw a line through the origin with slope angle−φs (here θ is negative).
Plot the point representing σ1 on the σ axis using a convenient scale (Fig. 10.6b). For
the pole OP to coincide with this point the σ1 direction must be horizontal on the
physical plane (see Fig. 9.22a).

2. A line parallel to the trace of plane AB through OP intersects the φs line at a point P1.
3. The bisector of chord OP P1 locates center C of the circle and its radius is CP1.
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Figure 10.6 Construction II: (a) physical plane; (b) Mohr Circle plane.

Answer

• From this circle σ3 = 31 MPa. Note that the second intersection P2 represents the slip
on a second possible plane whose orientation is given by θ2 = −70◦.

Note carefully that the constructions for both these cases required that the pole be
coincident with the point representing the known principal stress and this required the
representation on the physical plane to be appropriately oriented.

Figure 10.7 Graph of FitR vs.β
for φs = 30◦.
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We can also obtain an analytical expression for the stress required for slip on variously
oriented planes. Substituting the expressions for σ and τ of Eqs. 9.15 and using θ =
90◦ − β, Amontons’s law of Eq. 10.6 becomes

(σ1 − σ3) cos β sin β = µs(σ1 sin2β) + µs(σ3 cos2β).
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Dividing both sides by cos β sin β, using the identity tan β = sin β/ cos β and rearranging
then yields

R = σ1

σ3
= 1 + µs/ tan β

1 − µs tan β
. (10.11)

A graph of this equation for φs = 30◦ is shown in Fig. 10.7. Note that R = Rmin when
the plane is optimally oriented, that is, when β = 30◦. From the data of the previous
problem β = 20◦ and β = 40◦. Using both of these in Eq. 10.11 gives R = 3.27, which
is the same result found graphically in Fig. 10.6b.

In some orientations of a preexisting plane of weakness the slip condition can be met
only by very special states of stress. For example, if φs = 30◦ and θ = 30◦ then slip is
possible only if σ3 = 0 (Fig. 10.8a). If θ < 30◦ then σ3 must be tensile for slip to occur
(Fig. 10.8b).

P
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φ

τ
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P

φ2θ 2θ

(a) (b)

τ

O O

Figure 10.8 Special conditions: (a) θ = 30◦; (b) θ = 22◦.

10.4 Coulomb criterion

What if there is no preexisting plane of weakness? More than two hundred years ago,
the French physicist Charles Augustin de Coulomb [1736–1806]4 (see Handin, 1969)
suggested that three factors resist the shearing traction which tends to cause failure in
shear:

1. the friction on the potential shear plane,
2. the normal stress across the plane, and
3. the shear strength of the material parallel to the plane.

This is now known as the Coulomb criterion of shear failure and is usually written as

τ = c + µiσ (10.12)

4Coulomb’s name is also given to the law describing the force between two electric charges and to the unit of electric
charge.
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where c is the cohesive shear strength which is the resistance to shear when σ = 0 and
µi = tan φi is the coefficient of internal friction, where φi is the angle of internal friction.
For most sedimentary rocks the cohesion is 10–20 MPa and for crystalline rocks it is
about 50 MPa. The angle of internal friction is usually not identical to the angle of static
friction, but typical values are still close to 30◦.

Figure 10.9 Coulomb criterion
of shear failure.
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On a Mohr Circle diagram, this criterion of shear failure is represented by the lines
with slope angles ±φi with intercepts on the τ axis equal to the cohesion ±c (Fig. 10.9).
Tests made at moderate confining pressures confirm that this linear envelope describes
the conditions of shear failure to a good approximation.

We can now determine the conditions for primary shear failure in rock. This condition
is met when a Mohr Circle is tangent to the failure envelopes. In contrast to the previous
case, no other possibility exists – no circle may extend beyond these two envelopes.
In effect, newly formed fractures are always in the “optimum” orientation, hence the
orientation of the new fault plane is, after Eqs. 10.6 and 10.7, given by

θ = 45◦ + 1
2φi or β = 45◦ − 1

2φi. (10.13)

Problem

• The rock properties are c = 25 MPa and φi = 30◦. If σ3 = 60 MPa what will σ1 be at
failure?

Construction

1. From Eqs. 10.13 the orientation of one of the potential faults is given by θ = +60◦
and the trace AB of its plane can then be added to the representation on the physical
plane (Fig. 10.10a).

2. On a Mohr Circle diagram draw a line with slope angle φi = +30◦ with intercept on
the τ axis at point (0, c) = (0, 25). Plot the point representing σ3 at 60 units from O

on the σ axis (Fig. 10.10b).
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Figure 10.10 Coulomb failure: (a) physical plane; (b) Mohr Circle.

3. In this orientation, the pole OP coincides with σ3. A line through OP parallel to the
potential fault intersects the sloping φi line at P .

4. At point P a line perpendicular to the failure envelope locates center C and the circle
can then be completed with radius CP.

Answer

• The second intercept of this circle with the σ axis gives σ1 = 270 MPa.

What controls whether failure is by renewed slip or the formation of a new fault? The
answer can be found by constructing a Mohr Circle diagram for both criteria (Fig. 10.11).
As we have seen, a new fault forms when the circle is tangent to the failure envelope
(point P2). This same circle also satisfies the conditions for slip represented by points P1

and P3 on planes whose orientations are given by θ2 = 40◦ and θ3 = 80◦. Under perfect
conditions slip and fracture could occur simultaneously.

During the buildup of the differential stress the condition for slip would have been met
on any preexisting plane whose orientation lies between θ2 and θ3. For planes outside
this range, fracture rather than renewed slip occurs.

Figure 10.11 Simultaneous
fracture and renewed slip.

P1
P2

P3

τ

σσ3

φi φs

2θ2

2θ3

2θ1



250 Faulting

10.5 Limitations

The Coulomb criterion has two important limitations. First, the predicted tensile strength
T , that is, when τ = 0, as represented by the point of intersection of the sloping envelope
and the σ axis is too great; commonly it is only about half the cohesion (Price, 1966,
p. 27).

Therefore, the failure envelope must be modified to take this fact into account. The
usual way is to adopt the modified Griffith criterion. This is based on the analysis of
stressed microscopic elliptical Griffith cracks. Its basic form is a parabola (Fig. 10.12),
and it predicts several different types of behavior.

The predicted tensile strength T is exactly half the cohesion. Further, the orientations
of tensile fractures when σ3 = −T are accurately predicted to be perpendicular to σ3.

The part of the curve in the tensile field between the points (−T , 0) and (0, c) predicts
the formation of fractures under hybrid conditions of tension and shear at high angles to
σ3. Unfortunately, these predicted fractures are not borne out by experience (Engelder,
1999).

1. Only a very few such naturally occuring fractures have been observed and they are
open to alternative interpretations.

2. Laboratory experiments have failed to reproduce such fractures.
3. A more complete analysis involving linear elastic fracture mechanics predicts a dif-

ferent behavior.

In contrast, under conditions of σ > 0, the parabola does actually predict shear frac-
tures with a range of orientations β = 45◦–30◦ and these have been confirmed by careful
experiments.

Finally, at higher values of σ , the parabolic portion of the curve is replaced by the linear
Coulomb criterion. Under these conditions the Griffith cracks close, at least partially, and
resistance to further development is friction on the crack walls, and this gives a physical
interpretation of the parameter “internal friction”. To avoid a discontinuity in the failure
envelope it is convenient to join the sloping Coulomb line at the point where the slope
angle on the parabola is equal to φi .

The second important limitation is that at even higher confining pressures failure
occurs not by fracture but by flow (see Fig. 10.1d). Within this ductile regime, flow is
pressure insensitive and therefore the failure envelope is horizontal (Goetze & Evans,
1979, p. 471), and all the circles at failure are the same size (Fig. 10.12). For this reason
the deviatoric stress is used to analyze such behavior. The sharp angle between the sloping
Coulomb envelope and this horizonal failure line is suspect but the detailed characteristics
of the transition are not clear.

The onset of ductile flow, that is, when the value of τ reaches the yield point, depends
on composition and on temperature – the higher the temperature the lower the yield
point. The onset of plasticity in quartz occurs at about 300 ◦C and in feldspar at about
450 ◦C (Scholz, 2002). For rocks containing both these common minerals there is a range
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of conditions over which ductile behavior appears, hence there will be a complicated
transition from fully brittle to fully ductile behavior.5

τ

σ

ductile

T

britt
le

Figure 10.12 Coulomb envelope modified for tensile and ductile failure.

10.6 Classification of faults

Clearly, no significant shearing traction acts along the air–earth interface, and therefore
at shallow depths one of the principal stresses must be perpendicular to the earth’s
surface. In areas of little or no relief this means that one of the principal stresses is
essentially vertical. In combination with the geometrical relationship between fracture
planes and principal stress directions, this leads to a three-fold classification of primary
faults (Anderson, 1951, p. 15; see Fig. 10.13).

1. Normal faults: σ1 is vertical and the dip of the potential fault planes is δ = 45◦ + 1
2φi ,

or about 60◦.
2. Wrench faults: σ2 is vertical and the potential fault planes are also vertical and the

slip is horizontal.
3. Thrust faults: σ3 is vertical and the dip of the potential fault planes is δ = 45◦ − 1

2φi ,
or about 30◦.

10.7 Faults and stresses

So far, our treatment started with known physical properties and then calculated the stress
required to cause slip or fracture. This is a forward problem. In practice, however, we
start with observed faults and then try to recover some information about the state of
stress responsible for them. This is an inverse problem and a few simple examples will
illustrate the general approach.

5Rutter (1986) makes the important point that some geologists associate ductility with a particular mechanism of rock
deformation, namely intracrystalline plastic flow. It is better to reserve ductility for the capacity to strain by substantial
amounts without any tendency for localized flow into bands (faults). Rather than brittle–ductile the term brittle–plastic
avoids any confusion.
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Figure 10.13 Dynamic classification of faults.

If both of the two possible faults are present they are termed conjugate shear frac-
tures (see Fig. 10.1b,c). From such pairs it is possible to determine the principal stress
directions. These fractures are geometrically related to the stress in several ways.

1. The fractures intersect to fix the σ2 direction.
2. The dihedral angle between conjugate pairs is 2β, and this angle is bisected by σ1.
3. From β the angle of internal friction φi is found from Eq. 10.13.
4. The slip direction is defined by the intersection of the fault plane and the σ1σ3 plane.
5. The sense of slip is such that the wedge containing σ1 moves inward.

These relationships are sometimes collectively referred to as Hartmann’s rule (Bucher,
1920, p. 709) and with them we can recover some important aspects of the orientation
of the stress field and of some of the physical properties of the rock at the time of
faulting. Note that if the pair of conjugate faults physically intersect, as in the experiments
illustrated in Fig. 10.1, significant slip is possible on only one.

Problem

• Given two conjugate faults with attitudes N 24 W, 50 W, and N 48 W, 76 NE
(Fig. 10.14a), determine the orientation of the principal stresses, the direction and
sense of slip and the angle of internal friction.

Method

1. Represent the two faults as great circles on the stereonet (Fig. 10.14b). Their inter-
section defines the σ2 direction.

2. The great circle representing the plane whose pole is σ2 contains the σ1 and σ3 direc-
tions. The slip directions S1 and S2 are fixed by the intersection of this circle with the
faults.

3. Bisect the acute segment of this great circle between the two faults to locate the
orientation of σ1. The σ3 direction is 90◦ along this same great circle.

4. The angle between σ1 and each of the slip directions is β and φi can then be determined
from Eq. 10.7.
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Answer

• The principal stress directions are σ1(65/173), σ2(21/318) and σ3(13/053). Angle
β = 29◦, hence φi = 32◦. Because the σ1 direction is close to vertical, the sense of slip
on both faults is dominantly normal. This sense can also be obtained by visualizing
each fault with the flattened hand representing the plane of the fault and the index
finger of the other hand representing the direction of σ1.

σ2
σ3

σ1

Fault 1

Fault 2S1

S2

N

50

76

N

(a) (b)

Figure 10.14 Stress directions from conjugate faults: (a) map; (b) stereogram.

Extension fractures, commonly filled with quartz or calcite, are associated with some
faults and these give additional information about the state of stress and the slip on a
single fault.

Problem

• A fault (N 10 E, 25 W) has associated subhorizontal quartz veins (N 34 W, 6 E)
(Fig. 10.15a). Determine the principal stress directions, the angle of internal friction,
and the direction and sense of slip.

Method

1. Plot the plane of the vein-filled fracture as a great circle (Fig. 10.15b). The pole of
this plane is σ3.

2. Also plot the fault plane as a great circle. The plane of the vein intersects the fault to
locate σ2.

3. With σ2 as the pole, the plane of σ1 and σ3 can be drawn. This great circle intersects
the fault plane at the slip direction S and the plane of the vein at σ1.

4. The σ3 direction is 90◦ away from the σ1 direction. The angle between σ1 and the slip
line is β.
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Figure 10.15 Principal directions from fault and extension fractures: (a) section; (b) stereogram.

Answer

• The orientations of the principal stresses are σ1(05/093), σ2(04/002), σ3(84/236).
The measured angle between σ1 and the slip direction is 150◦. This is the supplement
of β, hence φi = 30◦. Because σ1 is nearly horizontal the sense of slip is reverse and
the fault is a thrust.

10.8 States of stress at depth

In the earth, the vertical component of stress, commonly called the overburden pressure,
is a function of depth z, and its magnitude is given by

σzz = ρgz, (10.14)

where ρ is the rock density and g is the acceleration due to gravity. For example, assuming
a mean density of 2400 kg/m3, what is the vertical component of stress at a depth of
1 km?

σzz = (2400 kg/m3)(9.8 m/s2)(1000 m) = 23.52 × 106 Pa = 23.52 MPa.

Rounding this upward to 24 MPa introduces an error of only 2% (this is equivalent to
the commonly used value g ≈ 10 m/s2). This is well within the accuracy of most in situ
determinations of the density of crustal rocks, hence is acceptable for most purposes.
With this approximation there is a close numerical relationship between the vertical
component σzz and the density ρ which can be expressed in an easily remembered rule
of thumb:

σzz = ρ/100 MPa per kilometer, ρ in kg/m3.
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What about the horizontal components of stress at depth? There are various observa-
tions and methods which are used to determine the orientation of the principal components
in a horizontal plane (Zoback, et al., 1989).

1. Geologic indicators (see §10.7).
2. Focal mechanisms (see §10.15).
3. Overcoring: a rock mass in a state of stress deforms elastically. If a part of such a mass

is isolated by drilling a core the unstressed state will be recovered. The effects are
small enough to be easily measured with sensitive strain gauges. From a knowledge
of the physical properties of the rock, these strains are then converted back to the
stress state before drilling (Turcotte & Schubert, 1982, p. 86). Such measurements
are usually made at some distance from any free surface to avoid the perturbations
which occur there.

4. Boreholes analyses: in an area subjected to a homogeneous compressive stress field
with σmax east-west and σmin north-south (see Fig. 10.16a), the tractions tangential to
the circumference of a vertical borehole, called hoop stresses, have a maximum value
of 3σmax − σmin at the north-south points and a minimum value of 3σmin − σmax at
the east-west points. This effect can be used in two ways to determine the orientation
of the original principal stresses in the horizontal plane.
(a) Breakouts occur naturally in drill holes and are due to the compressive failure of

the rock in the vicinity of the points of the maximum hoop stress with the result
that the hole becomes enlarged (Fig. 10.16b).

(b) Hydraulic fractures are induced by pumping fluid into an isolated section of the
drill hole. The result is tensile failure of the rock at the points of minimum hoop
stress (Fig. 10.16c). Observing both features in the same well confirms that they
are orthogonal.

Because the existing state of stress is important to a general understanding of the
sources of lithospheric stresses and the nature of interplate tectonics there has been a
concerted effort to make such measurements and, as part of The World Stress Map project,
to compile the results in a uniform manner (Zoback, et al., 1989; Zoback, 1992; Mueller,
et al., 2008).6 As of 2008 more than 21 750 such measurements have been made. The
North American portion of this map is shown in Fig. 10.17.

The broad or first order patterns are interpreted to be largely due to compressional
forces applied at plate boundaries, primarily ridge push and continental collision, hence
they are controlled by the geometry of the plate boundaries. Local perturbations or second
order stresses are associated with specific geological or tectonic features (see Fig. 10.17).

Three independent lines of evidence indicate that in many places the stresses in the
continental crust are in a state of frictional equilibrium, that is, the frictional resistive

6The maps, which are in color, are available on-line at http://www-wsm.physik.uni-karlsruhe.de

http://www-wsm.physik.uni-karlsruhe.de
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Figure 10.16 Stress orientation: (a) stresses before drilling; (b) breakouts; (c) hydraulic fractures.
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Figure 10.17 Stress Map of North America.

forces on existing faults and the tectonic and other forces are balanced (Townend &
Zoback, 2000).

1. The widespread occurrence of seismicity induced by reservoir impoundment or fluid
injection.

2. Earthquakes triggered by other earthquakes.
3. The measured stress states in the upper crust are consistent with the Coulomb criterion

calculated using measured frictional coefficients.

Because it appears in the literature, there is one additional possibility is that should be
mentioned – the horizontal components may be equal to the overburden pressure, that
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is, the state of stress is “hydrostatic”. This condition is expressed by

σxx = σyy = σzz.

In the solid earth, this state is termed lithostatic (Engelder, 1993, p. 4), and it is sometimes
referred to as Heim’s rule. It is also the standard state used in the analytical description
of the states of stress at depth (Anderson, 1951, p. 13). Here we use it only as a simple
and convenient starting point. With the addition of tectonic forces, the state of stress at
the point in question then becomes a more general and more interesting type.

10.9 Magnitudes of stress components

In order to get some feeling for the magnitudes of the principal stresses under conditions
of frictional equilibrium we will analyze the conditions which must prevail at depth for
renewed movement to occur. The following presentation is a graphical version of an
analysis given by Sibson (1974).

For a normal fault, σ1 is vertical. If the bulk density is such that the vertical component
of stress at a depth of 1 km is 24 MPa and φs = 30◦, then with Eq. 10.9 the magnitude of
σ3 is 8 MPa. This situation is illustrated in Fig. 10.18, where it can be seen that, assuming
conditions were originally lithostatic and that the fault is in the optimum orientation, only
a modest reduction of the horizontal stress is required for renewed slip. Note carefully
that σ3 is not tensile for renewed normal faulting to occur under these conditions. In a
similar way, we can determine the conditions for slip at depths of 2, 3, 4, 5 and 6 km.

Figure 10.18 Renewed slip on
normal faults at 1–6 kilometers.
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For thrust faults, σ3 is vertical and at a depth of 1 km its magnitude is the same 24 MPa.
From Eq. 10.9, the magnitude of σ1 is then 72 MPa, and we see that a considerable
increase in the horizontal stress component is required for renewed movement to occur.
Similarly, we can find the stress conditions at greater depths (Fig. 10.19).

For a wrench fault σ2 is vertical, and there is a range of possibilities. All that is required
is that σzz has a magnitude intermediate between σ1 and σ3. That is,

σ3 ≤ σzz ≤ σ1.
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Figure 10.19 Renewed slip on
thrust faults at 1–2 kilometers.
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We can express the relative value of σ2 by using

K = σ2 − σ3

σ1 − σ3
. (10.15)

Thus if σ2 = σ3, K = 0 and if σ2 = σ1, K = 1. As an example, the conditions for
slip are illustrated for K = 0.5 in Fig. 10.20; in this special case the magnitude of σ2

coincides with the center of the Mohr Circle.
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Figure 10.20 Renewed slip on wrench faults (K = 0.5) at 1–4 kilometers.

These results clearly show that the resistance to slip increases with depth for all three
types of faults, and that at any given depth it is the least for normal faults and the greatest
for thrust faults.

An independent source of information concerning the magnitudes of the stress com-
ponents comes from seismology. The probable maximum differential stress within the
crust rarely exceeds about 100 MPa (Raleigh & Evernden, 1981) and for some faults it
may be as small as 20 MPa. This immediately presents a problem. With 100 MPa as an
upper limit, our analysis shows that normal faults can not slip below about 6 km, thrust
faults below about 2 km, and wrench faults at intermediate depths. Yet it is known that
deeper earthquakes are generated on all these types of faults. For geothermal gradients
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typical of the continental crust, the seismogenic zone in quartz- and feldspar-bearing
rocks extends to depths of about 12–15 km.

Admittedly, our analysis contains some approximations. In particular, the frictional
sliding on rock surfaces is a good deal more complicated than a block sliding on an
inclined plane. Still, it is unlikely that a more detailed approach would change our results
by more than a small amount and therefore can not account for these large discrepancies.

Missing from our consideration so far is the role of the pressure p in the fluid in porous
crustal rocks. Using Eq. 9.20 we can rewrite Amontons’s law in terms of the effective
normal stress as

τ = µs(σ − p) = µsσ
′. (10.16)

If the water in the pore spaces is connected to the atmosphere and if the groundwater table
is at the earth’s surface, then the hydrostatic pore pressure at any depth can be calculate
from

p = ρwgz, (10.17)

where ρw is the density of water. When the pore fluid pressure has this value it is said to
be normal. At a depth of 1 km and using the same rule of thumb p ≈ 10 MPa. The ratio
of the pore water pressure to the overburden pressure is given the symbol λ, defined as

λ = p/σzz. (10.18)

This pore fluid factor expresses the fraction of the load borne by the fluid. If λ = 0 the
entire vertical load is supported by rock and if λ = 1.0 it is entirely supported by fluid.

Hence in normal conditions λ ≈ 10 MPa/24 MPa = 0.42, that is, almost half of the
load is borne by the water. If the water table is not at the earth’s surface a different depth
z should be used. Also, the deep water may be brackish hence have a different density.
Also, the density of crustal rocks is not uniform with depth. The actual value of λ may
then differ from this figure in specific situations. If normal conditions prevail, λ will be
approximately constant for all depths. The relationship between p and σzz can also be
illustrated graphically (Fig. 10.21a).

However, abnormal pressures are regularly encountered in deep oil wells, where val-
ues of λ as high as 0.9 have been observed (Fig. 10.21b). Further, there is compelling
geological evidence that values of λ = 1.0 or greater are reached, at least briefly, with
the result that faulting may be accompanied by tensile fractures (Sibson, 1981). Several
mechanisms may contribute to such abnormal pressures but the main reason is that the
permeability of clay shale is so low that the water escapes only very slowly and the
pressure continues to rise during burial and compaction.

With elevated pore fluid pressures a differential stress of realistic magnitude can pro-
duce slip on a fault in the deeper parts of the seismogenic zone.
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Figure 10.21 Fluid pressure: (a) normal conditions; (b) abnormal conditions.

Problem

• For a maximum differential stress of 100 MPa and φs = 30◦ what are the conditions
for slip on an optimally oriented thrust fault at a depth of 10 km?

Construction

1. For a thrust at this depth

σ3 = (24 MPa/km)(10 km) = 240 MPa and σ1 = (240+100) MPa = 340 MPa.

With these values, construct the corresponding Mohr Circle (Fig. 10.22).
2. Draw radius CP at angle 2θ = 120◦ and add the failure line with slope angle φs = 30◦.
3. Draw a line from P parallel to the σ axis to locate point P ′ on the failure line. Construct

radius C′P ′ parallel to CP and draw a second Mohr Circle.

Answer

• This second circle represents the state of effective stress which will cause slip. The
length of the line PP ′ represents the magnitude of the required pore pressure. Then
p = 190 MPa and λ = 0.79.

As this result shows, slip is possible under these conditions because the fault “thinks”
that, in terms of its environment, it is at a much shallower depth.

We may also obtain an analytical solution for the required pore fluid pressure under
such circumstances. The ratio R′ of the effective principal stresses at failure can be
written as

R′ = σ ′
1

σ ′
3

= σ1 − p

σ3 − p
or p = R′σ3 − σ1

R′ − 1
. (10.19)
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Figure 10.22 Slip on a thrust at 10 km with elevated pore water pressure.

Using the values from the previous problem gives p = 190 MPa, just as found graphi-
cally.

A similar problem is encountered in the formation of primary shear fractures at depth
and the failure criterion must be modified to

τ = c + µi(σ − p) = c + µiσ
′, (10.20)

and this is called the Coulomb–Terzaghi criterion.
Finally, at high confining pressures ductile flow may dominate over fracture and

mylonites may form. Conditions favorable for such flow occur below the base of the
seismogenic zone and at a high differential stress. This suggests that mylonites should
be found most commonly along deep thrust faults and rarely along normal faults, and
this is just the case.

10.10 Open fractures

The presence of open fractures at depth has an important role in the emplacement of
veins and dikes (Jolly & Sanderson, 1997). Open fractures require a tensile normal stress
across their planes, and this may be illustrated in two equivalent ways with the aid of
Mohr Circle diagrams.

1. The pore fluid pressure is greater than the normal traction acting across the fracture
plane (Fig. 10.23a).

p ≥ σ.

2. The effective normal traction across the plane is less than zero (Fig. 10.23b), or

σ ′ ≤ 0.

The conditions which allow fractures to open are given by points on the Mohr Circle
to the left of the lines defined by σ = p or σ ′ = 0. From these points the range of
orientations of the potentially open fractures can also be determined.
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Jolly and Sanderson (1997) have also extended this treatment to three dimensions
in an application to two suites of dike swarms. In one, subhorizontal dikes are absent,
indicating that σ1 was vertical at the time of emplacement. In the other, the dikes tend
to be horizontal indicating that σ1 was horizontal. In both cases, they were also able to
estimate the relative magnitudes of the principal stresses and the magmatic pressure at
the time of emplacement.

τ

σ

τ

p

(a) (b)

σ∋

Figure 10.23 Conditions for open fractures: (a) p > σ ; (b) σ ′ < 0.

10.11 Stress drop

Following a slip event, and with it the release of stored elastic strain energy in the form
of earthquake waves, the state of stress adjacent to the fault is drastically altered. The
value of τ on the fault plane falls to some small value, possibly even zero, depending on
whether slip halts with an episode of stick or not.

Consider the minimum conditions for the reactivation of a preexisting thrust fault. If
the rocks are dry, then following a slip event the residual state of stress will be represented
by a small Mohr Circle (Fig. 10.24a) with σ3 equal to the essentially constant overburden
pressure. If the rocks are wet and there is a release of the pore water pressure, which is
likely, then the post-slip residual state will be a small Mohr Circle with σ3 determined
by both the overburden pressure and the normal value of λ (Fig. 10.24b). In a limiting
case, both these small circles may degenerate to points.

σ
(b)

τ

σ

τ

(a)

Figure 10.24 Residual stress after slip on a thrust: (a) p = 0; (b) p > 0.
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10.12 Faults in anisotropic rocks

In anisotropic rocks, the relationship between the principal stress directions and shear
fractures is more complicated. Donath (1961, 1964) experimentally investigated the role
of cleavage in shear fracturing. By loading cylinders of slate cut at different angles, a
varied relationship between the attitude of the plane of fracture and the cleavage was
found (Fig. 10.25). If an isotropic rock had been used in these experiments, a conjugate
pair of fractures inclined to σ1 at approximately 30◦ would have been expected. In the
slate, such fractures were obtained in only two situations.

1. at higher confining pressure with the cleavage parallel to the long axis of the cylinder,
2. in all experiments with the cleavage perpendicular the cylinder axis and to σ1.

In these two orientations, the slate is effectively isotropic. In all others, only one
fracture developed and its attitude was controlled, directly or indirectly, by the cleav-
age. This is most clearly demonstrated by the essentially 1:1 relationship between
cleavage and fracture attitude on the left side of the graph. Although for larger
angles of cleavage inclination the fractures are no longer parallel to the cleavage,
fracture angles greater than 45◦ also indicate a continuing influence by the planar
weakness.
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Figure 10.25 Fault orientation in slate (after Donath, 1963).
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From the point of view of interpreting field examples, however, the uncertainties
introduced by the effect of anisotropism make the determination of the principal stress
directions from single or multiple fractures difficult.

10.13 Oblique faults

Neither Amontons’s law nor the Coulomb criterion take into account the intermediate
principal stress, which is, in effect, assumed to remain constant. There are, however,
conditions where σ2 does play a role. As a result of the movement on a pair of conjugate
faults the body of rock shortens in the σ1 direction, lengthens in the σ3 direction, and
remains of constant length in the σ2 direction. If, however, extension occurs in the
intermediate direction because of a decrease of σ2 then three or more intersecting faults
may develop in order to accommodate the change in shape and the procedure used for
two can not be applied (Reches, 1978; Aydin & Reches, 1982).

Another situation arises when there is a single plane of weakness oblique to all three
principal directions. In three dimensions, the direction of the resolved shearing stress on
such an inclined plane depends on the magnitude of all three principal stresses. From
Bott (1959; see also Jaeger & Cook, 1979, p. 26, 430) the pitch r of the shear component
in the plane is given by

tan r = n

lm

[
m2 − (1 − n2) �

]
(10.21)

where (l, m, n) are the direction cosines of the pole of the plane relative to principal
stress directions and

� = σzz − σxx

σyy − σxx

, (10.22)

where σxx , σyy and σzz are principal stresses (this ratio describes the shape of the stress
ellipsoid). In general, the value of the pitch given by Eq. 10.22 will be such that the
maximum shear stress is not directly related to the principal stress directions. We now
illustrate this fact.

Problem

• If the principal stresses are σxx = 35 MPa, σyy = 15 MPa and σzz = 75 MPa, for a
fault with pole P(35/065) what is the direction and sense of slip?

Answer

• With Eqs. 7.7 calculate the direction cosines of the pole of the fault. Then using these
in Eq. 10.22, together with the values of the principal stresses, the pitch of the slip
direction S is r = 77◦ (Fig. 10.26a). Because σ1 = σzz, the fault is dominantly normal.
Note that this is the same result obtained in Fig. 9.35.
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A slip direction on a single such oblique fault does not supply enough information to
estimate the orientation of the stress tensor responsible for the renewed slip.

Observations on additional faults are needed. To convey the essence of a fruitful but
advanced approach consider the case of three additional faults which are symmetrical
with the coordinate axes (Fig. 10.26b). By symmetry the slip directions will also be
symmetrical and it is then possible to determine the principal stress directions.

(a) (b)

σxx

σyyσzzS

σxx

σyyσzz

Figure 10.26 Oblique faults: (a) single fault; (b) four symmetrical faults.

In practice, of course, such an ideal situation would be most unusual. However, there
are situations where the stress orientation can still be estimated from a knowledge of
renewed movement on a variety of preexisting planes. If a rock mass is cut by abundant,
variously oriented fractures, renewed slip will occur on those planes with approximately
the orientation of the conjugate pair that would have formed in intact rock. Given such a
collection of fractures, the analytical procedure consists simply of plotting the poles of
the preexisting planes which show evidence of movement. Barring a preferred orientation
of these planes, the poles will form two clusters which are symmetrical to the principal
stress directions as shown in Fig. 10.27 (Jaeger, 1969, p. 161; Compton, 1966, p. 1370).

Figure 10.27 Planes with poles
within the shaded zones will
show slip.
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Estimating the state of stress from collections of faults is an active area of research
and the literature is large and growing. Engelder (1993, p. 83f) and Angelier (1994) give
good reviews.

This stress inversion technique is based on two assumptions. The first is that the
regional stress is homogeneous. The second is that the direction of slip is parallel to the
direction of maximum shear stress on the plane of the fault. These are acceptable in some
situations, but not in others (Pollard, et al., 1993).

10.14 Other limitations

The Coulomb criterion describes conditions at the instant of failure. As a result of the
initial fracture and continued displacement on the fault, the magnitude and orientation of
the principal stresses will not be the same as before failure. As the state of stress builds
up for an additional increment of slip it will not return to the original state, though it
is probably unlikely that any drastic changes in orientation will occur between small
increments of slip.

For large displacements, not only may the state of stress change, but also the geometry
of the fault may be altered. Thrusts, in particular, are subject to such changes. The 30◦
dip of a primary thrust can not be maintained for large displacements for an overhang at
the earth’s surface would result. A consequence of continued slip would be a flattening
of the thrust plane. The state of stress during the continued motion of such an overthrust
sheet would be different, and possibly quite different from that responsible for the initial
fracture and early slip.

For large-scaled faults another difficulty arises. For example, regionally extensive
wrench faults may well extend to depths beyond the zone of even semi-brittle fracture.
The slip then may be related to deep crustal or subcrustal flow, and for such flow the
relatively simple relationships on which the fracture analysis is based do not hold. Deep
flow would, of course, set up stresses in the overlying brittle rocks, but these would
not necessarily be uniform along the entire length of the fault. Such heterogeneity, as
interpreted from local fracture and fold analysis, has been demonstrated along parts of
the San Andreas fault of California (Dickinson, 1966). The picture which emerges is one
of a series of irregular blocks or “tectonic rafts” along and adjacent to the fault. The
stress states within adjacent rafts are, at least partly, local. This non-uniformity, together
with the long history of movement, makes it difficult to interpret such faults in terms of
a regionally developed homogeneous stress field. Probably all such major faults have a
more complex origin and history.

10.15 Earthquakes

There are still other ways of determining important geometrical properties of active
faults. From an analysis of seismograph records the site of an earthquake generated by
fault slip can be located (Fowler, 1990, p. 85–86). There are two types of calculations.
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Locating the epicenter involves determining the difference in the arrival times of the P-
and S-waves at three or more seismograph stations. The depth to the earthquake focus,
also called the hypocenter, can also be calculated from the difference of the arrival times
of the direct P and reflected pP phases.

Further, the attitude and sense of slip on the fault can also be found (Fowler, 1990,
p. 97–104, 149–151; Stein & Wysession, 2003, p. 219–222). This involves determining
whether the arrival of the first pulse of the P-wave is compressive or tensile. Figure 10.28a
shows a map of an east-west dextral strike-slip fault. For stations in the first and third
quadrants the first motion will be compressive (by convention shown shaded) and in the
second and fourth quadrants it will be tensile (shown blank). These four quadrants are
separated by nodal planes one of which is the fault plane and the other is the auxiliary
plane. Similarly Fig. 10.28b shows a north-south sinistral strike-slip fault which gives
the same pattern of compression and tension. This ambiguity is usually resolved by
comparing the orientations of the nodal planes with the known geology or with evidence
on the ground of the orientation of the active fault.

(b)(a)

Figure 10.28 First motion of P-wave: (a) dextral strike-slip; (b) sinistral strike-slip.

Of course, the earth closely approximates a sphere so that plotting the first-motions
and the derived nodal planes on the lower hemisphere of a stereonet is appropriate.
Figure 10.29 shows the distribution of compression and tension for the three basic fault
types. Note that the line of intersection of the nodal planes lies in the plane of the fault
and perpendicular to the slip direction. If the slip is oblique then the line of intersection
of the two nodal planes will not be horizontal in the case of normal and thrust faults or
vertical in the case of strike slip faults.7

10.16 Exercises

1. Two faults have attitudes of N 10 W, 60 E and N 30 E, 70 W. What were the orientations
of the principal stresses at the time of faulting, what is the angle of internal friction
of the rock, and what are the senses of slip on the faults?

2. The traces of two conjugate sets of shear planes are exposed in a quarry. Determine
as many of the mechanical aspects at the time of fracture formation as possible.

(a) Floor (horizontal): traces trend N 25 W and N 82 W.

7These stereographic diagrams are informally called “beach balls”.
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Figure 10.29 Stereograms of first motion for the three types of faults.

(b) Face 1 (N 10 E, 70 E): traces pitch 48 N and 18 S.
(c) Face 2 (N 76 E, 80 N): traces pitch 26 E and 30 W.

3. Vertical extension fractures are associated with a fault whose attitude is N 63 E, 70 S.
Determine as many of the mechanical aspects of the fractures as possible.

4. On a slickensided surface with attitude N 32 E, 60 SW, striations plunge 54 toward
N 23 W. The associated fault shows normal separation. Estimate the orientations of
the principal stresses at the time of faulting.

5. Of a large number of fractures, those with the following orientations showed evidence
of renewed slip. Estimate the orientations of the principal stresses, and for fracture
No. 1 estimate the direction and sense of slip.

1. N 30 E, 50 E 7. N 5 W, 15 W
2. N 30 W, 30 W 8. N 54 E, 66 SE
3. N 84 E, 16 S 9. N 33 E, 63 SE
4. N 4 E, 43 E 10. N 80 E, 20 N
5. N 50 E, 49 SE 11. N 34 E, 28 NW
6. N 12 E, 30 SW 12. N 14 E, 56 E

6. A rock has the following physical characteristics: c = 38 MPa and φi = 33◦.

(a) Assuming that σ1 remains a constant 100 MPa, what will the magnitude of σ3 be
at failure?

(b) Under the same conditions, a preexisting cohesionless plane with angle of friction
equal to 30◦ is inclined 45◦ to σ1. Which will occur first, fracture or slip?

(c) Will slip or fracture occur first if this same plane is inclined 55◦ to the σ1 direction?

7. Analyze the following situations for the principal stresses at the point of renewed slip.

(a) At a depth of 3.5 km, what would the magnitude of the horizontal component of
stress be for renewed movement on a normal fault in the optimum orientation?

(b) At this same depth, what would the magnitude of the horizontal component of stress
be for renewed slip on a thrust fault in the optimum orientation? If the maximum
differential stress is 50 MPa, what pore fluid pressure is required to cause faulting
in this case?



11
Deformation

11.1 Introduction

Processes acting within the earth at various times and places cause bodies of rocks to be
displaced from the sites of their origin.After such displacements the bodies have different
locations and orientations, and also commonly different shapes and sizes. Such bodies
are said to be deformed. Although it is ultimately necessary to treat these changes in a
full three-dimensional setting, many situations can be approached from a consideration
of just two, and this also serves as a useful way to introduce the subject.

Even in two dimensions, the complete geometrical description of the deformed state
for a relatively simple structure may be quite involved. Imagine a rectangular block
composed of sedimentary strata (Fig. 11.1a). As the result of a general deformation,
original lines become curvilinear, original planes curviplanar and original parallel lines
and planes are no longer parallel (Fig. 11.1b). Such a deformation is inhomogeneous.

The description of a deformation consists of comparing the initial and final configu-
rations of the body with emphasis on the changes which have occurred. To facilitate this
comparison we refer the body in its initial place, orientation, shape and size to material
coordinates (x, y) and its final place, orientation, shape and size to spatial coordinates
(x′, y′). Every material point or particle P(x, y) in the body is displaced to spatial point
P ′(x′, y′). Each point P ′ is related to its particle P by a displacement vector u. This
vector is not generally the path along which the particle moves, but simply identifies the
final position P ′ of the particle initially at P . Every particle in the body has associated
with it such a displacement vector and collectively these constitute the displacement
field, an example of a vector field.

There are two different ways of relating the initial (undeformed) and final (deformed)
configurations of the material body.

1. We may focus attention on the initial configuration and describe the changes rep-
resented by the final configuration. The independent variables are then the material
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coordinates (x, y) of the particles in the initial configuration. This is the material
description.

2. We may focus attention on the final configuration. The independent variables are then
the spatial coordinates (x′, y′). This is the spatial description.1

Each of these approaches has advantages and disadvantages. Nature always presents us
with the final configuration, and so in the end we are forced to use the spatial description.
On the other hand, the material description matches the way deformations occur, and it
seems logical to think of the changes in this way. In this chapter we will concentrate on
the material description and in the next we will emphasize the spatial description and
show how to go from one to the other.

x

y

P

O
(a)

(b)
O x'

y'

P'
u

Figure 11.1 Inhomogeneous deformation: (a) initial state; (b) final state.

In order to proceed with the description of such a deformed body, we consider the
changes which have occurred. In §8.9 we introduced two measures of the change in
the horizontal, straight-line distance across groups of associated faults. These are the
extension e and the stretch S defined as

e = l′ − l

l
= l′

l
− 1 and S = l′

l
= 1 + e. (11.1)

These measures do not apply directly in the present case because in a general deformation
an initially straight line in the vicinity of P will be curved in the vicinity of P ′ and the
changes in length along this curved line will not be uniform. As we consider a shorter line
at P the deformed line at P ′ becomes straighter and its length more uniformly altered.

1Commonly “Lagrangian” is used for material and “Eulerian” is used for spatial, but the historical attributions are
incorrect (Truesdell, 1954, p. 30): the material coordinates were introduced by Euler in 1762 and the spatial coordinates
by d’Alembert in 1752. The terms Lagrangian and Eulerian are not used here. Clifford Ambrose Truesdell III [1919–
2000] was an exceptional figure of twentieth-century science. In all of his work, he insisted that people get proper credit
for their contributions, large or small.
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Then, as the line becomes very short, the ratio of the final length �l′ to the initial length
�l tends to a finite limit which is the stretch S at P ′, that is,

S = lim
�l→0

�l′

�l
= dl′

dl
. (11.2)

Of course, longer lines may be homogeneously deformed. The condition expressed by
Eq. 11.2 simply insures that S (and e) can always be defined.2

Because these parameters apply to all lines, a small rectangular volume element at P

will, after deformation, have a high degree of regularity at P ′ (see Fig. 11.1). Original
lines are still linear, original planes are still planar, and originally parallel lines and planes
are still parallel. This state is homogeneous.

Accordingly, a fundamental mode of attack seeks such small parts which are effectively
homogeneous and then builds up a picture of the overall pattern, either by comparing a
number of closely spaced homogeneously deformed parts or by extrapolation based on
the continuity of structures which develop as a consequence of the deformation.

A fundamental geometrical theorem is that a general homogeneous deformation may
be regarded as resulting from the combination of three types of displacements (Truesdell
& Toupin, 1960, p. 274).

1. Translation is a uniform rigid-body displacement of all particles (Fig. 11.2a).
2. Rotation is a uniform rigid-body change in the orientation of all lines (Fig. 11.2b).
3. Stretch involves a change in shape (distortion) and size (dilatation) of the body

(Fig. 11.2c).
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Figure 11.2 Homogeneous deformation: (a) translation; (b) rotation; (c) stretch; (d) rotation and stretch
without translation.

Our task then is to develop ways of evaluating the contribution of each of these in a
geological structure of interest. Because there is generally little or no evidence preserved
in the rocks which can be used to establish the initial location of a body it is particularly
difficult to evaluate the translation. Because it does not affect on the geometry of the

2Note the formal similarity with the definition of traction in Eq. 9.3.



272 Deformation

deformed body we therefore remove the translation from the complete deformation for
separate consideration.

In effect, we now assume that the origin of the xy coordinate system is fixed to particle
P(0, 0) and moves with the body to point P ′(0, 0) which is then the origin of the x′y′
coordinate system (Fig. 11.2d). Now the vector joining any particle P(x, y) and its
corresponding point P ′(x′, y′) is a relative displacement vector, which differs from the
true displacement by the uniform translation.

We now need to develop an understanding of the geometrical roles of stretch and
rotation in homogeneously deformed bodies. A particularly fruitful way of exploring this
geometry is to draw or print a reference form on the edge of a reasonably thick deck of
cards which is then sheared. In these card-deck models, the condition of homogeneity is
met by insuring that the edge of the sheared deck is straight, then all straight lines remain
straight and all parallel lines remain parallel. This is simple shear. In our illustrations of
homogeneous simple shear we start with a known state, apply a particular deformation
and observe the result. This process is known as forward modeling.

The easiest way to shear the deck is to gently flex it with one end held firmly and
then release the deck with the other end held firmly. This procedure may be repeated a
number of times until the deck has the desired shape. Alternatively, an accurately square
box may be used and the deck deformed with a variety of shaped end pieces (Ragan,
1969a; Ramsay & Huber, 1983, p. 2).

A deck of any cards which are uniform in size, thin but sufficiently stiff will do.3 Once
sheared, the resulting patterns can then be analyzed directly on the cards or the patterns
can be reproduced on a copy machine.

As an alternative, graphics software, now widely available, can be used to model these
and many other changes (Bjørnerud, 1991; Tewksbury, 1996). Common objects, such
as squares, rectangles, circles and ellipses, can be easily drawn on the screen. Although
the command names may differ, these figure can be subjected to a stretch, slant, shear or
rotation. The analysis can then be performed on a print-out.4 Specially written computer
programs are also now available which illustrate important aspects of other, more general
types of two-dimensional deformations (Tikoff & Fossen, 1996).

Homogeneously deforming the card deck is easy to do with the flexing mechanism.
The simple character of simple shear lies in the fact that a single parameter completely
describes the deformation. This parameter is the angle of shear ψ (psi), defined as the
change of an original right angle (see Fig. 11.3). This angle is easily measured by starting

3Combining two packs of index cards carefully shuffled to eliminate the curvature that single packs commonly exhibit
is quite satisfactory. Curiously, some students resist experimenting with these models on the grounds that they are
just ‘games’. However, years of experience has demonstrated to us that for most students the act of manipulating the
card-decks to produce these models enhances the understanding and retention of important geometrical facts.

4Card decks are an excellent way of modeling simple shear, but a word of caution is necessary. As we have noted,
deformation involves a comparison of the initial and final states. In producing a model by incrementally shearing a
card deck, it is inevitable that the progressive evolution of the final state is observed, but these changes are of no direct
concern here. We return to this important matter in Chapter 13.
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with a square-ended deck. The most basic experiment is to deform a reference circle into
an ellipse. There are two cases:

1. the sense of shear may be sinistral: ψ is measured anticlockwise (Fig. 11.3a)
2. or the sense may be dextral: ψ is measured clockwise (Fig. 11.3b).

In most such experiments, the sense of shear is established by intent, otherwise it will
be obvious by inspection, and since each result is the mirror image of the other, the basic
geometrical features are identical, and only the details of the measurements differ.

ψψ

(a) (b)

Figure 11.3 Circle transformed into an ellipse: (a) sinistral shear; (b) dextral shear.

11.2 Continuum assumption

Strictly, a deformation involves displacements which vary continuously, whereas the
deformation of the card deck is simulated by a series of small slips with each card
remaining intact. However, the thinner the cards, the closer continuity is approached,
and when forms of about one centimeter or larger are printed on a deck of thin cards, the
distortions are for all practical purposes continuous. Because the images on a computer
screen are composed of a series of discrete pixels about 0.25 mm in size, the forms are
similarly discontinuous at this scale. However, from a normal viewing distance they too
appear essentially continuous.

(a) (b) (c)

Figure 11.4 Discontinuities: (a) crystal lattice; (b) granular rock; (c) fractured rock.

We face this same dependency on scale in all real-world situations. Consider the closely
related problem of determining the density of a single plane of a simple cubic crystal,
which we can illustrate using a simple graphical technique (R. L. Stocker, 1978, personal
communication). Suppose we have a device for measuring the density of a portion of
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this plane contained within a small circular area (Fig. 11.4a). What will be the results
if different diameters are used? We may easily discover this relation between area and
density by incrementally increasing the size of the circle and counting the number of
point masses within it at each step and dividing by the area of the counter. For a lattice
composed of unit point masses with a unit spacing the results are shown graphically in
Fig. 11.5.
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Figure 11.5 Crystal density as a function of the size of the counting circle.

Clearly, the use of a measuring area which is small relative to the dimensions of the
lattice results in great fluctuations in the density. The reason is that the distribution of
mass is violently non-uniform when viewed on such a small scale as to reveal individual
atoms.

It is only when larger measuring areas are used that a degree of uniformity is
approached, that is, the average density becomes meaningful. For example, when the
diameter of the measuring area is 10 units, the large fluctuations have vanished. When
the diameter is 20 units, the fluctuations are quite small, and when the measuring circle
approaches a diameter of 50 units the difference between the measured density and that
of the unit cell is very small indeed.

On this basis we distinguish two distinctly different and physically important scales of
observation. In the first, called the microscopic view, the properties of individual atoms
and the discontinuities between them are important. In the second, essentially statistical
in nature, called the macroscopic view, the average properties of the atoms, not the
discontinuities, are important.

Conventionally, the mass density ρ of a body composed of a continuous medium is
defined as

ρ = lim
�V →0

�M

�V
= dM

dV
(11.3)

where �V is a volume and �M is its mass. We now understand that the infinitesimal
volume dV is not to be taken literally.
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Because we are concerned with the behavior of matter on a scale which is much larger
than the distances between atoms, that is, with macroscopic properties and behaviors,
we will not often need to take the molecular nature of matter into account. We will
then suppose that the physical behavior of these materials is the same as if they were
perfectly continuous, and any physical quantities associated with a volume of matter will
be regarded as being spread uniformly over that volume, instead of, as in strict reality,
being concentrated within a small fraction of it (Batchelor, 1967, p. 4). Such an abstract
material is called a continuous medium or a continuum, and the study of the physical
behavior of such materials is called continuum mechanics.

All this should not be taken as a statement that a study of the microscopic properties of
material is unimportant. Much experimental and theoretical work is being done in these
directions and these studies offer much useful information (for a good introduction see
Schedl & van der Pluijm, 1988). However, the microscopic scale is not the place to start
a study of geological structures. Further, to be of use any microscopic results must be
integrated into the macroscopic view.

We face a similar problem in dealing with soils and rocks, that is, material composed
of heterogeneous aggregates of mineral grains. Now consider the analogous problem of
determining the density of a sandstone (Fig. 11.4b). A small circular counter might lie
wholly or partly within a single grain or pore space, and if we determined the density for
increasing counter sizes, the results would be similar to those displayed in Fig. 11.5. It
is only when the volume is large that continuity is closely approximated. This is called
the representative elementary volume, abbreviated REV (Bear & Bachmat, 1984, p. 5).

For such granular materials we agree to replace the limit �V → 0 with the limit
�V → �V0, where �V0, called the permissible volume, is sufficiently large to contain
a significant number of grains (Davis & Selvadurai, 1996, p. 5). In most rocks the size of
this volume is measured in millimeters or centimeters, but would be considerably larger
in a pegmatite or boulder conglomerate.

Finally, on an even larger scale, consider the similar problem involved in determining
the properties of a fractured rock mass (Fig. 11.4c) (Hudson, 1989, p. 26). Here the size
of the REV is commonly measured in meters, tens of meters or more.

In short, the body of material under consideration must be small enough so that the
deformation is effectively homogeneous, yet not so small that it can not be taken as essen-
tially continuous. Note carefully that the terms microscopic and macroscopic describing
these two scales carry entirely different meanings from their common use in describing
the scales of geological observation (Turner & Weiss, 1963, p. 15–16).

All heterogeneous materials contain discontinuities or jumps in physical properties at
every scale from mineral grains to hand specimens, to outcrops, to map units. There are
two ways of treating these.

1. If, at the chosen scale, the discontinuity is significant, then it must be treated as a
boundary of a continuum. For example, the physical properties of quartz and feldspar
are such that they behave quite differently during the formation of a mylonite. If the
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concern is with understanding the processes responsible for the textures of such rocks,
then the discrete grains must be treated as separate bodies with boundaries.

2. On the other hand, if the chosen scale is such that discontinuities are not significant,
then their properties are included in the averaging process. If the concern is with the
role mylonites play in thrust faulting, then it is the boundaries of the whole body, not
the boundaries of individual grains, which are important.

11.3 Homogeneous deformation

The deformation modeled with card decks is simple shear. Simple shear is a very special
type of deformation, yet despite this special character it portrays a number of important
properties of more general types of deformation, including rotation.

In the models, the condition of homogeneity is met by insuring that the edge of the
sheared deck is straight, then all straight lines remain straight and all parallel lines remain
parallel. This is easy to do with the flexing mechanism. The most basic experiment is to
deform a deck on which a circle has been drawn. The circle is transformed into an ellipse.
If the original circle has a unit radius, the result is the strain ellipse although, as we will
see, all the same information can be obtained from a circle of any known size. The term
strain refers to the changes of lengths and angles as depicted by the strain ellipse.

(a) (b)

l'l

θ θ'l'

θ'

l

θ

Shear
Plane

Shear
Plane

Figure 11.6 Change in length and orientation of a line: (a) anticlockwise shear; (b) clockwise shear.

With a pronounced ellipse we can see that the geometrical properties of the initial
circle have been systematically altered. We are particularly interested in the changes
recorded by the deformation of material lines. The orientations of any line before and after
deformation are given by the angles θ and θ ′ it makes with the shear plane (Fig. 11.6).

1. Generally, the lengths of lines change: some lengthen and some shorten. The measure
of these changes is the stretch S = l′/l, which represents the corresponding radius of
the strain ellipse.

2. Lines generally rotate: the sense may be anticlockwise (Fig. 11.6a), or clockwise
(Fig. 11.6b). In both cases the magnitude of rotation is |θ − θ ′| and its sense is the
same as the shear.

3. The angle between any two lines also generally changes. In particular, if two lines are
orthogonal before deformation they will generally not be orthogonal after deformation.
The reason is that each line rotates by a different amount (Fig. 11.7).
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Figure 11.7 Change in the angle between two initially orthogonal lines: (a) anticlockwise shear; (b)
clockwise shear.

Again perform the circle-to-ellipse experiment and add the major and minor axes to
the ellipse. These are the principal axes in the deformed state (Figs. 11.8a2, 11.8b2).5

The semi-axes were both radii of the initial circle and therefore represent the directions
of greatest increase and greatest decrease in length.

The corresponding lengths of the semi-axes of the strain ellipse are the principal
stretches S1 and S3, where

S1 = 1 + e1 and S3 = 1 + e3. (11.4)

In simple shear, and two-dimensional deformations generally, the intermediate principal
stretch is a direction of no change in length, hence S2 = 1.

The orientation of these axes is given by the angles φ and φ′ they make with the shear
plane (a different symbol is used for angles involving these principal axes because of
their importance as reference directions).

Returning the card deck to its starting position, the lines which marked the axes of
the strain ellipse are also perpendicular in the initial circle. These are the principal axes
in the undeformed state (Figs. 11.8a1, 11.8b1). No other pair of lines is orthogonal both
before and after deformation.

(a2)
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Figure 11.8 Rotation of principal axes: (a) anticlockwise; (b) clockwise.

In a general deformation, as here, the pair of principal axes also rotate and in order to
remain orthogonal they must both rotate by the same amount and this is measured by the
angle of rotation ω (omega), and is given by

ω = ±|φ − φ′|, (11.5)

5The long axis can be located more accurately and should be drawn first. The short axis can then be constructed as its
perpendicular bisector.
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where φ and φ′ identify the orientations of the axes before and after deformation. As
with material lines generally, the sense of rotation may be anticlockwise or clockwise,
according to the sense of shear.

The angle ω measures the internal rotation associated with the deformation. We could
subject the card deck to an external rotation simply by bodily turning the deck. We will
see later that in certain types of folding, beds undergo layer-parallel shear while at the
same time rotating bodily.

For many purposes it is convenient to express the shape of the strain ellipse by using
the strain ratio, defined as

Rs = S1/S3. (11.6)

Because S1 ≥ S3 by definition, Rs ≥ 1. We can describe the shape of other elliptical
objects in a similar way.

Superimposing a concentric circle on the final ellipse identical in size to the starting
circle identifies two special lines which have undergone no net change in length, that is,
lines for which S = 1. Diameters ab and cd of the circle (Fig. 11.9a) become diameters
a′b′ and c′d ′ of equal length in the ellipse (Fig. 11.9b). These are the lines of no finite
longitudinal strain, or lines of NFLS for short. By symmetry, radii of equal lengths make
equal angles with the ellipse axes, and the principal axes bisect these two lines.

Note too that all lines in the two sectors containing S1 increase in length and all lines
in the two sectors containing S3 decrease in length.
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Figure 11.9 Lines of no finite longitudinal strain: (a) ab and cd: (b) a’b’ and c’d’.

11.4 Analysis of simple shear

If we are to understand homogeneous simple shear more deeply we need to explore the
various geometrical changes which occur quantitatively. To do this we need a coordinate
system and we choose a set of Cartesian axes, oriented in the usual way with +x to the
right and +y upward. Should the need arise, we are, of course, free to orient them in any
other way.

If angles have sense, as the angles of shear and rotation do, this is specified by the
standard sign convention: angles with an anticlockwise sense are positive and with a



11.4 Analysis of simple shear 279

clockwise sense are negative.6 Accordingly, we specify ψ as positive for an anticlockwise
sense (Fig. 11.10a) and negative for an clockwise sense (Fig. 11.10b).
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Figure 11.10 Simple shear: (a) positive shear (+ψ); (b) negative shear (−ψ).

Before proceeding, we need an additional parameter. The shear strain γ (gamma) is
defined as

γ = tan ψ. (11.7)

This is also called the unit shear because it is the maximum displacement on a card deck
of unit thickness (see Fig. 11.10).

The angle of shear ψ can not be greater than 90◦ (Fig. 11.10a) nor less than −90◦
(Fig. 11.10b), that is,

+90◦ > ψ > −90◦.

By Eq. 11.7, the signs of ψ and γ must be the same. The simplest way to satisfy this
condition and the sign convention is to measure ψ from the +x axis. This means that ψ

is confined to the first and fourth quadrants of our coordinate system. In the first quadrant
γ and ψ are both positive and in the fourth both are negative. As a consequence of this
choice, the shear plane is parallel to the y axis (see Fig. 11.10).

Within this framework, the geometrical features associated with a homogeneous defor-
mation by simple shear can be calculated using a method first set out by Thomson and Tait
(1867, p. 106–107; 1962, p. 123–125; see also Truesdell & Toupin, 1960, p. 292–294;
Treagus, 1981a).

As we have seen in Fig. 11.9, the one line of NFLS is always parallel to the shear
direction. The orientation of the other depends on the angle of shear, and we can find

6This is just the right-hand rule applied to two dimensions. There is an implied +z axis pointing out from the page. If the
thumb of the right hand points in this direction, the curled fingers indicate a positive sense on the xy plane. Ramsay (1967,
p. 84) and others implicitly adopt the opposite convention. It seems preferable to retain the standard used throughout
coordinate geometry.
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Figure 11.11 Simple shear: (a) strain ellipse; (b) lines of NFLS; (c) principal axes.

its orientation with a simple construction. As a result of a deformation, particle P is
displaced to point P ′ by the amount γ (Fig. 11.11b). Locate N at the mid-point of the
segment PP ′ and then drop a perpendicular to the opposite side of the parallelogram
to locate point O. Line OP before deformation has the same length as line OP′ after
deformation which is then the second line of NFLS. Both OP and OP′ make equal angles
with the shear plane, that is, θ = θ ′.

The orientations of each of these lines are easily found. The angle δ which each makes
with the normal ON is related to γ by

tan δ = 1
2 |γ |. (11.8)

Note that δ is just the angle between two intersecting lines, and does not have sense and
therefore its value depends on the magnitude of γ , not its sign. The angle which this
second line of NFLS makes with the shear direction is then given by

θ ′ = 90 − δ = 90 − arctan 1
2γ. (11.9)

With the orientation of the two lines of NFLS known, the principal axes can be found
by bisecting the acute and obtuse angles line OP′ makes with the shear direction at P ′
(Fig. 11.11b). This is easily accomplished with an elementary construction. First draw
a semi-circle centered at O with OP = OP′ as radius (Fig. 11.11c), and then add the
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chord AP′ to the diagram. Because inscribed angle AP’P and central angle AOP intercept
the same arc AP

∠AP′P = 1
2θ = 1

2θ ′,

that is, chord AP′ bisects the acute angle between the two lines of NFLS, which therefore
marks the orientation of the S1 direction. Similarly, the chord BP′ bisects the obtuse angle
and marks the S3 direction.

The line AP marks the orientation of the S1 direction before deformation. It is then
transformed into line AP′, which marks the S1 direction after deformation. The angle
between these two is, therefore, the angle of rotation. The inscribed angle ω and the
central angle 2δ intercept the same arc PP′ and we have ω = δ. Using this in Eq. 11.8
gives

tan ω = 1
2γ. (11.10)

Again, the signs of ω and γ are the same, that is, the sense of rotation is the same as the
sense of the angle of shear.

Expressions for the orientation of these two principal axes after deformation can also
be obtained. From Fig. 11.10c, and because they intercept the same arc BP′, φ′ = 1

2θ ′ or
2φ′ = θ ′. With Eq. 11.9 we then have

2φ′ = 90 − arctan 1
2γ or tan(90 − 2φ′) = 1

2γ.

Using the identity tan(90 − x) = 1/ tan x we then have

tan 2φ′ = 2/γ. (11.11)

Two angles satisfy this equation: φ′ gives the orientation of the S1 direction, and 90 −φ′
gives of the orientation of the S3 direction. In a similar way the orientation of the principal
axes before deformation can be found from

tan 2φ = 2/γ, (11.12)

where φ gives the orientation of the S3 direction and 90 − φ gives the orientation of the
S1 direction.

The magnitudes of the principal stretches can also be found. In the S1 direction l = AP
and l′ = AP′ (Fig. 11.10c). With the definition of stretch of Eqs. 11.1

S1 = AP′/AP.

With this, and noting that AP = BP′ we then have

tan φ′ = BP′/AP′ = AP/AP′ = 1/S1,



282 Deformation

hence

S1 = 1/ tan φ′. (11.13)

Two-dimensional deformations also generally change area. The area strain � is
defined as the change in area per unit area, or

� = A′ − A

A
= A′

A
− 1, (11.14)

where A is the initial and A′ is the final area; an increase in area is positive (A′ > A) and
a decrease is negative (A′ < A). The ratio A′/A is sometimes called the area stretch.
The area strain may be written in terms of the area of a circle and the area of an ellipse as

� = πS1S3 − πr2

πr2
.

For our reference circle r = 1 and this reduces to

� = S1S3 − 1. (11.15)

In simple shear, area remains constant; the parallelogram of Fig. 11.11a has the same
area as the original rectangle from which it was derived. Combined with the fact that no
change in length occurs in the S2 direction simple shear also does not change volume.
Deformations which preserve volume are termed isochoric.

With no area change � = 0. With Eq. 11.15 we then have the necessary relationship
between the principal stretches for the constant area condition

S1S3 = 1 or S3 = 1/S1. (11.16)

Be careful. Do not generalize to other types of deformation because constant area on
the S1S3 plane does not necessarily imply constant volume nor does a change in area on
this plane necessarily imply a change in volume. It all depends on the magnitude of the
intermediate principal stretch S2.

Substituting the expression for S1 from Eq. 11.13 into Eq. 11.16 then yields

S3 = tan φ′. (11.17)

From Eq. 11.6 we have

Rs = S1/S3 = 1/ tan2 φ′. (11.18)
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We can also express the shear strain in terms of the two principal stretches. From
Eq. 11.11 γ /2 = cot 2φ′ and from Eq. 11.13 S1 = cot φ′. Substituting these two expres-
sions into the double-angle identity

cot 2φ′ = cot2 φ′ − 1

2 cot φ′ = 1

2

[
cot φ′ − 1

cos φ′

]
,

gives

γ = S1 − 1/S1 = S1 − S3. (11.19)

As an example of the use of these expressions in the analysis of a simple shear defor-
mation, consider the case ψ = 45◦. With Eq. 11.7, γ = 1. Using this in Eq. 11.11 gives
tan 2φ′ = 2 and therefore φ′ = 31.71747◦. With this angle in Eq. 11.13 and Eq. 11.17,
we then have7

S1 = 1.618 03 . . . and S3 = 0.618 03 . . . ,

With Eq. 11.18, the strain ratio is

Rs = 1/ tan2 φ′ = 2.618 03 . . . .

Note the curious fact that the fractional parts of these three numbers are identical. With
Eq. 11.19 the shear strain is

γ = S1 − S3 = 1.000 00 . . . ,

which is just what we started with.
Finally, it is useful to observe how the orientation of any general line changes in simple

shear (Ramsay, 1967, p. 87). If the line makes an angle θ with the shear plane before
(Fig. 11.12a) and angle θ ′ after deformation (Fig. 11.12b), then

cot θ ′ = γ + cot θ. (11.20)

The rotation of any general line is then given by |θ−θ ′|, where, again, the sense of rotation
and the sense of the angle of shear are the same (in this example it is anticlockwise or
positive).

It is particularly instructive to examine the rotation of a pair of lines which make
equal angles with the principal directions. In Fig. 11.13a, material lines l1 and l2 make

7These two numbers are the golden ratio and its inverse 1
2 (

√
5 ± 1), and they have a long history (Livio, 2002). The ratio

is mentioned by Euclid and was used in ancient Greek architecture (Devlin, 1994, p. 108). These numbers have many
interesting properties (Graham, et al., 1989, p. 285) and an astonishing variety of applications (Schroeder, 1991).
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Figure 11.12 Rotation of a general line in simple shear.

angles of ±20◦ with the S1 axis before deformation. The same material lines l′1 and
l′2 after simple shear (γ = 1) now make equal angles of ±7.9◦ with this same axis
(Fig. 11.13b). Using Eq. 11.20 to determine the rotations of each of these lines we find
that the rotation of the first line is 38.632 25◦ and the rotation of the second line is
14.479 83◦. The mean of these two angles is ω = 26.565 05◦ and this is just the angle
found using Eq. 11.10. Since every line can be paired with its symmetric opposite in this
way, we see that the rotation of the axes is just the average rotation of all radii of the strain
ellipse.

Figure 11.13 Rotation of a pair
of general lines and the
principal axes.

(a) (b)

l1

l2
l'1

l'2

S1

S1

S3

S3

11.5 Superimposed deformations

Models are also useful for illustrating the superposition of two or more homogeneous
deformations. We now explore the range of geometrical possibilities of the ways such
two-dimensional deformations combine.

A simple experiment consists of transforming a circle into an ellipse which repre-
sents the first deformation D1. A second circle is sheared into an ellipse representing
the second deformation D2. The first circle, now twice deformed, represents the total
deformation DT .
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We are not restricted to superimposed deformations by simple shear because any ellipse
can represent the first deformation. For example, in Fig. 11.14a the first deformation D1

is represented by an ellipse with an axial ratio R1 = 2.0 and oriented with its long axis
perpendicular to the shear plane. It and a concentric circle are sheared to represent the
second deformation D2, and the twice deformed ellipse represents the total deformation
DT (Fig. 11.14b). Also, note that the D1 ellipse rotates in the same sense as the simple
shear ellipse but by a different angle because the axes of the two ellipses are not marked
by the same material lines, and therefore this is only an apparent rotation. Note too that
the axial ratios R1, R2 and RT are not simply related.

Figure 11.14 Superposition: (a)
after D1; (b) after D2.

(a) (b)

A second example illustrates an apparent rotation in an even more dramatic way. In
Fig. 11.15a, D1 is represented by an ellipse with axial ratio R1 = 2.0 and oriented with its
long axis parallel to the shear plane.After shearing the deck we see that the DT ellipse has
changed orientation in a sense counter to that of the simple shear rotation (Fig. 11.15b).
This is quite obviously an apparent rotation.

Figure 11.15 Apparent
rotation: (a) after D1; (b) after D2.

(a) (b)

Because the principal axes of D1 and D2 are differently oriented these two examples
illustrate the general or non-coaxial superposition of homogeneous deformations. Super-
positions which are coaxial may also be illustrated easily with card-deck models. There
are two cases.

1. The D1 ellipse is drawn with its principal axes parallel to the corresponding D2 axes
before deformation (Fig. 11.16a). After deformation, the two ellipses are also coaxial
(Fig. 11.16b).

2. The D1 ellipse is drawn with its axes perpendicular to the corresponding D2 axes
(Fig. 11.17a). Again, after deformation the two ellipses are coaxial (Fig. 11.17b).

There are four special types of coaxial superpositions and an understanding of each
of these is important because they provide a series of reference points for describing
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Figure 11.16 Parallel
superposition: (a) before D2; (b)
after D2.

(a) (b)

superimposed homogeneous deformations generally. Because the same material lines
mark the axes of the D1 and D2 ellipses, the rotation is the same for both and therefore
plays no role in the final geometry. In order to concentrate on essentials it is therefore
useful to eliminate it from consideration. This is easily accomplished by redrawing the
results with axes parallel both before and after deformation.

Figure 11.17 Perpendicular
superposition: (a) before D2; (b)
after D2.

(a) (b)

1. If the pair of axes are parallel, that is, the angle between corresponding sets is 0◦,
the result always has a narrow form (Fig. 11.18a). For such coaxial deformations, the
several axial ratios are related by

RT = R1R2. (11.21)

In this example, R1 = 1.71, R2 = 2.00 and RT = 3.42.
2. If the pair of axes are perpendicular, that is, the angle between corresponding sets

is 90◦, the results depend on the magnitudes of the ratios of the D1 and D2 ellipses.
There are three sub-cases.

(a) If R1 > R2 the resulting ellipse has a pre-circle broad form (Fig. 11.18b), and the
axes D2 and DT are still perpendicular. The axial ratios are related by

RT = R1/R2. (11.22)

In this example R1 = 2.56, R2 = 2.00 and RT = 1.28.
(b) In the special case where R1 = R2 then RT = 1 and the result is a circle

(Fig. 11.18c).
(c) If R1 < R2 the result has a post-circle broad form (Fig. 11.18d), and the axes D2

and DT are now parallel. The axial ratios are related by

RT = R2/R1. (11.23)

In this example R1 = 1.56, R2 = 2.00, and RT = 1.28.
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(a)

(b)

(c)

(d)

D1 D2 DT

Narrow

Pre-circle broad

Circle

Post-circle broad

Figure 11.18 Narrow, broad and circular forms.

11.6 Inhomogeneous deformation

Some important aspects of inhomogeneous deformations can also be illustrated with card-
deck experiments. One simply deforms the deck so that the square end is transformed
into a smooth curve. The structure modeled here is a shear zone, that is, a tabular body
of sheared rock bounded on both sides by undeformed material.

We will approach the description of the deformation within a model zone in two
different ways. First, we will generate a forward model by starting with a specified
displacement curve and then examine the structure within the resulting zone. This will
show clearly how the elements of the problem are related. Second, we will treat the shear
zone as an inverse problem and show that we can recover the displacement curve solely
from the geometry of the deformation within the shear zone.

Forward model

The geometrical details of the resulting inhomogeneous deformation in the model can
be followed closely if a number of small circles are stamped on the deck. This can be
accomplished easily with a slip-on pencil eraser and an ink pad.

Because it roughly approximates the geometry of naturally occurring shear zones we
choose as our displacement curve

y = A sin mx.
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Figure 11.19 Shear zone modeled with a card deck.

Accordingly, we establish the y direction of our coordinate system in the shear direction so
that the equation describing the model zone will retain its familiar form (see Fig. 11.19a).

It is convenient to fix the origin of our coordinate system and to scale the dimensions
of the model zone so that it is bounded by the parallel lines x = ±1, thus we choose
m = π/2. We can also vary the amplitude of the sine curve; in the example we arbitrarily
choose A = 1 so that ymax = +1 and ymin = −1. The equation of the displacement
curve is then

y = sin
πx

2
. (11.24)

Accordingly, we displace a line along the x axis upward on the positive side of the origin
and downward on the negative side (Fig. 11.19b). Note, however, that this pattern of
displacements is not unique. We could have just as easily established the origin in a
different place and displaced a line parallel to x entirely upward (Fig. 11.19c) or entirely
downward (Fig. 11.19d) with identical results. This is the same ambiguity we faced in
describing the displacement of the blocks bound by a fault. There, as here, we are forced
to deal with the relative displacements.

Using this displacement curve to deform the deck the reference circles are converted
into a series of small strain ellipses (Fig. 11.20a). A useful way of summarizing this
information is to draw two sets of orthogonal curves, called trajectories, one set is
everywhere tangent to the S1 direction and the other is everywhere tangent to the S3

direction (Fig. 11.20b).
The distribution of γ within the zone is just the slope dx/dy of the displacement curve

D. To obtain the expression for this slope we differentiate Eq. 11.22 with respect to x,
giving

γ = dy

dx
= π

2
cos

πx

2
. (11.25)
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A plot of this equation is shown in Fig. 11.20c by the curve labeled γ .
The orientation angle the long axes make with the y direction is, from Eq. 11.11,

given by

φ′ = 1
2 arctan(2/γ ). (11.26)

Table 11.1 Data for model shear zone

±x 0 0.2 0.4 0.6 0.8 1.0

γ 1.5708 1.4939 1.2708 0.9233 0.4854 0
ψ 57.5184 56.2024 51.8006 42.7160 25.8921 0
φ′ 25.9270 26.6209 28.7841 32.6099 38.1790 45.0000

Inverse problem

In real shear zones the curved S1 trajectories are commonly marked by aligned mineral
grains, such as mica or amphibole; these are commonly referred to as S surfaces (from
schistosity). In coarse-grained rocks, the shear planes may also be evident, and these
are denoted C surfaces (from cisaillement, French for shear); in the model these are
the planes of the cards themselves. In rocks with S-C fabrics the sense of shear can
be determined immediately from the monoclinic symmetry (Simpson & Schmid, 1983,
p. 1284); in our model it is sinistral.

(a) (b) (c)

γ

D

0

+1

+2

−1

−2
−1 0 +1

Figure 11.20 Model shear zone: (a) structure; (b) S1 and S3 trajectories; (c) shear parameters.
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This correspondence between the mineral foliation and S1 trajectories permits the
strain distribution and the geometry of the displacements to be determined in naturally
occurring zones formed by simple shear. The measured slope of the trace of the S surfaces
at a series of points gives the distribution of angles φ′ across the zone and these define
the orientations of the S1 axes. From the values of φ′ the value of γ at each point can be
calculated from (see Eq. 11.11)

γ = 2/ tan 2φ′. (11.27)

In the unlikely event that we could find an expression of the distribution of γ across a
shear zone (such as Eq. 11.23), we might be able to integrate it to obtain the displacement
curve responsible for the geometry of the curved S surfaces (such as Eq. 11.22). Without
such an expression we need an alternative approach, and there are two ways to proceed.

1. The simplest method is to graphically integrate the distribution of γ obtained from
the measured angles φ′ with Eq. 11.25. This is accomplished by plotting a series of
short lines whose slope is given by the local value of γ and sketching a curve which
is everywhere tangent to these lines (see the left half of the curve D in Fig. 11.20c).

2. The form of the displacement curve can also be determined by numerically integrating
the distribution of the γ = dy/dx.8

Additional deformational patterns may be superimposed on simple shear in naturally
occuring shear zones. For example, an inhomogeneous volume loss such that the zone
boundaries move closer together. The shortening this produces may also be estimated
from other structures found within some zones (Ramsay, 1980).

11.7 Deformation and related tensors

Homogeneous deformations can also be treated analytically. In much of the technical
literature of continuum mechanics, a different notational scheme is used: variables in the
material state are represented by capital letters (majuscules) and in the spatial state by
lowercase letters (minuscules). Thus the material coordinates are X1, X2 (Fig. 11.21a)
and the spatial coordinates are x1, x2 (Fig. 11.21b). Similarly, a typical material particle
is P and its corresponding spatial location is p.

We now write the deformation as a pair of equations which describe an affine trans-
formation of the plane.9 In tensor notation (see §9.12), these are

x1 = D11X1 + D12X2 + T1, (11.28a)

x2 = D21X1 + D22X2 + T2. (11.28b)

8The S1 and S3 trajectories in Fig. 11.20b were calculated from the measured slopes of the principal directions at a series
of points across the zone using Euler’s finite-difference method (Ferziger, 1998, p. 87).

9An affine transformation preserves collinearity, hence also straightness and parallelism (Courant, 1936, p. 27).
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Figure 11.21 Transformation:
(a) material coordinates; (b)
spatial coordinates.

(b)

x2

x1
(a)

X1

X2

P

p

In mathematical terms, this transformation assigns or maps each material particle
P(X1, X2) to a spatial point p(x1, x2). An important property is that as P moves along
the circumference of a circle, p will, in general, trace out an ellipse. The coefficients D11,
D12, D21 and D22 describe the rotation and stretch, and constants T1 and T2 describe the
translation. For our purposes, it is useful to write this pair of expressions in the form of
the single matrix equation

[
x1

x2

]
=
[
D11 D12

D21 D22

] [
X1

X2

]
+
[
T1

T2

]
. (11.29)

Accordingly, we now interpret X(X1, X2) and x(x1, x2) as position vectors of P and
p, which we write as column matrices. This constitutes the material description of a
homogeneous deformation.

We can also easily obtain an expression for the components of the total displacement
vector which gives the position of p relative to P . It is

[
u1

u2

]
=
[
x1 − X1

x2 − X2

]
+
[
T1

T2

]
(11.30)

and this makes clear that the total displacement is the sum of the relative displacement
vector and the uniform translation vector. As before, we neglect the translation.

The essential part of the transformation of Eqs. 11.30 is the square matrix which
represents the deformation tensor

D =
[
D11 D12

D21 D22

]
. (11.31)

In general D12 	= D21, that is, the matrix is not symmetric. In common with all tensors
of second rank, we can think of D as a vector processor (see §9.12). The input is a vector
before deformation and the output is the corresponding vector after deformation. Each
of the four elements has a geometrical meaning. To see this, we process the two unit base
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vectors using row times column multiplication. The results are

[
x1

x2

]
=
[
D11 D12

D21 D22

] [
1
0

]
=
[
D11

D21

]
and

[
x1

x2

]
=
[
D11 D12

D21 D22

] [
0
1

]
=
[
D12

D22

]
.

Thus the first column contains the components of the unit vector initially in the X1

direction and the second column contains the components of the unit vector initially in
the X2 direction. These vectors form two sides of a parallelogram (Fig. 11.22b).

We can also express the area strain associated with the homogeneous deformation
in terms of these components. Before deformation, the reference square has unit area
(Fig. 11.22a). After deformation the area A is obtained from the cross product in com-
ponent form (Fig. 11.22b; also Fig. 7.9 and Eq. 7.27). Thus

A = D11D22 − D12D21, (11.32a)

and this is just the determinant of D. With the definition of Eq. 11.14, the area stretch is
then given by

� + 1 =
∣∣∣∣D11 D12

D21 D22

∣∣∣∣ , (11.32b)

that is, the determinant expresses the area of the unit reference square after transformation.

(b)(a)

x2

x1

D22

D21

X1
P(1,0)

P(0,1)

X2 x2

x1D11D12

(c)
θ1

D22

D21

D11

D12

θ2

Figure 11.22 Transformation: (a) unit base vectors; (b) after deformation; (c) orientations.

We can also find the stretches associated with the unit vectors initially in each coor-
dinate direction. From Fig. 11.22c, the stretch of the line initially in the X1 direction is

S(X1) =
√

D2
11 + D2

21 (11.33a)

and the stretch of the line initially in the X2 direction is

S(X2) =
√

D2
12 + D2

22. (11.33b)
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Also from Fig. 11.22c the angles each of these stretched lines make with their respective
axes after deformation are

arctan θ1 = D21/D11 and arctan θ2 = D12/D22. (11.34)

Finally, because these two vectors were initially orthogonal, the magnitude of the angle
of shear associated with each is

|ψ | = θ1 + θ2. (11.35)

Problem

• With the following two closely related deformation tensors graphically deform the unit
square with corner points P1(1, 0) and P2(0, 1) (Fig. 11.23a).10 Determine the stretch
associated with material lines initially in each coordinate direction, together with their
final orientation, the angle of shear associated with each of these directions, and the
area strain.

D1 =
[

1.4 0.2
0.6 0.8

]
and D2 =

[
1.4 0.6
0.2 0.8

]
.

Procedure

1. On a pair of axes x1 x2 plot points using a convenient scale:
(a) D1: p1 = (D11, D21) = (1.4, 0.6) and p2 = (D12, D22) = (0.2, 0.8), (Fig. 11.23b),
(b) D2: p1 = (D11, D21) = (1.4, 0.2) and p2 = (D12, D22) = (0.6, 0.8) (Fig. 11.23c).

2. Lines Op1 and Op2 represent the deformed unit base vectors.
3. Complete the parallelograms by drawing the other two sides parallel to Op1 and Op2.

Results

1. The stretches associated with the pair of lines initially in each of the coordinate
directions are
(a) D1: S(X1) = 1.52 and S(X2) = 0.82,
(b) D2: S(X1) = 1.41 and S(X2) = 1.00.

2. The angles these lines make with the coordinate directions are
(a) D1: θ1 = 23◦ and θ2 = 14◦,
(b) D2: θ1 = 8◦ and θ2 = 37◦.

3. The angles of shear associated with these initially orthogonal lines are
(a) D1: |ψ | = θ1 + θ2 = 37◦. For the line initially in the X1 direction ψ = −37◦ and

for the line initially in the X2 direction ψ = +37◦.

10These two representations differ only by positions of the off-diagonal elements; such transpose matrices have a role in
later developments (see §12.12).
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(b) D2: |ψ | = θ1 + θ2 = 45◦. For the line initially in the X1 direction ψ = −45◦ and
for the line initially in the X2 direction ψ = +45◦.

4. In both deformations, the area strain � = 0, that is, area is preserved.

(b)(a) P1

P2

p1

p2

X1

X2 x2

x1
OO (c)

p1

p2

x2

x1O

Figure 11.23 Homogeneous deformations: (a) unit square; (b) D1; (c) D2.

Additional features of the deformation, especially the principal stretches, their orien-
tation and rotation are of fundamental interest, but this information is not easy to extract
from the parallelogram. There is, however, an attractive alternative because we can rep-
resent two-dimensional deformation tensors graphically with the aid of a Mohr Circle
diagram (Means, 1996, p. 16f).

Problem

• For the deformation tensor D1 construct a Mohr Circle diagram. Determine the prin-
cipal stretches, their orientation and the angle of their rotation.

Construction

1. Draw a pair of axes and label the horizontal axis (D11, D22) and the vertical axis
(D12, D21) (Fig. 11.24a).
(a) Plot points p1(D11, −D21) = p1(1.4, −0.6) and p2(D22, D12) = p2(0.8, 0.2).
(b) At the midpoint of the line segment p1p2 locate center C and draw a circle passing

through both points.
2. The following features are important:

(a) The lengths of the segments Op1 and Op2 represent the stretches associated with
the two initially orthogonal lines.

(b) These two lines make angles θ1 and θ2 with the horizontal axis, each measured
toward this axis.

(c) The angles of shear with the two lines are ψ = ±(θ1 + θ2).
3. Draw the inclined line from the origin O through center C and beyond (Fig. 11.24b).

(a) The two intersections of this line with the circle represent the principal stretches
S1 and S3. Their magnitudes are equal to scaled lengths of OS1 and OS3.

(b) The slope angle of this line represents the angle of rotation ω measured from OC
toward the horizontal axis.
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(c) The angle 2φ between p1 and S1 on the Mohr Circle plane gives the angle φ which
the S1 direction makes with the X1 axis on the physical plane before deformation.

(a) (b)

O O
D11,
D22

p2(0.8,0.2)

p1(1.4,−0.6) p1

p2

S3

S1
C

D12,D21

D11,
D22

D12,D21

2φ

ωψ

C1

C2

θ2

θ1

Figure 11.24 Mohr Circle for the deformation tensor D1.

(b)(a)

D11

D21 D22

D11

−D21 D22

D12 D12

Figure 11.25 Plotting convention (after Means, 1996, p. 19): (a) physical plane; (b) Mohr Circle plane.

Results

• The rotation is anticlockwise and ω = +10◦. The principal stretches are S1 = 1.62
and S3 = 0.62. The angle the S1 direction makes with the X1 axis in the undeformed
state is φ = +22◦. In the deformed state the corresponding angle is φ + ω = 32◦.

Note carefully the two different ways of plotting pointsp1 andp2 for the parallelograms
and the corresponding Mohr Circles. Figure 11.25 schematically displays these different
patterns of combining the elements of the deformation matrix in an easily remembered
form (Means, 1996, p. 19).

The construction of the Mohr Circle for D2 proceeds in exactly the same way
(Fig. 11.26). The important difference is that the angle of rotation is the reverse of that
for D1.

Because rotation is an important part of a general deformation it is useful to pursue
some related aspects in more detail. There are three cases, two general and one special.

1. If D12 < D21 then ω > 0, that is, the center of the circle lies below the horizontal
axis and the sense of rotation is anticlockwise (see Fig. 11.24b).

2. If D12 = D21, then the center of the circle lies on the horizontal axis ω = 0 and there
is no rotation.
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Figure 11.26 Mohr Circle for the deformation tensor D2.

3. If D12 > D21 then ω < 0, that is, the center lies above the horizontal axis and the
sense of rotation is clockwise (see Fig. 11.26b).

There are several useful relationships which can be obtained directly from these Mohr
Circle diagrams. In particular, we can obtain an expression for the angle of rotation
(Fig. 11.24b). The coordinates of the center of the circle are

C1 = 1
2(D11 + D22) and C2 = 1

2(D21 − D12).

With these we have the slope of the line OC

tan ω = C2/C1.

Substituting the expressions for C1 and C2 we then have

tan ω = D21 − D12

D11 + D22
. (11.36)

We can also find the magnitude of the principal stretches. The inclined distance c from
the origin to the center of the circle and the radius r of the circle are given by

c = 1
2

√
(D11 + D22)2 + (D12 − D21)2 and r = 1

2

√
(D11 − D22)2 + (D12 + D21)2.

The principal stretches are then

S1 = c + r and S3 = c − r.

This construction is valid for all two-dimensional deformation tensors, including the
two special types we have already encountered. For simple shear the deformation matrix is

D =
[
D11 D12

D21 D22

]
=
[

1 0
γ 1

]
. (11.37)
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Figure 11.27 Simple shear: (a) physical plane; (b) Mohr Circle plane.

For example, if γ = 1, the parallelogram derived from the unit square (Fig. 11.27a1) is
constructed by plotting the corner points p1(1, 1) and p2(0, 1) and then adding the other
two parallel sides (Fig. 11.27a2). The corresponding Mohr Circle is constructed using
p1(1, −1) and p2(1, 0) (Fig. 11.27b).

For pure shear the deformation matrix, in diagonal form, is

D =
[
D11 D12

D21 D22

]
=
[
S 0
0 1/S

]
. (11.38)

If S = 1.62 and 1/S = 0.62 then the deformed equivalent of the unit square is a rectangle
formed by plotting the corner points p1(1.62, 0) and p2(0, 0.62) (Fig. 11.28a). The Mohr
Circle requires points p1(1.62, 0) and p2(0.62, 0) (Fig. 11.28b). The fact that this circle
is centered on the horizontal axis is due to the fact that there is no rotation in pure shear
(this is the meaning of pure).

(a2) (b)

x2

x1
p1(1.62,0)

p2(0,0.62)

S3 C S1
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D11,
D22

p1
p2

O

O
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X1

X2

P2(0,1)

P1(1,0)

Figure 11.28 Pure shear: (a) physical plane; (b) Mohr Circle plane.

With these methods we can easily explore the effects of superimposed deformations
which we illustrated graphically in §11.5 by the matrix equation

DT = D2D1 (11.39)
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where DT is the total deformation, D1 is the first deformation and D2 is the second
deformation.

A simple shear deformation with the shear direction parallel to the X2 axis is given by
the matrix of Eq. 11.38 and a pure shear deformation with the principal directions in the
coordinate directions is given by the matrix equation of Eq. 11.39. With these, the result
of simple shear D1 followed by pure shear D2 is then given by the matrix equation

DT = D2D1 =
[
S 0
0 1/S

] [
1 0
γ 1

]
=
[

S 0
γ /S 1/S

]
. (11.40)

Similarly, pure shear D1 followed by simple shear D2 is given by the matrix equation

DT = D2D1 =
[

1 0
γ 1

] [
S 0
0 1/S

]
=
[

S 0
γ S 1/S

]
. (11.41)

To illustrate these two cases, we will use the numerical examples of pure shear and simple
shear [

1.62 0
0 0.62

]
and

[
1 0

0.5 1

]
.

Then pure shear superimposed on simple shear is shown in Fig. 11.29 and simple shear
superimposed on pure shear is shown in Fig. 11.30.

Note carefully that the order of multiplication in Eq. 11.39 proceeds from D1 on the
right to D2 on the left and that the resulting matrix representations of the two superim-
posed deformations DT are different. This difference is also seen clearly in the figures.

(a) (b) (c)

Figure 11.29 Superposition: (a) initial state; (b) simple shear D1; (c) pure shear D2.

(a) (b) (c)

Figure 11.30 Superposition: (a) initial state; (b) pure shear D1; (c) simple shear D2.

Finally, it is of some importance to understand that a homogeneous deformation repre-
sented by this tensor is closely related to the pattern of displacement vectors. In general,
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these vectors will be neither parallel nor of equal magnitude for two adjacent material par-
ticles P and Q (Fig. 11.31a). If the distance between these is small then the displacement
of Q relative to P is given by the vector du (Fig. 11.31b).

We can express the components of vector du in terms of the distance between the
two points measured in the coordinate directions and the linear rates of change of these
components in each of these directions (Fig. 11.31c). Thus

du1 = ∂u1

∂X1
dx1 + ∂u1

∂X2
dx2,

du2 = ∂u2

∂X1
dx2 + ∂u2

∂X2
dx2.

We can also write these two as the matrix equation

[
du1

dx2

]
=
[
∂u1/∂X1 ∂u1/∂X2

∂u2/∂X1 ∂u2/∂X2

] [
dx1

dx2

]
. (11.42)

This square matrix represents the material displacement gradient tensor.

P

Q

u + du

u

du1

P

Q

u + du

u

du du

dX1

dX2

du2

(a) (b) (c)

p

q

dX

Figure 11.31 Displacements: (a) adjacent particles P and Q; (b) relative displacement vector du; (c)
displacement gradients.

We can obtain a closely related result in another way. Subtracting X1 from Eq. 11.28a
and X2 from Eq. 11.28b gives (again neglecting the translation)

x1 − X1 = D11X1 + D12X2 − X1,

x2 − X2 = D21X1 + D22X2 − X2.

Collecting terms and using Eq. 11.30 we have

u1 = (D11 − 1)X1 + D12X2, (11.43a)

u2 = D21X1 + (D22 − 1)X2. (11.43b)
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Differentiating Eq. 11.43a partially once with respect to X1 and once with respect to x2

gives

∂u1

∂X1
= D11 − 1 and

∂u1

∂X2
= D12.

Similarly from Eq. 11.43b

∂u2

∂X1
= D21 and

∂u2

∂X2
= D22 − 1.

We can write these results as the matrix equations

[
∂u1/∂X1 ∂u1/∂X2

∂u2/∂X1 ∂u2/∂X2

]
=
[
D11 − 1 D12

D21 D22 − 1

]
or

[
D11 D12

D21 D22

]
=
[

1 + ∂u1/∂X1 ∂u1/∂X2

∂u2/∂X1 1 + ∂u2/∂X2

]

and these show the direct connection between the elements of the deformation tensor
and the elements of the material displacement gradient tensor.

11.8 Exercises

1. Using Fig. 11.32 showing the results of a circle-to-ellipse deformation make the
necessary measurements to determine the values of γ , S1, S3, θ , θ ′ and ω.11

Figure 11.32 Simple shear ellipse.

2. With the angle ψ calculate the values of these same parameters.
3. Using the example of a naturally occurring shear zone of Fig. 11.33, determine the

displacements which are responsible for the structure – assume a unit width.

11An even better exercise is to analyze the results of a circle-to-ellipse experiment on a card deck.
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Figure 11.33 Natural shear zone.



12
Strain

12.1 Introduction

Deforming a circle into an ellipse clearly demonstrates that the orientations and lengths
of lines and the angles between pairs of lines generally change. With suitable material the
stretch and angle of shear associated with a line may be determined from measurements
made on deformed objects whose original shape or size are known. It may then be possible
to determine something of the shape, size and orientation of the strain ellipse. For exam-
ple, measurement of the deformed shape of an originally spherical oolite yields the shape
of the ellipse and its orientation directly. This chapter deals with some additional tech-
niques for extracting two-dimensional strain information from deformed rocks. Many
more examples, including some excellent photographs, can be found in the book by Ram-
say and Huber (1983). Lisle (1994) gives a good review of more recent developments.

Before describing the full analytical method it will be useful to show that in some
situations the shape and orientation of the strain ellipse can be obtained simply and
directly using purely graphical means.

12.2 Deformed grains

The center points of individual grains in a section through a rock form a grid. In terms of
the center-to-center distances the possible geometrical patterns have two end-members. If
the distribution is random, the minimum distance between centers is zero and such pattern
exhibits clustering. If all the grains are perfectly uniform circles and are closely packed
then all distances between centers will be equal in the undeformed state (Fig. 12.1a),
and thus are radii of a circle. After a homogeneous deformation these are systematically
altered; they are now radii of an ellipse (Fig. 12.1b). Rocks commonly display patterns
between these two and thus show degrees of anticlustering.

If the grain centers in the undeformed rock have a pronounced degree of anticlustering
and the pattern is isotropic, that is, the spacing in all directions is the same, then the

302
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shape and orientation of the strain ellipse can be recovered from the deformed grid (Fry,
1979a; 1979b; Hanna & Fry, 1979; also Ramsay & Huber, 1983, p. 111–113; Simpson,
1988, p. 352). The analysis is usually performed on the tracing of a photomicrograph.

a

b

c

d

e

f
a�

b�

c�

d�

e�

f�

(a) (b)

Figure 12.1 Center-to-center distances: (a) before strain; (b) after strain.

Problem

• From a section of deformed grains, determine the shape and orientation of the strain
ellipse.

Construction

1. Plot the centers of all individual grains, numbering each (Fig. 12.2a).
2. On an overlay sheet establish a reference mark representing the coordinate origin and

position it over center No. 1. Mark all the other center points on this sheet.
3. Without rotating the overlay, translate the reference mark to center No. 2 and again

mark all the other centers (Fig. 12.2b). Repeat this procedure for all grain centers.
4. After a few of these steps a vacancy about the reference mark should begin to take

shape. Then grain centers at significantly greater distances need not be marked and
this speeds the work considerably.

Result

• The vacancy with the reference mark at its center defines the shape but not size of
the strain ellipse and its orientation (Fig. 12.2c). Because we do not know the initial
center-to-center distances the magnitude of the principal stretches can not be obtained,
only their ratio.

Usually the recognizable pattern starts to emerge after about 25 points but, depending
on the strength of the initial anticlustering, up to several hundred points may be required
to adequately define the ellipse. If no such vacancy develops then the initial distribution
was not sufficiently anticlustered and the determination of the strain is not possible.

This repetitive plotting procedure is an ideal computer application. The coordinates of
each center can recorded by hand using graph paper or better with the aid of a digitizing
tablet. In some cases, such as deformed oolites, the centers may be clearly defined. In
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(a) (b) (c)

1

2
1 2

Figure 12.2 Deformed grains: (a) centers; (b) plotting; (c) ellipse (from Ramsay & Huber, 1983, p. 113
with permission of Elsevier.)

other cases the locations of the centers may be estimated or calculated from points along
the boundaries of the grains. Several programs are available to process this data file. De
Paor (1989) lists a BASIC program which perform the necessary calculations and plots
the results interactively.

Several refinements in the basic technique have been suggested. Crespi (1986) exam-
ined real and artificial patterns and discussed the sources of possible errors. Ghaleb and
Fry (1995) describe a computer program to produce center-to-center models. The tech-
nique has been mostly used for grain aggregates whose shapes are the result of strain,
but it has been extended to grain shapes due to pressure solution (Onasch, 1986a, b;
Bhattacharyya & Longiaru, 1986).

Rocks are, of course, three-dimensional aggregates of grains, and a section through
such an array will not pass through all grain centers. Erslev (1988) suggested a nor-
malization procedure which improves the definition of the ellipse-shaped vacancy by
compensating for this effect. McNaught (1994, 2002) described an alternative method
and a way of estimating uncertainty. Erslev and Ge (1990) and Ailleres and Campenois
(1994) described how to calculate a best-fit ellipse. Dunne, et al. (1990) noted that if the
post-deformation grain centers do not coincide with their pre-deformation centers, the
strain will be underestimated.

Recently, Waldron and Wallace (2007) described a method for objectively fitting
ellipses to the center-to-center method.

Alternatives to the center-to-center approaches have also been suggested. Panozzo
(1984, 1987) developed methods by treating the traces of grain boundaries as reoriented
lines. Srivastava (1995) described a quick and easy way to estimate strain by counting
the number of grains intersected along a series of radiating lines.

12.3 Deformed fossils

Fossils often possess planes of symmetry, known angular relationships, or proportions
which are constant in individuals of a given species. They are, therefore, common objects
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of known original shape. Wellman (1962) showed how the shape and orientation of the
strain ellipse can be obtained from a collection of such forms in a simple way.

Problem

• From a collection of deformed brachiopods on a plane, construct the strain ellipse
(Fig. 12.3a).

(a) (b)

(c)

7

8
7

6

A
B

5

3

1 2

4

8 2

8

3

4

6

7
1

2

8

8

3

4

6
5

7
1

6

5

3
4

1

2

A

B

Figure 12.3 Brachiopods: (a) slab of shells; (b) deformed lines; (c) strain ellipse.

Construction

1. Transfer the hinge and symmetry lines of each deformed fossil to a tracing sheet
(Fig. 12.3b).

2. On this tracing draw a line of arbitrary orientation and length; it should be at least
10 cm long and preferably not parallel to any fossil line (see line AB in Fig. 12.3b).

3. For each deformed shell in turn, draw a pair of lines parallel to the hinge and another
pair parallel to the median line through the points A and B giving a parallelogram
(see example drawn for Shell No. 8 in Fig. 12.3c).

4. Through all the pairs of fossil points determined in this way, including points A and
B, sketch a best-fit ellipse and add the major and minor axes. This represents the strain
ellipse.

5. Measure the orientation of the principal semi-axes, and their lengths.
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Answer

• Because the size of the constructed ellipse depends entirely on the arbitrary length of
line AB, the absolute lengths of its semi-axes have no meaning. However, their ratio
is independent of the size of the ellipse, and is found to be Rs = 1.7. The S1 direction
makes an angle of 10◦ with the hinge of Shell No. 5. These results can be checked
against the small ellipse, which was a circle before deformation.

In order to see why this method works, imagine having made the same construction
before deformation. Because each pair of hinge and symmetry lines was originally per-
pendicular, rectangles rather than parallelograms would have resulted. Collectively, the
corners of all these rectangles would have defined a circle with AB as diameter. This is
the circle from which the constructed strain ellipse is derived.

Now reexamine the deformed brachiopods. The shape of each deformed shell is a
function of orientation. Strictly, all right angles have been eliminated. However, Shell
No. 3 is still nearly symmetrical; this is also the narrow form. Shell No. 4 also retains
close to a 90◦ angle, but it is deformed into a broad form. Because the principal axes are
the only pair of lines which remain perpendicular, the S1 direction must nearly coincide
with the hinge line of Shell No. 3, and the median line of Shell No. 4. Thus one can
estimate the orientation of the strain ellipse by inspection.

12.4 Deformed pebbles

Before deformation, the shapes of the constituent grains in many rocks are approximately
elliptical.After a homogeneous deformation, these shapes are systematically changed and
from these the state of strain can be determined. Because these situations are common,
the methods that have been developed are widely used and reliable. Lisle (1985a) gives
a comprehensive description.1

The way elliptical grains deform is geometrically similar to the results of superimposed
deformations (see §11.6). The role of the strain ellipse after the first deformation is
replaced by the shape of the elliptical grain.

Given a sufficient number of homogeneously deformed two-dimensional pebbles sub-
ject to the conditions that the initial shapes were identical and the pebbles were initially
without preferred orientation, we may determine the orientation of the principal strain
axes in the deformed state, the strain ratio Rs and the initial shape ratio Ri . The basic
method relies on the fact that two of these pebbles will be oriented coaxially with the
strain ellipse and these will be deformed into narrow and broad forms. There are two
general cases.

1Mulchrone and Meere (2001) describe a computer program which performs the analysis of passively deformed elliptical
markers. Meere and Mulchrone (2003) examine the role of sample size in several different analytical techniques.
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(a) (b)
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Narrow

Pre-circle broad

Ri > Rs Ri < Rs

Figure 12.4 Narrow and broad forms: (a) Ri > Rs; (b) Ri < Rs.

1. If Ri > Rs the axes of the resulting two extreme shapes will be perpendicular and the
deformed ellipses will have the narrow and pre-circle broad forms (Fig. 12.4a). The
axial ratios of these are related by

Rmax = RsRi and Rmin = Ri/Rs.

Solving these two equations for the two unknown ratios gives

Rs = √Rmax/Rmin and Ri = √RmaxRmin. (12.1)

In the example Rmax = 2.24 and Rmin = 1.14, then Rs = 1.4 and Ri = 1.6.
2. If Ri < Rs the axes of the two extreme shapes will be parallel and the deformed

ellipses will have the narrow and post-circle broad forms (Fig. 12.4b). The axial ratios

Rmax = RsRi and Rmin = Rs/Ri.

Solving these for the two unknown ratios gives

Rs = √RmaxRmin and Ri = √Rmax/Rmin. (12.2)

In the example, Rmin = 2.24 and Rmin = 1.14, then Rs = 1.6 and Ri = 1.4.

Problem

• From a section through a suite of deformed pebbles, determine the final shape ratios
Rf of the narrow and broad forms, and from these determine Ri , Rs and the orientation
of the principal strain axes (Fig. 12.5a).

Procedure

1. Measure the orientational angle θ ′ which the long axis of each pebble makes with
arbitrary reference direction.

2. Measure the axial length of each pebble and calculate the final shape ratio Rf .
3. Plot each pair of values (θ ′, Rf ) as a point on a graph (Fig. 12.5b).
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Figure 12.5 Deformed pebbles: (a) angle θ ′; (b) Rf vs. θ ′.

Results

1. These eight points lie on a closed tear-drop shaped curve, symmetrical about a fixed
value of θ ′, which defines the S1 direction. Because both the narrow and broad forms
have the same orientation, this is an example where Ri < Rs (see Fig. 12.5b). Having
identified this direction, it is then convenient to adopt it as the reference direction and
to relate the orientation of the deformed pebbles to it by the angles ±φ′.

2. The two points on the line φ′ = 0 are Rmax = 6.5 and Rmin = 1.5.

Answer

• Using these values of Rmax and Rmin in Eqs. 12.2 gives Rs = 3.12 and Ri = 2.08.

In Fig. 12.5a, the black ellipse was initially a circle, and therefore represents the strain.
Note that its ratio Rs plots near the center of the Rf /φ′ curve (Fig. 12.5b).

Suites of deformed elliptical grains have characteristic ranges of orientations, called
the fluctuation F (Cloos, 1947, p. 861), and it can be determined from the Rf /φ′ curve
as the angle between the extreme orientations. Depending on the relative values of Ri

and Rs there are three characteristic types of fluctuation.

1. If Ri > Rs then F = 180◦.
2. If Ri = Rs then the “broad” form is a circle and F = 90◦.
3. If Ri < Rs then F < 90◦ (in Fig. 12.5b, F = 56◦).

The important feature of this evolving fluctuation is that F remains constant at 180◦
until Rs = Ri at which point a preferred orientation suddenly appears, and thereafter
strengthens as Rs increases. In many deformed terranes, slaty cleavage appears quite
abruptly and Elliott (1970, p. 2232) suggested that this cleavage front marks such a
sudden onset of preferred orientation.
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With a constant initial shape ratio this example is not very realistic. If a variety of
distinct initial shapes are present, the Rf /φ′ graphs consist of a series of nested curves,
one for each Ri .

More generally yet, real data will not plot on such distinct curves but will appear as a
scatter of points, reflecting a continuous variation of initial shapes. Then a quasi-statistical
graphical technique is usually used (see Lisle, 1985a). Several computer programs are
available to accomplish this analysis (Peach & Lisle, 1979; Kutty & Joy, 1994; Mulchrone
& Meere, 2001).

As described, this procedure needs a range of original orientations for a complete
analysis, but Borradaile and McArthur (1991), followingYu and Zheng (1984), linearized
the Rf /φ′ curves, thus facilitating the analysis of initially non-random fabrics.

In applying any of these techniques to naturally deformed materials, there are several
factors which may limit their use. Most naturally occurring sedimentary fabrics show
some degree of preferred orientation. In a study of the simulated deformation of such
fabrics, Seymour and Boulter (1979) showed that large errors may result if it is mistakenly
assumed that they were originally uniform. Also, if there is a ductility contrast between
the elliptical objects and the matrix material, an additional component of rotation will
be present which may invalidate the strain analysis (De Paor, 1980).

12.5 Geometry of the strain ellipse

With only a few strained objects we need a different approach and this requires a more
fundamental description of the way lengths and angles change as the result of a defor-
mation. To do this we refer the initial state to a set of xy axes which are parallel to the
principal directions in the unstrained state (Fig. 12.6a). The equation of the reference
circle of unit radius in these material coordinates is then

x2 + y2 = 1. (12.3)

Similarly, we refer the strained state to a set of x′y′ axes with the same orientation
(Fig. 12.6b). The equation of the strain ellipse in these spatial coordinates is then

x′2

S2
1

+ y′2

S2
3

= 1. (12.4)

By this choice of axes and directions we have eliminated from consideration any transla-
tion or rotation and we do this to concentrate on the properties of the stretch component
of the deformation.

Within this framework we now examine the geometrical changes associated with a
particular material line. At a typical point P on the unit circle, we identify the direction
of the radius vector r = OP by the angle φ it makes with the x axis (Fig. 12.6a). The
components of this vector are (x, y) and its direction cosines are (cos φ, sin φ).



310 Strain

The corresponding point on the ellipse is P ′ and we identify the direction of the radius
vector r′ = OP′ by the angle φ′ it makes with the x′ axis (Fig. 12.6b). The components
of this vector are (x′, y′) and its direction cosines are (cos φ′, sin φ′).

As a result of strain, radius vector r of the circle is transformed into radius vector r′ of
the ellipse. Three separate geometrical features are associated with this transformation
and all these changes can be observed within a circle-to-ellipse card-deck experiment.

1. Orientational angle φ changes to φ′.
2. The length of a radius of a circle r = 1 changes to the radius of an ellipse r ′ = S.
3. The right angle between r and the tangent T at point P(x, y) changes and the measure

of this change is the angle of shear ψ . This is represented by the angle between the
tangent T ′ and the line perpendicular to r′ at point P ′(x′, y′). Note that in the first
and third quadrants the tangent rotates in an anticlockwise sense hence ψ is positive.
In the two other quadrants ψ is negative.

(a) (b)
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r =
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Figure 12.6 Circle and ellipse: (a) xy coordinates; (b) x’y’ coordinates.

We now need algebraic expressions for each of these changes associated with the
material line in terms of its orientation and the principal stretches.2

Change in orientation

The relationship between vector r(x, y) which marks a material line in the reference
circle and the vector r′(x′, y′) which marks the same material line in the strain ellipse is

x′ = S1x and y′ = S3y. (12.5)

That is, the x component of r is stretched to become the x′ component of r′ and the y

component is stretched to become y′. Dividing the second of these equations by the first
gives

y′

x′ = S3

S1

y

x
. (12.6)

2On a first reading you may wish to skip the details of the derivations and go directly to §12.6 for the results.
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From Figs. 12.6a and 12.6b

tan φ = y/x and tan φ′ = y′/x′.

Using these in Eq. 12.6 and using the definition of the strain ratio Rs = S1/S3 we have
the useful result, first obtained by Harker (1885, p. 822),

tan φ′ = tan φ

Rs

or Rs = tan φ

tan φ′ . (12.7)

This result may be used in two ways. The first version gives φ′ when φ and Rs are known.
By definition Rs > 1 and therefore φ′ < φ, that is, the angle a material line makes with
the S1 direction is generally reduced. The only exceptions are when φ = 0◦ or φ = 90◦
and the orientation is unchanged. The second version can be used to determine the strain
ratio Rs if both φ and φ′ are known.
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Figure 12.7 Strain ellipse: (a) stretch; (b) angle of shear.

Change in length

Next we need an expression for the stretch associated with the transformation of r into
r′. From Fig. 12.7a, where the magnitude of the radius vector r′ is the stretch S,

x′ = S cos φ′ and y′ = S sin φ′. (12.8)

Using these expressions for x′ and y′ in the equation of the ellipse of Eq. 12.4 we have

S2 cos2φ′

S2
1

+ S2 sin2φ′

S2
3

= 1 or
1

S2
= cos2φ′

S2
1

+ sin2φ′

S2
3

. (12.9)

We now introduce a new parameter of longitudinal strain. The reciprocal quadratic
elongation λ′ is defined as the reciprocal of the square of the stretch

λ′ = 1/S2. (12.10)
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The principal reciprocal quadratic elongations are then λ′
1 = 1/S2

1 and λ′
3 = 1/S2

3 and
Eq. 12.9 becomes

λ′ = λ′
1 cos2φ′ + λ′

3 sin2φ′. (12.11)

and this is the desired result. The equation of the strain ellipse can now be written as (see
Eq. 12.4)

λ′
1x

′2 + λ′
3y

′2 = 1. (12.12)

Change of a right angle

To find the angle of shear associated with the direction OP′ graphically, draw vector n
normal to the line T ′ tangent to the ellipse at point P ′ (Fig. 12.7b). Then ψ is the angle
between r′ and n.

We can also find an expression for ψ from the dot product of vectors r′ and n (see
§7.3). This is simple in principle but unfortunately a little messy in execution because of
the need to normalize the components of n and to convert this angle to a strain parameter.

The equation of tangent T ′ can be written down directly from the equation of the ellipse
using a simple recipe: replace one x′ and one y′ in Eq. 12.12 with the corresponding
coordinates of the point of tangency P ′(x′, y′) in the second of Eqs. 12.9. After dividing
through by S the result is

(λ′
1 cos φ′)x′ + (λ′

3 sin φ′)y′ = 1/S.

The direction cosines of the normal vector n are proportional to the coefficients of x′ and
y′ in this equation. Normalizing both by dividing each by the square root of the sum of
their squares gives

λ′
1 cos φ′√

λ′
1

2 cos2φ′ + λ′
3

2 sin2φ′
and

λ′
3 sin φ′√

λ′
1

2 cos2φ′ + λ′
2

2 sin2φ′
,

and these are the required direction cosines of n. With these direction cosines of n and
the direction cosines of r′ from Eq. 12.8, the dot product gives an expression for cos ψ

cos ψ = (λ′
1 cos φ′)(cos φ′) + (λ′

3 sin φ′)(sin φ′)√
λ′

1
2 cos2φ′ + λ′

3
2 sin2φ′

,

which, after expanding and squaring, becomes

cos2ψ = (λ′
1 cos2φ′ + λ′

3 sin2φ′)2

λ′
1

2 cos2φ′ + λ′
3

2 sin2φ′ .
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Substituting the identities cos ψ = 1/ sec ψ and sec2 ψ = 1 + tan2ψ , together with the
definition γ = tan ψ , this can be rearranged to give

γ 2 = λ′
1

2 cos2φ′ + λ′
3

2 sin2φ′

(λ′
1 cos2φ′ + λ′

3 sin2φ′)2
− 1. (12.13)

Observing that the denominator is equal to λ′2 (see Eq. 12.11), and defining a new
measure of shear strain

γ ′ = γ λ′ or γ = γ ′/λ′, (12.14)

we then write Eq. 12.13 as

γ ′2 = λ′
1

2 cos2φ′ + λ′
3

2 sin2φ′ − (λ′
1 cos2φ′ + λ′

3 sin2φ′)2.

Expanding and combining terms gives

γ ′2 = λ′
1

2 cos2φ′(1− cos2φ′)−2λ′
1λ

′
3 cos2φ′ sin2φ′ +λ′

3
2 sin2φ′(1− sin2φ′). (12.15)

From the identity cos2φ′ + sin2φ′ = 1 we obtain two relationships

cos2φ′ = (1 − sin2φ′) and sin2φ′ = (1 − cos2φ′).

Using these in Eq. 12.15 and again rearranging yields

γ ′2 = (λ′
1

2 − 2λ′
1λ

′
3 + λ′

3
2) cos2φ′ sin2φ′ = (λ′

1 − λ′
3)

2 cos2φ′ sin2φ′.

Taking the square root we finally obtain the desired result

γ ′ = (λ′
1 − λ′

3) cos φ′ sin φ′. (12.16)

12.6 Mohr Circle for finite strain

The introduction of the new strain parameters λ′ (Eq. 12.10) and γ ′ (Eq. 12.14) was
aimed at obtaining Eq. 12.11 and Eq. 12.16 in these particular forms. It is useful to
convert them by substituting the double angle identities

cos2 φ′ = 1
2(1 + cos 2φ′), sin2 φ′ = 1

2(1 − cos 2φ′), cos φ′ sin φ′ = 1
2 sin 2φ′,

with the result

λ′ = 1
2(λ′

1 + λ′
3) + 1

2(λ′
1 − λ′

3) cos 2φ′, (12.17a)

γ ′ = 1
2(λ′

1 − λ′
3) sin 2φ′. (12.17b)
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These should look familiar. Their form is identical to the equations for the normal and
shearing components of the traction vector (see Eqs. 9.17). Just as in that case, these
expressions for λ′ and γ ′ can be represented graphically by a Mohr Circle for finite strain.
The main feature of this construction is a circle on the horizontal λ′ axis (Fig. 12.8a).
The distance to the center c and its radius r are given by

c = 1
2(λ′

1 + λ′
3) and r = 1

2(λ′
3 − λ′

1).

This circle has a number of features in common with the Mohr Circle for stress, but
there are also some important differences. Because the lengths of the semi-axes of the
strain ellipse are never negative, the circle lies wholly to the right of the origin.

Because S1 > S3, by definition λ′
1 < λ′

3. Therefore (λ′
1 − λ′

3), which appears in both
of these expressions, is always a negative quantity. This has two consequences.

1. By Eq. 2.17a, if φ′ = 0 (2φ′ = 0) then λ′ = λ′
1 and r cos 2φ′ < 0 so that λ′

1 plots to
the left of the center. If φ′ = 90◦ (2φ′ = 180◦) then λ′ = λ′

3 and r cos 2φ′ > 0 and
λ′

3 plots to the right of the center. This reversal arises from the definition λ′ = 1/S2.
2. As we have noted in Figs. 12.6 and 12.7, the angle of shear ψ , and therefore also the

shear strain γ , is positive in the first and third quadrants (0 < φ′ < 90◦ and 180◦ <

φ′ < 270◦) and negative in the other two. By Eq. 12.17b, however, the parameter
γ ′ has the opposite sign in each of these quadrants. Because of this switch in signs,
negative values of γ ′ are plotted above the horizontal axis and positive values are
plotted below it. This is the important clockwise-up convention used for constructing
this Mohr Circle (Treagus, 1987).3 Now both 2φ′ (Fig. 12.8a) and φ′ (Fig. 12.8b) are
measured in the same sense on the Mohr Circle and physical planes.

(b)(a)

γ�

λ�

P'

λ�3λ�1
O

2φ�
ψ φ�

S3

S1

Figure 12.8 Finite strain: (a) Mohr Circle plane; (b) physical plane.

There is an auxiliary construction which greatly increases the usefulness of this dia-
gram. The slope angle of line OP′ is the angle of shear ψ associated with this particular
direction (Fig. 12.8a). This fact follows directly from the definition tan ψ = γ ′/λ′ (see

3This same convention is used in the Mohr Circle for stress when tension is reckoned positive (see Fig. 9.15b).
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Eq. 12.14), and it bypasses the mathematically convenient but otherwise obscure param-
eter γ ′, which is therefore little used in graphical work.

12.7 Pole of the Mohr Circle

The geometry of the physical plane and Mohr Circle plane can be even more closely
related with the aid of a special point on the circle called the pole or origin of lines. This
point, here denoted OL, has a very useful property: A line through OL which intersects
the circle at P ′ is parallel to the corresponding line on the physical plane whose strain
parameters are given by the coordinates of point P ′.

(b)(a)
P�

λ�

γ�

OL

φ�

φ�

λ�1 λ�3

P�

λ�

γ '

φ�

(c)

O O

S1S3
λ�1 λ�3

Figure 12.9 Pole construction: (a) physical plane; (b) Mohr Circle plane; (c) combination.

The pole is the point on the Mohr Circle through which all lines parallel to the cor-
responding lines on the physical plane pass just as they radiate from the center of the
ellipse (Fig. 12.9a). This is the meaning of the phrase origin of lines which is used here
as a short definition. It is analogous to the origin of normals of the Mohr Circle for stress.
The pole may be located in several ways, most simply by drawing either a line parallel
to the S1 axis of the ellipse through the point λ′

1 to intersect the circle at OL, or a line
parallel to the S3 axis of the ellipse through the point λ′

3 to intersect the circle at OL

(Fig. 12.9b). Note that these two lines at OL are orthogonal, as are the axes of the ellipse.
Having located the pole we may now combine the two representations of the state of

finite strain by drawing the ellipse centered at OL (Fig. 12.9c). Note that this construction
would not be possible without the clockwise-up convention for shear. In practice it is not
necessary to draw an accurate ellipse because all the quantitative information is contained
on the circle, but a sketch is a useful aid, especially for beginners.

We now may easily determine the strain parameters associated with any general line.
For example, the line through OL parallel to any general radius in the strain ellipse
making an angle φ′ with the S1 direction intersects the circle at P ′ and the coordinates
of this point are the required strain parameters associated with this radius (Fig. 12.9c).

We can then see that the Mohr Circle represents the locus of all possible values of the
two strain parameters for a given ellipse and the pole represents its particular orientation
on the physical plane. As the ellipse rotates on the physical plane, the pole moves along
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the circumference of the Mohr Circle. There are two special cases: If the S1 direction is
vertical, pole OL coincides with the point representing λ′

1 (Fig. 12.10a), and if the S3

direction is vertical, pole OL coincides with the point representing λ′
3 (Fig. 12.10b).

O λ�

(a)

γ�

O λ�

(b)

γ�

OL OL

S1

S3

Figure 12.10 Special cases: (a) OL = λ′
1; (b) OL = λ′

3.

An even more important use of the Mohr Circle construction is to determine the
principal stretches and their orientation from measurements of deformed angles or lines,
and the pole plays a crucial role in this procedure.

The important first step is to form a strain rosette by drawing the stretched lines
radiating from a single point, just as the radius vectors radiate from the center of the strain
ellipse. In all these applications we are free to rotate the rosette into any orientation.

12.8 Strain from measured angles

Features from which angular changes can be determined are relatively common. As we
have seen in the Wellman construction (Fig. 12.3), the angle of shear can be determined
directly from a single deformed bilaterally symmetrical fossil. There are two main cases
and both solutions utilize the pole and both follow closely the method described by Lisle
(1991). The first involves one angle of shear associated with a line in known angular
relation to the principal axes.

Problem

• A deformed trilobite is exposed on the plane of slaty cleavage and its median line m

makes an angle of φ′
m = 20◦ with a lineation marking the S1 direction. The angle of

shear associated with this line is ψm = +36◦ (Fig. 12.11a). Determine the shape of
the strain ellipse.

Construction

1. Form a rosette by assembling the strained median line m and the line representing the
S1 direction radiating from a common point (Fig. 12.11b).

2. On a set of λ′γ ′ axes, draw a line through the origin with a slope angle ψm = +36◦
(with the clockwise-up convention this line slopes downward).
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(a)

(b) (c)

S1 direction

O
kλ�1 kλ�3

γ '

λ�

OL

arm  m

arm
  m

C

S1 

φ�
ψm

φ�
ψm

φ�

m

Figure 12.11 Trilobite: (a) physical plane; (b) rosette; (c) Mohr Circle.

3. At a convenient but arbitrary distance along the sloping ψm line locate the pole OL,
which is then a first point on the circle.

4. At OL construct the rosette with arm m along the ψm line. The arm representing the
S1 direction then intersects the horizontal axis at λ′

1, which is a second point on the
Mohr Circle.

5. The perpendicular bisector of the segment OLλ′
1 locates the center C on the horizontal

axis.
6. Then with radius Cλ′

1 complete the circle (Fig. 12.11c).

Answer

• Because the pole OL is arbitrarily located in this procedure, the two principal values
can not be uniquely determined. We can, however, determine the strain ratio from

Rs =
√

kλ′
3/kλ′

1, (12.18)

where k is an unknown scale factor. This calculation, based on measurement of the
two intercepts, yields Rs = 2.0. An analytical solution for this problem is given by
Ramsay (1967, p. 234).

For some purposes it is convenient to represent the strain derived from such angular
measurements by a specific ellipse, and the ellipse with the same area as the unit circle
is the most appropriate. From the definition of the strain ratio (Eq. 11.4)

Rs = S1/S3,

and from the condition for no area change � = 0 (Eq. 11.15)

S3 = 1/S1,
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we can express the principal stretches S̃1 and S̃3 of the constant-area ellipse as

S̃1 = √Rs and S̃3 = 1/
√

Rs. (12.19)

The second problem involves known angles of shear associated with two lines and the
angle between these two lines. Then both the shape of the ellipse and its orientation can
be found.
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ψb

(a) (b)

arm  a

arm  b

C

γ '
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O

(c)

arm
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m
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kλ�1 kλ�3 C

γ '
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ψb
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O
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kλ�1 kλ�3
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 a

arm b

α�

α�

hinge  a

hinge  b

Figure 12.12 Brachiopods: (a) physical plane; (b) rosette; (c) Mohr Circle 1; (d) Mohr Circle 2.

Problem

• The angle between the hinge lines of two deformed brachiopods is α′ = 30◦. The angles
of shear associated with these lines are ψa = −35◦ and ψb = +27◦ (Fig. 12.12a).
Determine the ratio of the principal stretches and their orientation.

Construction

1. Construct a strain rosette from hinge lines a and b (Figs. 12.12a and 12.12b).
2. On a pair of λ′γ ′ axes draw lines making angles of ψa and ψb with the horizontal λ′

axis and passing through the origin (Fig. 12.12c), paying attention to their signs and
the clockwise-up convention.

3. Arbitrarily locate OL on either of these lines.

(a) If the ψa line is used, then position the rosette at that point with arm a along the
ψa line (Fig. 12.12c). Arm b then intersects the ψb line at P ′

b.
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(b) If the ψb line is used, then position the rosette at that point with arm b along the
ψb line. Arm a then intersects the ψb line at P ′

a (Fig. 12.12d).

4. The perpendicular bisector of either chords OLP ′
b or OLP ′

a locates the center C on
the λ′ axis. With radius OLC = CP ′

b complete the circle.
5. Chords OLλ′

1 and OLλ′
3 fix the orientations of the principal directions relative to arms

a and b on the physical plane.

Answer

• Measure the distances to the two intercepts and calculate Rs =
√

kλ′
3/kλ′

1 = 2.0. The

S1 direction makes an angle of φ′
a = 11◦ with the arm c.

B

a�

b�

c�

(a) (b) (c)
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b�

c�
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α�
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b�c�
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B�

C�

A�

B�

C�

C

Figure 12.13 Welded tuff: (a) model strain: (b) angle of shear ψb; (c) angle of shear ψc.

In some situations angles of shear may be constructed from angles that are not initially
right angles. The case of the deformed shards in welded tuff is one of these. Typi-
cally welded tuff display a strong foliation marked by the planar alignment of flattened
pumice and glass shards. Some of these shards have a distinctive Y-shape. These orig-
inate between gas bubbles in the original flow and the angles between the three arms
of these shards are approximately 120◦ (Ragan & Sheridan, 1972; Sheridan & Ragan,
1976). After deformation these angles are systematically changed (Fig. 12.13a) and these
changes can be converted into angles of shear.

Problem

• For the deformed shard circled in Fig. 12.13a, determine the strain ratio and the ori-
entation of the S1 direction.

Construction

1. Reassemble the three shard limbs a′, b′ and c into scalene triangle A′B ′C′
(Fig. 12.13b,c).

2. On two sides of this triangle construct an equilateral triangle (sides b′ and c′ are used
here). These represent the shape, but not size, of the triangle before deformation.

3. The perpendicular bisector on each of the two base sides is the height of the triangles.
As a result of a shear component parallel to these two sides apex point B is transformed
to point B ′ (Fig. 12.13b) and apex point C is transformed to point C′ (Fig. 12.13c).
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4. As a result of these transformations we have measures of the two shear components:
ψb = +36◦ and ψc = −25◦. The angle between sides b′ and c′ is α′ = 34◦.

5. With these angles we can now construct the Mohr Circle just as before (Fig. 12.14).
(a) Plot the line with slope ψb below and the line with slope ψc above the λ′ axis.
(b) Locate the pole OL on either of these lines (we chose the ψb line).
(c) Plot arm along the ψb line. The arm c then intersects the ψc at point Pc which is

a second point on the circle.
(d) Line OLPc is a chord of the circle and its perpendicular bisection locates the

center C of the circle on the λ′ axis. The circle can then be completed using as
radius OLC = PcC.

(e) The line connecting points OL and λ′
1 gives the orientation of the S1 direction

relative to the arms b and c.

Answer

• Rs =
√

kλ′
3/kλ′

1 = 2.0 and the S1 direction makes an angle φ′ = 11◦ with arm c

and this is parallel to the foliation. Similar results are obtained in any foliation-normal
section. This foliation is essentially horizontal over great distances and Rs increases
downward. This implies that the measured strain is due to the compaction of the tuff
and that S1 = S2 = 1.0 and S3 = 0.5.

C

γ�

λ�
ψc

ψb

OL

P�c

O
kλ�1 kλ�3

arm
 c

arm b

Figure 12.14 Mohr Circle for deformed shard.

An analytical solution for the problem of determining the strain from two angles of
shear is also available (Ragan & Groshong, 1993).

If the two measured angles of shear both have the same sign, the accuracy of the Mohr
Circle construction can be improved by reversing the sign of one of them. This is easily
accomplished by changing the line of reference. In the reference circle (Fig. 12.15a),
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radius vectors r1 = OP1 and r2 = OP2 are orthogonal. Then tangent T1 at point P1 is
parallel to r2 and T2 at P2 is parallel to r1. These are conjugate radii in the circle.

In the strain ellipse (Fig. 12.15b), the corresponding vectors r′
1 = OP′

1 and r′
2 = OP′

2
are no longer orthogonal but the tangent T ′

1 at point P ′
1 is still parallel to r′

2 and the
tangent T ′

2 at P ′
2 is parallel to r′. These are conjugate radii in the ellipse; thus any pair of

radii derived from conjugate radii are themselves conjugate. The measure of this change
is ψ and the magnitude of the angle is the same for each radius vector, but of opposite
sign.

O O

(a) (b)
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x
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T1

P2

T2

r1

r2

P�1

T�1

T�2

P�2

r'1

r'2
x'

y'

Figure 12.15 Conjugate radii: (a) circle; (b) ellipse.

12.9 Strain from measured stretches

The strain ellipse can also be obtained from measured stretches. The deformed length of a
passive line of known initial length would yield an exact value of a stretch. Unfortunately
few, if any, such lines exist in nature. There is, however, a class of structures from which
the original length can be estimated. These are trains of micro-boudins bounded by
fractures. The gaps between the broken fragments may be filled with the ductile material
surrounding the boudins or they may be filled with vein material. Examples include
broken crystals of tourmaline, rutile and arsenopyrite, amphibole, epidote and kyanite,
and some forms of rectangular boudins developed in competent layers embedded in a
ductile matrix. Broken fossil parts have also been used.

In the Swiss Alps there are a number of localities where abundant belemnites have
been stretched in this manner (Beach, 1979). These have been examined extensively, but
the techniques apply to many similar structures. The goal is to estimate the stretch which
would have occurred in the absence of the rigid inclusion. Two simple methods have
been proposed, each giving different results.

In the conventional method (Ramsay, 1967, p. 248; Ramsay & Huber, 1983, p. 93),
the initial length l is taken as the sum of the lengths of the individual fragments and the
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final length l′ as the total sum of the individual gaps G and fragments F (Fig. 12.16a).
For N gaps and N + 1 fragments, we have

Gsum =
N∑

i=1

Gi and Fsum =
N+1∑
i=1

Fi. (12.20)

The second method involves a minor but important modification (Hossain, 1979). The
final length is taken as the distance between the midpoints of the two end fragments and
the initial length is the sum of the fragment lengths between these two points (Fig. 12.16b).
These lengths can be written as

Gsum =
N∑

i=1

Gi and Fsum = 1

2

N∑
i=1

(Fi + Fi+1) . (12.21)

This equation for Fsum and the corresponding illustration makes clear that Hossain’s
method is a straightforward extension of the center-to-center technique used for deformed
grains of §12.2.

In both Ramsay’s and Hossain’s methods the total stretch associated with the inclusion
train is then calculated from

S = l′/l = 1 + (Gsum/Fsum). (12.22)

Problem

• From the following gap and fragment lengths calculate the stretch using the methods
of Ramsay and Hossain: Gi = 7, 5, 9 mm and Fi = 11, 5, 7, 9 mm (Fig. 12.16).

Solution

1. By Ramsay’s method (Eq. 12.20) Gsum = 21 mm, Fsum = 32 mm and S = 1 +
21/31 = 1.656 25.

2. By Hossain’s method (Eq. 12.21) Gsum = 21 mm, Fsum = 22 mm and S = 1 +
21/22 = 1.954 55.

As can be seen, the stretch calculated by Hossain’s method is significantly greater than
that obtained by Ramsay’s method.

(a)

(b)

l'

l'

G1 G2 G3F1 F2 F3 F4

Figure 12.16 Stretch from boudinage: (a) Ramsay’s method; (b) Hossain’s method.
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Both of these approaches belie the complexity of the physical process of boudin for-
mation. In particular, neither method takes into account the evolutionary sequence of the
separation of the fragments which must have occurred.

Before the first fracture, the rigid inclusion can not record any strain.As a consequence,
the material adjacent to the inclusion must deform inhomogeneously to compensate for
the extension which would have occurred in the absence of the inclusion. Once a fracture
forms, a part of the extension will be accommodated by the separation of the fragments
and a part, as before, by inhomogeneous deformation near the inclusion contact.

Recognizing that the formation of multiple fragments involves a series of such steps,
a third method for estimating the stretch involves an iterative strain-reversal technique
and gives even better results (Ferguson, 1981, 1987; Ferguson & Lloyd, 1984; Ford
& Ferguson, 1985). Lloyd and Condliffe (2003) describe a computer program which
automates the process.

Steps

1. With N gaps, N steps are required to reverse the total stretch. Here N = 3.
2. The initial and final lengths associated with each gap are given by li = 1

2(Fi + F1+i)

and l′i = Gi + li . Thus

l1 = 5.5 + 2.5 = 8.0, l′1 = 7.0 + 8.0 = 15,

l2 = 2.5 + 3.5 = 6.0, l′2 = 5.0 + 6.0 = 11,

l3 = 5.5 + 2.5 = 8.0, l′3 = 9.0 + 8.0 = 17.

3. The stretch associated with each gap is calculated from Si = l′i/ li and the gap with
the smallest stretch Smin is taken as the final increment of stretch (Fig. 12.17a).

S1 = 15/8 = 1.875 00, S−1
1 = 0.533 33,

S2 = 11/6 = 1.833 33, S−1
2 = 0.545 45,

S3 = 17/8 = 2.125 00, S−1
3 = 0.470 59.

4. The gap associated with Smin (which is not always the smallest) is now closed by
applying the inverse stretch 1/Smin = 0.545 45 to its length. The other gaps are also
reduced by this same factor. There are now N − 1 = 2 gaps and N = 3 fragments
(Fig. 12.17b). Relabeling the gaps and fragments, the lengths are now

l1 = 5.5 + 6.0 = 11.5, l′1 = 11.5 + 0.181 82 = 11.681 82,

l2 = 4.5 + 6.0 = 10.5, l′2 = 10.5 + 1.272 73 = 11.772 73,
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and the stretches associated with the remaining gaps are

S1 = 11.681 82/11.5 = 1.015 81, S−1
1 = 0.984 44,

S2 = 11.771 73/10.5 = 1.121 21, S−1
2 = 0.891 89.

5. With this new Smin the next gap is closed and the other reduced (Fig. 12.17c). The
lengths are now

l1 = 11.5 + 4.5 = 16.0, l′1 = 16.0 + 1.089 49 = 17.089 49,

and the single remaining stretch is

S1 = 17.089 49/16 = 1.068 09, S−1
1 = 0.936 25.

With this, the final gap is now closed and the belemnite is whole (Fig. 12.17d).
6. The total stretch is the inverse of the product of the inverse stretches at each stage.4

S =
[

N∏
i=1

S−1
i

]−1

= 1

0.545 45 × 0.984 44 × 0.93625
= 1.989 13. (12.23)

(a)

(b)

(c)

G1 G2 G3F1 F2 F3 F4

l'1 l'2 l'3

(d)
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F2

F2

F1

F1

Figure 12.17 Iterative strain reversal technique (Ferguson, 1981).

Although this method still underestimates the total stretch it gives particularly good
results and is the recommended approach. By hand, it does, however, require extra work.
Hossain’s method gives nearly as good results if the gap and the fragment lengths are
fairly uniform and is just as quick as Ramsay’s approach.

From measured stretches we can determined the state of strain. In two dimensions,
there are two cases. If the two stretches and the angles they make with the principal

4The symbol
∏

means form the product of the series of all N items.
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directions are known, the principal stretches can be found, otherwise three stretches are
needed. The solutions follow the method of Lisle and Ragan (1988). The problem of
three stretches is the simpler one and we start with it.

a
b

c

Figure 12.18 Three idealized stretched belemnites.

Problem

• From the three stretched belemnites, determine the principal stretches and their ori-
entations (Fig. 12.18). (Because the gap and fragment lengths are exactly the same in
this idealization, the methods of Hossain and Ferguson give identical results.)

Approach

• Before undertaking the full construction it is useful to sketch the strain ellipse as a
visual check. This is done by assembling the three scaled stretched lines into a rosette
(Fig. 12.19a). Because the ellipse is centro-symmetric, each of these radius vectors
has an equal and opposite radius vector, and we then have three complete diameters
of the ellipse which can then be sketched with a fair degree of accuracy (Fig. 12.19b).

a b

c

b a

c
Sa

Sb

Sc

140
70

150

(a) (b)

S1

S3

Figure 12.19 Stretch belemnites: (a) scaled rosette; (b) sketched ellipse.

Construction

1. From the three measured stretches, the corresponding reciprocal quadratic elongations
are

Sa = 2.2 (λ′
a = 0.2066), Sb = 1.4 (λ′

b = 0.5102), Sc = 1.8 (λ′
c = 0.3086).

2. Rearrange the three stretch directions into a rosette with arm c between arms a and b

(Fig. 12.20a).
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3. Draw the vertical γ ′ axis (but not the horizontal λ′ axis) and add three parallel lines at
distances equal to the values of λ′

a , λ′
b and λ′

c using a convenient scale (Fig. 12.20b).
4. Arbitrarily locate the pole OL on the intermediate λ′

c line and at this point draw the
rosette so that arm c lies along this same line.

5. Through OL draw lines parallel to arm a to intersect the λ′
a line at P ′

a and parallel to
arm b to intersect the λ′

b line at P ′
b.

6. Points OL, P ′
a and P ′

c lie on the circle, and the perpendicular bisectors of chords OLP ′
a

and OLP ′
c intersect to locate its center.

7. Through this center now draw the horizontal λ′ axis and complete the circle. Measure
the intercepts to determine the values of λ′

1 and λ′
3.

8. Draw the orthogonal lines λ′
1OL and λ′

3OL (not shown). These give the orientation
of the principal axes relative to the rosette.

Answer

• The principal quadratic elongations and the corresponding principal stretches are

λ′
1 = 0.20 (S1 = 2.24) and λ′

3 = 0.60 (S3 = 1.29).

Note that the λ′ coordinate of P ′a is almost the same as λ′
1 (see Fig. 12.20b). The angle

between λ′
1 and arm a is 8◦ measured anticlockwise.

When constructing the rosette at OL arms a and b may not intersect the two corre-
sponding vertical λ′ lines. Then rotate the rosette 180◦ to reverse the directions of arms
and then proceed just as before. In this case the pole OL will be below the λ′ axis rather
than above it.

O λ�

γ�

λ�b

ar
m

 a

arm
 bar

m
 c

λ�1 λ�3

OL

C

P�a

P'b
(a) (b)

arm
 b

arm a

arm c

λ'c
λ'a

Figure 12.20 Solution of the belemnite problem: (a) rosette; (b) Mohr Circle construction.

The graphical solution of the problem of two stretches in known angular relation with
the principal axes of the strain ellipse proceeds in a similar way, except that an extra step
is needed to locate a third point on the circle.
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Problem

• Two stretched tourmaline crystals are exposed on the plane of schistosity (Fig. 12.21a).
A prominent lineation on this plane marks the S1 direction. Determine the principal
stretches.

S1 lineation

b
a

(a)

Sa

Sb(b)

S1

S3

S3

φ'a

φ'b

Figure 12.21 Problem of two stretches: (a) tourmaline crystals; (b) rosette.

Construction

1. The two stretches, the corresponding reciprocal quadratic elongations and their ori-
entations relative to the S1 direction are

Sa = 1.7, λ′
a = 0.3460, φ′

a = +20◦,
Sb = 1.4, λ′

b = 0.5102, φ′
b = −40◦.

2. Construct a rosette representing the two stretches and the principal axes (Fig. 12.21b).
3. Draw the vertical γ ′ axis and a pair of parallel lines at scale distances equal to the

values of λ′
a and λ′

b (Fig. 12.22a).
4. In order to find three points on the circle it is necessary to use the strain rosette twice.

(a) First, arbitrarily locate pole OL on the λ′
b line and construct the rosette there with

arm b along the λ′
b line. Then draw a line parallel to arm a to intersect the λ′

a line
at P ′

a . This gives two points on the circle (Fig. 12.22a). The λ′
3 point on the circle

lies on the arm representing the S3 axis.
(b) Second, if this yet to be located λ′

3 point were the pole, then the S3 axis would
be vertical (see Fig. 12.10b). From this point arm a would intersect the circle at
point P ′

a . To locate this λ′
3 point we simply reverse this construction by making

OL = P ′
a and constructing the rosette there so that the S3 axis lies along the vertical

λ′
a line. Then arm a intersects the line representing the first S3 direction to give the

λ′
3 point. We now add the horizontal λ′ axis to the diagram (Fig. 12.22b).

5. The perpendicular bisector of the chord P ′
aP

′
b intersects the λ′ axis at center C and

the circle can then be completed with OLC = P ′
aC as radius (Fig. 12.23).
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Answer

• Measuring the distances of two intercepts gives

λ′
1 = 0.28 (S1 = 1.9) and λ′

3 = 0.84 (S3 = 1.1).
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Figure 12.22 Graphical solution for two stretches: (a) Step 1; (b) Step 2.

Figure 12.23 Mohr Circle for
two stretches.
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In this construction the pole may be located on either of the vertical λ′
a or λ′

b lines. If,
as here, it is chosen on the b line the pole will be on the lower semi-circle, and if on line
a it will be on the upper semi-circle. This method breaks down when the two stretched
lines make the same angle with the S1 direction and lacks sensitivity as this condition is
approached.

12.10 Restoration

The importance of determining the state of strain lies in the fact that it describes in
the most fundamental way the changes in shape and size which occur as the result of
homogeneous deformation. Once we have determined the strain ellipse we immediately
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know that it was derived from a circle of unit radius. With this information we can then
restore any strained object to its initial shape and size.

A simple but important case is the determination of the original thickness of a homo-
geneously deformed layer. If a material line initially normal to bedding is marked by
some physical feature then the associated strain in this single direction could easily be
removed. In a few rare situations this may be possible. For example, Skolithus is a fos-
silized worm tube originally normal to bedding surfaces (McLeish, 1971; Wilkinson,
et al., 1975). In most cases, however, a more general approach must be used.

OO

(a) (b)

A�1

A�3

t�
t

A1

l1

A3

l�1

δ
l�3 l3ω

Figure 12.24 Sedimentary bed: (a) deformed thickness t’; (b) restored thickness t.

Problem

• The thickness of a deformed layer is t ′ = 1.30 m. If the S1 direction is vertical and
S1 = 1.25, and S3 = 0.80 what was the original thickness?

Method

1. Arbitrarily locate a point O on the trace of the inclined lower boundary of the layer.
Then draw rays parallel to the principal direction to intersect the upper trace at points
A′

1 and A′
3 (Fig. 12.24a).

2. Measure the lengths of the vertical and horizontal segments l′1 = OA′
1 and l′3 = OA′

3.
Divide these two lengths by the corresponding principal stretches to give original
lengths l1 = l′1/S1 and l3 = l′3/S3.

3. With these restored lengths l1 and l2 locate new points A1 and A3 on these same rays
(Fig. 12.24b). These fix the relative position of the upper boundary of the layer before
deformation, and the perpendicular distance between this trace and point O is the
original thickness t .

Answer

• The thickness of the layer before deformation was t = 1.10 m. It should be especially
noted that if the line of measured thickness t ′ were unstrained directly the result
would be in error because t and t ′ are not generally marked by the same material line.
Schwerdtner (1978) described an analytical solution.
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Removal of the strain restores not only the initial thickness, but it also removes the
inclination due to the strain.Assuming the beds were originally horizontal, this remaining
dip is the result of the rotational part of the deformation, hence is equal to the angle of
rotation.

For more complicated shapes a more general approach is required. One such appli-
cation is the restoration of the shape of deformed fossils so that they may be accurately
identified (Bambach, 1973; Raup & Stanley, 1978, p. 75). The basic technique, however,
applies to any two-dimensional shape.

First, we construct a pair of axes on a drawing or photograph of the deformed object
with x′ parallel to the long axis and y′ parallel to the short axis of the strain ellipse
(Fig. 12.25a). In this system, the position vectors r′(x′, y′) of points on the outline of
the deformed object are determined. This may be done by hand, but it is far easier to
record the coordinates with the use a digitizing tablet. Clearly, the more points, the more
accurate the description of the deformed object and the more complete the reconstruction
can be.

The corresponding position vectors r(x, y) in the initial state are related to r′(x′, y′)
by the inverse equations (cf. Eq. 12.5)

x = x′/S1 and y = y′/S3.

With these we then transform these points back to their initial locations and plot the result
(Fig. 12.25b).

(a) (b)

r
r'

y'

x'

y

x

Figure 12.25 General restoration: (a) x’y’ plane; (b) xy plane.

If only Rs is known, the constant-area principal stretches of Eq. 12.19 can be used in
this reconstruction of its shape, but if � > 0 it will be too small and if � < 0 it will be
too large.



12.11 Strain and related tensors 331

12.11 Strain and related tensors

To show how strain and deformation are related, we decompose the deformation tensor
D into its stretch and rotational components.5 We do this by viewing the deformation as
having occurred in two steps: first, the rotation of the principal axes from their initial to
final state followed by the stretch to produce the strain ellipse. We write this sequence
as

D = SR, (12.24)

where the orthogonal rotation tensor R is applied first, followed by the symmetric left-
stretch tensor S (called this because it is written on the left of R).6 For computational
purposes we need the matrix form

[
D11 D12

D21 D22

]
=
[
S11 S12

S21 S22

] [
R11 R12

R21 R22

]
. (12.25)

We can perform this decomposition of D graphically with the aid of a Mohr Circle
construction.

Problem

• Determine the stretch component of the simple shear deformation

D =
[
D11 D12

D21 D22

]
=
[

1 0
1 1

]
.

Procedure

1. Using the convention of Fig. 12.26a, plot the two points

p1(D11, −D21) = (1, −1) and p2(D22, D12) = (1, 0)

on a pair of coordinate axes labeled D11, D22 and D12, D21 (Fig. 12.27a).
2. Locate the center C at the midpoint of diameter p1p2 and complete the off-axis circle

with radius p1C = p2C.
3. The sloping line through points O and C intercepts this circle at two points and the

lengths of the segments from O represent the principal stretches S1 and S3.
4. There are two ways of representing the circle representing S.

5As in §11.7 the same notation common to continuum mechanics is used here: majuscules (upper case letters ) for the
material description and minuscules (lower case letters) for the spatial description.

6A second decomposition is D = RS, that is, a stretch followed by a rotation. In this case S is the right-stretch tensor.
The ellipses produced by these two stretch tensors are identical but their orientations differ by the rotation. Because the
strain ellipse and its orientation are described in the final state which we observe it is convenient to think of the rotation
as having preceded the stretch (Elliott, 1970, p. 2234), so the left-stretch tensor is the one we will use.
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(a) A quick way is to draw a second set of axes with the same origin: the S11, S22

axis through the center of the circle and the S12, S21 axis perpendicular to this
(Fig. 12.27b). Having removed the rotation, the circle is now on axis.

(b) A more formal way is to rotate the center of the off-axis circle through the angle
of rotation ω to the horizontal axis and complete the circle as before (Fig. 12.27c).

(b)(a)

S11

−S21 S22

S12D11

−D21 D22

D12

Figure 12.26 Plotting conventions (after Means, 1992, p. 19): (a) Mohr Circle for D; (b) Mohr Circle for S.

Answer

• Measuring the lengths of the segments OS1 and OS3 the principal stretches are S1 =
1.62 and S3 = 0.62. similarly we can determine the coordinates of point p1 and p2

which then gives

S =
[

1.34 0.45
0.45 0.89

]
.

O

S1

S3
S3 S3

S1

S1C

(a) (c)

O

(b)

C

O

C

p2
p2 p2

p1
p1 p1

ω

D12,D21

D11,D22

S11,S22

S11,S22

S12=S21

S12=S21

Figure 12.27 Mohr Circles for D and S.

We can also find S analytically but to do so we first need to form the inverse of a matrix.
In ordinary algebra if a variable is multiplied by its reciprocal or inverse the result is the
number 1. We write this as

AA−1 = 1 or A−1A = 1,

where A−1 = 1/A. In matrix algebra, the place of 1 is taken by the unit matrix 1 (also
called the identity matrix and represented by the symbol I). That is[

1 0
0 1

]
= 1.
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We then write the product of matrix A and its inverse A−1 in two ways

AA−1 = 1 or A−1A = 1.

Note that these two results are the same. This is an exception to the general rule – the
product of a matrix and its inverse is commutative. With the first of these and denoting
the unknown inverse matrix A by the symbol B then

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=
[

1 0
0 1

]
. (12.26)

Performing the multiplication of the two square matrices we obtain four equations con-
taining the four unknown elements of B

A11B11 + A12B21 = 1,

A11B12 + A12B22 = 0,

A21B11 + A22B21 = 0,

A21B12 + A22B22 = 1.

Solving for these unknowns gives

B11 = A22

A11A22 − A12A21
, B12 = −A12

A11A22 − A12A21
,

B21 = −A21

A11A22 − A12A21
, B22 = A11

A11A22 − A12A21
,

and these Bij are the required elements of the inverse. With these results, we can quickly
form the inverse of any 2 × 2 general matrix A in three easy steps.

1. Interchange the elements of the main diagonal A11 and A22.
2. Change the signs of the off-diagonal elements A12 and A21.
3. Divide each element by the determinant of A.

The full result is

A−1 = 1

det A

[
A22 −A12

−A21 A11

]
. (12.27)

Note that if det A = 0 then A is singular and the inverse does not exit.
In this context A−1 reverses the effect of A. As in ordinary algebra, doing and then

undoing something is the same as not having done anything to begin with, and the matrix
operation of doing nothing is the unit matrix.
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To solve Eq. 12.24 for S, we post-multiply (that is, multiply from the right) both sides
by R−1 giving

DR−1 = SRR−1. (12.28)

A positive (anticlockwise) rotation is represented by the orthogonal matrix (see Eq. 7.42)

R =
[

cos ω − sin ω

sin ω cos ω

]
.

Applying the three steps, its inverse is

R−1 =
[

cos ω sin ω

− sin ω cos ω

]
. (12.29)

The transpose of a matrix is formed by exchanging rows and columns. For R this gives

RT =
[

cos ω sin ω

− sin ω cos ω

]
(12.30)

and we immediately see that the inverse of an orthogonal matrix has a particularly simple
form – the inverse and transpose are identical.

RT = R−1,

and we can then immediately write down this particular inverse. We can then write
Eq. 12.28 as

DRT = SRRT . (12.31)

The product RRT = 1 and this means that the two rotations cancel. Just as in ordinary
algebra, the unit matrix 1 is usually not written in such expressions. We then have

S = DRT . (12.32)

We can obtain the angle of rotation directly from the components of D from Eq. 11.37,

tan ω = D21 − D12

D11 + D22
(12.33)

and with this angle we can evaluate the elements of both R and RT .
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Problem

• Determine the left-stretch component of the simple shear deformation

D =
[

1 0
1 1

]
.

Solution

1. From Eq. 12.33, tan ω = 0.5 or ω = 26.5651◦ and we can then form the matrix
for RT

RT =
[

0.8944 0.4472
−0.4472 0.8944

]
.

2. Using this in Eq. 12.32 gives

S = DRT =
[

1 0
1 1

] [
0.8944 0.4472

−0.4472 0.8944

]
.

3. Performing the multiplication yields

S =
[

0.8944 0.4472
0.4472 1.3416

]
. (12.34)

We can construct the Mohr Circle for the left-stretch tensor S from the components of
its matrix representation.

Problem

• Draw the Mohr Circle for S of Eq. 12.34 and find the principal stretches and their
orientation.

Procedure

1. Draw a pair of coordinate axes and label the horizontal axis S11, S22 and the vertical
axis S12 = S21.

2. Using the convention of Fig. 12.26b, plot the two points

p1(S11, −S21) = (0.8944, −0.4472) and p2(S22, S12) = (1.3416, 0.4472)

using a convenient scale (Fig. 12.11).
3. The intersection of the diameter p1p2 and the horizontal axis locates the center C and

the circle can then be completed with Cp1 = Cp2 as radius.
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Figure 12.28 Mohr Circle for S
by direct plot.
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S11,S22

S12 = S21

2φ

Answer

• The angle between the x2 and the S1 direction is 2φ = 64◦ on the Mohr Circle plane
or φ = 32◦ on the physical plane and this gives the orientation of S1 in the deformed
state.

From this diagram we can also derive expressions for the principal stretches. Distance
c along the horizontal axis to the center of the circle and radius r of the circle are given by

c = 1
2(S11 + S22) and r = 1

2

√
(S11 + S22)2 + (S12 + S21)2.

Then

S1 = c + r and S3 = c − r.

In three dimensions we can not so easily form the rotation tensor R so this method for
finding S from D by first forming R−1 does not work in three dimensions. There is an
alternative approach which also leads to several important insights.

To solve for S by this more general method, post-multiply each side by its transpose
and apply the reversal rule whereby the transpose of a product is equal to the product of
transposes in reverse order

DDT = SR(SR)T = SRRT ST . (12.35)

Because RRT = 1 the rotations cancel leaving SST . By symmetry S = ST so

S2 = DDT , (12.36)

where S2 is the left Cauchy–Green tensor (Truesdell, 1991, p. 112). Geometrically DT

produces the same ellipse as D but rotates the principal axes from the deformed state
back to the undeformed state. Pre-multiplying (that is, multiplying from the left) by D
then rotates these principal axes back again to the deformed state and at the same time
produces an ellipse whose principal axes are the squares of the principal stretches S2

1
and S2

3 . This eliminates the rotation and S2 is symmetric. From S2 we can then find S
graphically.
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Problem 2

• Determine the components of left-stretch tensor S directly from the simple shear defor-
mation tensor

D =
[

1 0
1 1

]
.

Procedure

1. Form the product

S2 = DDT =
[

1 0
1 1

] [
1 1
0 1

]
=
[

1 1
1 2

]
.

2. As before, plot the points p1(1, −1) and p2(2, 1) and complete the Mohr Circle for
S2 (Fig. 12.29).

3. The principal values S2
1 = 2.62 and S2

3 = 0.38 are represented by the intercepts on
the horizontal axis.

4. Taking the square roots gives S1 = 1.62 and S3 = 0.62. With these construct the
Mohr Circle for S.

5. On this smaller S circle draw a diameter parallel to the diameter p1p2 on the larger
S2 circle. The coordinates of these two points give the components of S.

Answer

• The coordinates are p1(0.89, −0.45) and p2(1.34, 0.45). Therefore the matrix repre-
sentation of S is (compare Eq. 12.34)

S =
[

0.89 0.45
0.45 1.34

]
.

With S we can now find R. Pre-multiplying both sides of Eq. 12.24 by S−1 gives

S−1D = S−1SR.

Because S−1S = 1 we have

R = S−1D. (12.37)

All the results obtained so far are part of the material description of a deformation,
that is, the independent variables are the material coordinates. In geological applications
we must deal with the deformed state, that is, with the spatial coordinates as independent
variables.
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Figure 12.29 Mohr Circle for S2
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The pair of affine transformation equations which relate the particle at spatial point
p(x1, x2) back to its initial location at P(X1, X2) is

X1 = d11x1 + d12x2 − T1,

X2 = d21x1 + d22x2 − T2.

The coefficients d11, d12, d21 and d22 describe the rotation and stretch required to restore
the initial configuration, and constants −T1 and −T2 describe the reverse translation. In
matrix form these two become[

X1

X2

]
=
[
d11 d12

d21 d22

] [
x1

x2

]
−
[
T1

T2

]
. (12.38)

This constitutes the spatial description of a homogeneous deformation and the essential
part of this description of the reverse transformation is the square matrix representing
the inverse deformation tensor

D−1 = d =
[
d11 d12

d21 d22

]
.

Just as before, we can decompose d into the product of a reverse rotation and an inverse
stretch. The first step involves forming the inverse of both sides of Eq. 12.24 to give

D−1 = (SR)−1.

Applying another version of the reversal rule whereby the inverse of the product of two
matrices is the product of inverses in reverse order we then have

D−1 = R−1S−1.
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This makes sense because if we take two steps forward and then back-up we must reverse
the second step first. We may also write this as

d = rs, (12.39)

where r = R−1 and s = S−1.
As in the previous example, we first determine the inverse stretch tensor graphically

with the aid of a Mohr Circle construction.

Problem

• Using Eq. 12.36, determine the inverse stretch component of the inverse simple shear
deformation

d =
[

1 0
−1 1

]
.

Procedure

1. With the same method used in Fig. 12.27, plot the points P1(1, 1) and P2(1, 0). With
C at the midpoint of P1P2 complete the off-axis circle (Fig. 12.30a).

2. Just as before there are two ways of drawing the circle for s. Either draw a second set
of axes with the s11, s22 axis through the center of this circle or rotate the circle to the
horizontal axis (Fig. 12.30b).

Answer

• The principal inverse stretches are s1 = 1.62 and s3 = 0.62 and the s1 direction makes
angle 2φ = 58◦ with the x1 axis.

O

(a)

O

(b)

P1

P2

s1

s3

s1s3

2φ 2φ

ω

P1

P2

d12,d21

d11,d22

s11,s22

s12=s21

Figure 12.30 Mohr Circles: (a) inverse deformation tensor d; (b) inverse stretch tensor s.

Note that the circles for d and s have the same radii as the circles for D and S. This
special case arises because there is no area change in simple shear. For more general
types of deformation these circles will differ in size.
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There is one more strain tensor which is of special interest. Just as in the case of
D we may also determine the inverse stretch tensor s directly from d. To do this, first
pre-multiply both sides of Eq. 12.39 by its transform:

dT d = (rs)T rs.

With the reversal rule

dT d = sT rT rs.

With rT r = 1 and sT s = s2 we have

s2 = dT d. (12.40)

Geometrically, the d rotates the axes from the deformed state back again to the initial
state. This is followed by dT which rotates the axes back to the deformed state.

Although it will not be obvious, s2 is just the finite strain tensor which is the main
subject of this chapter. So

s2 =
[
λ′

xx γ ′
xy

γ ′
yx λ′

yy

]
.

x2

x1

(a)

φ1

φ2

p2

p1
λ�

γ'

(b)

p2(1,-1)

p1(2,1)

ψ1

ψ2

2φ1

2φ2

T2

S2

T1

S1

O
C

Figure 12.31 Finite strain tensor: (a) simple shear ellipse; (b) corresponding Mohr Circle.

A comparison of a carefully drawn and scaled ellipse and the corresponding Mohr
Circle will demonstrate this fact using the simple shear deformation ψ = 45◦ and the
tensor

s2 = dT d =
[

1 −1
0 1

] [
1 0

−1 1

]
=
[

2 −1
−1 1

]
.
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1. Strain ellipse (Fig. 12.31a):
(a) The magnitude of the radius vector in the x1 direction is 0.72 and in the x2 direction

it is 1.00.
(b) The principal stretches are S1 = 1.62 and S2 = 0.62.
(c) The S1 direction makes angle φ1 = 58◦ with the x1 axis and φ2 = 32◦ with the

x2 axis.
(d) The angle tangent T1 at point p1 makes with the x2 axis is the angle of shear

ψ = 27◦ and the angle tangent T2 at point p2 makes with the x1 axis is the angle
of shear ψ = 45◦.

2. Mohr Circle (Fig. 12.31b):
(a) On a set of λ′γ ′ axes plot points p1(2, 1) and p2(1, −1) using the convention of

Fig. 12.26b.
(b) Line p1p2 is a diameter of the circle with center at C. The intercepts of the circle

represent the values of λ′
1 = 0.38 (S1 = 2.62) and λ′

2 = 2.62 (S2 = 0.62) (not
labeled in the figure).

(c) From the diagonal elements in the matrix representation of the tensor, the value
of λ′ associated with the x1 axis is 2.0000 and with the x2 axis is 1.0000. The
corresponding stretches are 1/

√
2 = 0.7071 and 1.0000.

(d) The λ′
1 direction makes angles 2φ1 = 116◦ and 2φ2 = 64◦ with the x1 and x2

axes.
(e) The slope angles of lines Op1 and Op2 are the angles of shear ψ1 = 27◦ and

ψ2 = 45◦ associated with each coordinate axis.

The underlying reason for the closeness of the strain ellipse and the Mohr Circle for
finite strain is the fact that the elements of the tensor are simply the coefficients in the
equation of the ellipse. The Mohr Circle is just a graphical way of describing the way
the coefficients in the equation of an ellipse vary under transforming the axes.

The equation of an ellipse centered at the origin has two forms. For the case where the
ellipse axes coincide with the coordinate axes it is

x2

a2
+ y2

b2
= 1,

where a = S1 and b = S2 are the lengths of the semi-axes. With the definition of λ′ this
may also be written as

λ′
1x

2 + λ′
2y

2 = 1.

This can be written in the form of the matrix equation

[
x y

] [λ′
1 0

0 λ′
2

] [
x

y

]
= 1.
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We then see that the square matrix is just the finite strain tensor in diagonal form. Similarly,
the equation of the general ellipse centered at the origin is

Ax2 + 2Bxy + Cy2 = 1.

This too can be written as a matrix equation

[
x y

] [A B

B C

] [
x

y

]
= 1.

Here, the square matrix of coefficients is just the finite strain tensor in its general form.
Hence [

A B

B C

]
=
[
λ′

xx γ ′
xy

γ ′
yx λ′

yy

]
.

Because s2 is symmetric, γ ′
xy = γ ′

yx and we can write the general equation of the strain
ellipse as

λ′
xxx

′2 + 2γ ′
xyx

′y′ + λ′
yyy

′2 = 1.

With the matrix representation of this tensor, we can also easily find an expression for
λ′. We first show how to do this using the diagonal form. In this case, the input is a radius
vector of the strain ellipse. The direction cosines of this vector are (cos φ′, sin φ′), where
φ′ is measured from the λ′ axis. Then[

λ′
1 0

0 λ′
3

] [
cos φ′
sin φ′

]
=
[
λ′

1 cos φ′
λ′

3 sin φ′
]

. (12.41)

This output vector is normal to the tangent through point P ′ on the ellipse. The expression
for λ′ is obtained by forming the dot product of this normal vector n and the unit vector
(cos φ′, sin φ′) giving

λ′ = [cos φ′ sin φ′] [λ′
1 cos φ′

λ′
2 sin φ′

]
= λ′

1 cos2 φ′ + λ′
2 sin2 φ′. (12.42)

This is the projection of the normal vector onto the unit vector in the direction of the
radius vector. This is identical to the result of Eq. 12.11 obtained algebraically.

In a similar way, we can also obtain an expression for λ′ from the full matrix represent-
ing the finite strain tensor. Here the direction cosines of the unit vector are (cos θ ′, sin θ ′),
where θ ′ is measured from the x axis.

λ′ = [cos θ ′ sin θ ′] [λ′
xx γ ′

xy

γ ′
yx λ′

yy

] [
cos θ ′
sin θ ′

]
.
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Performing the multiplications and using the equality γ ′
xy = γ ′

yx yields

λ = λ′
xx cos2 θ ′ + 2γ ′

xy cos θ ′ sin θ ′ + λ′
yy sin2 θ ′. (12.43)

The angle between the unit vector n normal to the tangent at P ′ and the unit radius
vector r in the direction OP ′ is the angle of shear ψ , and is obtained by the dot product
n · r. Then the expression for the associated shear strain γ ′ can be obtained in exactly
the same way used to obtain Eq. 12.16.

12.12 Exercises

1. Using the circle and ellipse of Fig. 12.32, graphically determine the stretch S and the
angle of shear ψ associated with a radius making an angle of φ′ = +30◦ with the
major axis. Check your result with a Mohr Circle construction.

Figure 12.32

2. Using the collection of deformed two-dimensional pebbles of Fig. 2., estimate the
orientation and shape of the strain ellipse.

1
2 3

4 5

6789

Figure 12.33
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3. Using the collection of deformed brachiopods of Fig. 12.34, estimate the orientation
and shape of the strain ellipse using Wellman’s method.

1
2

3
4

5 6

7
8

Figure 12.34

4. With a Mohr Circle construction determine the orientation and shape of the strain
ellipse from the two deformed brachiopods of Fig. 12.35.

Figure 12.35

5. With a Mohr Circle construction determine the orientation and shape of the strain
ellipse from the deformed shard in of Fig. 12.36.

Figure 12.36
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6. Determine the stretch of the single boudin shown in Fig. 12.37 and Table 12.1 using
the methods of Ramsay, Hossain and Fergusson.

G1 G2 G3F1 F2 F3 F4

Figure 12.37

Table 12.1

F G

1 12 mm 10 mm
2 18 mm 16 mm
3 22 mm 8 mm
4 14 mm

7. Three stakes were placed on the surface of a glacier to form an equilateral triangle
10 m on a side (Fig. 12.38a).After one year the positions of the stakes were resurveyed
(Fig. 12.38b). Determine the strain which accumulated over this time span.

A B

C

A'

B'

C'

N N

5 mm = 1 m
scale

(a) (b)

Figure 12.38



13
Flow

13.1 Introduction

As we have seen in Chapter 11, the study of deformation is concerned solely with a
comparison of a body of rock in its initial and final configurations: the translation com-
pares the initial and final places, the rotation compares the initial and final orientations,
and the stretch compares the initial and final shapes and sizes (see Fig. 11.2). No consider-
ation is given to intermediate configurations or to a particular sequence of configurations
(Mase, 1970, p. 77).

However, the motion or flow1 by which a particular deformed state is attained is also of
considerable interest if we are to understand the processes involved in the formation of
geological structures. Kinematics is the branch of mechanics concerned with the motion
of bodies without regard to any associated forces.

In this chapter we first treat the basic elements of a kinematic analysis by describing
the measured velocity field in a tectonically active area and the information that can be
derived from it. Second, we consider an approach to the more difficult problem of under-
standing the flow responsible for old structures. Third, by considering the progressive
geometrical evolution of structures we can gain some insight into the geometrical nature
of geological flow patterns. Finally, after treating some important theoretical matters, we
use these results to consider briefly an alternative approach to estimating the time rates
of deformation.

13.2 Active tectonics

The San Andreas Fault zone of California is one of the most heavily instrumented active
structures in the world. For about three decades the velocities of many points through-

1Flow, like deformation, is a continuum concept. Thus we may speak of fluid flow, ash flow, debris flow, etc. as long as
an appropriate scale is used (see §11.2).

346
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out the zone have been measured using a number of geodetic methods. Since 1986 the
preferred approach is the use of the Global Positioning System (GPS). In addition, an
extensive network of seismometers is in place. All the data collected by these systems
are telemetered to the Scripps Institute of the University of California at San Diego.
Figure 13.1 is the resulting velocity map for the southern part of the system.2 As this
map shows the fault zone is several hundreds of kilometers wide and the velocity vec-
tors are essentially parallel. Therefore, to a good approximation, the overall motion is
inhomogeneous simple shear flow.

50 mm/year

36˚N

34˚N

32˚N

120˚W 118˚W 116˚W

32˚N

34˚N

36˚N

116˚W 114˚W118˚W120˚W

profile

Figure 13.1 Velocity map of the southern San Andreas Fault zone.

A better appreciation of the velocity distribution can be obtained from a profile across
the zone. Figure 13.2 shows such a profile perpendicular to the trend of the vectors along
a line just north of the Salton Sea. Table 13.1 gives the data used to construct this profile.

From the velocity profile, we can determine the velocity gradient for the segments
between adjacent observation points. Because the profile is approximately linear between
Stations 3 and 8 (see Fig. 13.3), and because this also represents the bulk of the velocity
variation across the zone, we calculate the average gradient over this interval. This will

2For additional details see http://www.scecdc.scec.org/

http://www.scecdc.scec.org/
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Figure 13.2 Velocity profile across San Andreas Fault zone.

Table 13.1 Velocity profile data

Station 1 2 3 4 5 6 7 8 9
Distance (km) 6.12 61.22 82.65 102.56 123.98 134.70 140.82 156.12 229.60
Velocity (mm/year) 35.5 34.2 32.9 28.9 18.4 17.1 13.2 6.6 0

give us a feeling for magnitude of the overall velocity gradient. From Table 13.1

�d = 156.12 − 82.65 = 73.47 km and �v = 32.9 − 6.6 = 26.3 mm/year.

To proceed we make two adjustments:

1. We need a common measure of length. Any unit will do, but because the velocities
are expressed in millimeters we will adopt this for the distances too.

2. The second is the SI unit of time. For our purposes there are approximately 3.16×107 s
in a year and we will use this figure.3,4

We then have

�d = (73.5 km)(106 mm/km) = 7.35 × 107 mm.

�v = (26.3 mm/year)/(3.16 × 107 s/year) = 8.32 × 10−6 mm/s.

Thus the average velocity gradient in this segment is

�v

�d
= 8.32 × 10−6 mm/s

7.35 × 107 mm
= 1.13 × 10−13 /s.

3There are several different measures of the length of a year. One with 365 days is perhaps the most common, but strictly
speaking, the tropical year (the time between successive spring equinoxes) is a more accurate measure. Its length is
365.242 199 days or 31 556 925.9936 s.

4For measuring geological time, however, the recommendations of the North American Stratigraphic Code (A.A.P.G.
Bulletin, v. 67, p. 841–875) are commonly used: kilo-annum (1 ka = 103 years), mega-annum (1 Ma = 106 years) and
giga-annum (1 Ga = 109 years).
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This gradient also expresses the time rate of change of the shear strain γ or

�v

�d
= �γ

�t
.

As we will see in §13.5, the magnitudes of the time rates of the principal extensions in
simple shear are exactly half this, that is,

�e1

�t
= +5.65 × 10−14/s and

�e3

�t
= −5.65 × 10−14/s.

Figure 13.3 Velocity gradient
calculation.

3

4

5 6

7

8

∆v

∆d

The seismogenic zone of the San Andreas Fault system extends to a depth of about
15 km. Below this there must to a ductile shear zone with essentially the same overall
geometry and distribution of strain rates.

Besides measuring the motion associated with active fault zones, the GPS technology
can also be used to study the motion in areas of other types of active tectonics, including
the motions at plate boundaries and the uplift of orogenic belts.5

13.3 Ancient tectonics

Even though they are restricted to the earth’s surface, the study of the actual motion in
tectonically active areas gives important clues about the movements responsible for some
of the ancient structures we see in crustal rocks. Unfortunately, there is still the necessity
of trying to obtain additional information from a study of the rocks themselves, especially
as they bear on structures which formed at depth in the geological past. This is a very
difficult task, but there is one promising approach. During synkinematic metamorphism
some evidence of the patterns of flow may be preserved in the newly formed mineral
grains, and in certain circumstances these features may be dated radiometrically.

An example of such features is the preservation of the history of rotation in porphy-
roblasts. Garnet grains in schists which commonly display a double spiral of inclusions

5For more details see http://www.unavco.ucar.edu/

http://www.unavco.ucar.edu/
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are called snow-ball garnets (Rosenfeld, 1970; Passchier & Trouw, 1996, p. 176–182).6

Christensen, et al. (1989) have measured the radial variation in the 87Sr/86Sr ratio in a
large garnet porphyroblast from the Appalachian Mountain belt of Vermont. From these
dates the time interval during which the garnet grew and rotated was found, and it was

�t = (10.5 × 106 years)(3.16 × 107) = 3.32 × 1014 s.

In this single crystal a sigmoidal spiral of inclusions records a rotation of about 4 rad or
230◦ (Fig. 13.4). Thus the average rate of rotation was

�ω

�t
= 4 rad

3.32 × 1014 s
= 1.20 × 10−14 rad/s.

Assuming simple shear flow, the rate of the shear strain is exactly twice this value or

�γ

�t
= 2.40 × 10−14/s.

Figure 13.4 Snow-ball garnet
porphyroblast (after
Christensen, et al., 1989): the
internal schistosity Si at the
center of the grain has been
rotated 230◦ relative to the
external schistosity Se.

10 mm

Se

Si

13.4 Progressive deformation

Unfortunately, for most old structures any such time rates are inaccessible to us. We
can, however, obtain some important information about the geometrical evolution from
a detailed examination of minor structures.

Card-deck models are an especially useful aid to visualizing some of the purely geo-
metrical changes which lead to a final deformed state. An easy and instructive way to
appreciate this evolution is to perform the basic circle-to-ellipse experiment by shearing
the deck through a series of small increments and watching the geometrical changes as
they occur (see Fig. 13.5).

6We note that the rotation of such porphyroblasts is currently being hotly debated. Kraus and Williams (2001) give a good
review.
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(a) (b)

S1 S3
S1

S3

φ3

φ1

φ�1

φ�3

Figure 13.5 Two stages in progressive simple shear: (a) ψ = 0; (b) ψ = 45◦.

A particularly important observation to make during these experiments is the fact that
the material lines which mark the axes of the evolving strain ellipse constantly change.
This can be easily checked by marking the axes at some intermediate stage (Fig. 13.5b).
In the next increment of shear these lines will not mark the axes of the next ellipse. Such
flow is non-coaxial in nature.

To better appreciate this geometrical evolution, it is useful to plot the changing orienta-
tions of these principal axes as a function of the increasing angle of shear ψ . Figure 13.6a
is such a graph where the orientation of S1 is given by the angle φ′

1 measured anticlock-
wise and the orientation of S3 is given by the angle φ′

3 measured clockwise from the
shear direction.

At small values of ψ the orientation of the ellipse axes is difficult to determine visually
with any accuracy. In particular, it may not be readily apparent that both the S1 and S3

axes initially make angles of φ = ±45◦ with the shear direction (Fig. 13.5a).
An additional way of tracking this evolution is to graph the changing values of S1 and

S3 and their ratio Rs . This clearly indicates how the shape of the strain ellipse evolves
in progressive simple shear (Fig. 13.6b).

Rs
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Figure 13.6 History of principal stretches: (a) orientations; (b) magnitudes.

A graph with S1 plotted against S3 is an especially useful aid in visualizing the inter-
mediate stages through which the evolving strain ellipses pass (Fig. 13.7). The initial
reference circle is represented by the point (S1, S3) = (1, 1). As the strain progressively
departs from this circle, the evolving ellipses plot on a curve. This curve depicts the
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Figure 13.7 Ellipse graph and
constant area strain path.

0 1.0 2.0 3.0
0

1.0
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1.50.5 2.5
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geometrical evolution and is called the strain path. For constant area ellipses, including
those resulting from simple shear, the path lies along the hyperbola S1 = 1/S3. This
� = 0 path bounds the field of area increase (� > 0) above and the field of area decrease
(� < 0) below.

Figure 13.8 Deformation path.ω

O

S3

S1

pure shear

simple shear

A more complete history includes the rotation as well as the strain and this can be
depicted on a three-dimensional graph (Fig. 13.8). By including the rotation, a curve on
this graph represents the deformation path for two-dimensional deformations. Paths for
constant area ellipses lie on a vertical cylindrical surface through the hyperbolic curve
S1 = 1/S3. The constant area path which lies in the plane of ω = 0 defines the special
irrotational deformation pure shear. The simple shear path (ω 	= 0) also lies on this
cylindrical surface.

It should then be clear that there are many other possible deformation paths which
satisfy the constant area condition and which therefore lie on this surface.

The history of the stretch associated with particular lines is also of interest. From
Fig. 11.11, the initial and final lengths of a line are given by

l = 1/ sin θ and l′ = 1/ sin θ ′.
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With these we then have an expression for the stretch associated with any such line in
terms of its initial and final orientations

S = l/ l′ = sin θ/ sin θ ′. (13.1)

0 10 20 30 40 50 60 70
0

1

2

3

ψ

S

(a) (b)

40

130

θ = 130

θ = 40

Figure 13.9 Two typical stretch histories of material lines.

Passive material lines have two distinct types of stretch histories and both can be
observed in a card-deck model (Fig. 13.9). If the initial orientation angle θ ≤ 90◦ then
the stretch history is one of continuous lengthening (see the θ = 40◦ curve). On the other
hand, if the initial orientation angle θ > 90◦ the line has a more complex stretch history
involving three stages (see the θ = 130◦ curve).

1. At first the line shortens (S < 1).
2. When θ ′ = 90◦ the stretch has its minimum value S = Smin. Thereafter the line

lengthens.

(a) The minimum stretch is found by substituting θ ′ = 90◦ into Eq. 13.1 giving

Smin = sin θ. (13.2)

(b) The shear required for this minimum is given by the condition cot θ ′ = 0. With
this in Eq. 11.20

γ = − cot θ = −1/ tan θ. (13.3)

The minus sign is needed because if θ > 90◦, then tan θ < 0.
(c) For example, if θ = 130◦, Smin = 0.77 and this occurs when ψ = 40◦.
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3. As the line continues to lengthen, it passes through the point whereS = 1 and thereafter
its length is greater than its initial length S > 1. This cross-over point occurs when γ

has exactly twice the value given in Eq. 13.3 or

γ = −2 cot θ = −2/ tan θ. (13.4)

In the example, the cross-over point occurs at ψ = 59.2◦.

In the circle-to-ellipse card-deck experiment, the resulting ellipse comprises the macro-
scopic view (see §11.2). A similar situation is common in naturally deformed rocks. If a
material line in the S1 direction is marked by a thin layer of contrasting material, such
as a thin quartz vein, then it will likely be elongated inhomogeneously with the devel-
opment of micro-boudins. Similarly, such a contrasting material line in the S3 direction
will likely be inhomogeneously shortened with the development of micro-folds. These
minor structures comprise the microscopic view.

These several types of behaviors during progressive simple shear can be clarified by
subdividing the original circle (Fig. 13.10a) and the resulting ellipse (Fig. 13.10b) into
four pairs of sectors or zones each with a characteristic type of history (Ramsay, 1967,
p. 120).

1. Zone 1 contains the S1 direction and all lines within this zone increase in length
throughout their history. Its boundaries are the two lines of NFLS. This zone is further
subdivided into two subzones by the condition θ = 90◦.

(a) Subzone 1a contains lines with a history of continuous lengthening. Thin competent
bands lying in this sector are stretched, possibly with the development of micro-
boudins.

(b) Subzone 1b contains lines which are initially shortened and then lengthened. Early
formed micro-folds may be later stretched, with the possible development of micro-
boudins on the fold limbs.

2. Zone 2, like Subzone 1b, contains lines with a history of shortening followed by
lengthening, but all lines still exhibit a finite shortening. Early micro-folds may be
partially disrupted.

3. Zone 3 contains the S3 direction and all lines within this sector have a history of
continuous shortening. Ptygmatic micro-folds are found within this zone.

Pure shear flow

In contrast, progressive pure shear is an example of a constant-area deformation which
is irrotational. During the motion which produces this state, the same material lines mark
the axes of the evolving ellipse at every stage and this is coaxial flow. Pure shear can
not be modeled so easily but an approximation can be achieved by squeezing a slab of
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Figure 13.10 Zones in progressive simple shear: (a) before deformation; (b) after deformation.

plasticine in a vise while constraining the top and bottom to prevent thickening. Even
without a physical model, however, the distributions of the zones and their histories are
simple enough to be readily appreciated. As shown in Fig. 13.11 all the same zones are
present and they have the same characteristics (Ramsay, 1967, p. 119). The important
difference is their symmetric distribution with respect to the ellipse axes.
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Figure 13.11 Zones in progressive pure shear: (a) before deformation; (b) after deformation.

At the macroscopic scale, every ellipsoid has three planes of symmetry and thus dis-
plays orthorhombic symmetry. This includes ellipsoids formed by simple shear, pure
shear or any other pattern of flow. These planes of two-fold symmetry are the planes of
S1S2, S2S3 and S1S3.

Ellipsoids formed by pure shear progressive deformation retain this orthorhombic
symmetry at both the microscopic and macroscopic levels. In contrast, during progressive
simple shear the microscopic changes reduced the overall symmetry to monoclinic. Even
more complicated three-dimensional histories may result in triclinic symmetry.

The histories, and therefore the distributions of the microstructures, are path dependent.
In particular, different rotational histories may give markedly different zonal arrange-
ments and thus also different symmetries. On this basis, coaxial and non-coaxial flow
patterns may be distinguished. Ramsay (1967, p. 114–120) gives an extended discussion,
together with excellent photographs of the microstructures which may be associated with
these several behaviors.
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13.5 Kinematics

The motion of a body at an instant in time is described by its associated velocity field ,
another example of a vector field. In the present context, the term flow carries the conno-
tation of a continuing motion leading to a deformation. There are two ways of describing
such a motion.7

1. In the material view each particle is labeled with its coordinates (X1, X2) at some
initial time. As a particle moves along its pathline, the coordinates and the history of
the velocity are traced as time passes.

2. The spatial view focuses attention on particular points in the body of material as
given by its coordinates (x1, x2).8 This description specifies the motion at each of
these points as a function of time. The flow may be steady, that is, the velocities at
the spatial points do not change with time, otherwise it is unsteady.

Because it is based on the positions of monuments or other markers repeatedly surveyed
over time, the San Andreas Fault zone velocity map (Fig. 13.1) and the data on which it
is based constitute a material description.

For ancient flows we have no way of obtaining such data. If we are to understand
something of the flow patterns responsible for ancient structures we must use the spatial
description.

First we must face the vexing matter of whether such flows are steady, even approx-
imately, or not. No geological flow can literally be steady over its entire duration – the
motion must, of course, begin and end. However, some flows may closely approximate
a steady state for extended periods. The deep shear zone of the San Andreas Fault is a
likely example.

Even if the flow is steady, however, the conditions along a pathline will generally not
be steady because a particle is constantly being conveyed into a region with a different
velocity. Simple shear flow is an exception because the pathlines are parallel to the
direction of shear, which is a direction of constant velocity.

On the other hand, many important classes of natural flows are intrinsically unsteady.
For example, folding of physically heterogeneous rock bodies with their evolving struc-
tural geometries is unlikely to be even approximately steady. For such unsteady con-
ditions, pathline histories will be unsteady both because the pathlines themselves are
generally unsteady and because the flow field in this case is itself unsteady.

There are other factors which contribute to unsteady pathlines. Steady flow implies a
constant state of stress in combination with constant environmental conditions. However,
these condition in general, and pressure P and temperature T in particular, commonly

7The terms “Lagrangian” and “Eulerian” are commonly used for material and spatial in kinematics (see also Footnote 1,
Chapter 11).

8These labels for the material and spatial coordinates differ from those used in Chapter 11, but these are in common usage
in continuum mechanics, especially kinematics (Mase, 1970, p. 110).
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do not remain constant over time, and the effects of any variations can be measured in
metamorphic rocks. The methods, collectively referred to as geothermobarometry, are
based on the fact that equilibrium mineral assemblages and their chemical compositions
depend primarily on the P-T conditions which existed at the time they formed. Once
calibrated with experiments, these chemical details can then be used to calculate P or T
or both (Spear, 1993). Further, zoned minerals can yield conditions at several points on
a rock’s P-T path. If the appropriate minerals are present radiometric dates may also be
obtained, yielding P-T-time paths and these have been widely used to track the history
of large-scaled movements in orogenic systems.9

The resistance of solids to flow is particularly sensitive to the temperature. Therefore
the rate of flow can be expected to increase as a material element moves into a region of
higher temperature, and conversely, other things remaining equal.

These are some of the reasons that trying to recover pathline histories is such a problem.
In the face of these difficulties a common approach is to assume the pathline histories
are close enough to being steady that the results have some application. With the present
state of knowledge, this may in fact be the only way to proceed, but unfortunately its
validity is open to question. More definite answers lie in the future and probably will be
based on careful modeling of specific flow environments.

Our task now is to describe the consequences of the motion associated with particle
P currently at spatial point p. The velocity of this particle is just the rate of change of
position with time, that is,

ẋ1 = v1 and ẋ2 = v2

and at any instant in a deforming body is described by the matrix equation (Means, 1990,
p. 955)

[
v1

v2

]
=
[
L11 L12

L21 L22

] [
x1

x2

]
+
[
Ṫ1

Ṫ2

]
, (13.5)

where (v1, v2) are the components of the instantaneous velocity associated with the
moving particle and (Ṫ1, Ṫ2) are the components of the rate of translation.10

The elements of the square matrix are the rate of deformation tensor L for a small
volume of material in the vicinity of the particle. The meaning of the Lij can seen by
considering the velocities associated with moving particles P at p(x1, x2) and Q at
q(x1 + dx1, x2 + dx2) (Fig. 13.12a). The velocity of particle Q at q relative to particle
P at p is given by the vector dv (Fig. 13.12b). We can express the components of dv

9Triboulet and Audren (1988) give a good example of just how complicated the P-T history can be.
10The dots denote the derivative with respect to time.
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in terms of the distance between the two points and the rates of change of dv in each
coordinate directions (Fig. 13.12c). Thus we have

dv1 = ∂v1

∂x1
dx1 + ∂v1

∂x2
dx2,

dv2 = ∂v2

∂x1
dx2 + ∂v2

∂x2
dx2.

We can write these as the matrix equation[
dv1

dv2

]
=
[
∂v1/∂x1 ∂v1/∂x2

∂v2/∂x1 ∂v2/∂x2

] [
dx1

dx2

]
. (13.6)

The square matrix represents the velocity-gradient tensor and it relates the instantaneous
relative velocity vector of a particle to the position vector of the spatial point which the
particle occupies at that instant. We then have two alternative ways of expressing the
components of this tensor.[

L11 L12

L21 L22

]
≡
[
∂v1/∂x1 ∂v1/∂x2

∂v2/∂x1 ∂v2/∂x2

]
.

p

q

v + dv

v p

q

v +
 dv

v

dv dv

(a) (b) (c)

dv1

dx1

dx2

dv2

P

Q

dX dx

Figure 13.12 Velocity vectors: (a) two adjacent particles; (b) relative velocity vector dv; (c) velocity
gradients.

Again, because it has no effect on the geometry of the deforming body, we neglect the
translation rate, and as a result (v1, v2) are now the components of the relative velocity.
Equation 13.5 now becomes [

v1

v2

]
=
[
L11 L12

L21 L22

] [
x1

x2

]
. (13.7)

With this expression, we can determine the components of the instantaneous velocity at
any point within the homogeneously deforming body. It is particularly easy to find these
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velocity components at the points (1, 0) and (0, 1) because they are given directly by the
elements of the two columns (see also Fig. 13.13a)

[
v1

v2

]
=
[
L11 L12

L21 L22

] [
1
0

]
=
[
L11

L21

]
and

[
v1

v2

]
=
[
L11 L12

L21 L22

] [
0
1

]
=
[
L12

L22

]
.

This is illustrated for sample shear flow in Fig. 13.14a and for pure shear flow in
Fig. 13.14b.

L11

L21 L22

L12L11

L22

L12

(a) (b)

L21

Figure 13.13 Plotting convention: (a) physical plane; (b) Mohr Circle plane.

Every moving particle in the homogeneously deforming body has associated with it
such a relative velocity vector and collectively these constitute the relative velocity field .

x1

x2

x1

x2

P1(1,0)

P2(0,1)

(a) (b)

P1(1,0)

P2(0,1)

v1 = (γ,0)

v2 = (0,0)

.
v1 = (e,0)

.
v2 = (− e,0)

.

Figure 13.14 Velocity vectors: (a) simple shear; (b) pure shear.

At any point currently occupied by a particle the motion may be decomposed into
a translating motion, a rotating motion and a stretching motion (Truesdell & Toupin,
1960, p. 362). Note carefully the form of these terms: following the sensible suggestion
by Means (1990, p. 954) kinematic terms, which refer to instantaneous or continuing
motion, are identified with the suffix -ing in order to clearly distinguish them from the
closely related terms employed to describe the components of deformation.

This tensor describes several related behaviors associated with material lines during
flow. The first is the rate of extension ė = de/dt (where e = dl/ l and l is the current
length), and it is measured in dimensionless units of extension per second. The second
is the rate of rotation ω̇ = dω/dt which is measured in radians per second.
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The principal extension rates are ė1 and ė3, and directions in which these occur are the
principal stretching axes. The rate of area strain �̇ is related to the principal extension
rates by

�̇ = ė1 + ė3. (13.8)

The Mohr Circle for the velocity-gradient tensor is plotted using the same convention
as the deformation tensor (Fig. 13.13b). For simple shear flow the tensor is represented
by the matrix

L =
[

0 0
ẇ 0

]
.

Problem

• Draw a Mohr Circle for the following simple shear velocity-gradient tensor

L =
[

0 0
0.1 0

]
.

Construction

1. Draw a pair of axes and label the horizontal axis ė and the vertical axis ω̇.
2. Plot points P1(L11, L21) = (0, 0.1) and P2(L22, L12) = (0, 0) using a convenient

scale (Fig. 13.15a).
3. Locate center C at the midpoint of P1P2 and draw a circle passing through these two

points.
4. The extreme values on the horizontal diameter of this circle represent the directions of

the principal extension rates. The magnitudes of these are ė1 = +0.05 and ė3 = −0.05
per unit of time. The circle is centered on the vertical axis because ė3 = −ė1, and
therefore �̇ = 0.

The coordinates of any point P on the circle which makes angle 2φ with the ė1 direction
represent the instantaneous rate of extension ė and the instantaneous rate of rotation ω̇

associated with the material line making an angle φ with the ė1 direction on the physical
plane.

The points of intersection of the circle with the ω̇ axis represent the lines of no instan-
taneous stretching. In simple shear these occur at 2φ = ±90◦ on the Mohr Circle plane
and φ = ±45◦ on the physical plane measured from the ė1 direction.

Of particular interest is the instantaneous rate at which the two principal axes rotate,
and this is represented by the ω̇ coordinate of the center of the circle. This is the vorticity,
and we give it the special symbol ẇ to distinguish it from the rates of rotation of general
lines. In this example, ẇ = 0.05 radians per unit of time and the sense is positive or
anticlockwise.
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Figure 13.15 Mohr Circles for L: (a) simple shear; (b) pure shear.

The rate of rotation of the axes is just the average rate of rotation of all lines (cf.
Fig. 11.13).

For pure shear flow the velocity-gradient tensor is represented by the diagonal matrix

L =
[
ė1 0
0 ė3

]

where ė3 = −ė1 are the principal extension rates. In this case, and generally if the
vorticity is zero (ẇ = 0), the velocity-gradient matrix is symmetrical.

Problem

• Draw the Mohr Circle for the pure shear velocity-gradient tensor

L =
[+0.05 0

0 −0.05

]
.

Construction

1. On a pair of coordinate axes plot pointsP1(L11, L21) = (+0.05, 0) andP2(L22, L12) =
(0, −0.05) using a convenient scale (Fig. 13.15b).

2. Locate center C at the midpoint of these two points, which in this case is at the origin.
3. These two points also represent the extreme values of ė and are therefore ė1 = +0.05

and ė3 = −0.05. Again, the circle is centered on the vertical axis because the rate of
area strain �̇ = 0.

4. The circle is also centered on the vertical axis because in pure shear flow the vorticity
ẇ = 0.

There is no possibility of recovering the detailed history of L from features preserved
in rocks deformed long ago, but is possible to evaluate the relative importance of the
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vorticity for a deformation path or parts of it with the aid of vorticity gauges (Passchier
& Trouw, 1996, p. 199). To do this it would be helpful to have a way of expressing its
importance in purely geometrical terms. The two-dimensional vorticity number W is just
such a parameter, defined as

W = dV /r,

where dV is the vertical distance from the center to the horizontal axis and r is the radius
of the circle. This dimensionless number gives the importance of the vorticity relative
to the rate of the strain. If W = 0 the flow is coaxial and the strain rate part of the flow
dominates; pure shear flow is an example. Values W > 0 express the degree to which the
flow is non-coaxial. For simple shear flow W = 1. Vorticity numbers W > 1 produce
pulsating strains (Weijermars, 1997), and these require special circumstances which are
probably not common.

Closely related is the dilatancy number. This dimensionless number gives the impor-
tance of the rate of area change relative to the strain rate. It is defined as

D = dH/r,

where dH is the horizontal distance the center is from the vertical axis and r is the radius
of the circle. If D = 0 the rate of area strain is zero.

We can also separate the strain-rate and vorticity parts directly from the velocity-
gradient tensor. To do this we need to form the transpose of a matrix. If matrix A has
components Aij then the components of its transpose AT are

AT
ij = Aji, (13.9)

that is, simply exchange rows and columns. Thus the transpose of L is

LT =
[
L11 L21

L12 L22

]
. (13.10)

The strain-rate tensor ė and vorticity tensor ẇ are then given by

ė = 1
2(L + LT ) and ẇ = 1

2(L − LT ), (13.11)

and then

ė =
[
L11 L12

L21 L22

]
+
[
L11 L21

L12 L22

]
= 1

2

[
2L11 L12 + L21

L21 + L12 2L22

]
. (13.12a)

and

ẇ =
[
L11 L12

L21 L22

]
−
[
L11 L21

L12 L22

]
= 1

2

[
0 L12 − L21

L21 − L12 0

]
. (13.12b)



13.5 Kinematics 363

Then

L = ė + ẇ.

For simple shear

[
0 0
γ̇ 0

]
=
[

0 1
2 γ̇

1
2 γ̇ 0

]
+
[

0 −1
2 γ̇

1
2 γ̇ 0

]
.

The matrix representing ė is symmetric and the matrix representing ẇ is skew-
symmetric.11

In terms of the velocity field, each of these parts has a geometrical interpretation. With
the same approach we have used several times, we can easily determine the relative
velocities at any spatial point: the velocity components associated with point p(1, 0) are
obtained from [

v1

v2

]
=
[

0 0
γ̇ 0

] [
1
0

]
=
[

0
γ̇

]
.

Similarly, the velocity components associated with point P(−1, 0) are obtained from

[
v1

v2

]
=
[

0 0
γ̇ 0

] [−1
0

]
=
[

0
−γ̇

]
.

Thus we have the velocity components for L for simple shear (Fig. 13.16a). In this
same way, the relative velocities associated with ė (Fig. 13.16) and with ẇ (Fig. 13.16c)
can be found.

(a)

x1

x2

γ.

γ
.

P1P2

(b) (c)

x1

x2

x1

x2

Figure 13.16 Velocity vectors for simple shear on the physical plane: (a) L; (b) ė; (c) ẇ.

11Any matrix A is symmetric if, for all elements, Aij = Aji and skew-symmetric if Aij = −Aji .
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At any time t the relationship between the accumulated deformation as given by the
tensor D and the velocity-gradient tensor L may be summarized by the equation (Elliott,
1972, p. 2624)

D =
∫ t

0
L dt.

To determine D for a specific flow geometry, we must solve this system of differential
equations.

As we have seen, the deformation-rate tensor for simple shear flow is

L =
[

0 0
γ̇ 0

]
.

The solution of this problem is particularly simple. Assuming steady flow (constant γ̇ )
integrating each element in turn yields

D =
[

C11 C12

C21 + γ̇ t C22

]

where the Cij are constants of integration; to evaluate these constants we apply the
boundary conditions. At the initial time t = 0 the deformation is represented by the unit
matrix

D =
[

1 0
0 1

]
.

Therefore the constants C11 = C22 = 1 and C12 = C21 = 0 and we then have

D =
[

1 0
γ̇ t 1

]
=
[

1 0
γ 1

]
(13.13)

and this result is identical to Eq. 11.37.
The deformation-rate tensor for pure shear flow is given by the matrix

L =
[
ė 0
0 −ė

]
. (13.14)

This involves two simultaneous differential equations and its solution is more difficult
(see Boyce & DiPrima, 1977, p. 105, 304). The result is that the tensor representing the
total deformation for steady pure shear at any time t is given by

D =
[

exp(ėt) 0
0 exp(−ėt)

]
. (13.15)
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13.6 Deformation rates from structures

One approach to determining the strain rate is to estimate the total time it took the
structure to develop and then to calculate an average rate at which the strain must have
accumulated. Price (1975) has done this for a wide variety of structural environments
(see Fig. 13.17). As an overall view this gives an important perspective but the exercise
is fraught with difficulties.

The problem of dating the formation of structures is severe. The most common
approach is to bracket the time of development by estimating the age of the youngest
deformed strata and the age of the oldest strata which post-date the deformation. The
stratigraphic control for these limiting dates is imprecise at best, and subject to large
errors at worst.

Further, there is little way of evaluating the nature of the motion between these two
bracketing dates. In a simple example the individual folds of a fold train probably develop
serially rather than simultaneously. If so, this means that each component fold formed in
a fraction of the total available time.

Commonly the total strain associated with a fold is measured by the overall horizontal
shortening, but the rate calculated from this shortening is not the strain rate experienced
by the material.At any instant the strain rate varies widely at various places in the material
making up the fold from a maximum to a minimum, which may be zero.

Further, some common structures have quite complicated histories of progressive
deformation. For example, individual buckle folds involve a sequence of three overlap-
ping mechanisms: a preliminary stage of layer-parallel shortening which is a slow process
(A-Folding in Fig. 13.17), the buckling stage itself is relatively rapid (B-Folding) and a
final stage of flattening which is again slow (C-Folding).

A final difficulty is that the averaging process itself has serious problems (Pfiffner
& Ramsay, 1982, p. 312). To show this we model the progressive stretch of a line by
superimposing constant increments of extension �e for each time step �t . We can
calculate the stretch at any time t from

S = (1 + �e)n (n = 0, 1, 2, . . . , N).

The resulting history is shown graphically by the strongly non-linear curve in Fig. 13.18a.
From the total stretch Stotal at the final time N�t we calculate the average rate of extension
as

ėave = Stotal − 1

N�t
.

This average is represented by the slope of the line joining points (0, 1) and (N�t, S).
The average rate can also be read off the graph as the length of the vertical line at

time t = 1 to the sloping line (Fig. 13.18b). Similarly, the actual rate of extension ė is
represented by the vertical distance to the exponential curve. As can be seen ėave is much
greater than ė, thus the averaging approach seriously overestimates the actual strain rate.
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Figure 13.17 Estimated deformation rates (after Price, 1975, p. 574).

In an important contribution Pfiffner and Ramsay (1982) describe an alternative
approach which overcomes some of these difficulties.

A large number of finite strain measurements have been made in a wide variety of
settings (Pfiffner & Ramsay, 1982, Fig.A1). Many of these can be satisfactorily explained
by two-dimensional deformations with volume change. Further, the structural settings
in which many of these strained rocks occur also suggests that the deformations were
essentially two dimensional. Strains as high as γ ≈ 40 have been measured in narrow
shear zones and in mylonites along thrust planes. In less constrained settings, however, the
common strain range is Rs = 1–10, and these can be characterized as moderate. Because
measurements are usually made on objects which are more competent than the enclosing
matrix, for example stretched belemnites, these results are usually minimum values. At
the lower end of this range, strains at which slaty cleavage appears are characterized by
Rs ≈ 2. Below this level, strain is often less easy to detect or measure accurately.

Despite the general difficulty of dating periods of progressive deformation, results
obtained from young fold-thrust belts such as the Alps, where the stratigraphic control
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Figure 13.18 One dimensional deformation: (a) stretch history; (b) details at t = 1.

is much better, appear to show that total strains accumulate in 1–30 million years. A
preponderance of the data suggests a narrower range of 1–5 million years (Pfiffner &
Ramsay, 1982, Fig. B1), and it is possible that significant strains associated with indi-
vidual structures in fold-thrust belts may have accumulated in as short a time as 100 000
years.

Accepting, as a good approximation, that most deformations are essentially two dimen-
sional, it is then likely that the range of associated vorticities, as expressed by the vorticity
number, is W = 0–1. In other words, simple shear flow (Eq. 13.12) and pure shear flow
(Eq. 13.14) bracket most natural deformations.

We can then construct a graph of Rs vs. time for a realistic range of strain rates assum-
ing steady flow which produce the observed total strains (Fig. 13.19). For flows lasting
5×106 years strain rates faster than 10−13/s produce very high total strains, as in mylonite
zones, or take much less time. Rates slower than 10−15/s lead to very small strains. We
can then conclude that for most deformations there is a rather restricted range of strain
rates (see the lower right-hand side of Fig. 13.17 where this range is marked with an
asterisk). For flows lasting 10 × 106 years the conclusions are similar. It is interesting to
note that our calculated rates for the San Andreas Fault zone and the Appalachian garnet
porphyroblast are within this range.

13.7 Exercises

1. Using the data from Table 13.1, calculate the strain rate ė for each of the eight segments
across the San Andreas Fault zone.

2. Draw a circle on a card deck and shear the deck through a series of small increments.
Observe the stages through which simple shear ellipses pass using the ellipse graph
(see Fig. 13.16).
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Figure 13.19 Deformation rates for pure shear ps and simple shear ss (after Pfiffner & Ramsay, 1982).

3. Add two diameters to the initial circle on the deck making angles θ > 90◦ and θ < 90◦
with the shear direction. Again shear the deck through a series of small increments
and observe the histories of the stretch of the two lines (see Fig. 13.9).



14
Folds

14.1 Introduction

A fold is a distortion of a volume of rock material that manifests itself as a bend or nest
of bends in linear or planar elements (Hansen, 1971, p. 8). Many folds involve elements
which were originally planar. Sedimentary bedding is the common example, and this is
an important case because the geometry of the fold then represents an important indicator
of the nature of the deformation. In particular, its features can be correlated with certain
aspects of rotation and stretch. However, folds may also develop from originally curved
elements, and the problem of relating the features to the deformation is much more
severe.

Folding occurs when pre-existing elements are transformed into new curviplanar or
curvilinear configurations, whatever their original state. Thus folding is just an inho-
mogeneous deformation which acts on a body of material containing linear or planar
elements (see Fig. 11.1). It is worth noting, however, that a deformation which produces a
fold in one situation may not in another. Planar or linear elements may be entirely absent
from the rock mass, and therefore there is nothing to mark a fold form. It is also possible
that initially curved elements might become planar or linear, or that the elements may
be so oriented as to remain planar or linear (Ramsay, 1967, p. 473).

In the following sections, a number of relatively simple geometrical properties of
folded surfaces are explored. The methods and terminology follow closely the reviews
by Fleuty (1964, 1987a) and also Ramsay (1967), and Ramsay and Huber (1987). Turner
and Weiss (1963) and Hansen (1971) give many additional details.

14.2 Single surfaces

Naturally occurring curviplanar surfaces have a wide variety of forms ranging from
comparatively simple, such as shown in Fig. 14.1, to exceedingly complex. The geometry
of even a relatively simple curved surface may be quite difficult to describe in detail.

369
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Mathematical methods are also available. Differential geometry deals with the analysis
of surfaces and some interesting applications to folds have been made (see Lisle &
Robinson, 1995; Bergbauer & Pollard, 2003). Pollard and Fletcher (2005, Chapter 3)
give an excellent review of both theory and practice.

Figure 14.1 A single
curviplanar surface.

Fortunately, it is meaningful to restrict our initial consideration to a much simpler
class of surfaces. Many natural folds have shapes which closely approximate the form
of cylinders or are made up of approximately cylindrical parts (the folds in Fig. 14.1
become more nearly cylindrical from back to front). A cylindrical surface is defined as
one which is generated by a line moved parallel to itself in space. The orientation of
the generating line is a directional property of the entire surface and has no particular
location. In this sense, it is analogous to a crystallographic axis and is called the fold
axis. An important geometrical feature of cylindrical surface is that its shape can be fully
represented in a cross-section drawn perpendicular to the axial direction. This is the fold
profile.

The trace of a folded surface on the profile plane is a curve and such a curve has several
geometrical features which serve to identify certain points on it. The crest or high point
and the trough or low point on the curves are two such features. In three dimensions,
each of these points is the intersection of a line and the profile plane. These are the crest
line and the trough line, and they are parallel to the axis. The location of both of these
is dependent on the orientation of the folded surface relative to horizontal. On the other
hand, the point of maximum curvature, or hinge point h, and the point where the curve
changes from concave to convex, or inflection point i, are independent of any reference
frame and are, therefore, spatially invariant. Such features serve to describe the geometry
of cylindrical folds more fundamentally (Fig. 14.2).

Although there are exceptions, hinge and inflection points commonly alternate. In
three dimensions such points lie on hinge lines and inflection lines, and it is convenient
to consider a single fold as the portion of the curved surface between the inflection lines
on either side of the hinge.

1. If a portion of the profile curve is a circular arc the fold does not have a specific hinge
point and it is then arbitrarily identified as the bisector of the circular segment.
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Figure 14.2 A cylindrical folded surface in profile.

2. Similarly, there will be no inflection point if the transition from concave to convex
involves a straight segment; the inflection point is then arbitrarily taken to be the
midpoint.

Figure 14.3 Interlimb angle.
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An important character of fold shape is the interlimb angle θ , defined as the minimum
angle between the limbs as measured in the profile plane, or, alternatively, between
the lines tangent to the curve at the inflection points (Fig. 14.3). This angle describes the
tightness of the fold. For general purposes, however, it is often sufficient to categorize the
angular relationship between fold limbs with descriptive adjectives. The terms gentle,
open, close, tight, isoclinal and mushroom (or elastica) are commonly used. Fleuty (1964,
1987a) suggested that these terms be restricted to specific ranges of interlimb angles (see
Table 14.1).

Table 14.1 Fold tightness

Interlimb angle Descriptive term

180◦–120◦ Gentle
120◦–70◦ Open
70◦–30◦ Close
30◦–0◦ Tight
0◦ Isoclinal
Negative angles Mushroom

After Fleuty, 1964, 1987a
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The terms hinge zone and fold limb and the distinction between them have been
precisely defined in a form which is useful for some advanced purposes (Ramsay, 1967,
p. 345). Here, however, a more general meaning is adopted which follows conventional
usage (Dennis, 1967, p. 88, 102). The hinge zone is considered to be that portion of the
curved surface adjacent to the hinge point and the fold limb to be that part of the surface
adjacent to the inflection point. The proportion of the entire curved surface which may
be considered to be hinge zone and limb may vary. The extremes occur in chevron folds
where the hinge zone is reduced to a point (Fig. 14.4a) and where the folds have the
form of linked arcs the limb is represented by the inflection point (Fig. 14.4b). These and
intermediate shapes may be described qualitatively as angular, subangular, subrounded

or rounded .
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Figure 14.4 Limbs and hinge zones.

Symmetry is another invariant feature of cylindrically folded surfaces. Considering
only the shape of the surface, every cylindrical fold has at least one plane of symmetry
which is perpendicular to the fold axis. If, in addition, a second plane passing through the
hinge line and bisecting the interlimb angle is also a plane of symmetry, the fold shape
in profile is said to be symmetric.

A series of linked folds are symmetric if each member is symmetric and if the pattern
is periodic. A consequence is that the two enveloping surfaces are planar and parallel,
and the surface containing all the inflection points, or median surface, is mid-way between
the two enveloping surfaces. These features of symmetric folds make it easy to describe
the dimensions of the folds in terms of amplitude and wavelength (see Fig. 14.5a).

(a) (b) (c)

Median
surface

A A

W W W

A1

A2

Enveloping surface

Enveloping surface

Figure 14.5 Fold dimensions: wavelength W and amplitude A.
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With no such plane of symmetry, the fold is asymmetric.1 In the simple case, the line
connecting the inflection points may still be the median and dimensions are established
just as before (Fig. 14.5b). Or there maybe two separate amplitudes (Fig. 14.5c).

For such folds it is useful to describe the sense of the asymmetry. This is commonly
done in terms of vergence, or the direction in which an antiformal hinge has been displaced
relative to a synformal hinge.

In overturned folds or overfolds both limbs dip in the same direction and the vergence
is in the direction of overturning. If the fold axis is approximately horizontal, the vergence
is described unambiguously by giving its azimuth (Bell, 1981). For folds with plunging
axes, a useful alternative describes the sense of asymmetry as clockwise or anticlockwise
when viewed in a down-plunge direction. The profile curves of Figs. 14.4b and 14.4c
show clockwise vergence.

The description of the dimensions of asymmetric folds becomes increasingly involved
as the degree of asymmetry increases and more complete schemes have also been sug-
gested (Fleuty, 1964, 1987a; Ramsay, 1967, p. 351; Hansen, 1971, p. 9).

Twiss (1988) introduced an alternative approach to describing and analyzing the shapes
of cylindrical surfaces. As a reference standard, a perfect fold is defined as a single-
hinged, perfectly symmetrical fold with perfectly straight limbs and a hinge zone which is
a perfect circular arc (Fig. 14.6). Real imperfect folds are compared against this standard.
This involves three parameters.

1. The aspect ratio P is the ratio of the amplitude A to half the wavelength M (Fig. 14.6a):

P = A/M. (14.1a)

With P , the fold can then be assigned a descriptive term (Table 14.2).
2. The bluntness of a fold is a measure of how round or angular the hinge zone is. The

bluntness ratio is defined as B = rh/ri , where rh is the radius of curvature of the
hinge zone and ri is the radius of the circle tangent to the limbs at the two inflections
points (Fig. 14.6b). This bluntness ratio becomes very large for double-hinged and
chevron folds. To avoid the resulting awkwardness the bluntness b is used instead.

b =
{

rh/ri if rh ≤ ri,

2 − ri/rh if rh ≥ ri .
(14.1b)

With b, a descriptive term can then be applied (Table 14.2).
3. Fold tightness is expressed by the fold angle φ, which is the angle between the two

radii of the reference circle through the inflection points (Fig. 14.6b). This is the angle

1For Turner and Weiss (1963, p. 122) an asymmetric fold has limbs which dip at different angles, but this is a matter of
fold orientation rather than fold shape.
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through which the two limbs have been rotated; it is the supplement of the interlimb
angle (θ = 180 − φ). By this definition the angles between the limbs and the median
surface are 1

2φ. There are then two broad fold types: acute folds (1
2φ < 90) and

obtuse folds (1
2φ > 90); isoclinal folds are the boundary case (1

2φ = 90). Within
these classes descriptive terms can then be applied based on the value of the angle φ

(Table 14.3).

Table 14.2 Aspect ratio P and bluntness b

Term Aspect ratio Term Bluntness

Wide 0.1 ≤ P < 0.25 Sharp 0.0 ≤ b < 0.1
Broad 0.25 ≤ P < 0.63 Angular 0.1 ≤ b < 0.2
Equant 0.63 ≤ P < 1.58 Subangular 0.2 ≤ b < 0.4
Short 1.58 ≤ P < 4 Subrounded 0.4 ≤ b < 0.8
Tall 4 ≤ P < 10 Rounded 0.8 ≤ b ≤ 1

Blunt 1 ≤ b ≤ 2

After Twiss, 1988, p. 609

i i
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(a) (b)
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φ ri
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M

A

φ/2 φ/2

Figure 14.6 Geometry of a perfect fold: (a) aspect ratio; (b) bluntness.

Table 14.3 Fold tightness: folding angle φ and
interlimb angle θ

Term Folding angle Interlimb angle

Acute Gentle 0 < φ < 60 180 > θ > 120
Open 60 ≤ φ < 110 120 ≥ θ > 70
Close 110 ≤ φ < 150 70 ≥ θ > 30
Tight 150 ≤ φ < 180 30 ≥ θ > 0

Isoclinal φ = 180 θ = 0
Obtuse Fan 180 < φ < 250 0 > θ > −70

Involute 250 ≤ φ ≤ 360 −70 ≥ θ ≥ −180

After Twiss, 1988, p. 609
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14.3 Relationships between surfaces

Because folds almost invariably involve more than one surface, additional terms and
methods are needed to establish the spatial and geometrical relationship between adjacent
surfaces. These relationships are also the basis for classifying the shape of folded layers
(see §14.6).

The locus of the hinge lines on adjacent surfaces is an important feature of fold geom-
etry, especially from the point of view of field mapping. This discrete surface is often
referred to as the axial plane or the axial surface but it is not directly related to the axis.
Indeed non-cylindrical folds may possess such a surface without having an axis. This
feature is more appropriately called the hinge surface (Fig. 14.7). Preferably axial plane
should be reserved for the plane parallel to the hinge surface throughout the entire cylin-
drical fold, as in the phrase axial plane cleavage (Oertel, 1962; Donath & Parker, 1964;
Fleuty, 1987a). This distinction is not always observed so it is important to understand
that the term axial plane may be used in two quite different meanings.

In addition to the hinge surface, there is also an inflection surface, which is the locus
of inflection lines on successive surfaces. Similarly there are crestal and trough surfaces.

Figure 14.7 Hinge surfaces of
cylindrical folds (after Wilson,
1961, 1982).

Hinge surface

Hinge line

14.4 Associated structures

Two structures are commonly found in association with folds: cleavage2 and minor folds
(see also Wilson, 1982; Fleuty, 1987a).

Where folds and cleavage develop synchronously, the usual case is that the cleavage
closely approximates the orientation of the hinge surface. The qualification “approxi-
mate” is needed because this cleavage commonly displays a fan-shaped pattern, com-
monly as a convergent cleavage fan (convergent here means when traced from the outer

2Anumber of cleavage types have been recognized and named (Dennis, 1967, p. 17–24), but two are particularly important
here: slaty or continuous cleavage and spaced cleavage. A comprehensive treatment of field identification of first-
generation cleavages is given by Durney and Kisch (1994).
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to inner arc) or sometimes as a divergent cleavage fan(Ramsay, 1967, p. 405). Cleavage
often changes direction abruptly when passing from a layer of one lithology into another.

As a consequence of this axial plane character of the cleavage, there are two additional
relationships which are of great importance in the field study of folds.

1. The line of intersection of the cylindrically folded layers and the cleavage is parallel
to the hinge line and therefore its orientation gives the axial direction of the fold even
without observing a hinge.

2. The angular relationship between the bedding and cleavage as seen in the profile plane
allows the antiformal and synformal hinges to be located from a single exposure. At a
single outcrop, a sandstone bed is observed to dip due 40◦ west; the underlying slate
with cleavage dips 80◦ due west (Fig. 14.8). Where are the folds? If the hinge surface
is parallel the cleavage, then an antiformal hinge must lie to the east and a synformal
hinge to the west. Of course nothing can be said about the size of these folds from a
single exposure.

Figure 14.8 Cleavage–bedding
intersections to locate
antiforms and synforms.
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Cleavage–bedding intersections can be used in still another way. In terms of working
out the structure of an area, it is of utmost importance to correctly identify anticlines and
synclines. This can be done in a number of ways. If the stratigraphy is well known, it is
a simple matter to determine the relative age of the rocks in the core of the fold. If they
are older, then the fold is an anticline and if they are not it is a syncline. Another way
is through the use of sedimentary structures. As deposited sedimentary rocks are said to
face upward and in any subsequent attitude they continue to face toward the side that
was originally upward and younger. This direction of younging can be identified from
a study of a variety of sedimentary structures, including cross bedding, graded bedding
and ripple marks.

It is useful to extend this concept of facing to the folds themselves. In the case of a
normal, upright fold the structural facing is upward, and this can be confirmed immedi-
ately by determining the direction in which the sedimentary beds of the fold face. Where
the folds have overturned limbs, some beds will face downward and some upward and,
especially where exposures are sparse, the direction of structural facing may be obscure.
However, this direction can be determined unambiguously by an examination of the
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beds at the hinges of the folds (Cummins & Shackleton, 1955; Shackleton, 1958; also
Holdsworth, 1988).

The direction of structural facing can also be determined at a single outcrop by the
application of a simple principle. While the direction of the facing of an individual bed
is greatly affected by its local attitude, the component of the facing direction projected
onto the axial plane cleavage has a constant direction regardless of the orientation of the
bedding (Borradaile, 1976). The situation is illustrated in Fig. 14.9. While the beds of a
series of folds have considerable variation in the direction of younging, the component
on the cleavage plane is consistently oriented. The identification of the direction of
structural facing of folds through the use of sedimentary structures has come to be known
as Shackleton’s rule.

Figure 14.9 Younging
directions on fold limbs have a
consistent facing direction on
cleavage (from Borradaile, 1976,
with permission of Koninklijke
Nederlandse Akademie van
Wetenschappen).

Opposed younging
directions

Cleavage-bedding 
intersection

Axial plane cleavage

Aprofile through a hypothetical area with two phases of folding illustrates the practical
importance of this rule. A large, westward closing recumbent anticline has been refolded
by smaller, nearly upright antiforms and synforms. The younging directions plotted on
the map do not readily indicate the location of the now folded hinge surface of the first
fold (Fig. 14.10a). When projected onto the axial plane cleavage of the second folds,
however, the directions of the structural facings immediately become apparent, and fall
into two groups (Fig. 14.10b). The second phase folds above the first hinge surface face
upward, and those below it face downward. In this way, the location of the trace of the
hinge surface is identified by the reversals in the facing directions.

This example will also make clear why cleavage–bedding relations alone are insuf-
ficient to determine the direction of structural facing, and therefore to allow individual
folds to be identified as anticlines and synclines (see Billings, 1972, p. 400f).

Minor folds developed in thin beds may also be used as an aid in working out the
structure of an area. It has been observed in many areas that these smaller folds often
share axes and axial planes with the main fold, a rule of thumb known as Pumpelly’s
rule (Pumpelly, et al., 1894, p. 158). Such minor folds often show a strong asymmetry
with a vergence which is consistently toward the hinges of the antiforms. Such features
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(a)

(b)

Downwards
facing

Upwards
facingUpwards facing Downwards facing

Figure 14.10 Two phases of folding: (a) map and local younging directions; (b) section to locate the
hinge surface of the first fold (after Borradaile, 1976, with permission of Koninklijke Nederlandse
Akademie van Wetenschappen).

are useful in identifying large folds when exposures are poor. A short-hand notation has
developed to emphasize these relationships. The strongly asymmetric folds on one limb
are denoted Z folds and those on the other are S folds, while the more nearly symmetric
folds in the hinge zone are M (or W ) folds (see Fig. 14.11).

Figure 14.11 Z, S and M minor
folds.1 km

M

Z
S

Such minor folds are sometimes referred to as “drag” folds but this is inappropriate
for at least two reasons. First, it introduces genetic connotations into what should be a
descriptive terminology. Further, the name implies that such folds formed in response to
the slipping of the layers past one another producing something like simple shear in the
layer containing the small folds by drag. As we have already seen, the shear direction in
simple shear is a direction with no finite elongation and yet it is clear that the small folds
have indeed shortened in this direction. This makes the concept of drag as a mechanism
of folding questionable, though, of course, the shape of small folds once formed by layer-
parallel shortening would change shape due to the shear. The most reasonable explanation
of Pumpelly’s rule is that the minor folds are small because the layers in which they
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form are thin, and they share axes and axial planes with the main folds because the same
pattern of deformation is responsible for both (Ramberg, 1987).

As with all such empirical rules there are exceptions. For example, the cleavage may
not closely parallel the axial plane. This may be the result of superposition of two differ-
ently oriented deformations or of a more complex single deformation involving a large
rotational component. The term transected fold describes this more complex situation
(Powell, 1974, p. 1045; Borradaile, 1978). Minor folds may show similar departures
from the orientation of the main fold. From a practical point of view the existence of
such lower symmetry folds means that these empirical rules must be tested before great
reliance is placed upon them.

14.5 Fold orientation

The orientation of a cylindrical fold is completely defined by the attitude of the hinge
and hinge plane together with a statement of the direction in which the limbs converge at
the hinge or closure. Antiforms close upward and synforms close downward. The terms
anticline and syncline are reserved for folds with older and younger rocks, respectively,
in their cores. Most anticlines are also antiforms, and all anticlines start their existence as
antiforms. It is possible, however, for an anticline to be turned completely over so that it
closes downward; such a fold would be described as an anticline in synformal position,
or, simply, a synformal anticline. Synclines show similar patterns.

The angles of dip and plunge are also the basis for a descriptive nomenclature. In
an effort to standardize usage Fleuty (1964, 1987a) suggested precise limits to a series
of traditional terms for both dip and plunge (see Table 14.4). These terms can then
be combined to describe the attitude of a fold: for example, a steeply-dipping, gently-
plunging fold. Note, however, that because the hinge line is confined to the hinge plane,
some combinations of terms are invalid: for example, a gently-inclined, steeply-plunging
fold is impossible.

Table 14.4 Terms describing the attitude of the hinge plane
and the hinge line

Angle Term Dip of hinge plane Plunge of hinge line

0◦ Horizontal

1◦–10◦ Subhorizontal
Recumbent Horizontal

10◦–30◦ Gentle Gently inclined Gently plunging
30◦–60◦ Moderate Moderately inclined Moderately plunging
60◦–80◦ Steep Steeply inclined Steeply plunging
80◦–89◦ Subvertical

90◦ Vertical
Upright Vertical

After Fleuty, 1964, 1987a
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Figure 14.12 Graph of fold attitudes (after Fleuty, 1964, 1987a; Ramsay, 1967, p. 360).

Folds which close sideways are neutral and these require special attention. Recumbent
applies to neutral folds with both hinge lines and hinge planes within 10◦ of horizontal.
Vertical folds have hinge lines and planes within 10◦ of vertical. Both of these terms are
included in the table. These two are end-members in a continuous series of orientations
which are termed reclined , that is, neutral folds with hinge planes which dip at angles of
10◦ to 80◦ and hinge lines which pitch more than 80◦ in this plane. Because the dip can be
greater than 80◦ and the plunge still less than 80◦ on this plane required for designation
as vertical, it is not practical to place a precise upper limit on the dip of the hinge plane.
This minor discrepancy is the result of using the plunge angle in the description of some
folds and the pitch in others.

All possible fold orientations are summarized in the graph of Fig. 14.12. The shaded
area defines the attitudes of reclined folds; its curved lower boundary gives the plunge
of the hinge line with a pitch of 80◦ on the hinge plane.

The basic weakness of this approach is the result of referring the attitude of the hinge
line to a vertical plane through the use of the angle of plunge, even though this plane
generally bears no relationship to fold geometry. A classification based solely on dip and
pitch could be constructed but would itself have drawbacks, the gravest of which is that
pitch is often difficult to measure in the field.

Rickard (1971) devised a simpler approach which avoids this artifical distinction
between plunge and pitch, through the use of a triangular diagram (Fig. 14.13).
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Vertical

Upright horizontal Inclined horizontal Recumbent

Inclined plunging

Upright plunging Reclined

Figure 14.13 Triangular graph of fold attitudes (after Fleuty, 1964, 1987a; Rickard, 1971).

1. The three special cases are represented by the vertices of the triangle: upright hori-
zontal folds, vertical folds and recumbent folds.

2. The transitions between pairs of these three orientations are represented by the sides
of the triangles: upright plunging folds, reclined folds and inclined horizontal folds.

3. General inclined plunging folds are represented by the main body of the triangle.

In practice, a special triangular grid is used to classify fold attitudes (Fig. 14.14a). The
first step is to represent the fold using an index number: the dip D of the hinge plane and
the plunge P of the hinge. For example, the fold attitude D70 P50 is represented by the
point of intersection of the sloping dip lines parallel to the left side of the triangle and
the curved plunge lines (see the plotted point on Fig. 14.14a). This point could have also
been located by using the pitch angle R, giving the index D70 R55 and using the lines
radiating from the vertex of the triangle on the right.

Once this point is plotted, we can then establish the attitude class using the fields
delineated on the triangle (Fig. 14.14b). Although the main body of the figure could also
be subdivided, it is simpler to name only the special cases with respect to horizontal
and vertical. For the more general case, precision is obtained with the use of the index
number.

This diagram can also be used to bring out additional details about the folds of an area.
If the folds progressively change orientation in some direction, or if some aspect of fold



382 Folds

geometry, such as the interlimb angle, changes with attitude, these variations could be
emphasized by a series of points perhaps connected by a curve drawn through them.
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Figure 14.14 Fold attitudes: (a) plotting grid; (b) classifying fold attitude (after Rickard, 1971).

The value of these several graphical schemes for analyzing and displaying the orien-
tation of folds lies in their comprehensiveness. However, often a simpler approach may
suffice. One such approach uses the polar net (Fig. 14.15).

Technique

1. Plot the attitude of the hinge line. Using the labeled annular fields in the upper part
of the diagram, assign the appropriate orientation category.

2. Plot the pole of the hinge plane. Using the labeled annular fields in the lower part of
the diagram, assign the appropriate orientation category.

14.6 Isogon classification

The geometrical relation between adjacent surfaces is a particularly important aspect of
fold shape and it depends on the relative curvature of the two surfaces and the distance
between them. A simple and sensitive way of describing this relationship is to construct
tangent lines of equal inclination on two surfaces bounding a single layer. The line
connecting the points of equal dip is a dip isogon (Ickes, 1923; Elliott, 1965; Ramsay,
1967, p. 363). Not only can the resulting patterns aid in distinguishing accurately between
different fold forms but the use of isogons also leads to a classification of fold geometry
which is both simple to apply and easy to remember, and it is now widely used.

Construction

1. Obtain a profile of the fold. The most direct and accurate method is to use a photograph
taken in the direction of the fold axis. If such a view is not possible, either because of
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Figure 14.15 Fold attitude and the Polar Wulff Net (after Lisle & Leyshon, 2004, p. 103).

lack of exposure or large size, the profile view may be constructed from a carefully
drawn map (see Chapter 16).

2. On an overlay sheet, carefully trace the curved boundaries of a folded layer.
3. The placement of the specific isogons depends on the orientation of the fold on the

profile plane. The pattern of the isogons is, like the shape they reflect, an invariant
feature of the fold. It is, therefore, common practice to reorient the fold profile so that
a tangent line at the hinge is horizontal (α = 0).

4. On each bounding curve draw a tangent inclined at a dip angle α (Fig. 14.16a). These
parallel tangents can be constructed quite easily with the aid of a protractor and a
triangle.Adrafting machine makes the job even easier. Marjoribanks (1974) described
an instrument which is useful if large numbers of folds are to be analyzed.

5. Connect the two points of equal dip on the two adjacent bounding curves with a
straight line; this is an isogon (Fig. 14.16a).

6. Repeat at a number of points around the fold. Tangent lines at 10◦ intervals is often
convenient but the choice should be dictated by the actual form of the fold. For
purposes of classification, usually there is no need for closely spaced tangent points.
Finally, connect the pairs of tangent points (Fig. 14.16b).

Generally the isogons will not be parallel and the degree of departure from parallelism,
together with the direction of convergence or divergence, is the basis for a useful geo-
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Figure 14.16 Dip isogons: (a) construction; (b) isogon pattern; (c) thickness variation.

metrical classification (Ramsay, 1967, p. 365). For consistency the inner arc of the fold
is taken as the reference point for statements of the direction of isogon convergence.
Accordingly, there are then two basic patterns – isogons may converge or diverge. These
can be subdivided into five easily recognizable patterns, including three general and two
special cases.

1. Folds with convergent isogons (Class 1):

(a) Folds with strongly convergent isogons (Class 1A): the curvature of the outer
surface is less than that of the inner, and the smallest distance between the two
surfaces occurs along the trace of the hinge surface (Fig. 14.17a).

(b) Parallel folds (Class 1B): the inner surface has a greater curvature than the outer
one, but their relationship is such that each isogon is perpendicular to the tangents
(Fig. 14.17b). The name is derived from the fact that the distance between the two
curves measured along the isogons is constant.

(c) Folds with weakly convergent isogons (Class 1C): the curvature of the inner
surface is still greater, but the spacing between the two curves is greatest at the
hinge (Fig. 14.17c).

2. Similar folds (Class 2): both curves are identical and the isogons are parallel. The
name is derived from the fact that the distance between the two curves measured along
the isogons is constant (Fig. 14.17d).

3. Folds with divergent isogons (Class 3): the curvature of the inner arc is less than that
of the outer arc (Fig. 14.17e)

(a) (b) (c) (d) (e)

1A 1B 1C 2 3

Figure 14.17 Classification: (a) strongly convergent; (b) parallel; (c) weakly convergent; (d) similar; (e)
divergent.
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The isogon-thickness classification is now widely used, but its application is not with-
out some limitations (see Lisle, 1997, p. 326 for a review of developments and some
further details).

1. The trace of the hinge plane may not be perpendicular to the tangents at the hinge
points (Hudleston, 1973, p. 10).

2. There may be places in the folded layer where isogons are not be definable. If the
steepest dip on one surface exceeds the steepest dip on the adjacent surface there
will be a sector where it is not possible to construct a pair of corresponding parallel
tangents and therefore the isogons do not exist here (Ramsay & Huber, 1987, p. 356).

3. Some folds may have parts related to several fold classes (Ramsay, 1967, p. 369–371,
407–410). For example, the opposing limbs of strongly asymmetric folds commonly
have different shapes. For even more complex folds single limbs may exhibit several
different shapes.

14.7 Thickness variation

Fundamentally the isogon patterns reflect the way in which the thickness of the layer
varies around the fold. There are two measures of this thickness (Fig. 14.16c).

1. Orthogonal thickness t is the perpendicular distance between pairs of tangent lines
drawn at points of equal dip angle α on the traces of the upper and lower bounding
surfaces.3 In general t varies with α, which we express by the symbol tα . In order to
compare the shapes of folds of different sizes it is convenient to express this measure
as a proportion of the orthogonal thickness at the hinge t0. Thus

t ′α = tα/t0, (14.2)

where t ′α is normalized orthogonal thickness.
2. Axial plane thickness T is the distance between pairs of tangent lines drawn at points

of equal dip angle α on the traces of the upper and lower bounding surfaces measured
parallel to the trace of the hinge plane. In general T varies with α, which we express
by the symbol Tα . This may also be expressed as a proportion of the axial thickness
at the hinge T0:

T ′
α = Tα/T0, (14.3)

where T ′
α is the normalized axial plane thickness.4

3This corresponds to the definition of thickness for tabular bodies of rock (see §2.1).
4These normalized thicknesses are commonly given the symbols T ′ and t ′ (Ramsay, 1967, p. 360; Hudleston, 1973, p. 6;
Lisle, 1997), and we follow this usage. Note, however, that such usage is quite different from the notation for variables
in a deformed state or variables for a transformed coordinate system (see also §14.9).
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These two measures of thickness are not independent. From Fig. 14.16c

t ′α = T ′
α cos α or T ′

α = t ′α/ cos α = t ′α sec α. (14.4)

The detailed thickness variation of every folded layer can be recorded as a curve on a
graph of thickness as a function of dip angle. Two different graphs are in use.

1. One is a plot of T ′/α (Fig. 14.18a). Similar folds (Class 2) have constant axial plane
thickness and so plot as a horizontal straight line.

2. The other is a plot of t ′/α (Fig. 14.18b). Parallel folds (Class 1B) have constant
orthogonal thickness and so plot as a horizontal straight line.
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Figure 14.18 Fold classification and thickness variation: (a) graph of T′/α; (b) graph of t′/α;
(c) t′/α graph with curves of constant flattening index (after Ramsay, 1967, p. 366; Lisle, 1997).

14.8 Alternative graphs

Hudleston (1973) proposed an alternative approach which plots the isogon angle φ

against limb dip α. As before, the orientation of the fold profile is standardized so that it
appears as an upright antiform with the tangent at the hinge horizontal. The angle between
the normal to the tangent and an isogon is φ; it is reckoned positive when measured in
an anticlockwise sense from the tangent normal (Fig. 14.19a).

The angle of dip α is taken positive on the right limb and negative on the left. Then
the right limb is represented on the right side of the graph and the left limb on the left
side (Fig. 14.19b).

A φ/α plot yields a curve which characterizes the fold geometry, and at the same time
also identifies the class just as the t ′/α plots do. The properties of these classes are also
given in Table 14.5.
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Table 14.5 Fold classes based on
isogon angle φ for positive α

Fold class φ

1A φ < 0
1B parallel φ = 0
1C α > φ > 0
2 similar φ = α
3 φ > α
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Figure 14.19 Isogon angle: (a) fold and isogon angle φ; (b) graph of φ vs. α (after Hudleston, 1973, p. 7).

The t ′/α and φ/α plots have differences, including both advantages and disadvantages
(Hudleston, 1973, p. 12–13). The result is that they complement one another in useful
ways.

Treagus (1982) adapted Hudleston’s graphical approach to display the variation in
cleavage orientation around folded layers (Fig. 14.20a). In this case, the cleavage angle
β, defined as the angle between tangent normal and cleavage trace, is used (Fig. 14.20b).
Because the cleavage will not, in general, be parallel to the isogons the angle β will
be different when measured at the upper and lower boundaries of a folded layer. To be
consistent, therefore, one should be picked (in Fig. 14.20b the lower boundary of the
layer is used).5

The cleavage orientation in several layers with different lithologies can then be dis-
played as curves on the cleavage orientation graph (Fig. 14.20c). From these curves, the
patterns can be classed using the same subdivisions as in Hudleston’s graph; these are
labeled with roman numerals to distinguish them from the related, but different isogon

5We will make important use the cleavage angle β in §14.12.
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classes. A folded layer then can be assigned a dual classification, such as 1C/IC or 2/II,
or even less simple combinations such as 1C/II.
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β

Figure 14.20 Cleavage angle: (a) folded layers with cleavage; (b) cleavage angle β ; (c) graph of β vs. α
(after Treagus, 1982, p. 56).

14.9 Inverse thickness

Lisle (1997) extended and refined Ramsay’s geometrical classification by introducing a
polar plot of inverse orthogonal thickness 1/t ′ against dip angle α. This plot identifies a
diagnostic pachymetric indicatrix.6 Every member of the fold classes can be represented
by such an indicatrix (Fig. 14.21).

Each of the two main fold types is represented by a characteristic type of indica-
trix: Class 1 folds by ellipses and Class 3 folds by hyperbolas. Further, the individual
members of each of these two indicatrix-based classes can be represented by a single
flattening index which describes a particular ellipse or hyperbola. This index is based
on the equations of the central conics. In order to appreciate the detailed geometrical
properties of these figures we first write their equations in canonical form (McLenaghan
& Levy, 1996, p. 281),

x2

a2
+ y2

b2
= 1 and

x2

a2
− y2

b2
= 1. (14.5)

Note that the only difference is that the equation of the hyperbola has a minus sign.
As will be apparent in Fig. 14.21, especially for the elliptical indicatrices, we need to

consider each of these two conic sections in different orientations.

6Literally, “thickness-measure indicator.”
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Class 1A
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Class 2 (similar)

Class 3
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1/t

1/t
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1/t

Figure 14.21 Fold classification based on the pachymetric indicatrix (from Lisle, 1997, p. 326).

1. In the standard orientation:
(a) The ellipse is characterized by a major axis with length 2a which coincides with

the x axis, and a minor axis with length 2b which coincides with the y axis
(Fig. 14.22a1).

(b) The hyperbola is characterized by a transverse axis 2a which coincides with the
x axis, and the conjugate axis 2b which coincides with the y axis (Fig. 14.22b1).

2. In the alternative orientation:
(a) The ellipse is characterized by the major axis with length 2b, which coincides

with the y axis, and the minor axis with length 2a, which coincides with the x

axis (Fig. 14.22a2),
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Figure 14.22 Central conics and their principal axes: (a) ellipses; (b) hyperbolas.

(b) The hyperbola is characterized by the transverse axis with length 2a which coin-
cides with the x axis and the conjugate axis with length 2b which coincides with
the y axis (Fig. 14.22b2).7

We now define a flattening index F to express the shape and orientation (but not size)
of the ellipse in terms of the semi-axes of the ellipse (Fig. 14.22a) or the semi-axes of
the hyperbola (Fig. 14.22b)

F = ±b/a, (14.6)

where the positive sign denotes an ellipse and the negative sign a hyperbola.
Within each of these two main classes all possible fold geometries can be generated

by the flattening of a circle and of an equilateral hyperbola.

1. All possible indicatrices of Class 1 folds can be generated by flattening a circle (a = b)

horizontally or vertically (Fig. 14.23).
2. All possible indicatrices of Class 3 folds can be generated by flattening a equilateral

hyperbola (a = b) horizontally or vertically (Fig. 14.24).

In terms of the pachymetric indicatrix the fold classes have the following characteristics.

1. Class 1 folds are characterized by ellipses.
(a) Class 1A: the indicatrix is an ellipse has its long axis parallel to the x direction

(F < 1).
(b) Class 1B: the indicatrix is a circle (F = 1).
(c) Class 1C: the indicatrix is an ellipse with its long axis perpendicular to the x

direction (F > 1).
2. Class 2 or similar folds: the indicatrix is a pair of parallel lines (F = ∞).
3. Class 3 folds are characterized by hyperbolas.

(a) Class 3A is a new subdivision with F < −1.

7Note that a and b are measured along the x and y axes in both orientations. For the alternative orientation this is the
reverse of the usual convention.
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(b) Class 3B is a new boundary case with F = −1.

(c) Class 3C is a new subdivision with F > −1.

The relationships between these classes and their characteristic values of F can be sum-
marized with the scale of Fig. 14.25. Note that as F increases for Class 1C folds they
approach the geometry of Class 2 folds but reach this state only when F = +∞. Sim-
ilarly, as F decreases for Class 3A folds they too approach similar geometry but reach
this state only when F = −∞. Thus the two parallel lines of the Class 2 indicatrix can
be taken as an infinitely flattened circle or an infinitely flattened hyperbola, depending
which side of the boundary one considers.

a

b

a
b

a

b

1A

1B 1C

x

y

Figure 14.23 Flattened circles.

a
b

a a
b

b

3B

3A

3C
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y

Figure 14.24 Flattened equilateral hyperbolas.

0−1 +1
+∞−∞

1B3B3A 3C 1A 1C2 2

Figure 14.25 Scale of F values for all fold classes.
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For the purposes of the graphical analysis, however, it is more convenient to use the
equations of the ellipse and hyperbola expressed in polar coordinates (McLenaghan &
Levy, 1996, p. 285–286)

r2 = a2b2

a2 sin2 α + b2 cos2 α
and r2 = a2b2

a2 sin2 α − b2 cos2 α
. (14.7)

Again note that the equation of the hyperbola is distinguished by the minus sign.
We now recast these two formulas in a form which applies to measurements of orthog-

onal thickness t and the orientation of the angle α. These in turn lead directly to a useful
graphical representation.

1. Because the plot uses the inverse thickness make the substitution r = 1/t and then
invert the equations in order to obtain expressions directly in terms of t .

2. Setting a = 1, the index becomes F = b/a = b.

With these we then have

1

r2
= t2 = sin2 α

F 2
+ cos2 α and

1

r2
= t2 = −sin2 α

F 2
+ cos2 α. (14.8)

These two expressions differ only in the signs of the first terms on the right-hand sides.
They can therefore be consolidated into a single equation by introducing the device
F 2 = F

√
F 2 so that these signs are the same as that of F . Then with the identity

cos2 α = 1 − sin2 α

t2 = sin2 α

(
1

F
√

F 2
− 1

)
+ 1. (14.9)

With this result we can then add curves of constant F to the t ′/α graph (see Fig. 14.18c).
A more direct way of applying this inverse thickness method to the classification of a

single folded layer is to plot a few measured (1/t ′, α) points on the polar graph and so
estimate the form of the pachymetric indicatrix (Fig. 14.26). To normalize the orthogonal
thickness Lisle (1997, p. 324, 326) suggests using the minimum thickness (for 1A folds)
or maximum thickness for all the other fold types measured in the vicinity of the hinge.

14.10 Best-fit indicatrix

For several reasons, there will always be some uncertainty in the measured angles and
thicknesses. First, there are the inevitable measurement errors. Then the fact that natural
materials are not perfectly homogeneous means that the states of strain will vary. Finally,
we can never be certain that the original thickness of the layer was perfectly uniform.
Therefore, an even better way of establishing the geometrical characteristics of a particu-
lar fold is to calculate the best-fit indicatrix from a larger number of measurements. This
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Figure 14.26 Classification based on polar plot of (1/t′, α).

not only yields the figure which best represents the fold, but also permits an evaluation
of just how good the fit is.8 The general equation of a conic section (ellipse or hyperbola)
with its center at the origin is

Ax2 + 2Bxy + Cy2 = 1. (14.10)

We can evaluate the coefficients A, B and C by measuring the lengths of several radius
vectors or their equivalents. As we have seen, the pachymetric indicatrix uses the inverse
thickness 1/t for the magnitudes of these vectors. The components of each such vector
are obtained from

xi = (1/ti) cos φi, yi = (1/ti) sin φi, (i = 1, . . . , N), (14.11)

where φ gives the orientation of the tangent relative to an arbitrary set of coordinate axes.
If N = 3 then we have three equations with the form of Eq. 14.10, one for each (xi, yi)

and we can calculate the exact values of the coefficients A, B and C.

8We give an example of this calculation in the next section.
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However, if N > 3 then the system of equations is overdetermined and generally no
such exact equation can be found. We then need a way of determining the ellipse or
hyperbola which fits these known points best. The controlling equation is

ri = Ax2
i + 2Bxiyi + Cy2

i − 1, (14.12)

where the value of each residual ri is a measure of the departure of the corresponding
point from the best-fit curve.

We can also determine the overall best-fit using the least-squares criterion and this
requires that we minimize the sum of the squares of these residuals. With Eq. 14.12 we
write this as

N∑
i=1

r2
i =

N∑
i=1

(Ax2
i + 2Bxiyi + Cy2

i − 1)2. (14.13)

Three conditions must be satisfied for this sum to be a minimum and these are found by
differentiating Eq. 14.13 partially with respect to A, B and C and setting each result to
zero. That is,

∂

∂A

∑
r2
i = 0,

∂

∂B

∑
r2
i = 0,

∂

∂C

∑
r2
i = 0. (14.14)

Applying these conditions and dividing the first and third results by 2 and the second
result by 4 we obtain the three equations

∂

∂A

∑
(Ax2

i + 2Bxiyi + Cy2
i − 1)2 =

∑
(Ax2

i + 2Bxiyi + Cy2
i − 1)x2

i = 0,

∂

∂B

∑
(Ax2

i + 2Bxiyi + Cy2
i − 1)2 =

∑
(Ax2

i + 2Bxiyi + Cy2
i − 1)xiyi = 0,

∂

∂C

∑
(Ax2

i + 2Bxiyi + Cy2
i − 1)2 =

∑
(Ax2

i + 2Bxiyi + Cy2
i − 1)y2

i = 0,

and these simplify to

A
∑

x4
i + 2B

∑
x3
i yi + C

∑
x2
i y2

i =
∑

x2
i ,

A
∑

x3
i yi + 2B

∑
x2
i y2

i + C
∑

xiy
3
i =

∑
xiyi,

A
∑

x2
i y2

i + 2B
∑

xiy
3
i + C

∑
y4
i =

∑
y2
i .

With the abbreviations

a ≡∑ x4
i , b ≡∑ x3

i yi , c ≡∑ x2
i y2

i , d ≡∑ xiy
3
i ,

e ≡∑ y4
i , f ≡∑ x2

i , g ≡∑ xiyi , h ≡∑ y2
i ,
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we then write

Aa + 2Bb + Cc = f,

Ab + 2Bc + Cd = g,

Ac + 2Bd + Ce = h.

These three are the normal equations and we can solve them exactly for the coefficients
A, B and C using Cramer’s rule. First the determinant of these equations is

det =
∣∣∣∣∣∣
a 2b c

b 2c d

c 2d e

∣∣∣∣∣∣ = 2(ace + 2bcd − c3 − ad2 − b2e).

Then

A = 1

det

∣∣∣∣∣∣
f 2b c

g 2c d

h 2d e

∣∣∣∣∣∣ =
2(cef + bdh + cdg − c2h − beg − d2f )

det
, (14.15a)

B = 1

det

∣∣∣∣∣∣
a f c

b g d

c h e

∣∣∣∣∣∣ =
(aeg + cdf + bch − c2g − bef − adh)

det
, (14.15b)

C = 1

det

∣∣∣∣∣∣
a 2b f

b 2c g

c 2d h

∣∣∣∣∣∣ =
2(ach + bcg + bdf − b2h − c2f − adg)

det
. (14.15c)

We can also determine the goodness of the fit. Equation 14.14 gives the residuals ri

associated with each measurement (Scheid, 1988, p. 242, 420). Then the overall goodness
of fit is given by the root mean square error

RMS =
√

1

N

∑
r2
i . (14.16)

In the treatment of the transformation of axes in §7.8 we found the equation of the
conic in the transformed coordinates to be (see Eq. 7.58)

A′x′2 + 2B ′x′y′ + C′y′2 = 1, (14.17)

where

A′ = A cos2 θ + 2B sin θ cos θ + C sin2 θ, (14.18a)

B ′ = (C − A) sin θ cos θ + B(cos2 θ − sin2 θ), (14.18b)

C′ = A sin2 θ − 2B sin θ cos θ + C cos2 θ. (14.18c)
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As in Eqs. 7.54 it is advantageous to represent this figure by the symmetric square matrix

[
A′ B ′
B ′ C′

]
. (14.19)

If the orientational angle θ is such that the x′y′ coordinate axes coincide with a principal
axes, the x′y′ term in Eq. 14.17 vanishes and the equation becomes

A′x′2 + C′y′2 = 1.

We can easily find the angle θ for this condition by setting B ′ = 0 in Eq. 14.18b giving

(C − A) sin θ cos θ + B(cos2 θ − sin2 θ) = 0.

With the double angle identities

sin θ cos θ = 1
2 sin 2θ, cos2 θ − sin2 θ = cos 2θ, sin 2θ/cos 2θ = tan 2θ,

and after some manipulation we have

tan 2θ = 2B

A − C
or θ = 1

2
arctan

(
2B

A − C

)
. (14.20)

Having found angle θ which describes the orientation of the coordinate axes which are
parallel to the principal axes, we can now determine the values of the coefficients A′ and
C′ from Eq. 14.17a and Eq. 14.17c. The matrix representing the conic in this orientation
becomes [

A′ 0
0 C′

]
. (14.21)

In the terms of linear algebra, we have diagonalized the matrix representing the ellipse
or hyperbola.

From this diagonal matrix we can now easily determine the nature of the indicatrix
and its orientation by inspection and a few simple calculations.
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Figure 14.27 Transformed axes: (a) ellipse; (b) hyperbola.
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1. Form of the indicatrix:

(a) If A′ and C′ have the same sign (A′C′ > 0), it is an ellipse (Figs. 14.27a1 and
14.27a2).

(b) If A′ and C′ have opposite signs (A′C′ < 0) it is a hyperbola (Figs. 14.27b1 and
14.27b2).

2. Orientation of the indicatrix:

(a) If |A′| < |C′| the major axis is parallel to x′ and a = 1/
√|A′|, b = 1/

√|C′|
(Figs. 14.22a1 and 14.20b1).

(b) If |A′| > |C′| the major axis is parallel to y′ and a = 1/
√|C′|, b = 1/

√|A′|
(Figs. 14.20a2 and 14.22b2).

We can now calculate the value of the flattening index F and then with it the geometry
of a folded layer is completely specified. The fold class can be determined from the t ′/α
graph of Fig. 14.18c or Table 14.6.9

Table 14.6 Fold classes based on the
flattening index F

Fold class Index

1A 0 < F < 1
1B parallel F = 1
1C F > 1
2 similar F = ∞
3A −1 < F < −∞
3B F = −1
3C 0 > F > −1

14.11 Determining the flattening index

We now give an example of the calculation of the flattening index F . In parallel folds
the isogons are perpendicular to layer boundaries and all have constant length t ′α = t ′0.
A square is constructed at a typical point P with sides parallel to the tangents and their
corresponding perpendicular isogons (Fig. 14.28a). After homogeneous flattening this
square becomes a parallelogram at corresponding point P ′ with sides still parallel to the
isogons and tangents (Fig. 14.28b).

All such squares in the parallel fold have the same area A. Because the imposed
flattening strain is homogeneous all such parallelograms have the same area A′. The
change in shape of the fold depends on the distortional part of the strain and not on any

9Lisle (1997, p. 335–338) lists a BASIC computer program which calculates A′ and C′ and classifies the fold accordingly.
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dilatational part. Therefore we take A = A′ and for convenience assign unit areas to
both, that is,

A = 1 and A′ = t ′α′(1/tα′) = 1.

From this square and its corresponding parallelogram we have sufficient information
to determine a relative stretch in the direction of the tangent. For the square l = 1 and
for the parallelogram the length after flattening is l′ = 1/tα′ . Thus the stretch is

kSα′ = 1/tα′, (14.22)

where k is an unknown scale factor. With several such measurements we can now con-
struct the relative strain ellipse for the flattened fold.

α

α�

(a)

P

P�

(b)

t�

t0

Figure 14.28 Homogeneous flattening: (a) parallel fold; (b) flattened fold.

Procedure

1. At several points around the flattened fold measure the orthogonal thickness t and the
slope angle after flattening α′ of the associated tangent (such as in Fig. 14.28b).

2. The vector with length 1/tα′ whose orientation is given by α′ is a radius of the relative
strain ellipse.

3. There are several ways of determining the strain from lines of known relative stretch.

(a) With three such vectors the strain can be determined with a Mohr Circle construc-
tion.

(b) With more than three, the best-fit ellipse can be calculated.

Solution

• The orientation and principal relative stretches are determined from this strain ellipse.
Then the shape of ellipse can be found by calculating the strain ratio

Rs = kS1/kS3. (14.23)
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Unlike Ramsay’s method which assumes that the S1 direction is parallel to the axial
plane, this method gives the flattening strain whatever its orientation.

Problem

• From measurements made on a folded layer (Fig. 14.29a) determine the best-fit ellipse.

Solution

1. From the measured thicknesses calculate the relative stretches at a series of points
distributed around the folded layer from S = 1/t .10

2. With Eqs. 14.11 calculate the x and y components of each radius vector S (see Table
14.7).

3. With Eqs. 14.15 determine the coefficients of the best-fit ellipse. The finite strain
tensor is then [

A B

B C

]
=
[
λ′

xx γ ′
xy

γ ′
yx λ′

yy

]
=
[

4.838 10 0.279 76
0.279 76 1.277 73

]

By inspection λ′
xx > λ′

yy ; therefore Sxx < Syy and the S1 direction of the best-fit
ellipse is closer to the y axis than to the x axis (Fig. 14.29b).

4. The angle the S1 direction makes with the y′ axis is θ = 4.465 62◦.
5. After a transformation of axes the diagonal matrix representing this tensor is

[
A′ 0
0 C′

]
=
[
λ′

3 0
0 λ′

1

]
=
[

4.859 95 0
0 1.255 88

]

and Rs = S1/S3 =
√

λ′
3/λ

′
1 = √

4.859 95/1.255 88 = 1.97, and this is the flattening

index F . The fold belongs to class 1C.
6. The residuals associated with each measurement are shown in the last column of

Table 14.7. The overall goodness of fit is given by RMS = 0.212 49.

14.12 Competence

It has long been appreciated that different rock types deform differently under the same
physical conditions.An early attempt to characterize the behaviors of different rock types
was to establish the concept of competence (Willis, 1893; also Willis & Willis, 1934,
p. 77f), and the basic approach is still widely used. Competent rocks tend to resist flow

10If the values of 1/t are small (as here) then powers and products will be very much smaller. Possible round-off errors
can be avoided by rescaling so that the values are closer to 1 (here we multiply by a factor of 10). This does not affect
the final results because we can only obtain the shape as expressed as a ratio, not size of the strain ellipse from these
thickness measurements.
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Table 14.7 Thickness data (Lisle, 1998, personal communication) and
derived values

i t (mm) φ 1/t S × 10 x y r

1 11.0 80◦ 0.090 91 0.909 09 0.157 86 0.895 28 0.223 78
2 15.5 69◦ 0.064 52 0.645 16 0.231 21 0.602 31 −0.199 93
3 19.0 50◦ 0.052 63 0.526 32 0.338 31 0.403 18 −0.162 24
4 21.5 24◦ 0.046 51 0.465 12 0.424 90 0.189 18 −0.035 80
5 23.0 −2◦ 0.043 48 0.434 78 0.434 52 −0.015 17 −0.089 93
6 19.5 −42◦ 0.051 28 0.512 82 0.381 10 −0.343 14 −0.220 05
7 15.5 −62◦ 0.064 52 0.645 16 0.302 88 −0.569 64 −0.238 08
8 17.0 −26◦ 0.058 82 0.588 24 0.528 70 −0.257 87 0.361 06
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Figure 14.29 Fold classification (Lisle, 1998, personal communication): (a) thicknesses; (b) best-fit
ellipse.

and incompetent rocks flow more easily. These distinctions are only relative and some
of the meaning is captured by the contrasting pairs of terms: strong vs. weak, brittle vs.
ductile, stiff vs. soft.11

The most graphic example of such differing behaviors can be seen in a deformed
conglomerate containing a variety of pebble rock types in a pelitic matrix: incompetent
elements, along with the matrix, are prominently strained whereas competent elements
are strained less, or possibly not at all. More particularly, when rocks of different com-
petencies are in contact a variety of structures develop at the interface. Ramsay (1982)
gives an extended treatment of such features with many excellent illustrations, as do
Talbot and Sokoutis (1992).

From these and other such observations, it is then possible to rank common rock types
from the most to least competent. The position in this ranking depends on chemical

11Each of these terms has a technical definition, but we use them here in the everyday semi-quantitative meaning to
suggest the broad sense in which the term has been used. Later in this section we will justify a much narrower usage.
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Table 14.8 Common rocks ranked from most to least competent (Ramsay,
1982, p. 117–118)

Low or very low grade Greenschist or lower amphibolite facies

1. Dolomite 1. Metabasic rocks
2. Arkose 2. Coarse-grained granite and granitic gneiss
3. Quartz sandstone 3. Fine-grained granite and granitic gneiss
4. Greywacke 4. Banded quartz-feldspar-mica gneiss
5. Coarse-grained limestone 5. Quartzite
6. Fine-grained limestone 6. Marble
7. Siltstone 7. Mica schist
8. Marl
9. Shale
10. Halite, anhydrite

composition and grain size. It also depends on the environmental conditions, particularly
temperature, as marked by metamorphic grade, at the time of deformation (Table 14.8).

We are especially concerned here with the effects such differences have on fold geom-
etry. For example, in a multilayered system, competent layers tend to have patterns of
isogon class 1B (parallel) whereas incompetent layers tend to have patterns of isogon
class 3 (divergent) (see Fig. 14.30a).

Figure 14.30 Competent
(shaded) and incompetent
(blank) layers: (a) after folding;
(b) after homogeneous
flattening.

(a) (b)

When rocks of differing competencies are in contact across an oblique boundary, such
as on the limbs of a fold, the states of strain in each will also differ, that is, the shape
and orientation of the strain ellipses will not be the same in both materials. This is strain
refraction (Fig. 14.31a).

The most obvious manifestation of strain refraction is a consequence of the fact that
cleavage forms parallel to the S1S2 plane or close to it and therefore exhibits cleavage
refraction (Fig. 14.31a). The angles such cleavage planes make with the inclined contact
θ1 > θ2 > θ3 implies that the relative competencies of the three lithologies is L1 >

L2 > L3.
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Figure 14.31 Refracted strain and cleavage: (a) S1 orientation angles θ1 > θ2 > θ3 (after Ramsay, 1982,
p. 113); (b) cleavage angles β1 < β2 < β3.

If we are to fully understand the role such differences play, we need to know the flow
laws which describe these several behaviors. To do this it is necessary to experimentally
deform rock material under controlled conditions in the laboratory.

The essential problem with this approach is that the strain rates in nature are experi-
mentally inaccessible. As we have seen in §13.6, the rates associated with most natural
structures are in the range 10−13/s to 10−15/s. Consider the time t it takes to produce a
modest 10% strain (e = 10−1) at the rate 10−8/s, which is still many orders of magnitude
faster than typical natural strain rates. The required duration of an experiment is

t = e

ė
= 10−1

10−8/s
= 107 s ≈ 115.7 days.

Not only is it difficult to keep the testing apparatus working at high temperatures and
pressures for this long, but even if this could be done reliably only three experiments could
be completed in a year, and the problem is compounded if larger strains are required.
Therefore, experiments are usually performed at strain rates of 10−2/s to 10−7/s. In
order to make rocks flow faster in the laboratory, there are two choices (Schmidt, 1982,
p. 96):

1. Use a higher differential stress. However, this commonly induces different deforma-
tional mechanisms and the results are less applicable to natural structural processes.
This in turn limits the application to natural strain rates.

2. Alternatively, perform the experiments at temperature higher than the range expected
under natural conditions. The extrapolation of the flow law to lower temperature
conditions is less likely to involve different microstructural mechanisms.

Under such conditions, many natural materials typically display power law creep. In
one dimension, this flow law can be expressed as ė = f (σn). In the simplest case n = 1.
Then ė and σ are linearly related (Fig. 14.32), and we have σ = µė where the constant of
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proportionality is the coefficient of viscosity, and its dimension is a pascal second (Pa s).
Such behavior is linear or Newtonian.

More generally n > 1 and the relationship between σ and ė is described by an expo-
nential curve. If the strain rate is steady we can define an effective viscosity as the slope
of the curve dσ/dė at a typical point P (Fig. 14.32a).

More likely, the strain rate varies during the evolution of a structure. Because the
natural rates are so slow, the differences over time are probably small, and we may define
an effective viscosity as the approximation �σ/�ė, which is the average slope in the
segment of the curve bounded by the upper and lower rates (Fig. 14.32b).

In either case, it is appropriate to treat competence contrasts as reflecting differences
in viscosities, at least as a good approximation. This in turn permits precise rock prop-
erties to be specified, and this approach has been used in numerical modeling of a wide
range of geological structures and this has significantly extended our understanding the
responsible processes (Johnson & Fletcher, 1994).

P

σ
n = 1

n = 2

(b)

∆σ

∆e
.

e
.

σ
n = 1

n = 2

(a)
e
.

Figure 14.32 Power laws for n = 1 and n = 2.

It is also possible to constrain rock viscosities (Talbot, 1999a). Because it is both
relatively simple and directly applicable, an instructive case involves the refraction of
cleavage as it passes from competent into incompetent layers in a fold (Treagus, 1999).

During flow the rates of shear strain on each side of a bonded contact are controlled
by the contrasting viscosities. The final, total shear strains in each material will then also
reflect these differences. Thus for each contrasting pair we can then write

µ1

µ2
= γ2

γ1
, (14.24)

where µ1 > µ2 (henceforth, the terms competent and incompetent will refer to the
materials with greater and lesser viscosity). Note that the magnitude of γ is greater in
the material with smaller viscosity, that is, γ1 < γ2. We can not evaluate the angles of
shear directly, but we can measure the angles β1 < β2 which are approximately equal to
the corresponding angles of shear ψ (Fig. 14.31b). We then recast Eq. 14.24 as

µ1

µ2
≈ tan β2

tan β1
. (14.25)
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We now consider the relatively simple but important process of a single thin isolated
layer subjected to a longitudinal compressive load. Under such conditions it will be
deflected laterally by buckling (Gere, 2001, p. 739). This process can be easily illustrated
by applying a load to a short plastic ruler (Fig. 14.33a). In theory a perfectly straight, thin
plate or slender column will not buckle so an infinitesimal lateral displacement must be
supplied. In practice irregularities or imperfections are always present which serve this
function.12

A closely related but more relevant experiment is to load a thin elastic sheet of stiff
rubber embedded in a block of softer elastic material, such as foam. The deflection of the
sheet is affected by a reaction of the embedding medium with the result that now several
folds develop (Fig. 14.33b).13

Figure 14.33 Buckling: (a)
isolated slender member; (b)
embedded stiff elastic plate.

(b)(a)

A similar result is obtained if a thin viscous layer embedded in a less viscous material
is shortened (Biot, 1961; Ghosh, 1993, p. 260). It is assumed that initially the layer
contains many minute irregularities which can grow in amplitude with the application
of a load. Some of these will grow faster than others. A differential equation expressing
these deflections as a function of the layer thickness, viscosity and load can then be
solved. From this solution, the maximum deflection can then be found, and this then
leads directly to the expression for the dominant or characteristic wavelength L.

L = 2πt 3

√
1

6

µ1

µ2
. (14.26)

This expression is valid only for buckles with infinitesimal amplitude. For large viscosity
ratios the arc length of the buckle remains essentially constant and this length L is only

12Leonard Euler first investigated the buckling of slender members and the terms Euler buckling and Euler critical load
are commonly used to describe aspects of this process (Gere, 2001, p. 478–479).

13The mechanics of folding and its mathematical description is a matter for advanced study. Ramsay and Huber (1987,
p. 383–404), Ramsay and Lisle (2000, p. 1019–1028) and Ghosh (1993, p. 251–294) give good overviews of the subject
including the derivations of some of the controlling equations and numerous references. For large-scale folds gravity
becomes an important additional component (Ramberg, 1981). Our goal here is to illustrate the fact that geometry gives
important clues to the nature of the physical processes at the time of fold formation.
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slightly greater than the initial wavelength which is taken as its measure. This expression
allows the viscosity ratio to be estimated from the measured value of L/t . Experiments
have verified the validity of this result for such materials (Biot, et al., 1961).14

For smaller viscosity ratios buckling is preceeded by a stage of homogeneous layer-
parallel shortening (Fig. 14.34). Sherwin and Chapple (1968) modified Biot’s equation
to take this additional behavior into account giving

L = 2πt
3

√
1

6

µ1

µ2

S2
1 + 1

2S4
1

. (14.27)

Note that if S1 = 1, that is, no initial shortening, this reverts to Eq. 14.26. This expres-
sion could also be used to estimate the viscosity ratio if the strain were known, but
unfortunately this is rarely possible.

(a) (b)

l l'

S1

S3

Figure 14.34 Homogeneous layer-parallel shortening.

Once initiated, the bending continues with the result that finite-amplitude folds
develop, that is, the amplitude A increases and the conventional wavelength W decreases
(see Fig. 14.5).

The contributions of buckling and initial layer-parallel shortening to the final fold
form can sometimes be evaluated. Because the component of homogeneous shortening
depends on the viscosity contrast, a folded competent layer, such as quartz sandstone in
shale, will have a larger A/W ratio, while folds developed in a less competent layer,
such as siltstone in the same shale, will have a smaller A/W ratio – the component of
homogeneous shortening is effectively hidden in the siltstone and thus the folds appear
to have been shortened less even though the bulk deformation is the same for both. In
the limit, where the contrast is very small or zero, there may be no fold at all.

As we have seen in §14.9, the homogeneous flattening of just two basic forms is
capable of generating a wide range of fold geometries which are uniquely denoted by
the flattening index. Generally these fold types are not, nor were they meant to be,
descriptions of real physical processes. For example F = ∞ has no physical meaning.
We refer to this as geometrical flattening.

14Mancktelow (2001) has revisited the problem of single-layer folds from an entirely different perspective.
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Largely on these same geometrical grounds flattening has also been proposed as a third
and final physical stage in fold evolution (Ramsay, 1967, p. 434; Ramsay & Huber, 1987,
p. 353).15 Such a homogeneously flattened multilayered fold is illustrated in Fig. 14.30b.

There are, however, serious difficulties (Treagus, 1983, p. 366; 1997, p. 357f). The
phenomenon of cleavage refraction demonstrates that the viscosities of two contrasting
materials, which control the rates at which each deform, play an important role in fold
evolution. Therefore late flattening can not be homogeneous in both competent and
incompetent layers at the same time. This is physical flattening.

This restriction does not apply to a single embedded competent layer and it is there-
fore physically meaningful to consider the late flattening of a fold with initial parallel
geometry. The fact that the thickness variation in the final fold can be represented by an
ellipse demonstrates that in this limited case flattening is a valid physical process.

In a series of finite-difference computer models of the progressive folding of a single
embedded layer, Chapple (1968) found that the process involved two important stages.At
first, incompetent matrix material flowed to fill the space in the core of the growing fold.
As the fold tightened this material then started to be extruded. This change occurred when
the limb dip was about 60◦– 65◦ (or when the interlimb angle was about 50◦– 60◦).16 In
the earlier stage the trace of the S1S2 planes displayed an antifanning (divergent cleavage
fan) pattern while in the later stage it displayed a fanning (convergent cleavage fan)
pattern. Also, the longitudinal stress in the limbs of the fold changed from compressive
(implying limb-parallel shortening) to tensile (implying limb-parallel lengthening). It
seems reasonable then to assign to these sequential stages the more conventional terms:

1. Active folding: the general buckling deformation of the embedded layer, including the
associated strain of both layer and adjacent medium, together with the bodily rotation
of the limbs of the developing fold.

2. Physical flattening: the flattening deformation of the previously formed fold, including
the continuing bodily rotation of the limbs with a consequent decrease in the interlimb
angle.

If the transition from the first to second stage which occurs at a limb dip of about
60◦ is a general one, then final folds with near-vertical limbs present a problem. Such a
rotation of the limbs by flattening strain requires a very large strain ratio and would be
accompanied by a dramatic thinning of the steep limb. This suggests that already steep
limbs are additionally steepened by bodily rotation. To the degree that this occurs, the
flattening index then underestimates the total physical flattening.

Figure 14.35a shows a member of a train of small, isoclinal ptygmatic folds developed
in a competent layer embedded in slate. From the best-fit ellipse for ten measured points

15The stages of layer-parallel shortening, folding and flattening are labeled A, B and C in Fig. 13.17.
16The reason for these contrasting behaviors is that the volume of the space in the core of the fold, as represented by

its cross-sectional area, increases in the early stage and decreases in the later stage. The exact transition point likely
depends on the detailed shape of the folded layer.
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Table 14.9 Data for a ptygmatic fold

i t φ S x y

1 8.2 0◦ 0.12195 0.12195 0.00000
2 8.0 −10◦ 0.12500 0.12310 −0.02171
3 7.9 +20◦ 0.12658 0.11895 0.04329
4 7.3 −30◦ 0.13699 0.11863 −0.06849
5 7.2 +40◦ 0.18889 0.10640 0.08928
6 6.4 −50◦ 0.15625 0.10044 −0.11969
7 6.3 −60◦ 0.15873 0.07937 −0.13746
8 5.8 −70◦ 0.17241 0.05897 −0.16202
9 5.6 −80◦ 0.17857 0.03101 −0.17586
10 4.8 90◦ 0.22083 0.00000 0.20833

(Fig. 14.35b), the flattening index is F = 1.59. The associated RMS = 0.074, which
indicates quite a good fit. Note however that point No. 10 representing the layer-parallel
stretch of the vertical limb is a prominent outlier. Figure 14.35c is the ellipse recalculated
using the other nine points: now F = 1.45 and RMS = 0.029 and the fit is even better.

The limb-parallel stretch of the vertical limb is about 14% greater than the stretch in
this same direction associated with the second ellipse. This is consistent with the results
of Chapple’s model experiments.

(a) (b) (c)
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Figure 14.35 Small ptygmatic fold: (a) fold form; (b) first best-fit ellipse; (c) second best-fit ellipse (after
Ramsay & Huber, 1987, p. 393).

The analysis of the behavior of multilayered systems is made difficult by a number of
factors (Ramsay & Huber, 1987, p. 405–406). Of particular importance are the variations
in the thickness and competence of the component layers making up the system, and
whether the contacts between layers are bonded or allow slip.All this leads to considerable
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physical and analytical complications with the result that the geometry of such systems
can not be unambiguously interpreted. 17
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(a) Single competent layer (b) Disharmonic folds

(c) Harmonic folds (d) Polyharmonic folds

Figure 14.36 Contact strain and folded multilayers (from Ramsay & Huber, 1987, p. 406 with
permission of Elsevier).

We can however adapt our results from folds developed in single embedded layers in
the general way (Ramsay & Huber, 1987, p. 405f). The growth of a fold displaces the
adjacent material, an effect termed contact strain. Theoretically, this strain vanishes only
at an infinite distance from the folded layer, but the effects die away quite rapidly so that
at a distance beyond about half of the initial wavelength (or L/2) they are small enough
that they can be neglected for most purposes (see Fig. 14.36a).

If two or more competent layers are present, but the spacing between them is greater
than this zone of contact strain, then the geometry of the folds in each will develop
independently (Fig. 14.36b). There will then be no necessary relationship between the
geometry of these two sets, and these are called disharmonic folds.

On the other hand, if the spacing of the layers is smaller so that the zones of contact
strain overlap, then harmonic folds develop (Fig. 14.36c). Finally, if thin competent layers
lie within the zone of contact strain of thicker layers, there will be a partial connection
between the folds sets (Fig. 14.36d). These are polyharmonic folds.

17In a series of papers Hans Ramberg has treated the complex interaction of these physical factors in considerable detail
(for a summary and references see Ramberg, 1981).
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14.13 Exercises

1. Given the dip D of the hinge plane and the plunge P or pitch R of the hinge line in
Table 14.10, classify the orientation of the fold using Table 14.4, Figures 14.12, 14.13
and 14.14.

Table 14.10 Attitude of hinge plane and
hinge line

No. D, P, R No. D, P, R

1 D(90), P (0) 6 D(65), P (40)
2 D(0), R(0) 7 D(85), P (80)
3 D(20), P (20) 8 D((65), P (50)
4 D(10), P (5) 9 D85), P (40)
5 D(40), P (20) 10 D(90), R(90)

2. Using the fold profile depicted in Fig. 14.37, construct the dip isogons for layers A,
B and C and classify the form of each folded layer.

Figure 14.37 Dip isogon
problem.

A
B

C



15
Parallel folds

15.1 Introduction

In some folds the thicknesses of layers remain essentially uniform with the result that
they display constant orthogonal thickness. Such folds are parallel. They commonly have
gentle to close shapes and are typically developed in well-bedded sedimentary rocks.
There are two end-member shapes (see Fig. 14.4):

1. Rounded forms have smoothly curved limbs and broad hinge zones.
2. Angular forms have straight limbs and narrow hinge zones.

We seek ways of reconstructing both types of such folds in profile from field data.
Here we consider only the case of horizontal folds, that is, folds whose profile planes are
vertical. The methods will not work for plunging folds and the additional steps required
to construct their profiles are treated in Chapter 17.

15.2 Rounded folds

First, we treat the case of smoothly rounded folds, sometimes referred to as concentric
folds.

The requirement of strict constant orthogonal thickness within a folded layer or packet
of layers severely limits the states of strain which can exist in parallel folded layers.
There are two mechanisms involved: shear and extension.

Some insight into possible states can be obtained by considering simple models. Once
again we resort to a deck of thin cards. To produce a fold hold the deck with both hands and
press inward on the ends (it helps to give the center of the deck a slight upward nudge with
the thumbs). The deck buckles and a pronounced rounded form develops (Fig. 15.1a). This
combination of layer-parallel simple shear and bending is called flexural-slip folding.

The reason that slip dominates is that the card deck is strongly anisotropic. The resis-
tance to shear parallel to the cards is small while the resistance to shear in other directions

410
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is very much greater. Clear evidence of such bedding-plane slip is found in some naturally
occurring folds where veins or dikes are offset across bedding planes and by polished
and striated or fibrous-coated bedding surfaces.

Figure 15.1 Model folds: (a)
flexural slip; (b) flexural flow.

(a) (b)

Donath and Parker (1964, p. 48) introduced the idea that competent layers may deform
by flexural flow, that is, like a card deck with vanishing thin cards (Fig. 15.1b). Ramsay
(1967, p. 391; Ramsay & Huber, 1987, p. 446f) discussed this mechanism in some detail.
However, it requires that such a layer be sufficiently anisotropic to deform in a manner
analogous to the simple shear of a card deck.

Using a finite-element model, Hudleston, et al. (1996) explored the role of such
anisotropy in the folding of a single embedded layer. Using a local coordinate system
with x parallel to the plane of anisotropy the composite flow law is given by

σxx = µNėxx and σxy = µSėxy,

where µN is the viscosity for the shortening rate due to the normal stress σxx and µS is
the viscosity for the shear rate due to the shear stress σxy . The degree of anisotropy is
then expressed by the ratio A = µN/µS .

To produce a fold which closely approximated the geometry of pure flexural flow
required that A > 50. Because the anisotropy in naturally occurring layers is unlikely
to have a magnitude greater than A ∼ 10, the folding of an isolated competent layer by
flexural flow is an unlikely mechanism.

Hudleston, et al. (1996) also modeled the folding of a simple system composed of five
layers of equal thickness, three competent layers separated by two incompetent layers
with the same viscosity as the adjacent matrix material. The effective value of A ∼ 25.
Under these conditions the resulting fold was essentially parallel, but with a different
pattern of internal strain. The competent layers remained nearly parallel. The incompetent
layers were more strongly sheared than predicted by the flexural flow process. However,
the average taken across any competent–incompetent pair was very close to the prediction
for flexural flow.

In nature the material properties of the layers in a fold are quite unlike a deck of cards
and these differences have an important influence on fold geometry. In particular, the
bending of a competent layer must be accompanied by strain distributed within the layer.
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This strain, in turn, affects the local thicknesses of the constitutive layers. Following
Ramsay (1967, p, 397–402) we model these changes in a simple way.

Thickness and strain

Consider a rectangular element within the layer of width l whose long dimension equals
the total thickness of the layer (Fig. 15.2a). At the instant buckling begins, the boundary
of the layer at the outer arc is infinitesimally extended and the boundary at the inner
arc is infinitesimally contracted. Between these two different states there is a continuous
variation in the layer-parallel strain. The result is that there is a surface of no distortion
called the infinitesimal neutral surface located along the center line of the layer. This
subdivides the rectangle into two equal parts, each with a partial thickness t .

As buckling progresses the changes in tangential lengths continue and the initial rect-
angle is transformed into the sector of the annulus of a circle. There is now a curved finite
neutral surface which is no longer at the center of the layer (Fig. 15.2b). The length of
the arc along the trace of this surface is equal to the same initial length l.

The length of a circular arc of radius r is given by l = rθ , where θ is the angle
subtended by the arc. A more useful form of this is

θ = l/r (θ in radians). (15.1)

The fractional part of a circle represented by a sector is given by the ratio θ/2π . Substi-
tuting the expression for θ from Eq. 15.1 gives

θ

2π
= l

2πr
. (15.2)

The length of any other arc, compared with l, is

l′ = l + �l, (15.3)

where �l is the change in length and is positive above and negative below the neutral
surface. The radius of curvature of these is given by r + �r , where �r is also positive
above and negative below the neutral surface.

We are particularly interested in the arcs bounding the reference element. For these
�r is the partial thickness of the layer after buckling. We label these t ′. Accordingly, the
radius of curvature of each of these arcs is r + t ′. Again �r = t ′ is positive above and
negative below the neutral surface.

The area of a circle is πr2, and the area of a sector of this circle is obtained by
multiplying by the fraction of the circle θ/2π (see Eq. 15.2) giving

θ

2π
πr2 = θ

2
r2.
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Figure 15.2 Buckled layer: (a) initial state; (b) final state; (c) changes in partial thicknesses.

The area of an annulus of two concentric circles of radii r1 > r2 is πr2
1 − πr2

2 , so the
area of a sector of an annulus is

θ

2π
(πr2

1 − πr2
2 ) = θ

2
(r2

1 − r2
2 ).

Assuming that area is conserved, the two partial areas are the same before and after
buckling. We equate the area in the rectangle (Fig. 15.2a) and the area of the annulus of
the sector (Fig. 15.2b). Then using Eq. 15.2 gives

lt = l

2πr

[
π(r + t ′)2 − πr2

]
. (15.4)

Rearranging gives the quadratic equation in t ′

t ′2 + 2rt ′ − 2rt = 0.

With the quadratic formula, the positive root is

t ′ = −r +
√

r2 + 2rt. (15.5)

(The negative root has no physical meaning.) For convenience, we assign the magnitude
of both initial partial thicknesses equal to one. With this expression we may then deter-
mine the change in thickness as a function of the curvature c = 1/r of the finite neutral
surface. Clearly, for the thickness above the neutral surface there is a modest decrease.
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In contrast, for thickness below the neutral surface there is a pronounced increase as
folding proceeds (Fig. 15.2c).

We may also determine the strain throughout the layer. The lengths of the boundary
arcs are given by

l + �l = (r + t ′)θ

With Eq. 15.1 this becomes

l + �l = (r + t ′)l
r

= l + t ′l
r

or �l = lt ′

r
.

With this, the extension e = �l/l at the two boundaries is then given by

e = t ′/r. (15.6)

If t ′ is positive, this expression gives the principal extension e1, and if t ′ is negative it
gives e3. From the condition for constant area

S1S3 = (1 + e1)(1 + e3) = 1.

Solving for both e1 and for e3 yields

e1 = −e3

1 + e3
and e3 = −e1

1 + e1
. (15.7)

For +t ′, the principal stretch S1 = 1 + e1 = 1 + t ′/r

(1 + t ′/r)(1 + e3) = 1. (15.8)

Thus

e3 = − t ′

r + t ′
. (15.9)

From these we can now express the strain ratio at any point within the folded layer as a
function of the radius of curvature

Rs = 1 + e1

1 + e3
= 1 + t ′/r

1 − t ′/(r + t ′)
. (15.10)

Expanding, using the expression for t ′ in Eq. 15.5 this reduces to

Rs = 1 + 2/r or Rs = 1 + 2c. (15.11)
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If −t ′, the orientation of the principal stretches are reversed, and a similar manipulation
gives

Rs = 1

1 − 2/r
or Rs = 1

1 − 2c
. (15.12)

As a result of the bending of such a layer, its outer arc is lengthened and its inner
arc is shortened. This, in turn, results in a thinning of the material adjacent to the outer
arc and a complementary thickening on the inner arc. These two regions are separated
by a surface of no longitudinal strain, called the finite neutral surface (Fig. 15.2b). At
the initiation of bending the neutral surface lies along the center line of the layer, but it
migrates thereafter.

While the changes above and below this surface tend to cancel, there will always be a
net increase in the total thickness. The magnitude of the effect depends on the thickness
and radius of curvature. If the layer is thin and the radius of curvature large, the change
in thickness is small. For example, for a ratio of r/t = 10, the increase in total thickness
is less than 1%, which is probably undetectable in most folds.

We are particularly interested in the states of strain at the inner and outer arcs. Using
these expressions we calculate the shapes of the strain ellipses at these points (see
Fig. 15.2c). As can be seen, the value of Rs at the outer boundary is quite modest, while
the strain at the inner boundary rapidly approaches infinity.

This drastic increase in strain at the inner arc is a geometrical consequence of the model,
but it violates the conservation of mass and is therefore not physically possible. Natural
systems must find other ways of deforming and there are several possible alternatives
(Ramsay, 1967, p. 400).

1. At some point the curvature at the hinge may cease to increase and as the fold continues
to develop the curvature on the limbs will continue to increase with the result that the
neutral surface will have nearly constant curvature throughout the fold, and the fold
will be parallel with essentially circular shape.

2. The neutral surface may shift toward the inner arc so that the strain on the outer arc
may continue to increase.

3. A new mechanism of deformation may develop which will distribute the strain more
equably (Kuenen & de Sitter, 1938).

(a) Shear planes parallel to the layer boundaries may develop, which would allow
“bedding-plane” slip, as has been observed in experiments with soft clay .

(b) Extension fractures may develop along the outer arc of the fold as observed in
experiments with hard clay.

4. Conjugate shear fractures may form in the core of the fold, which would allow con-
tinuing shortening. Such fractures are often seen in natural examples of such folds.

Which of these occur, singly or in combination, depends on the physical properties of
the material at the time of folding.
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15.3 Rounded folds in cross section

The property of constant orthogonal thickness implies that a line perpendicular to the
bounding surface of one layer is also perpendicular to the bounding surfaces of layers
above and below. This, and the fact that any curve may be approximated by a series of
circular arcs, forms the geometrical basis for reconstructing a series of horizontal parallel
folds in vertical cross section.

Basic technique

Hewett (1920; see Fig. 2.9) was the first to reconstruct the geometry of a part of a parallel
fold from dip measurements using circular arcs. Busk (1929) applied the method to the
reconstruction of a train of parallel folds.1 It depends on the elementary proposition that
the centers of two tangent circles lie on the straight line which passes through their point
of contact and which is perpendicular to the common tangent. In Fig. 15.3 two circles
with centers at O1 and O2 touch at point A. Radii O1A and O2A are both perpendicular
to the common tangent at A and therefore lie on the same line.

(a) (b)

O1 O2 A
A O1 O2

Figure 15.3 Tangent circles.

The simplest application of this principle is to the problem of constructing the curved
traces of the bounding surfaces of a layer between two successive dip lines as plotted on
the profile plane.

Problem

• Given two measured dip angles at stations A and B, draw the circular arc which is
tangent to both.

Construction

1. Plot points A and B in their horizontal and vertical positions using a common scale.
At each of these points then draw dip lines at angles δA and δB and at each construct
dip normals to intersect at point O (Fig. 15.4).

1The method also has application to the reconstruction of any curved surface from dip measurements, such as the slip
surface of a landslide (Cruden, 1986).
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Figure 15.4 Arcs though two adjacent dips: (a) concave down; (b) concave up.

2. With OA and OB as radii and point O as center draw arcs AC and BD which are the
traces of the boundaries passing through stations A and B. Note that the thickness of
the stratum is represented by segments AD = BC along the dip normals.

3. There are two cases.

(a) If the dip increases from A to B (δA < δB) the circular arcs are concave downward
(Fig. 15.4).

(b) If the dip decreases (δA > δB) they are concave upward (Fig. 15.4b).

Figure 15.5 Arcs through three
adjacent dips: (a) dips in same
direction; (b) dips in opposite
direction.
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Similarly, a composite arc may be drawn through three adjacent dips at stations A, B

and C. The middle dip may be in the same direction as the other two (Fig. 15.5a) or the
middle dip may be in the opposite direction (Fig. 15.5b).

This construction is easily extended to any number of dips by working along the line
of section using successive pairs of dips to carry the linked tangent arcs from one dip
normal to the next.

Problem

• The dips at four stations are, from west to east, δA = 20◦ E, δB = 30◦ W, δC = 40◦ E
and δD = 15◦ W. Reconstruct the surface passing through point A.
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Figure 15.6 Linked arcs
tangent to four dip lines.

C DE
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Construction

1. Plot the distances and elevations of the four stations to scale along the line of section
and at each draw the dip line (Fig. 15.6).

2. Draw the normals to the first pair of dip lines at A and B to locate center O1. Then
repeat for the second pair at B and C, locating center O2, and finally the third pair at
C and D to locate center O3.

3. Draw the three linked tangent arcs starting at A.

(a) With O1 as center and radius O1A draw the first arc to locate point E on the B dip
normal.

(b) With center O2 and radius O2E continue the first arc to locate point F on the C

dip normal.
(c) With center O3 and radius O3F complete the final arc to locate point G on the D

dip normal.

4. The composite curve AEFG represents the horizon passing through A.

O1

O2

A B

δA δB

Figure 15.7 Trace parallel to equal dip lines in same direction.

There are certain situations which require special treatment. If the measured dips at
two adjacent stations are equal and in the same direction, the normals will be parallel
and the required “arc” will be a straight line (Fig. 15.7).
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If the two adjacent dips are not quite the same, the dip normals will intersect at some
distance above or below the section. Then the required radius may exceed the expansion
of even a beam compass. This may be controlled by working at a smaller scale or the
large radius arc may be approximated (Busk, 1929, p. 21).

Problem

• Given two dip normals which are not far from parallel, draw an arc passing through
point A.

Construction

1. Project the dip line from A to locate point C on the second dip normal (Fig. 15.8).
Then draw a line from A perpendicular to this normal to locate point D.

2. Bisect ∠CAD to locate point B on this second dip normal.
3. Through B draw a perpendicular line to intersect first dip line AC at F .
4. Through F draw a line perpendicular to AB. The center O of the required arc lies on

this line well below the section.
5. Sketch an arc through A and B, tangent to their respective dip lines and also making

a right angle with line OF.

The validity of this construction lies in the fact that right triangles AFO and BFO are
congruent, and therefore OA and OG are equal.

A B

O

C

D

F

GδA δB

r d

Figure 15.8 Approximation of large radius arc (Busk, 1929, p. 21).

Dip interpolation

The fold reconstructed by this method must, of course, be in accordance with the evidence
on the ground. If a recognizable horizon is repeated along the traverse, there may be a
discrepancy between its observed and reconstructed location. For example, if a recog-
nizable horizon is found at both locations A and B, but the conventional reconstruction
predicts the location is at B ′, something is clearly wrong (Fig. 15.9).

The usual situation is to adjust the wavelength of the fold to bring it into concordance
with the mapped location. There are two types of mismatches.
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1. If the dip angles increase along the traverse (δA < δB) the arc length must be increased
to eliminate the mismatch (Fig. 15.9a).

2. If the dip angles decrease along the traverse (δA > δB) the arc length must be shortened
(Fig. 15.9b).

A B

B�
5040

rA
rB

δA < δB

50 40

A B
B�

rA rB

δA > δB

(a) (b)

O O

Figure 15.9 Interpolation required: (a) δA < δB; (b) δA > δB.

Assuming that such a mismatch is not due to change in thickness or faulting, an
intermediate dip may be inserted to adjust the actual and predicted position of the marker
horizon. This dip may be placed almost anywhere, but in the absence of any additional
information it is probably best positioned where the control is poorest, that is, where the
difference between adjacent dips is large, or the distance between them is great, or both.

The way this is done is to replace the single circular arc with a pair of linked arcs
which have a common tangent at their junction and which satisfies the evidence on the
ground.

A method for doing this was given by Busk (1929, p. 26–27), then simplified and
extended by Higgins (1962). Owens (2000) discovered that the locus of possible points
of common tangency lies on a circular arc. This leads to a completely different way
which allows the range of possible solutions to be explored more completely. It is also
amenable to an analytical solution.2

Problem

• Given measured dips δA = 40◦ at station A and δB = 50◦ at station B along the line
of traverse, construct the trace of the curved surface passing through both A and B.

Construction

1. Plot the outcrop points A and B in their correct relative horizontal and vertical loca-
tions. Connect these two points with a straight line (Fig. 15.10a).

2. Draw the associated dip lines δA = 50◦ at A and δB = 70◦ at B to intersect at point X.
3. To locate the center K of the circular locus of points of common tangency:

2For such an analytical/computer solution it is necessary to specify the sense of several angles by adopting a sign
convention. For a graphical solution, however, the sense of these angles can be determined by inspection, so they are all
treated here as positive quantities.
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Figure 15.10 Interpolation (Owens, 2000): (a) point of common tangency; (b) interpolated dip.

(a) Construct the perpendicular bisector of line AB.
(b) Through A draw a line making an angle σ measured anticlockwise from AB or

through B clockwise from AB, where

σ = 90 − 1
2(δA + δB). (15.13)

The sense of σ is determined by the rule that K is above AB for a syncline (as
here), and below AB for an anticline.

(c) The intersection of the bisector and either of these two lines is the center K of the
circular arc. Complete the circle with radius KA = KB.

4. Select a point of common tangency O on this arc. The location of this point determines
the shape of the reconstructed fold: if is near the center of the arc AB the compound
curve will be approximately symmetrical, and if it is significantly closer to either A

or B it will be distinctly asymmetrical.
5. Draw line AO. This line makes angle α with dip line AX.
6. Draw line BO. This line makes angle β with dip line BX.
7. Draw a line at O making the angle α with AO, thus locating point M on the dip line

AX. Similarly, draw a line at O making the angle β with BO, thus locating point N

on the dip line BX (Fig. 15.10b).
8. The inclination of straight line MON is the interpolated dip, and the centers of the

two linked tangent arcs can now be established.

(a) Construct a line perpendicular to MON at O.
(b) Construct a line perpendicular to AX at A to intersect the normal line at O at

point P .
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(c) Construct a line perpendicular to BX at B to intersect the normal line at O at
point Q.

9. With point P as center draw a tangent arc with radius rA = PA = PO. With point
Q as center draw a tangent arc with radius rB = QO = QB.

This method can also be used if the beds at A and B dip in the same direction. However,
some caution should be observed because the construction inserts a new fold into the
cross section.
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Figure 15.11 Interpolation (after Owens, 2000): (a) point of common tangency; (b) interpolated dip
and resulting compound curve.

Problem

• Given measured dips δA = 70◦ at station A and δB = 30◦ at station B, both in the
same direction, construct the trace of the curved surface passing through both A and B.

Construction

1. As before, plot the outcrop points A and B in their correct relative horizontal and
vertical locations, and connect these two with a straight line (Fig. 15.11a).

2. At each of these points draw the associated dip lines, δA = 70◦ at A and δB = 30◦ at
B intersecting at point X.

3. To locate the center of the circular locus of points of common tangency:

(a) Construct the perpendicular bisector of line AB.
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(b) Draw a line through A making an angle σ measured anticlockwise from AB or
through B clockwise from AB, where

σ = 90 − 1
2(δA − δB). (15.14)

4. The intersection of these two lines is the center K of the circular arc, which in this
case is above AB. Complete the circle with radius KA = KB.

5. Select a point of common tangency O on this arc.
6. Draw line AO. This line makes angle α with dip line AX.
7. Draw line BO. This line makes angle β with dip line BX.
8. Draw a line at O making the same angle α with AO, thus locating point M on the dip

line AX and a line at O making the same angle β with BO, thus locating point N on
the dip line BX (Fig. 15.11b).

9. The inclination of straight line MON is the interpolated dip, and the centers of the
two tangent arcs can now be established.

(a) Construct a line perpendicular to MON at O.
(b) Construct a line perpendicular to AX at A to intersect the line at O at point P .
(c) Construct a line perpendicular to BX at B to intersect the line at O at point Q.

10. With points P and Q as centers draw the tangent arcs AO and BO.

General reconstruction

With this collection of techniques we may now reconstruct the form of any folded strata
from map data or from a field traverse made expressly for the purpose. In either case,
the line of section should be as nearly perpendicular to the strike direction of the dipping
beds as possible. In preparing the cross section, it is conventional to orient the line so
that its eastern or northern end is on the right-hand side.

Even in simple, well-behaved folds, it is rarely possible to locate a section line exactly
normal to all measured strikes, in which case apparent dips in the direction of the section
line must be computed before the dip lines are plotted. In addition to the correct locations
along the section line, the elevations of these points must also be plotted using the same
scale, that is, there must be no vertical exaggeration.

The number of readings exactly on the chosen section line is never enough. Other
measurements may be used by projecting them short distances to the line of section. Usu-
ally they are projected parallel to the local line of strike, but this may require adjustment
if there is a significant angle between the section line and the dip direction; otherwise,
projecting strike lines may cross and the dips will then be reversed on the section line
from their relative positions in the field. The need to convert to apparent dips and the
use of obliquely projected attitudes means that the folds are not strictly cylindrical. This
introduces errors and uncertainties which must be kept in mind when interpreting the
form of reconstructed folds (see Busk, 1929, p. 19).
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Problem

• Complete the structure section of the folds at depth for the data of Table 15.1.

Table 15.1 Structural data

Station Dip Station Dip

A 20◦ E F 25◦ E
B 10◦ W G 75◦ E
C 45◦ W H 50◦ E
D 10◦ W I 20◦ E
E 0◦ J 0◦
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Figure 15.12 Full reconstruction by tangent arcs showing trace of the hinge surface.

Construction

1. At each station, draw the dip normal; pairs of these intersect at centers O1– O9.
2. Starting with the horizon exposed at point A and using each center in sequence, draw

the circular arcs to locate points K–T representing the intersection of this horizon
with each dip normal (Fig. 15.12).

3. These may represent the actual thicknesses of known strata or they may be shown
schematically with constant thickness (as here).

4. With O1 as center draw arcs through points A1–A3 to the B dip normal. Using suc-
cessive centers continue the traces of these contacts.

5. For horizons A4 and A5 an adjustment is required. From their intersections with radius
O1O2, the next step would be to continue using center O2, but this can not be done
because it lies above horizon A4 and therefore has no control on the shapes of curves
below it. The following steps should then be used.
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(a) The A4 and A5 arcs should be continued just beyond the B dip normal.
(b) To maintain uniform thickness A4 and A5 should be marked off on the D dip

normal. Swinging arcs through these marks back into the core of the anticline
produces angular, rather than rounded hinges.

6. To locate the trace of the hinge plane in the asymmetric anticline bisect the angle
PO6Q.

In many cases, this reconstruction produces acceptable results as confirmed by obser-
vations at the surface of the earth, and it improves as the quality and quantity of structural
and stratigraphic control increases. There are, however, some important limitations and
an awareness of these should aid in constructing and interpreting such sections.

At best, concentric circular arcs can only approximate the natural curves of rounded
parallel folds, although once again, the more attitude data available, the closer this approx-
imation will be to reality. A part of the problem arises because each arc segment utilizes
only two dip angles.

With the Busk construction, measurement errors or local structural irregularities will
propagate throughout the section. Reches, et al. (1981) suggested a modification of the
basic technique which may help avoid this problem. Several concentric arcs, using a
number of adjacent centers, are drawn on an overlay sheet to find the arc which gives
the best fit to the structural and stratigraphic data.

Mertie (1947) explored quite a different approach involving no assumptions about the
nature of the curvature, and which makes the best possible use of the existing data. The
technique involves constructing a curve called an evolute which utilizes a number of
adjacent dip measurements. Along this curve the center and radius of curvature of the
traces of the parallel layers, called involutes, vary continuously. The construction of these
curves is more involved than drawing tangent arcs and it does not seem to have been
widely used. It does represent a useful way of emphasizing just how limited concentric
circular arcs are in approximating general curves.

In an additional approach, McCoss (1987) gave a practical explanation of how rotated
cubic spline interpolators can be used to construct the form of folded surfaces using a
computer-aided approach.

Finally, the appearance of the sharp cusps in the core of the anticline warns us that
there is something seriously wrong there. If continued upward the same problem would
appear in the cores of synclines. To round off these cusps, as suggested by Badgley
(1959, p. 34), is entirely cosmetic and ignores completely the most serious defect of the
reconstructions by the Busk technique for the form of the folds at depth – it fails utterly
in the cores of the folds!

In order to see what the problem is we attempt to restore the layers to their pre-folding
state. We do this by measuring the length of each folded horizon to estimate their original
lengths (Fig. 15.13). As can be seen, this reconstruction using tangent arcs results in a
considerable loss of material, which is entirely unrealistic.
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(a) (b)

??
Beds straightened without change of length

Figure 15.13 Unequal shortening (after Carey, 1962): (a) reconstruction; (b) restoration (from Carey,
1962). Used with permission of the Journal of the Alberta Society of Petroleum Geology.

15.4 Balanced cross sections

In the light of these limitations, it would be useful to have some way of testing our
reconstruction for internal consistency and geological reasonableness. Here, we briefly
describe such a test.3 By way of introduction we make the following assumptions:

1. The deformation which produced the folds was two dimensional, that is, all changes
occured in the plane of the section.

2. The deformation was isochoric, and as a consequence area in the plane of the section
is conserved.

3. The layers which mark the folds originally had constant orthogonal thickness.
4. The fold geometry is essentially parallel throughout.

If area is conserved and bed thickness is constant, it follows that the length of any bed
must also remain constant, or nearly so. Because of the requirement of this constancy of
bed length, it follows that the length of the traces of each folded surface must be the same
from one bed to another. This leads to a simple test of consistency to the reconstructed
shape of the parallel folds.

Steps

1. Establish a pair of reference lines at either end of the section in regions of no interbed
slip. These may be located at the hinges of major anticlines or synclines, or in regions
well beyond the fold belt.

2. Measure the length of the traces of selected horizons between the two reference lines.
This can by done most easily with a curvimeter.4 These lines should all be the same
length.

3. If the lengths are not the same, the section must show a valid explanation of why they
are not.

3There is a large and growing literature on the subject. Good overviews are given by Suppe (1985, p. 57–70), Ramsay
and Huber (1987, p. 543–559), Marshak and Woodward (1988), De Paor (1988) and Woodward, et al., (1989).

4This is a device with a small wheel and dial which measures the length of a curved line.
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Sections which pass this test are termed balanced (Dahlstrom, 1969a; Hossack, 1979;
Elliott, 1983). An important property of such sections, and indeed the principal reason
for constructing them is that the amount of shortening represented by the folds can be
determined by comparing the original and deformed lengths of the folded traces. Note
too that balance is a necessary, but not sufficient condition for the correctness of the
section. That is, if the section does not balance it can not be correct, but even if it does
balance it may not be completely accurate.

If this test is applied to the parallel folds reconstructed by Busk’s method, it will
be found that the bed length is not consistent (Fig. 15.13). The source of most of this
discrepancy lies in the cusp-shaped hinges in the cores of the anticlines. Clearly, these
reconstructed forms can not represent the actual geometry in the deeper zones even
approximately. This means that the mechanism of parallel folding breaks down at depth
and that other mechanisms become important. The geometry of these deeper structures
can not be predicted from surface data alone. However, the main alternatives can be
outlined.

There are two main ways of resolving this difficulty. The first is to introduce one
or more thrust faults in the core of the fold which accommodates the shortening in
order to conserve total bed length. Fault slip and fold shortening may be interchanged
(Fig. 15.14a) or faults alone may accomplish the required shortening (Fig. 15.14b).

(a) (b)

Figure 15.14 Thrusts in fold cores: (a) accommodation by folding; (b) accomodatiom by imbricate
faulting (from Dahlstorm, 1969a). Used with permission of the National Research Council of Canada.

The second way is to keep the bed length and thickness of the deeper layers as constant
as possible. The only way of doing this is by changing the sizes and shapes of the folded
layers. This is disharmony. An example is shown in Fig. 15.15. The immediate question
is then how would the next lower layer be drawn? This leads of the shearing off, or
décollement.

Often thrusts and fold disharmony occur together. A famous section from the Jura
Mountains where the basic concept of the décollement was first developed is shown in
Fig. 15.16.

Where such a detachment is present we can calculate its depth.

15.5 Depth of folding

The position of this basal detachment is determined by the location within the sedimentary
sequence of weak layers, such as shale, or in extreme cases, salt and gypsum, or by
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Figure 15.15 Reconstruction of fold at depth by maintaining original bed length and conserving area
(from Goguel, 1952). Used with permission of Mason et Cie.

Figure 15.16 Section through a part of the Jura Mountains (from Buxtorf, 1916).
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Figure 15.17 Calculation of depth of folding (from Dahlstrom, 1969b). Used with permission the
Bulletin of Canadian Petroleum Geology.

the contact between the sedimentary rocks and the underlying rigid basement unit. In
detail the behavior of the lower part of the folded sequence depends on the mechanical
properties of the rocks involved. Instead of tightly crumpled folds in the cores of the
anticlines, thrust faults may form that root in the décollement zone. These faults may or
may not break through to the surface, and if they form early in the folding they themselves
may be deformed by continuing folding or by late thrusting.

The effect of folding is to make a packet of rocks thicker and shorter. If volume is
conserved in the packet, the amount of material uplifted must exactly equal the decrease
due to shortening. Since both the amount of thickening and shortening can be measured
on a cross section, the depth of the décollement can be determined (Dahlstom, 1969b,
p. 342).
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Calculation

1. The lateral shortening of a reference horizon between points of no slippage is deter-
mined by comparing the bed length measured with a curvimeter, with the lateral
distance this horizon occupies in the folded packet. In Fig. 15.17a the bed length
measured at the top of the Mississipian Rundle group is AEFG = AB. The distance
GB represents the actual shortening.

2. The amount of increased area of the thickened packet between the two no-slip refer-
ence points is measured with a planimeter.5

In Fig. 15.17b, this area lies between the straight line AG and the trace of the
folded reference horizon AEFG.

3. The depth AD of folding follows directly from the relationship:

Depth = area uplifted

shortening
.

Note that the area of rectangle GBCH equals the area measured in step 2.
It should also be noted that when the depth to the basal thrust is independently known,

the shortening may be found using this same formula. This is also an estimate of the
minimum displacement on the décollement thrust.

This method of estimating the depth of folding has been used with good results in the
Jura Mountains where the concept of the décollement originated. However, these results
are not without difficulties. How can a packet of sedimentary rocks be deformed in a
manner which is independent of the underlying material? Suggestions have been made
concerning the possible existence of related structures, such as imbricate slices in the
underlying block. Besides raising several additional difficulties, there is now clear and
compelling geophysical evidence that in the external zones of at least some mobile fold
belts no such sub-décollement structures are present, but the agents responsible for the
deformation remain in question.

It should be abundantly clear that parallel folding is a complicated process, and must
involve other modes of deformation, including disharmony and shearing off. It does not
follow, however, that every group of parallel folds has a single décollement thrust at
depth. The necessary adjustments may take place locally and gradually rather than at a
single horizon at depth. Many small-scaled examples of detachment structures can be
found in the field.

More importantly, in the internal zones of mountain belts, the basement and cover
rocks may both participate in the deformation. Synchronous folding and thrusting of the
overlying, near-surface rock layers would be a certainty, and these would most likely
involve, at least in part, the parallel mode.

5See http://en.wikipedia.org/wiki/Planimeter and http://wantasub1.stores.yahoo.net/dip1.html.

http://en.wikipedia.org/wiki/Planimeter
http://wantasub1.stores.yahoo.net/dip1.html
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Barnes and Houston (1969) have described a simple example which illustrates the prin-
ciple involved. In a part of the Medicine Bow uplift in the Northern Rocky Mountains of
Wyoming, a Precambrian basement complex is unconformably overlain by Paleozoic and
Mesozoic sedimentary rocks. During the Laramide Orogeny, these layers were folded,
presumably in response to distributive movement on micro-fractures in the basement
unit (Fig. 15.18). Under these circumstances shearing off is not required.

Compton (1966) described a similar example, and he was able to demonstrate actual
slip on the closely spaced fractures in a gneissic basement. In this case, up to 3700 m
of overlying sedimentary rocks were deformed by folding. An interesting feature is the
evidence of disharmony in the upper part of the sequence, particularly in the cores of
synclines. Dalstrom (1969b) has shown that in certain instance this upward increase in
disharmony may lead to an upper detachment fault.

Figure 15.18 Laramide fold in the Nothern Rocky Mountains (from Barnes and Houstan, 1969). Used
with permission of Contributions to Geology.

Figure 15.19 Thinning of the
overturned limb (after Busk,
1929, p. 57).

15.6 Non-parallel modifications

If non-parallel folds are present, even locally, there may be severe distortions if an attempt
is made to force the structural data into a parallel mode.
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We have already seen how homogeneous flattening changes the geometry of parallel
folds (see §14.11).

There is a limit to how much shortening can be accomplished by the process of parallel
folding. Often the result is that, after a certain degree of shortening, parallel folds often
become asymmetrical, that is, one limb becomes steeper than the other and may finally
become overturned. Although it may occur earlier, thinning is geometrically required at
the point of overturning (Busk, 1929, p. 30). The beds of the less steep limb may still be
parallel. In terms of the reconstruction by circular arcs, this non-parallelism is proved
when correlation of a key horizon and the utilization of certain dip measurements is
irreconcilable. The simplest approach is to make the necessary adjustments in the thinner
limb by freehand sketching (Fig. 15.19).
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Figure 15.20 Shortening in a non-parallel fold: (a) folded layer and the strain at several points; (b)
graph of the correction factor as a function of distance along the layer (after Ramsay, 1969, p. 61).

We can approximate the original bed length by measuring the length of the curve
representing the reconstruction of the uppermost parallel folded layer, as we have done
in Fig. 15.13.

However, once a folded layer departs from parallel geometry any estimation of the
horizontal shortening becomes more difficult. One reason for such a departure is the
homogeneous flattening treated in §14.11. In this case we can separate the folding and
flattening strain.

More generally, it is necessary to apply a correction to the deformed length, thus
determining the original bed length, and this requires information on the state of strain at
as many points in the layer as possible. In Fig. 15.20, an increment �l′ of the deformed
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bed is shown, together with the principal stretches derived from measurements. In terms
of the original length of this same increment �l and the extension parallel to the bedding,

�l′ = S�l or �l = �l′/S.

In other words, to recover the original length of this segment, we must multiply the
deformed length by a correction factor F = 1/S. From Eq. 12.9,

F 2 = 1

S2
= cos2 φ′

S2
1

+ sin2 φ′

S2
3

. (15.15)

Because of the problems of determining the full state of strain, it is useful to consider
separately the distortion and the dilatation. This can be done by first combining the
two terms on the right by using a common denominator, and making the following
substitutions

Rs = S1/S3, 1 + � = S1S3, cos2 φ′ = 1 − sin2 φ′.

The term 1/(1 + �) can be factored out, leaving

F 2 =
(

1

1 + �

)(
1

R2
s

+ R2
s − 1

Rs

)
sin2 φ′.

Applying this to Fig. 15.20, where Rs = 2.7 and φ′ = 53◦, gives

F = 1.35
√

1/(1 + �).

It may be difficult to determine the area strain �, which will not be zero if the strain has
not been plane or if there has been a volume change, or both. This is the same problem
faced in the construction of balanced sections, and without further information applying
this result generally gives a minimum estimate of the original length, hence a minimum
estimate of the shortening.

Problem

• Given the folded layer of Fig. 15.20a, together with nine determinations of the constant
area strain ellipses, find the shortening of the layer.

Steps

1. Measure the arc length of the deformed layer, and determine the distance from point
A to the points where the strain is known (after Ramsay, 1969; see Fig. 15.20b).

2. At each locality, calculate the correction factor and plot its value against distance.
Draw a smooth curve through these points to give an estimate of the continuous
variation of F with distance.
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3. To find the original length of the layer from A to B, sum all the �l to give true original
length.

The value of this simple integral is the area under the curve which can be found with
a planimeter. The result is 12.8 square units.

Answer

• The length of the straight line AB is 6.1 units. The measured arc length around the folded
layer is 9.7 units; by removing the strain this is increased to 12.8 units. The shortening is
then (6.1−12.8) = −6.7 units. Expressed as an extension: e = (−6.7/12.8) = −0.52.
Because the area strain is not known, this is a minimum shortening.

(a) (b) (c)

Figure 15.21 Model angular folds.

15.7 Angular folds

Large-scaled folds with relatively straight limbs and narrow hinges have been recog-
nized in many mountain belts: Appalachians (Faill, 1973), eastern Canadian Rockies
(Dahlstrom, 1970; Thompson, 1981; Mountjoy, 1992), Jura Mountains (Laubscher,
1977a, 1977b), and elsewhere.

Angular folds are found in some thinly laminated rocks such as shale, slate, phyllite
and fine-grained schist.

Similar small-scaled angular folds can also be produced in card decks but the process
requires a special mechanical device (Weiss, 1969; Suppe, 1985, p. 336). The problem is
that the straight limbs and narrow hinges can not be produced by hand. Further, while the
geometry of such angular folds is simple the processes by which they form are not (Twiss
& Moores, 1992, p. 248f). We can, however, illustrate the main principles involved.
Commonly such model folds take two forms.

1. Kink bands are angular, step-like monoclines between two parallel kink band bound-
aries, which are also the hinge planes (Fig. 15.21a).

2. Box folds are the results of the intersection of conjugate kink bands (Fig. 15.21b).
3. With greater shortening, box folds display chevron forms (Fig. 15.21c).
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The deformation within a kink band is homogeneous simple shear combined with an
external rotation. The process, but not the geometry, can be roughly modeled with a
simple card-deck experiment: grip the deck firmly at both ends and without rotating the
ends, shift the deck into a Z or S shape.

These kink-band type folds are taken as models of the larger-scaled angular folds, and
the geometrical features of these models are then used to reconstruct angular folds in
cross section.

t1
t2

γ1 γ2

t1 t2

γ1 γ2

(a) (b)

H H

t1 = t2t1 < t2

h2

h1

h2

h1

Figure 15.22 Limb thickness: (a) asymmetric fold; (b) symmetric fold.

(a) (b)

γ1

γ2 γ1

γ2

t1

t2
t1

t2

Figure 15.23 Case of obtuse γ = 120◦ and small R: (a) R = 0.40 and γ2 is also obtuse; (b) boundary
case when R = 0.50 and γ2 = 90◦.

The shapes of box and chevron folds have two variations. The thickness of a layer
on opposing limbs may be the same or it may be different. This variation in orthogonal
thickness is closely related to the angles the trace of the hinge plane makes with the
limbs (Suppe, 1985, p. 64). This relationship can be used as an aid in reconstructing their
shapes in cross section. In Fig. 15.22, the orthogonal thickness of the thinner limb is
labeled t1 and that of the thicker limb is labeled t2. The corresponding angles the hinge
plane H makes with these partial limb angles γ = γ1 + γ2. Note that the smaller angle
is associated with the thinner limb. From the two right triangles involving these sides
and angles with common hypotenuse

t1

sin γ1
= t2

sin γ2
or

t1

t2
= sin γ1

sin γ2
. (15.16)
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That is, the ratio R of the thicknesses and of the sines of the angles are equal. The
interlimb angle γ = γ1 + γ2. This result can be used in two ways.

1. If partial hinge angles are known, the ratio of the limb thicknesses can be found
directly from Eq. 15.16. Alternatively, defining R = t1/t2 and the total hinge angle
we may write

R = sin(γ − γ2)

sin γ2
. (15.17)

For example, from Fig. 15.23a γ1 = 30◦ and γ2 = 40◦. Then R = 0.78, that is, t1 is
78% of t2.

2. If the interlimb angle and both limb thicknesses are known, then the partial hinge
angles can be found. With the identity for the sine of the difference of two angles
Eq. 15.17 becomes

R = sin γ cos γ2 − cos γ sin γ2

sin γ2
= sin γ

tan γ2
− cos γ.

Then

tan γ2 = sin γ

R + cos γ
. (15.18)

Again from Fig. 15.23a, R = 0.78 and γ = 70◦. With these values we have γ2 = 40◦
and therefore γ1 = 30◦.

In the special and important case, if t1 = t2 then γ1 = γ2 and conversely. The trace of
the hinge plane then bisects the interlimb angle (Fig. 15.22b).

Equation 15.18 has a minor quirk: if interlimb angle γ is obtuse then cos γ is negative.
For large values of R, the denominator R + cos γ will be positive and γ2 will be acute,
but if R is small, then R + cos γ may be negative with the result that γ2 will be obtuse.
For example, if γ = 120◦ and R = 0.40, then γ2 = −83.4◦ or + 96.6◦ (Fig. 15.23a).

The boundary between an acute or obtuse angle γ2 occurs when R + cos γ = 0 and
then γ2 = 90◦ (in Fig. 15.23b R = 0.50).

15.8 Angular folds in cross section

Geological maps of terranes with angular folds have a characteristic pattern; the angle
and direction of dips are nearly the same in parallel bands and change abruptly from one
band to the next. These are dip domains which are identified in the field. Based on the
attitudes in these domains, we wish to develop techniques for reconstructing the angular
folds in section.

The reconstruction of such angular folds involves the straightforward projection of
lithologic contacts parallel to the domain dips. A crucial step is the location of the hinge
points and therefore also the trace of the hinge plane.
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Problem

• Draw a section depicting the folds shown on the geological map (Fig. 15.24).

50 10 40ls sh ss ss sh ls

A FEDCB

50 10

321

Figure 15.24 Geological map of angular folds with Domains 1, 2 and 3.
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Figure 15.25 Angular fold with constant limb thickness.

Construction

1. Along the line of section plot the contacts between the sandstone, shale and limestone
units (points A–F ). For each domain a representative dip δ1 = 50◦ W, δ2 = 10◦ E
and δ3 = 40◦ E (Fig. 15.25). Add the points representing the domain boundaries.

2. In Domain 1 project the three contacts A, B and C parallel to δ1.
3. In Domain 2 project the single contact D parallel to δ2. The intersection with contact

C from Domain 1 fixes hinge point h1 on on the first hinge plane H1. The interlimb
angle γ12 = 180◦ − (δ1 + δ2) = 120◦.
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4. Add the trace of the hinge plane H1 by connecting the point representing the domain
boundary (shown by a small circle) and point h1. This bisects interlimb angle γ12 at
h1 so the beds in Domain 2 have the same thicknesses as in Domain 1.

5. In Domain 3 project contacts E and F parallel to δ3. The limestone unit here has the
same thickness as in Domain 1. Therefore the underlying shale unit must also retain
its thickness and its lower contact can be drawn to intersect contact D from Domain
2. This locates hinge points h1 and h2 on the second hinge plane H2 which is added
to the section. The interlimb angle here is γ23 = 180◦ − (δ3 + δ2) = 150◦. Again note
that H2 bisects this angle.

6. The remaining contacts can then be added across the three domains.
7. This exhausts the surface stratigraphic data. The reconstruction can be continued at

depth using subsurface information, if available, or schematically (as here).
8. Hinge planes H1 and H2 intersect at point O which is the hinge of a chevron fold at

the core of the box fold.

In this reconstruction, point O lies at the center of a series of concentric polygons. As
such, it is roughly analogous to the centers of the circular arcs of the Busk construction.
As with those centers it also signals a pronounced change in the form of the fold at
depth. Because of the angular nature of these forms it is not as obvious but there is a
serious problem here, just as there was in the core of the reconstructed rounded folds.
This important matter is treated below.
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Figure 15.26 Angular fold with unequal limb thickness.

Angular folds which involve a change of thickness are reconstructed in much the same
way. The structure section of Fig. 15.26 is the same as in Domains 1 and 2 of the previous
example. In Domain 3, however, δ3 = 60◦ and here the limestone unit is a third thicker.
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Construction

1. As before, contacts A, B and C are projected parallel to δ1 and D parallel to δ2. This
locates hinge point h1 on hinge plane H1, which can then be draw in using the point
representing the domain boundary.

2. Contacts at E and F are projected parallel to δ3. The thickness of the limestone unit
in Domain 1 is 75% of that in Domain 3. Increasing the underlying shale bed by a
third, complete its lower contact to locate hinge point h1 on the H2 hinge plane. The
interlimb angle here is γ = 180◦ − (δ3 − δ2) = 130◦.

3. With R = 0.75 in Eq. 15.18, γ2 = 82◦ and therefore γ1 = 48◦. With these angles we
then draw H2 through h1, thus also locating h2 and h3.

4. Complete the projections in Domain 2 by connecting the hinge points on H1 and H2.

Finally, as Suppe (1985, p. 64) points out, the shapes of folds with smoothly rounded
forms can be closely approximated by a series of straight line segments. If the attitude
data are reasonably complete, the kink method predicts essentially the same fold shape as
the method of tangent arcs because the traces of the hinge planes intersect at a center of
curvature just as the dip normals do. Because they do not require curves, reconstructions
using the kink method are also much easier to produce.

15.9 Faults in fold cores

An important advantage of this method of depicting angular folds is that the bed length
and area of beds in section can be easily determined. With such information, attempting
to restore the pre-fold geometry shows, not surprisingly, that there is a deficiency of mass
in the core of the folds just as in the case of the folds with rounded forms. In order to
balance the cross sections, some additional structural elements are required. Two figure
prominently in resolving the space problems:

1. Fault-bend folds (Fig. 15.27a)

2. Fault-propagation folds (Fig. 15.27b)

(a) (b)

Figure 15.27 Angular folds and faults: (a) fault-bend fold (after McClay, 1992); (b) fault-propagation
fold (after Suppe, 1985, p. 351).
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15.10 Some problems

Even though it has been a successful interpretive tool, any such representation is, how-
ever, a model and models are not reality. Even for a successful model it would be unusual
for it to account for every detail. For example, many other folds have straight limbs but
curved hinge zones, not angular ones as the model specifies. This is likely due to the fact
that the transition from flat to ramp thrusts can not be a sharp angle as the model requires.
A more realistic curved transition will produce rounded hinges (Tavani, et al., 2005)

There are other problems which remain unresolved.As can be clearly seen in Fig. 15.27
the limbs of the folds deform by homogeneous layer-parallel simple shear. This is essen-
tially a flexural flow mechanism and as discussed in §15.2 this requires an unrealistic
degree of anisotropy. The model also requires that the shear strain must be the same
in layers of contrasting competencies and this presents considerable difficulty. Further,
the homogeneous thickening or thinning (necessarily accompanied by homogeneous,
layer-parallel shortening or lengthening) of all the layers of a fold limb compounds this
difficulty. A few carefully chosen strain determinations would help resolve these ques-
tions, but such measurements do not seem to have been made. All this suggests that the
process of angular folding is more complicated than the model indicates.

15.11 Exercises

1. Model a flexural slip fold with a card deck on which a number of small circles have
been stamped. Measure the orthogonal thickness, and verify that Eq. 15.4 holds.

2. The data given below were obtained along an east to west transverse. Reconstruct the
folds, calculate the depth of folding and invent disharmonic folds or thrusts or both to
balance the profile. The area can be determined most simply by superimposing your
construction on graph paper and counting squares.

Station Distance (m) Elevation (m) Dip

A 0 650 30◦ E
B 900 800 41◦ E
C 2300 850 18◦ W
D 2550 750 37◦ E
E 3550 800 44◦ W
F 4900 1150 5◦ E
G 5350 1000 69◦ E
H 6900 650 8◦ W
I 8000 550 66◦ W



440 Parallel folds

3. Complete the cross section of angular folds of Fig. 15.28.
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     lithologic contacts

δ1 δ2 δ3
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Figure 15.28 Angular fold problem.



16
Similar folds

16.1 Introduction

Several mechanisms for producing similar folds have been proposed (Ramsay, 1967,
p. 43; Bayly, 1971; Matthews, et al., 1971). The simplest of these can be illustrated with
a deck of cards. A layer is represented by a band drawn on the edge of a deck which is
then deformed by inhomogeneous simple shear.

This is called shear folding. Because each individual card and the portion of the band
marked on its edge remain undistorted during displacement the thickness of the band
measured parallel to the shear plane is constant. This is also the axial-plane direction,
hence the folded layer has constant axial-plane thickness and parallel isogons, and this
is the distinguishing characteristic of Class 2 folds.

In this model folding the band on the edge of the cards plays no mechanical role – it
simply reflects the pattern of inhomogeneous shear. This behavior is passive. Similarly
in nature, a layer subject to shear folding can act only as a passive marker. It can not
have mechanical properties which differ significantly from the surrounding material,
for if it did there would be a component of bending or buckling and the resulting folds
would not be ideally similar. Because rock bodies are commonly composed of contrasting
lithologies similar folds are rare. However, they might be expected in rocks which are
monomineralic or nearly so. Salt, ice, and dunite are a few rocks where passive bands
and streaks of impurities might be distorted into similar folds. They also might occur in
rocks which are polymineralic but statistically homogeneous, such as granite. Despite
the apparent rarity a number of general lessons can be learned from the geometry of shear
folding, and this chapter is devoted to several of them.

16.2 Geometry of shear folds

In describing shear folds it is convenient to establish a set of coordinate axes directly
related to the geometry of simple shear (see also §11.4). In the models the edge of the

441
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deck is taken to be the xy plane (Fig. 16.1a). Correspondingly, the shear plane is the yz

plane with the y axis in the shear direction.

(a) (c)

x

y

(b) (d)

x'

y'

x''

y''

x''

y''

Figure 16.1 Model folds: (a) initial layer; (b) sinusoidal displacement; (c) positive homogeneous shear;
(d) negative homogeneous shear.

There are several cases. If the layer is initially parallel to the xz plane and if the
form of the displacement curve is sinusoidal, then the fold form will also be sinusoidal
(Fig. 16.1b). This relationship can be expressed as

y′ = A sin x′, (16.1)

where A is the amplitude of the displacement curve and, in this special case, also the
amplitude of the folds. Other displacement curves will, of course, give correspondingly
different fold forms.

In simple shear no change occurs in the z direction and therefore these folds will
be cylindrical with axes parallel to z. The strain is related to the slope angle of the
displacement curve ψ . In this case the maximum strain occurs at the limb inflection
points and minimum strain, which is zero, occurs at the hinge points.

Asymmetric folds may, of course, be obtained by an asymmetric pattern of displace-
ments. We may model this case in a simple way by considering that the shear displacement
has two components – an inhomogeneous part to produce the fold and a homogeneous
part to destroy symmetry. Starting with the band parallel to x the deck is deformed in
two stages.

1. Impose the sinusoidal displacements to produce a symmetric fold.
2. Superimpose a homogeneous simple shear on the deck which changes this symmetric

fold into an asymmetric one. There are two cases: positive shear (Fig. 16.1c) and
negative shear (Fig. 16.1d), and the two results are notably different.

The total displacement curve has the form

y′ = A sin x′ + x′ tan ψ, (16.2)
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where ψ is the angle of shear of the homogeneous component. The order of the stages of
deformation may be reversed or the components may act simultaneously during a more
complex pattern of shear, all with the same result. The geometry of these asymmetric
folds brings out three general features.

1. Axial-plane thickness is not necessarily equal to the orthogonal thickness of the orig-
inal layer.

2. Fold hinge and inflection points do not necessarily coincide with points of maximum
and minimum curvature on the displacement curve.

3. Strain distribution is not generally related to fold geometry.

There is, of course, no necessary relationship between the attitude of the layer and
the shear direction. If the layer is initially inclined to the x axis at an angle φ, and if, as
before, the displacement curve is sinusoidal then the folded layers on the xy plane will
have the form (Ramsay, 1967, p. 426)

y′ = A sin x′ + x′ tan φ, (16.3)

and the form of the folds is asymmetric. There are two cases: φ > 0 (Fig. 16.2a) and φ < 0
(Fig. 16.2b). Note that the results are the same as the folds produced by a combination of
inhomogeneous simple shear and a homogeneous component. Hence the cases of initial
inclination and component of homogeneous shear can not be distinguished on the basis
of fold geometry.

(a)

φ

(b)

φ

x

y

x'

y'

x'

y'

x

y

Figure 16.2 Asymmetric folds: (a) φ > 0; (b) φ < 0.

In a special case of two-component shear a symmetric fold may be produced from an
inclined layer (Fig. 16.3a).The sinusoidal shear produces an asymmetric fold (Fig. 16.3b).
Homogeneous shear then returns the symmetry (Fig. 16.3c).

16.3 Single-sense shear

Objections have been raised concerning this shear folding mechanism. First, folds often
termed similar, but which do not possess the ideal similar geometry, have been shown to
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(a)

φ

(b) (c)
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Figure 16.3 Symmetric fold from asymmetric displacements: (a) initially inclined layer; (b) sinusoidal
displacement; (c) homogeneous shear returns symmetry.

result from an entirely different mechanism – the homogeneous flattening of originally
parallel folds (see §14.6). This difficulty is avoided by reserving the term for the special
class of fold shapes with parallel isogons.

A second objection, and a more serious one, is directed at the mechanical feasibility
of the systematic reversal in the sense of shear as required by all the previous examples.
However, inhomogeneous single-sense shear is capable of producing well-developed
similar folds.

Such single-sense shear can produce such a fold in two distinctly different ways.
Crucial is the relationship of the angles φ and ψ to the maximum dip angle of the initial
layer. The two cases are the homogeneous shear of a slightly curved layer (Fig. 16.4a)and
the slightly inhomogeneous shear of a planar layer (Fig. 16.4b). These can be described
by the equation

y′ = A sin x′ + x′ tan φ − x′ tan ψ. (16.4)

Note that φ and ψ have opposite signs. In a very special but instructive case, φ + ψ = 0
and the equation reduces to Eq. 16.1, and the fold is sinusoidal. Again, the roles of φ and
ψ can not be distinguished from the final fold form alone. More information is required,
such as observations of the progressive evolution of such folds (Ragan, 1969b).

16.4 Shear folds in three dimensions

In three dimensions, the geometry is more even involved. In shear folds the axial plane
coincides with the yz plane and the hinge line and axis are always parallel to the intersec-
tion of the shear plane and the layer being folded. As we have seen, when this intersection
is parallel to z then so too is the axis (Fig. 16.5a).
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(a) (b)

ψ

φ

Figure 16.4 Single-sense shear: (a) homogeneous shear of a slightly curved surface; (b) slightly
inhomogeneous shear of a plane.

On the other hand, if the original layer makes an angle β with z, the fold axis will
also be inclined at this same angle and its orientation can not be used to determine the z

direction (Ramsay, 1967, p. 425).
Because the fold axis now plunges, the xy plane no longer displays the fold in profile

and the fold shape will be a subdued version of the displacement curve (Fig. 16.5b). The
fold amplitude A′ measured in the now inclined profile plane is related to the amplitude
of the displacement curve on the xy plane by

A′ = A cos β. (16.5)

In the previous two-dimensional cases, β = 0 and A′ = A. A limiting case occurs when
β = 90◦ and A′ = 0, that is, when the layer is parallel to xy no fold develops at all
(Fig. 16.5c). These plunging folds may also involve a component of homogeneous shear
or be derived from layers which are also inclined to x.

As these examples show, folds with a variety of symmetries and attitudes can be
generated by homogeneous and inhomogeneous shear of variably inclined layers by
forward modeling. In contrast, we can not separate the role of initial layer inclination and
a component of homogeneous shear from the fold geometry alone. To solve this inverse
problem more information is needed. Knowing the state of strain at a few points within
the folded layer would be one way, but unfortunately this is rare.

16.5 Superposed folds in two dimensions

Card-deck models can also be used to illustrate the effects of shear folding on previously
existing folds. The form of the first folds is drawn on the edge of the card deck (Fig. 16.6a),
which is then sheared inhomogeneously (Fig. 16.6b). As a result of this deformation, the
originally straight traces of the first hinge surface HS1 behave in the same fashion as layer
boundaries of the previous examples. At the same time, the layer becomes complexly
recurved. Two features are noteworthy.
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(a) (b) (c)β

Figure 16.5 Layer inclined to z axis: (a) β = 0; (b) β > 0; (c) β = 90◦ (from Ramsay, 1967, p. 425–426).

1. Hinge points of the first folds do not coincide with the points of maximum curvature
of the second folds.

2. Traces of the hinge surfaces of the second displacement curve HS2 do not pass through
the points of maximum curvature on the limbs of the now twice folded bands, but
alternate from one side to the other as it passes from limb to limb.

To concentrate on essentials we have modeled the second folds using a purely cosinu-
soidal pattern of displacement, but all the previous controls by the initial layer attitude
and a homogeneous shear still apply.

(a) (b)

HS 2

HS 1

Figure 16.6 Model of superposed folds: (a) first folds; (b) second folds.
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In this experiment, we have necessarily modeled the superposition of shear folds on
the card decks in distinct stages. In nature, such folds may, however, form during a single,
more complicated pattern of continuous motion. This requires a shift of the early shear
direction so that the first folds are cut by the later displacements. Motions of this type
can be seen in foam patterns in eddies on the surface of small ponds.

Given such superposed folds, it is possible to unravel an important part of the second
deformation using the simple rules of shear folding (Fig. 16.7a).

(a) (b)

X

Y

Figure 16.7 Analysis (after Carey, 1962): (a) fold pattern; (b) tracing and numbering.

Analysis

1. Identify the first generation folds: on a tracing of the folds, number the layers in
sequence. If continuity is lost in highly attenuated zones it is usually possible to
work around them. If not, a second or even third sequence may be started. Once
labeled, special patterns identify the cores of the first folds. For example, at point X

in Fig. 16.7b the numbers run outward from the core in descending order while at
point Y they run outward in ascending order. Without relative ages they can not be
distinguished, but clearly one of these cores represents a first generation anticline and
the other a syncline.

2. Involuted hinge surfaces of the first folds: wherever the core layers form an apex,
the trace of the folded hinge surface of the first fold HS1 must pass into the next
layer. Since the first hinge points can not be accurately located, the point of maximum
curvature is used as a close approximation. Through these points draw in the traces
of the first hinge surface using solid, dashed or dotted lines to indicate the degree of
confidence in their locations. These traces can then be marked with zeros or cross-bars
depending on whether the index numbers rise or fall in the cores.
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Figure 16.8 Reconstruction: (a) traces of hinge surfaces; (b) removal of second folds.

3. Hinge surfaces of the second folds: a second set of traces can be drawn through the
hinge points of the folded limbs. These appear as a series of roughly straight and
parallel lines. Using crosses and zeros to mark sequences which rise or fall it will be
seen that groups of symbols alternate along these traces. If difficulty is encountered
in following the involuted HS1 traces through strongly attenuated zones or across
widely spaced areas, they may be completed using the following clues.
(a) Involuted HS1 traces of like sign must join.
(b) The sense of curvature of the HS1 traces must be the same where they cross a

particular HS2 trace, that is, all must be either concave up or down.
(c) The folded HS1 traces cross the straight HS2 traces only at points where sign

changes occur. This fact may also be used to determine the number of HS1 traces
to be inserted across gaps.

4. The form of the second folds: collecting all the HS1 and HS2 traces and visually
averaging both, the displacement curves and the directrix responsible for the second
folding can be extracted from the complex pattern (Fig. 16.8a).

5. Form of the first folds: the traces of the hinge surface of the first folds are assumed
to have been linear. Therefore, the effect of the second folding can be eliminated
by shifting the patterns parallel to the displacement curve derived from the original
superimposed folds (Fig. 16.8b). This is easily accomplished by a simple construction.
(a) Draw a series of closely spaced lines on the original fold pattern parallel to the

directrix of the second set of folds.
(b) On a tracing sheet, draw a second set of parallel lines with the same spacing.
(c) Overlay this sheet on the fold pattern and mark off the points of intersection of the

folded points with the first line, and then shift the tracing according to the reverse
displacement curve and repeat for a second line. Repeat this for all lines.
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The pattern of the first folds can be drawn by connecting points across these guidelines.
The first attempt is apt to be somewhat crude. Irregularities due to drafting and positioning
errors may be filtered out by repeating the tracing process.

16.6 Wild folds

In both theory and concept, this process of superimposing folds upon folds could be
repeated any number of times. To model such multiple folds with the aid of card decks
would require that the convoluted patterns of earlier experiments be transferred onto a
deck with a different orientation relative to the y direction. Unfortunately, any attempt to
perform such an experiment meets with severe practical difficulties which mount beyond
the second set. However, such patterns are easily produced by a computer plot. The
technique consists simply of adding sine or cosine curves of varying amplitudes and
wavelengths alternately along the x and y axes. Examples for runs of three and four sets
of superposed folds are shown in Fig. 16.9.

(a) (b)

Figure 16.9 Multiple superposed folds: (a) three sets, (b) four sets.

Irregular folds are characterized by irregularities of the axial planes, discontinuities
and rapid variations in the thickness of bands (Fleuty, 1964, p. 477). The most disordered
types also show a wide variation in the attitudes of hinges and hinge surfaces. Such folds
are particularly common in migmatitic gneisses where they give the appearance of stirred
porridge (De Sitter & Zwart, 1960, p. 253), sometimes called wild folds (Kranck, 1953,
p. 59; Berthelsen, et al., 1962). Except for their perfectly periodic character and conti-
nuity, certain aspects of these computer-generated patterns are similar to the wild folds
found in nature, suggesting that their appearance may be more a matter of complexity
than irregularity.

The superposition of multiple folds can also be looked at as physical mixing, a well-
known process in chemical engineering where the homogenization of multicomponent
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fluids or fluid-like substances is important (Ottino, 1989, 1990, 1992). A characteristic
of such motions is that the final result depends in a very sensitive way on the initial
conditions. Such motion for which trajectories starting from slightly different initial
conditions diverge exponentially are termed chaotic (Moon, 1992, p. 434). There are two
interesting geological examples which can be observed in the field.

1. In migmatites, because of high temperatures, diffusion is significant and tends to blur
the boundaries between layers of different compositions and to obliterate thin layers
altogether.

2. Obsidian/pumice rock flows onto the earth’s surface at low temperatures and diffusion
is negligible and as a result highly deformed inhomogeneities are often preserved in
exquisite detail at the scale of millimeters or less.

This process of physical mixing is probably important in homogenizing magma bodies
during formation and emplacement and perhaps also in the mantle. For all such motions,
inevitable observational errors, however small, render the initial state indeterminate.

16.7 Superposed folds in three dimensions

Card-deck models can also be used to illustrate superposed folds in three dimensions.
The first folds are represented by a cylindrical surface cut across the deck; deformation of
the deck by inhomogeneous simple shear then refolds this surface. Although the method
requires special preparations, including the cutting and deforming of the cards, a number
of interesting and informative experiments can be performed, and these are well worth
pursuing (see O’Driscoll, 1964).

A simple example will indicate the approach and its potential. If a set of upright folds
is deformed by a second set of upright folds trending at right angles to the first, a series
of domes and basins result (Fig. 16.10). Other angles between the first and second folds
can be simulated by first homogeneously shearing the deck in a horizontal direction; the
domes and basins are then asymmetrical and en echelon.

Figure 16.10 Superposed folds
in three dimensions (after
O’Driscoll, 1962, p. 166): (a) first
folds; (b) second folds.
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Because of their similarity to the patterns caused by the intersection of two sets of
waves, these are called interference patterns. If instead of a single fold surface, the
deformation operated on a multilayered block, and if an exposed plane cuts horizontally
through the superposed folds, an outcrop pattern of the interference structures is produced.
The characteristics of this type of pattern depend on the relative orientation and size of
the first and second folds. If, as in the model, the first folds are horizontal and upright,
and further, if the sizes of both sets of folds are about the same, the resulting patterns can
be described directly in terms of the attitudes of the first folds. Within this framework,
several types of patterns can be distinguished.

(a) (b) (c) (d)

Figure 16.11 Interference patterns (from Ramsay, 1967, p. 531).

1. If the first folds are horizontal and upright, and the trends of the two folds are perpen-
dicular, the pattern of domes and basins alternates with a high degree of symmetry
and regularity (Fig. 16.11a).

2. Inclined first folds are reflected by dome–basin patterns which no longer have sim-
ple rounded forms. This reflects the difference in dip on the limbs of the first folds
(Fig. 16.11b).

3. Inclined first folds with overturned limbs result in characteristic crescent and mush-
room patterns (Fig. 16.11c).

4. If the first folds are recumbent or reclined, and the trends of the two sets are parallel,
the patterns do not differ in kind from the two-dimensional patterns so easily modeled
with card decks (Fig. 16.11d).

Other relative orientations give patterns which are transitional with these four and
many can be illustrated by means of the three-dimensional card-deck experiments as
described by O’Driscoll.

A full discussion of interference patterns, together with many excellent illustrations,
is given by Ramsay (1967, p. 518f). His classification scheme has been expanded and
extended by Thiessen and Means (1980).

A special type of superimposed fold is produced in three dimensions when a body of
rock with preexisting folds is cut by a shear zone. Generally, all preexisting lines rotate
toward the plane of shear and the convergence of such lines is particularly striking at high
shear strains. One especially interesting effect of this involves folds which outside the
shear zones show only a slight variation in the orientations of their hinge lines (Cobbold &
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Quinquis, 1980; Ramsay, 1980). In contrast, inside the shear zone they show an extreme
variation and a sheath fold is produced (Fig. 16.12).

(a) (b)

Figure 16.12 Sheath fold (after Ramsay, 1980, p. 93).

16.8 Exercises

1. Print a row of small circles across the end of a card deck and then produce the following
types of shear folds:

(a) With a band perpendicular to the shear direction (Fig. 16.13a), form a symmetric
sinusoidal fold with reverse sense of shear.

(b) Add a component of homogeneous simple shear to produce an asymmetric fold.
(c) With a band at a small angle to the shear direction (Fig. 16.13b), form a symmetric

fold by single-sense shear.

(a) (b)

Figure 16.13 Experimental shear folds.

2. Draw the profile of a similar fold on the edge of a deck of cards with the trace of its
hinge surface oblique to the direction of shear. Homogeneously deform the deck to
produce a superimposed fold. Note the thickness variation in the now twice-folded
layer, the location of the new hinge point and the location of the hinge points of the
first fold.

3. Using Fig. 16.14 remove the effects of the F2 folding to give the form of the F1 folds.
As will soon become apparent, the F1 folds in this problem are highly regular and it is
only necessary to proceed to the point where their form can be confirmed with some
confidence rather than attempting a complete and detailed reconstruction.
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Figure 16.14 Superimposed folds.
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Folds and topography

17.1 Map symbols

Just as structural planes intersect the earth’s surface to give characteristic outcrop patterns,
equally distinctive though more complex patterns result from the intersection of folds
with the topographic surface. In this chapter we treat some important aspects of the
patterns made by folds which are essentially cylindrical.

If exposures are good, it is generally possible to locate and measure the attitudes of
both the hinge and hinge surface of a fold in the field. On the other hand, if these features
can not be directly observed, then the attitude information and the location of the hinge
surface must be found using indirect methods.

In any case, the fold is then identified on the map with a line marking the trace of the
hinge surface at the earth’s surface, together with symbols indicating the attitude of the
hinge and hinge surface and the direction of closure (Fig. 17.1).

17.2 Outcrop patterns

Horizontal folds have the simplest type of outcrop pattern. On a horizontal exposure
plane, the map pattern of such a fold is essentially the sum of the patterns of the inclined
limbs, that is, a series of parallel outcrop bands (Fig. 17.2a). If the relative age or corre-
lation of the units, or the attitude at several points is not known, it may not be possible
to interpret the pattern as being part of a fold at all. However, once these are known, the
existence of a fold becomes clear.

For plunging folds, a converging pattern of the fold limbs is characteristic and unmis-
takable (Fig. 17.2b). However, on the basis of the pattern alone it is not possible to
distinguish antiforms and synforms. Again, if the dip at several points or the direction of
plunge is known the type of fold may be immediately determined.

If the horizontal fold is exposed in an area of some topographic relief, the inclinations
of the opposing limbs are immediately evident and the interpretation of a fold can be

454
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Trace of hinge surface
of a horizontal anticline

Trace of hinge surface
of a horizontal syncline

Trace of hinge surface of a horizontal
anticline with steeper south limb
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Figure 17.1 Map symbols for folds (after Compton, 1985, p. 373).
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Figure 17.2 Fold profile and map: (a) horizontal upright anticline; (b) plunging upright anticline.

made with some confidence. If the topography is such that a hinge intersects the surface,
the existence of the fold becomes obvious (Fig. 17.3).

In all these cases, given attitude data, vertical cross sections could be constructed.
However, only if the fold is horizontal does such a section give authentic information
about the fold geometry. In all other cases the shape of the folded surfaces, the thickness
variations in the folded layers, and the interlimb angles are distorted in vertical sections.
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If the aim is to portray the fundamental fold geometry, such vertical sections are useless
and must be avoided.

Figure 17.3 Profile and map of
a horizontal upright antiform.
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17.3 Down-plunge view

By viewing map patterns of tilted, but not folded strata in the down-dip direction an
important visual simplification is achieved (Chapter 3). This same approach may be used
to even greater advantage in viewing the map patterns of plunging folds. By turning the
map, and adopting a view so that the line of sight is in the direction of the plunging fold
axis, the profile of the fold is actually seen. As before, the principle is that the distortions
at the earth’s surface are eliminated by this down-plunge view. This is easily seen in the
case of an inclined cylindrical pipe of circular cross-section (Fig. 17.4a). If the pipe is
cut horizontally, its trace will be an ellipse on the plane of the map. If this ellipse is then
viewed in the direction of its inclined axis, it will again appear circular.

Figure 17.5 shows a geological map of several upright folds plunging due north. In
a down-plunge view, antiforms and synforms are simply and directly seen as such. The
map pattern also indicates that disharmonic folds are also present and the down-plunge
view automatically includes them in their proper place in the structure. In contrast, a
vertical section mechanically constructed along a line SS′ would fail to represent the
small plications in the cores of the folds.

If the folds are inclined, the correct shape of the plunging folds is seen only if the line
of sight is parallel to the fold axis, not when it is parallel to the trace of the hinge surface.
As shown on the geological map (Fig. 17.6), the folds plunge due north at 20◦. Though
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Figure 17.4 Map and profile: (a) map ellipse projected as a circle; (b) map and profile coordinate axes.

Figure 17.5 Map of upright
plunging fold (from Mackin,
1950).
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not shown, the surface trace of the hinge surface trends N 15 E and dips steeply to the
west. With a line of sight parallel to the fold axis, the true shape of the folded layers is
revealed; the result of this view is also shown on the constructed profile. Note carefully
that if the folds are viewed parallel to the strike of the hinge surfaces, that is, toward
N 15 E, the folds falsely appear upright with apparent thinning on the steep eastern limbs
of the antiforms.

The down-plunge view reveals another important feature of fold patterns. The folds
of Fig. 17.5 have vertical hinge planes, and thus its trace also connects points of greatest
curvature of the outcrop pattern, a fact that can be readily seen in the down-plunge view.
This coincidence holds only when the folds are exposed in an area of negligible relief.
If the relief is significant there will, in general, be a discrepancy between the real and
apparent hinge points (see Fig. 17.3).

For inclined plunging folds exposed on horizontal plane surfaces, the line connecting
the points of greatest curvature of the outcrop pattern and the trace of the hinge surface
always depart. The degree of departure depends on the geometrical nature of the folded
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Figure 17.6 Map and profile of
plunging inclined folds (from
Mackin, 1950).20
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surfaces, and the effect is compounded by the topographic relief. For similar folds, the
two traces are parallel but not coincident (Fig. 17.7a), and for parallel folds the lines are
neither parallel nor coincident (Fig. 17.7b). If this relationship seems difficult to accept,
a down-plunge view will immediately confirm its validity.

Figure 17.7 Maps and profiles
with trace of hinge surface HS
(after Schryver, 1966): (a) similar
folds; (b) parallel folds.
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17.4 Fold profile

The true form of cylindrical folds seen in the down-plunge view may also be con-
structed graphically from a geological map. There are two different, though equivalent,
techniques. The first is the more straightforward one, and applies to areas of negligi-
ble topographic relief (Wegmann, 1929). It involves constructing the foreshortened map
pattern with the aid of a grid.
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Figure 17.8 Profile construction: (a) map; (b) profile grid; (c) profile.

Construction

1. On the geological map, draw a square grid with one coordinate direction parallel to
the trend of the fold axis and with grid spacing s (Fig. 17.8a).

2. Viewed down-plunge, the spacing of the map grid s across the line of sight, that is,
perpendicular to the trend of the fold axes, remains unchanged (1, 2, 3, . . .). Parallel
to the axial trend the spacing s′ is given by (see Fig. 17.8b)

s′ = s sin p. (17.1)

3. A second grid is then drawn representing this down-plunge view: the spacing
1, 2, 3, . . . is the same as originally constructed on the map, while a′, b′, c′, . . . is the
foreshortened one s′.

4. The contacts of the folded layers fold pattern are then transferred from the map grid
to the profile grid point by point and the folds then sketched in (Fig. 17.8c).

The resulting profile involves no speculation; no line appears on it that is not also on
the map. Contrast this with the construction of a vertical cross section of parallel folds in
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which surface attitudes are projected in directions at right angles to the fold axis. Both
profiles and vertical sections require the projection of data. For the profile, however,
the data are projected parallel to the fold axis, which is a direction of minimum change
in cylindrical folds, whereas the vertical section requires projection in the direction of
maximum change.

The second technique, using an orthographic construction, is more involved, but it has
the advantage of being adaptable to more complex situations (Wilson, 1967).

Construction

1. Establish folding lines FL1 parallel and FL2 perpendicular to the trend of the fold
axes, preferably outside the map area (Fig. 17.9a).

2. Establish a vertical section parallel to the fold axes by folding about FL1. On this
section, the line OP represents the profile plane in edge view. A series of selected
points on the map are projected perpendicular to FL1, thence to OP using the angle
of plunge, which is here 20◦.

3. Folding about FL2, these same points are projected from OP using circular arcs with
point O as center.

4. Also project each of the same map points perpendicular to FL2 to fix their location
on the profile plane (see details of the projection of point 1 on the map to 1′ on the
profile on Fig. 17.9b).

5. After a sufficient number of points have been transferred in this manner, the form of
the folds on the profile plane can be completed by connecting appropriate points.

6. The result is an “up-plunge” view, but this can be easily converted to a down-plunge
view simply by reversing it.

(a) (b) (c)
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Figure 17.9 Fold profile by orthographic construction.
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The advantage of this procedure over that of the grid method is that a fold profile can
also be constructed when the map pattern is influenced by topographic irregularities.

Construction

1. As before, construct FL1 parallel and FL2 perpendicular to the trend of the plunging
folds.

2. Instead of projecting directly to the profile plane via FL1, the topography must first
be taken into account. This is done by adding a series of scaled elevation lines to the
edge view using the contour interval of the topographic map (Fig. 17.10). The points
on the outcrop traces of the folded surfaces are then projected across FL1 to their
corresponding elevation lines.

3. These points are then projected to the profile plane OP, using the plunge angle. This
final projection can be made easier if the use of the circular arcs is avoided. By
constructing line OB to bisect the angle POR, the points can be projected along the
line of plunge directly to this bisector, and then to the profile, thus saving one step
(see also Appendix A). The fold profile is sketched as before from points projected
from the edge view and from the map.
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Figure 17.10 Fold profile from outcrop pattern in an area of topographic relief.
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Strictly, the construction of a fold profile requires that the fold axes of the entire area
be constant in trend and plunge, or at least have negligible variability. If the axes are not
parallel, the folds are not cylindrical, and no single direction of view or projection exists.
However, if the plunge angle changes progressively over an area, it is possible to draw
an approximate profile, and thus to depict the general fold style. One method is to draw
a series of overlapping strip profiles for small areas where the plunge angle is essentially
constant, and join them to make a composite section. A second method is to adapt the
orthographic construction used above.
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Figure 17.11 Approximate profile of non-cylindrical fold: (a) map; (b) profile.

Construction

1. As before establish folding lines FL1 and FL2 (Fig. 17.11a).

20

Map Profile

Figure 17.12 Hinge points and trace of hinge surface on map from profile.
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2. Project the data points to FL1 and for each, plot the associated plunge angle. Using
the tangent-arc method of §15.2, curved plunge lines are constructed to project the
points to the profile plane.

3. From the map and the edge view OP, points are then projected to the profile plane,
and the form of the folds is completed by sketching between the control points
(Fig. 17.11b).

17.5 Hinge and hinge plane

With the true shape of the fold displayed, the hinge points together with the trace of the
hinge surface can be added to the profile.

The hinge points can then be projected directly back to the map. In the case of an area
of negligible relief, the trace of the hinge surface can then be located (Fig. 17.12). This
trace establishes the strike of the hinge plane. Because the plunge of the fold axis is an
apparent dip of this plane, the true dip can then also be found.

When topographic relief is involved, however, an alternative approach is needed to
determine the attitude of the hinge plane and add its trace to the map (Charlesworth,
et al., 1976, p. 58).

The pitch angle the trace of the hinge plane makes on the profile together with the
plunge of the fold axis represent two apparent dips, from which the true dip and strike
can be found.

With the attitude of the hinge plane known its outcrop trace can then be added to the
map using the method of §3.5.

17.6 Computer graphs

There is a simple way of obtaining the down-plunge profile directly from the map pattern
on a plane surface using available graphical programs (Johnston, 1999). The first step is
to obtain a digital image of the fold patterns by scanning the map.

Most drawing programs have a way of transforming objects using a scaling tool.
The geological map is scanned, rotated and then reduced by rescaling with the factor
(sin p) 100% parallel to the rotated fold trend to produce the profile. We illustrate the
method with the same two simple cases.

1. In the special case of folds with attitude F(30/000) (Fig. 17.13a), the vertical dimen-
sion is reduced while leaving the horizontal dimension unchanged. In the case of
p = 30◦, in this example it is 50% of the original dimension.

2. The second, more general case involves fold plunging in some other direction, for
example F(30/330), that is, F has a bearing of N 30 W (Fig. 17.13b). The map is
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rotated 30◦ in a clockwise direction to bring this trend to “north”. As before, the
vertical dimension is reduced by the same factor.1

(a) (b)

30

30

Figure 17.13 Profiles by computer graphics: (a) Case 1 F(30/000); (b) Case 2 F(30/330).

17.7 Transformation of axes

The simple method using computer graphics will not work if the fold pattern involves
topographic relief. An alternative method is required. First a file of (x, y, z) map coordi-
nates of the points on the geological contacts is obtained with the aid of a digitizing table
augmented by the elevation of these points. The transfer of these points to the profile can
be viewed as a transformation of the coordinates axes (see §7.8). With the expressions
for this transformation, the process of depicting the form of the structures on the pro-
file plane can be automated. Several profiles generated in this way have been published
(Charlesworth, et al., 1976; Langenberg, et al., 1977, 1988; Kilby & Charlesworth, 1980;
Langenberg, 1985).

A variety of coordinate axes could be used, but it is advantageous to follow conven-
tional usage and choose right-handed sets of axes for both the map and profile with a
common origin (Fig. 17.4b). The orientations of these axes are

1. Map coordinates: +x east, +y north and +z up.
2. Profile coordinates: +x′ to the right, +y′ upward and +z′ in the up-plunge direction

and therefore perpendicular to the plane of the profile.

We illustrate the basic approach using the simple profiles generated by computer
graphics. In the first case of Fig. 17.13a, a single rotation about the x axis by the angle

1In Adobe Illustrator click on Object on the tool bar, then Transform and Scale. Click on the non-uniform button and
enter 100 in the horizontal box and 50 in the vertical box.
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ωx = 90 − p transforms the map coordinates into profile coordinates. This is accom-
plished with the matrix expression involving Rx of Eq. 7.38 which transforms any map
point in the form of vector with components (x, y, z) is given by

⎡
⎣1 0 0

0 cos ωx − sin ωx

0 sin ωx cos ωx

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣x′

y′
z′

⎤
⎦ . (17.2)

In this example the elevations are uniform, that is, z is constant. Any value could be used
but here we assign z = 0. With ωx = 90 − p = 60◦ the point P(x, y, z) = (5, 5, 0)

(in arbitrary units representing the northeast corner of the square map), is transformed
to P ′(x′, y′, z′) with the matrix multiplication

⎡
⎣1.0000 0 0

0 0.5000 −0.8660
0 0.8660 0.5000

⎤
⎦
⎡
⎣5

5
0

⎤
⎦ =

⎡
⎣5.0000

2.5000
4.3301

⎤
⎦ . (17.3)

Because the plot is confined to the x′y′ plane of the profile the z′ value is simply ignored.
Note that x′ = x and y′ = 1

2y, just as in the graphic example (see Fig. 17.14a).
The second, more general case of Fig. 17.13b requires two steps. First, a rotation

about the z axis brings the trend of the fold axes into parallelism with the y axis. This
is accomplished with the matrix expression involving Rz of Eq. 7.42, where ωz is the
angle between the trend of the fold axes and the y axis.

⎡
⎣cos ωz − sin ωz 0

sin ωz cos ωz 0
0 0 1

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣x′

y′
z′

⎤
⎦ . (17.4)

Using ωz = −30◦ gives

⎡
⎣ 0.8660 0.5000 0

−0.5000 0.8660 0
0 0 1.0000

⎤
⎦
⎡
⎣5

5
0

⎤
⎦ =

⎡
⎣6.8301

1.8301
0

⎤
⎦ . (17.5)

The second rotation about x is

⎡
⎣1.0000 0 0

0 0.5000 −0.8660
0 0.8660 0.5000

⎤
⎦
⎡
⎣6.8301

1.8301
0

⎤
⎦ =

⎡
⎣6.8301

0.9151
1.5849

⎤
⎦ . (17.6)

Again note that x′′ = x′ and y′′ = 1
2y′ (see Fig. 17.14b).
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Alternatively the total rotation is given by the product matrix R = RxRz, giving

R =
⎡
⎣cos ωx sin ωx − sin ωz 0

cos ωx cos ωz cos ωx cos ωz − sin ωx

sin ωx sin ωz sin ωx cos ωz cos ωx

⎤
⎦ . (17.7)

This gives the same result as with the two-step approach.
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Figure 17.14 Profile plane by coordinate transformation: (a) Case 1; (b) Case 2.

Note that while both of these simple example problems involved a map plane with con-
stant elevation, the method and equations are completely general and the full coordinates
of the map points (x, y, z) can be used.
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Figure 17.15 Map of the Coatesville–West Chester District, Pennsylvania (after McKinstry, 1961).
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17.8 Cautionary note

These methods of constructing fold profiles have been used in Europe for more than 100
years, where they led to a sweeping synthesis of the nappe structure of the Swiss Alps
(for a historical review see Christensen, 1963). The validity of these results requires that
the folds are cylindrical and that the axial direction has been correctly determined. We
return to both these matters in Chapter 18.

The down-structure view as a way of visualizing complex structures on geological
maps was described by Bailey and Mackin (1937, p. 189) and Mackin (1950). They first
applied the method to a large, poorly exposed structure in the Appalachian Piedmont of
western Pennsylvania (a simplified version of the map is shown in Fig. 17.15). If this
map is viewed toward 15/245, the structure appears as several gneiss-cored overturned
anticlines with severely sheared overturned limbs. McKinstry (1961) and Mackin (1962)
debated the validity of this interpretation which crucially depends on whether the structure
is truly cylindrical. More recent detailed mapping and geophysical work suggests that
the assumption of axial continuity may not hold (Alcock, 1994a, 1994b).

In such circumstances, and especially in the early stages of an investigation, an assump-
tion about the axial continuity and corresponding validity of the down-structure view
should probably be considered only a working hypothesis. Further testing is then required.

17.9 Exercises

1. The hinge lines of the folds of Fig. 17.16 plunge 30/090. With the aid of a down-
plunge view add the appropriate structural symbols for the trace of the hinge plane,
including its dip, and the attitude of the hinge lines.

Figure 17.16 Fold problem.N

2. Construct the profile of the shaded layer of these folds.
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Structural analysis

18.1 Introduction

Problems involving the angular relationships between lines and planes may be solved
with the methods of descriptive geometry although the advantages of using stereographic
projection should now be obvious. However, if certain structural problems are to be solved
graphically the use of the stereonet is indispensable. The three-dimensional structural
geometry of a rock mass, especially if complex, is one of these. The same basic techniques
may also be applied with profit to much simpler situations and this is a convenient way
to introduce the method.

18.2 S-pole and beta diagrams

In cylindrical folds, the hinge zones may be too smooth to allow accurate field mea-
surement of the attitude of the hinge line or the folds may be too large or incompletely
exposed. If attitudes at a number of places on the folded surfaces can be measured, the
orientation of the fold axis may be determined by a simple stereographic plot of the data.

Problem

• From the following measured dips and strikes on the limb of a fold determine the
orientation of the axis.

1. N 88 E, 16 N 4. N 41 E, 50 SE
2. N 68 E, 30 NW 5. N 35 E, 35 SE
3. N 60 E, 45 NW 6. N 20 E, 20 E

Methods

1. Beta diagram: plot each measured plane as a great circular arc. These intersect at a
point called the β axis (Fig. 18.1a).

468
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2. S-pole diagram (also called a π diagram): plot the poles of the measured planes. These
define a great circle whose pole is the β axis (Fig. 18.1b).

Answer

• Both give the attitude of the fold axis as 10/049.

(a) (b)

β

1
2
3

4

5

6

1
2

3

6
5

4

β

N N

Figure 18.1 Plot of a fold: (a) β diagram; (b) S-pole diagram.

The basis of these methods is the collection of all the measured attitudes at single point.
This has both advantages and disadvantages. The obvious advantage is that it allows the
orientation of the fold axis to be determined. The disadvantage is that these attitudes are
removed from their context on the map. The best of both worlds is always to use the
stereographic plots in conjunction with the geological map.

18.3 Fold axis and axial plane

The reason for carefully distinguishing between the hinge line and the fold axis may now
be appreciated. The β intersection characterizes the relationship of any pair of attitudes
and therefore all attitudes. This axis has no specific location in the fold, only orientation.
In cylindrical folds, the hinge lines and fold axis are parallel, but they refer to quite
different aspects of the fold geometry. In simple cylindrical folds, there is a similar
relationship between the planar hinge surface of the fold and the axial plane, and there
is an interrelationship between both pairs of features, as an example will illustrate.

Problem

• From the map of an overturned, plunging anticline, what is the attitude of the axis and
the axial plane (Fig. 18.2a)?
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Figure 18.2 Axis and axial plane: (a) map; (b) stereogram.

Construction

1. An S-pole diagram of the measured attitudes yields the β axis (Fig. 18.2b).

2. With this direction a profile may then be constructed to locate the trace of the hinge
surface or it can be seen in a down-plunge of the map.

3. Add to the stereogram the strike of the hinge surface which is also parallel to the axial
plane. Because the fold axis is parallel to the axial plane, the axis is, in effect, an
apparent dip of that plane. A great circle through β and the strike of the hinge surface
fixes the dip of the axial plane.

4. For an overturned fold, the plunge and trend of the fold axis may be estimated from
the geological map by inspection.

(a) Its trend parallels the strike of the vertical plane (Point A).

(b) Its plunge equals the dip of the plane whose strike is normal to this plane (Point B).

18.4 Equal-area projection

In practice, stereographic plots of lines or planes are never as perfect as in Figs. 18.1b
and 18.2b. Inevitable measurement errors as well as the departures from ideal cylindrical
geometry all contribute to a scatter of points. If the scatter is small, it is generally possible
to visually locate the best-fit point or great circle within acceptable limits, but with only
a few points the confidence will be low. A larger sample is then required.

Another problem concerns the visual evaluation of such diagrams. If points distributed
uniformly on the lower hemisphere are depicted on the Wulff net, the result will not be
uniform (Fig. 18.3a). There is a tendency to cluster at the center of the net and it would
falsely appear to have a weak vertical preferred orientation of the lines or poles. The
reason is that the grid spacing varies with the vertical angle and the result is that points
plot closer together at the center of the net than at the primitive.
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(a) (b)

Figure 18.3 Plot of a uniform distribution: (a) equal-angle net; (b) equal-area net.
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Figure 18.4 Lambert projection: (a) geometry; (b) equal-area net.

To overcome this problem the Lambert equal-area projection is used.1 As in the case
of the stereographic projection, we examine the geometry of this method on a vertical
diametral plane through a reference sphere of unit radius. On this section a line with
plungep makes an angle θ = 90◦−p with the vertical and intersects the lower hemisphere
at a point P (Fig. 18.4a). The projection of this point onto the horizontal projection plane
passing through the nadir point Z′ is found by swinging an arc with radius Z′P using
point Z′ as center. From the right triangle ZZ′P the radial distance r from Z′ to any
such point P ′ is then

r = 2 sin 1
2θ. (18.1)

1Johann Heinrich Lambert [1728–1777], a self-educated German scientist, made important contributions to physics,
astronomy, philosophy and mathematics (he first established the fact that π was irrational). The equal-area projection
was part of his contributions to the theory of map construction which are still basic for the modern theory.
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In practice it is convenient to reduce the radius of the primitive to be equal to the radius
of the sphere, that is, make r = 1 when p = 0 (θ = 90◦). By Eq. 18.1 the radius of the
primitive z′R′ is then

r = 2 sin 45 = 2(
√

2/2) = √
2.

Dividing by the scale factor
√

2, we obtain the adjusted version of Eq. 18.1

r = (2/
√

2) sin 1
2θ = √

2 sin 1
2θ. (18.2)

With this result, a series of curves may be drawn corresponding to the small and great
circle on the Wulff net (Fig. 18.4b). The result is the equal-area net, also called the
Schmidt net.2 Equal-area nets of any size can be easily constructed from

r = R
√

2 sin 1
2θ or r = R

√
2 sin 1

2(90 − p), (18.3)

where R is the desired radius of the primitive.
Now a uniform distribution of lines appears to be uniform in projection (Fig. 18.3b).

The technique of plotting and manipulating lines and planes is identical to that used on
the Wulff net. The only practical difference is that circles, great and small, do not project
as circles.

(a) (b)

Figure 18.5 Projection of equal areas: (a) Wulff net; (b) Schmidt net.

The contrasting properties of the equal-angle and equal-area nets are shown in
Fig. 18.5. On the Wulff net areas which are equal on the sphere are the same shape but
noticeably unequal in size in projection, while areas on the Schmidt net are equal but
variably shaped.

When the size adjustment given by Eq. 18.2 or Eq. 18.3 is made, an area on the sphere
is no longer equal to the area in projection. However, areas which are equal on the
sphere remain equal in projection and this is the important property of the Schmidt net
(Sellés-Martı́nez, 1993).

2Named after the German petrologist who used it for this purpose (see Schmidt, 1925).
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18.5 Polar net

When plotting many points by hand, it is particularly advantageous to used the polar
version of the Schmidt net (Lisle and Leyshon, 2004, p. 42). As in the case of the polar
Wulff net (Fig. 5.21a), the planes represented by the great circles are now vertical, and
the small circles are concentric about the center with radii given by Eq. 18.1 (Fig. 18.6).

Figure 18.6 Equal-area polar
net.

N

18.6 Equal areas

We now verify that equal areas on the hemisphere are also equal in projection. Following
Watson (1988) an element of area on the surface of a sphere of unit radius is sin θ dθ dt

and an element of area on the horizontal projection plane is r dr dt (Fig. 18.7).

Figure 18.7 Projection of an
element of area.
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The method must project the point with coordinates (x, y, z) on the surface of a unit
sphere onto the point with polar coordinates (r, t) on the plane subject to the condition
that areas on the sphere and on the projection plane are equal, that is,

sin θ dθ dt = r dr dt or sin θ dθ = r dr.

Then ∫
sin θ dθ =

∫
r dr or − cos θ = 1

2r2 + c.

To evaluate the constant of integration we note that the nadir point (0, 0, 1) must project
to the origin on the xy plane, that is, r = 0 when θ = 0. Using these in the above equation
gives c = −1. With these values and after rearranging we have

r2 = 2(1 − cos θ). (18.4)

The trigonometric identity

sin2 α = 1
2(1 − cos 2α)

may be rewritten as

1 − cos θ = 2 sin2 1
2θ,

where α = 1
2θ . Using this in Eq. 18.4 gives

r2 = 4 sin2 1
2θ or r = 2 sin 1

2θ, (18.5)

and this is identical to Eq. 18.1 found graphically. Hence the Lambert construction does
indeed result in the projection of equal areas.

18.7 Contoured diagrams

Because of the equal-area property we can now be sure that the distribution of points on
the Schmidt net truly represents the distribution on the sphere.

However, such scatter diagrams are difficult to evaluate and compare visually. The
usual way around this problem is to contour the density of the points on the net. Once the
point diagram has been prepared, the densities are counted out, and a variety of graphical
methods have been devised to do this (Stauffer, 1966; Denness, 1970, 1972; see also
Turner & Weiss, 1963, p. 58f).
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By hand, most techniques use a circular counter, usually representing 1% of the total
area of the net, to determine the density of points. If the area of the net is A = πR2 and
the area of the counter is a = πr2, then

a

A
= πr2

πR2
= 1

100
and

r

R
= 1

10
.

Accordingly, for a net with radius R = 7.5 cm, a 1% counter has a radius of r = 0.75 cm.
The original and still widely used way of counting is the Schmidt method (Turner &

Weiss, 1963, p. 61). The point diagram is superimposed on a grid with spacing of R/10
(Fig. 18.8a). Counting is accomplished with a special tool, called the Schmidegg counter
(Knopf & Ingerson, 1938, p. 245). In the body of the diagram, the circle at one end of
the counter is centered at each grid node and the number of data points within its 1%
circle are tabulated. If the counting circle overlaps the primitive, both ends of the tool
are used (Fig. 18.8b). The tool can also be used as a free counter to determine the density
variation in greater detail.

(a) (b)

Figure 18.8 Schmidt method: (a) counting grid; (b) Schmidegg counter.

The alternative graphical method which we used here to introduce the approach is one
of the simplest yet devised. It applies reasonably well to all situations and is particularly
useful in the field because it is entirely self-contained.

For this method a special counting net is required (Kalsbeek, 1963). The projection
area is completely subdivided into small triangles (Fig. 18.9a). In general, six of these
triangles form a hexagonal area equal to 1% of the total area. In addition to ease of use,
this counting net has the advantage of a fixed relationship between the total number of
points and the counted density. Each point is counted three times (except for a small
discrepancy caused by the semicircular areas at each end of the six spokes).

Counting

1. Superimpose the point diagram and a second tracing sheet on the counting net. At
the center of each hexagon, the total number of points within that hexagon is written
(see Fig. 18.9b, Point A). For the main body of the diagram there will be numbers at
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Figure 18.9 Counting: (a) Kalsbeek net; (b) density determinations.

the center of each overlapping hexagon. For parts of the diagram with no points, the
hexagons may be left blank, rather than noting a zero for each.

2. At the circumference of the net, the points in each half hexagon on one side of the net
are combined with the complementary half on the opposite side, and this number is
written on both sides of the net along the primitive (see Point B).

3. Points at the ends of the spokes are counted using the complementary half circles
(Point C). At the very center, the small 1% circle is used (Point D).

There is a problem with this or any such manual counting technique. As we have seen,
the nature of the Schmidt net is such that the shape of a small circle on the sphere projects
as an oval-shaped area which is not constant in shape with inclination. In the past an
effort was made to circumvent this problem by using counters of variable shape. This
requires much more work and for most purposes it has not been found necessary. Further,
the problem is eliminated entirely with computer-generated diagrams.

Following the counting process, the tracing sheet bearing the numerical densities
expressed as the number of points per 1% area is removed from the counting net, and
contours of equal density are then drawn. To facilitate the comparison of diagrams with
different numbers of total points, contours are drawn in percentages of total points per
1% area of the net. Therefore, the numbers posted during the counting process must be
converted to percentages. In the special case of exactly 100 points, each number will,
of course, also be the required percentage figure. If 50 points are plotted, each point
represents 2% of the total, and the posted numbers are doubled, and so forth.

Contouring

1. Within the main body of the diagram, contours of equal density are drawn as shown at
Point A of Fig. 18.10a. The position of these contours is easily found by interpolating
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A
C

(a) (b)

B

Figure 18.10 Contouring by hand: (a) counted densities and preliminary contours; (b) completed
diagram; contours 2–4–8–12% per 1% area, maximum 14%.

by eye. It is usually easiest to locate the area of greatest concentration and work
outward.

2. For contour lines which approach the primitive, the counts along the edge are used.
When a contour line intersects the primitive it must reappear exactly 180◦ opposite
(see Point B).

3. When a contour line should be strictly drawn intersecting the primitive, but it is clear
that it immediately loops back again, it is permissible to avoid actual contact with the
primitive (Point C).

4. When the preliminary contouring is complete, several modifications may be made to
improve the appearance of the diagram (Fig. 18.10b):

(a) The maximum found during the counting may not be the true maximum of the
diagram. The greatest concentration can be found by returning the point diagram
to the counting net. Using the central 1% circle as a free counter, shift the diagram
around until the largest number of points lies within it.

(b) All the contour lines may not be necessary to show the pattern; a maximum of
six usually brings out the pattern without producing clutter. For example, if the
spacing is very close, intermediate contours may be eliminated. The values of the
remaining contours in the final diagram are indicated in the legend in the form
2–4–8–12% per 1% area, maximum 14%.

(c) The area of maximum concentration is often blackened. Although usually unnec-
essary, patterns may be used for the areas of lesser concentration. Particularly
effective is the used of stipple patterns graded so that the areas of greater concen-
tration have a denser appearance. Line patterns detract from the visual effect and
should be avoided.
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In order to convey as much objective data as possible to the reader, it is useful to
supply both the point diagram and its contoured equivalent.

18.8 Statistics of scatter diagrams

The scatter of points inevitably involves questions of a statistical nature and a variety
of techniques are available for extracting information concerning their best fit and con-
fidence (Mardia, 1972; Watson, 1983; Fisher, et al., 1987) but many questions remain.
Here we take a more direct, graphical approach to introduce the subject (Vollmer, 1995).

First, does the scatter of points display a meaningful pattern or not? Figure 18.11 shows
three scatter diagrams, each with 100 points. A visual comparison shows that they are
different and that each has an irregular distribution of points with local clusters and gaps.
The contoured equivalents of these would also show these features. Yet each is a random
sample taken from a uniform population (Fisher, et al., 1987, p. 59): there is no statistical
difference between them. The question then is, when faced with scatter diagrams, how
can we determine whether such differences are significant or not?

Figure 18.11 Three random samples from a uniform distribution.

Suppose we have plotted a single point from such a data set. On the equal-area net
we then place a circular counter somewhere on the net. There are two possible outcomes
of such a single trial – the point will lie within the counter (a success) or it will not (a
failure). For a projection of area A and radius R, the probability p that the point will lie
within a counting circle of area a and radius r is

p = a/A = r2/R2. (18.6)

With the 1% counter, p = 0.01. This circle has an angular radius of 0.9◦.
We now complete the point diagram with a total of N randomly placed points. The

expected number of points falling within a counting circle is then described by a bino-
mial distribution (see Walpole & Myers, 1993, p. 128), and the mean µ of a binomial
distribution is given by

µ = Np. (18.7)
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The expected number of points E within the counting circle will be equal to the mean,
that is,

E = µ = Np. (18.8)

The measure of departure from uniformity is the standard deviation σ . For a binomial
distribution this is

σ = √Np(1 − p). (18.9)

Kamb (1959) assumed that densities greater than 3σ differ significantly from that
expected from a random sample of a uniform population. That is

E = 3σ. (18.10)

We now need to determine the size of the counter which will accomplish this. Dividing
both sides of Eq. 18.9 by Np we have

σ

Np
=
√

1 − p

Np
. (18.11)

From Eqs. 18.7 and 18.10

Np = 3σ and σ/Np = 1/3.

With this in Eq. 18.11 and squaring yields

1 − p

Np
= 1

9
.

Solving for p then gives

p = 9

N + 9
. (18.12)

Finally, using this in Eq. 18.6 we obtain an expression for the required radius of the
counting circle

r = 3R√
N + 9

. (18.13)

With this, we now have a way of distinguishing diagrams which have meaningful depar-
tures from uniformity. If a diagram contoured with a counter of this size shows greater
fluctuations then it is probably not random.
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Table 18.1 Angle φ as a function of k and N

N = 50 N = 100 N = 150 N = 200

1% 9.0◦ 9.0◦ 9.0◦ 9.0◦
k = 1 11.4◦ 8.1◦ 6.6◦ 5.7◦
k = 2 22.2◦ 15.9◦ 13.1◦ 11.4◦
k = 3 32.1◦ 23.4◦ 19.4◦ 16.9◦

Because they are produced with specific structural questions in mind, most diagrams
have clearly discernable patterns, even though they also have local, insignificant fluc-
tuations. Distributions which are clearly non-random are no longer described by the
binomial distribution. In such cases, the primary benefit of Kamb’s criterion is that it
reduces the influence of sample size, so that diagrams with differing numbers of points
may be compared.

However, Vollmer (1995) also found that E = 3σ tends to over-smooth data sets with
stronger concentrations. For these a smaller counter is needed. For data sets with few
outlying points, Eqs. 18.12 and 18.13 can be modified by substituting kσ for 3σ giving

p = k2

N + k2
and r = kR√

N + k2
(18.14)

where the parameter k can be subjectively lowered to reduce smoothing and increase
resolution for distributions which clearly deviate from uniform.

18.9 Computer-generated diagrams

Plotting and contouring of large number of data points is an ideal computer application.
Not only is there a great saving of time and effort but the data can be examined quickly
in a variety of ways which would not be possible otherwise.

The problem of the varying shape of a circular counter on the Schmidt net is solved by
counting on the surface of the hemisphere rather than on the projection plane (Warner,
1969). While this would be difficult by hand, it is actually easier to program the computer
to do it this way. The area of a spherical cap on a sphere of unit radius is

a = 2π(1 − cos φ) (18.15)

where φ is the semi-apical angle of the right-circular cone defining the cap. The area of
the hemisphere with unit radius is A = 2π , thus with Eq. 18.6

p = a/A = 1 − cos φ. (18.16)
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Solving for cos θ and substituting the expression for p in Eqs. 18.14 we then have

cos φ = 1 − k2

N + k2
= N

N + k2
. (18.17)

The density is found by determining the angle between the position vector of a grid
node and each data vector using the dot product (see §7.3). If this angle is less than or
equal to φ, then the count is incremented. From the final nodal data, the contours can
then be automatically drawn.
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Figure 18.12 Example of automatic contouring: (a) point diagram; (b) contoured equivalent.

A number of computer programs have been described (see Vollmer, 1995, for a good
discussion and earlier references) and several are readily available:Allmendinger (2001),
Holcombe (2001), Jacobson (1996), RockWare (2001), Wallbrecher (2005). Recently,
Haneberg (2004, p. 43–47) gives a good general description of the basic method using
Mathematica.

To illustrate the basic method a short generic program which takes advantage of con-
touring routines available in the programming language MATLAB® is used (Middleton,
2000).

1. Instead of a rectangular grid (Fig. 18.8a), the 331 nodes of the Kalsbeek net are used
(see Fig. 18.3b). For each of these nodes:

(a) The xy coordinates relative to the origin at the center of the net and +x = east
and +y = north are calculated.

(b) The direction cosines of each unit node vector lN , mN, nN are found from the
plunge and trend of the nodes.

2. From the plunge and trend the direction cosines lD, mD, nD of each unit data vector
are determined.
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3. At each node visited in sequence the dot product of the node vector and all of the
data vectors are calculated. If the angle between a data vector is less than the angular
radius of the counting circle, found with Eq. 18.17, a data point is counted. Finally, the
density z is found by dividing the number of these points associated with a particular
node by the total number of data points.

4. To properly count the density associated with nodes at or near the primitive the opposite
vectors of data points with small plunge angles are copied into the upper hemisphere.

5. Finally, the field of z(x, y) values is contoured using MATLAB routines.

Figure 18.12a shows the point diagram and Fig. 18.12b is the contoured equivalent.

18.10 Interpretation of diagrams

Pattern is the key to interpreting a point diagram and its contoured counterpart. The real
equivalents of the ideally perfectly linear and perfectly planar patterns are:

1. A point maximum is an axially symmetrical clustering of points about a single direc-
tion.

2. A girdle is a grouping of points distributed in a band along a great circle.

For folds, we may choose to construct a β diagram which produces a point maximum,
or an S-pole diagram which produces a girdle pattern. There are several compelling
reasons for adopting the latter type of diagram.

1. In the β diagram, the total number of intersections N = n(n − 1)/2, where n is the
number of individual great circles. As this expression makes clear, the number of
intersections rapidly rises as the number of circles increases. For example, if n = 100,
which is not a particularly large sample, then N = 4950. Such a large number is apt
to give the impression of a large sample size and therefore a false sense of confidence
in the result. It also involves much more work to produce a β diagram.

2. As a result of inevitable scatter, spurious concentrations of intersections may result.
This will be especially true in open folds where the interlimb angle approaches 180◦ or
in tight folds where it approaches 0◦. These spurious intersections will not be randomly
distributed about a mean position, and they may exceed the number of significant β

points (Ramsay, 1964).
3. Perhaps the most important advantage is that the S-pole diagram, if based on a rep-

resentative sample of the attitudes of the structure, gives information on the shape of
the folded surface, the interlimb angle and the attitude of the axial plane.

An instructive approach to understanding S-pole diagrams is to follow the patterns
as they evolve during folding. Consider the cylindrical folding of a single bed. Before
folding, the poles of the horizontal layer would plot as a concentration of points at the
center of the net (Fig. 18.13a), that is, the poles would cluster about a vertical line. If the
diagram were constructed parallel to the profile plane, there would be a point maximum at
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each end of a diameter of the net.As the layer is folded about a horizontal axis, the original
vertical poles are spread into a fan. In terms of pattern, whether projected horizontally or
vertically, the original point maximum spreads into a partial girdle (Fig. 18.13b). With
further folding, the girdle continues to spread (Fig. 18.14a). Finally, with rotation of the
limbs into parallelism, a full girdle develops (Fig. 18.14b). Note that the same diagrams
would result from either antiforms or synforms.

Vertical
projection

Horizontal
projection

(a)

(b)

Figure 18.13 S-pole diagrams 1: (a) horizontal layer; (b) layer bent through 45◦.

Vertical
projection

Horizontal
projection

(a)

(b)

Figure 18.14 S-pole diagrams 2: (a) layer bent through 90◦; (b) layer bent through 180◦.

If the fold shape is dominated by planar limbs, the S-pole pattern will consist of a point
maximum associated with each limb, and the interlimb angle will be the supplement of
the angle between these two maxima. On the other hand, if the fold shape is dominated
by a uniformly curved hinge zone, the density of points within the girdle will be uniform,
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and the interlimb angle will be the supplement of the angle between the two extreme
poles in the girdle. Most folds have shapes and patterns between these two extremes.

Fold profile Horizontal projection Vertical projection

AP

AP

AP AP

AP

AP

AP AP

AP AP

β

β

β

β

β

β

(a)

(b)

(c)

Figure 18.15 Patterns: (a) symmetric open fold; (b) symmetric isoclinal fold; (c) asymmetric fold with
inclined axial plane.

Note also that symmetric folds have symmetric patterns, both in terms of location and
concentration of points (Figs. 18.15a and 18.15b). Conversely, the patterns of asymmetric
folds are also asymmetric; for such folds a large number of variations in the patterns are
possible. Figure 18.15c illustrates a simple example. The overall shape of the contours
is symmetric, but the maxima within the girdle have noticeably different values. The
stronger one marks the pole of the dominant limb.

For purposes of introduction, the folds illustrated above are horizontal or upright or
both. The axis and axial plane can, of course, have any attitude, and this will be reflected
on the diagram. Several plunging and inclined folds are shown in Fig. 18.16.

18.11 Superimposed folds

TheS-pole diagram may also be viewed as a test for the homogeneity of the fold axes in the
area being examined.As such, the diagram can be used to decide if, and in what direction,
a fold profile can be drawn. On the other hand, the pattern may not be interpretable;
the scatter may be such that no clear-cut maximum or girdle is present. Such areas are
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Figure 18.16 Folds with different attitudes of axes and axial planes.

inhomogeneous with respect to axial directions. This will be the general case in rock
masses that have undergone two or more episodes of folding.

The approach in areas of polyphase folding is to seek smaller, homogeneous subdi-
visions for which the data do yield interpretable diagrams. An artificial example will
suggest the approach that is used.
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Figure 18.17 Idealized superimposed folds; areas 1, 2 and 3 are recognizable by the straight segments
of the apparent traces of the hinge surface.

Problem

• From a geological map of an area in which the rocks have undergone two episodes of
folding (Fig. 18.17), determine the geometrical relationship between the two sets of
folds.

Analysis

1. Subdivide the map area into domains, each of which contains structures that are
statistically homogeneous, that is, characterized by cylindrical folds. In some cases,
these subdivisions may be located by trial and error, or by the recognition of the
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β1

β2

β3

AP1

AP2

AP3

Domain 1 Domain 2 Domain 3

Figure 18.18 Stereograms of data from domains 1, 2 and 3.

rectilinear nature of the apparent traces of the hinge surfaces, or by other structural
evidence.

2. A plot of the data from each domain then yields the orientation of the folds in each
homogeneous part of the structure (Fig. 18.18). Changes from one subarea to the next
can then be determined by comparing diagrams.

3. Synoptic diagrams are useful in illustrating these variations, and in obtaining infor-
mation about the second folds. In this example:

(a) Beta intersections of the axial planes from the three domains define the axis of the
second folds (Fig. 18.19a).

(b) The axes of the three domains lie on a single great circle, which indicates a special
type of dispersal of preexisting fold axes and linear structures during the second
deformation (Fig. 18.19b). This pattern is characteristic of similar folding.

(a) (b)

β1

β2

β3

AP1

AP2

AP3

Figure 18.19 Synoptic diagrams: (a) axial planes; (b) fold axes.

Turner and Weiss (1963, p. 178–179) give an extended and more realistic example
of this type of analysis which is well worth examining in detail. Because of problems
intrinsic to distinguishing homogeneous domains by eye and by hand, Vollmer (1990)
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described a computer program which automatically searches the data base and defines
the domains based on the best fit of several indexes and constructs the synoptic diagrams.

In general, results of this type, together with information on the type of folding, permit
individual hinge lines to be traced through the superimposed folds (Stauffer, 1968).

18.12 Sampling problems

Valid interpretations of point diagrams and their contoured equivalents depend on the
data being representative, that is, accurately reflecting the range and relative abundances
of attitudes. Because of limited exposure and inability to explore completely the third
dimension, it is difficult to justify any particular collection of data as being strictly
representative. Usually all that one can do is to conscientiously try to avoid introducing
any obvious bias.

To illustrate this sampling problem, we consider a situation which frequently arises
when attempting to determine and describe the distribution of discontinuities of various
orientations in a rock mass for geotechnical purposes (Terzaghi, 1965; La Pointe &
Hudson, 1985). Such planes of weakness include bedding, cleavage and fractures of
several types, including faults and joints. Joints are perhaps the most common of these
and in the following discussion this term will be used, but the relationships apply to any
structural planes whatever their origin.

If the joints are essentially planar and parallel so that they form a set, they are said to be
systematic. Commonly several sets of systematic joints are present. Joints which belong
to no set are often referred to as random joints, and if only random joints are present they
are said to exhibit a random pattern (though it is uncertain whether any group of such
joints is strictly random in a statistical sense).

To evaluate the relative frequencies of various joint orientations observed at a particular
locality, the dip and strike of each joint are measured, and each is then represented

L

(a) (b)

L∆L ∆Lα

αd
d

α α

d
d

Figure 18.20 Joints: (a) strike-normal section of a joint set; (b) section of a joint set and drill hole.
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on a Schmidt net by its pole. If such a joint survey is carried out in an area where
the slopes are sufficiently irregular that exposures with a great variety of orientations
are available for examination, the resulting joint-orientation diagram is likely to be a
reasonably representative sample of the joints in the area. However, if the investigator
must rely on observations made on nearly two-dimensional exposures, the orientation
data are unlikely to provide even approximately correct information concerning the
abundance of the joints of all sets present at the locality. Figure 18.20a illustrates the effect
of the angle α between exposure plane and members of a joint set. If the average spacing
between joints is d, then from Fig. 18.20b the number of joints Nα with a particular
orientation encountered along a sampling line of length L will be

Nα = L

d
sin α. (18.18)

As this equation shows, the number of joint planes Nα is proportional to (1) L/d,
and (2) sin α. An idealized plot of the poles of joints of all possible orientations may be
constructed. In such a diagram, the successive contours, starting at the circumference,
are the loci of poles of joints which intersect the horizontal surface such that sin α =
0.1, 0.3, 0.5, 0.7, 0.9 respectively.

Then the relative densities of poles in the zones bounded by these isogonic (equal-
angle) lines are also shown. As can be seen in Fig. 18.21a, joints with poles near the
isogonic line for sin α = 1.0 (the primitive) will be about 10 times as abundant as poles
near the isogonic line sin α = 0.1.

The results of a survey from a vertical drill hole exhibit a similar but even more serious
deficiency. In this case L/d is proportional to cos α and there is a disproportionately
large number of near-vertical poles and very few near the primitive (Fig. 18.21b).

If both surveys were made in the same body of rock, it would be easy to conclude
that a joint system developed at depth was quite different than the one observed at the
surface, when in fact the differences are due entirely to limitations of the samples.

(a) (b)

0

0.1

0.3

0.5

0.7

0.9

1.0
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5-7

7-9

9-10

Figure 18.21 Idealized contoured diagram of the poles of random joints (after Terzaghi, 1965, p. 296):
(a) as measured on a horizontal surface; (b) as measured in the core of a vertical drill hole.
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The accuracy of such a diagram can be improved by replacing the number of joints
Nα intersected at an angle α, by a value N90 representing the number of joints with the
same orientation which would have been observed on an outcrop surface with the same
dimensions intersecting the joints at an angle of 90◦, where

N90 = N

sin α
. (18.19)

However, no adequate correction can be made for low values of α because in real
rock the number of intersections is significantly affected by local variations in spacing
and continuity if α is small. Further, no correction whatsoever can be applied if α = 0.
Hence even a corrected diagram fails to indicate the abundance of joints subparallel to
the plane of the exposure.

In this illustration, the outcrop surface was assumed to be horizontal, but it should
be clear that there will be a blind spot in the vicinity of the pole to the exposure plane
whatever its attitude. For similar reasons, the results of the survey of joints in a drill core
will not adequately sample the joints; the problem is more severe because there is a blind
zone for joints which are parallel to the drill hole. In both cases, an adequate sample of
such planes requires that joints on other exposure planes or in other drill hole directions,
and the data so obtained, appropriately weighted, are then combined into a collective
diagram (Terzaghi, 1965, p. 298f).

As always, measurement errors will be present in any data set. Yow (1987) has treated
the role of such errors in determining the size of the blind zone.

For these same geometrical reasons the measurement of the orientations of planes
made on a thin section with a universal stage are subject to bias, called the Schnitteffekt
(Turner & Weiss 1963, p. 226f).

18.13 Engineering applications

As indicated in the previous section, the methods of structural analysis also have wide
application to many practical problems in engineering geology where the usual goal
is the characterization of the distribution of discontinuities in a rock mass. Lisle and
Leyshon (2004, p. 86–93) have a good introduction and Hoek and Bray (1981) give a
comprehensive treatment.

Rock slopes may fail in several ways. A simple, but typical problem involves a rock
mass containing an inclined planar discontinuity exposed in a road cut (Fig. 18.22a). The
question is, will the slope fail by slip on this plane or not? Slip will occur on Plane 1 if
it dips more steeply than the angle of friction φ.

Alternatively, if a stereographic plot of the pole of the fracture plane lies within a
vertical cone with angular radius equal to the angle of sliding friction φ it will not slip,
and if it lies outside this cone it will (Fig. 18.22b).
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Whisonant and Watts (1989) suggested that a point vector plot may be an aid to
visualizing the potential sliding condition.

There is an additional facture which must be taken into account. The rock mass bounded
by Plane 1 is free to move out of the roadcut – it is said to daylight. In contrast, Plane 2
does not daylight because its motion is blocked.

1

2

φ

(a) (b)

STABLE

UNSTABLE

UNSTABLE

δ

Figure 18.22 Slope failure: (a) road cut and fracture planes; (b) stereographic plot of the pole of
fracture plane.

18.14 Exercises

1. The data in Tables 18.2 and 18.3 represent the same fold. construct a beta diagram
and an S-pole diagram. In both, estimate the attitude of the fold axis.

Table 18.2 Plunge and trend of dip vectors

No. p/t No. p/t No. p/t No. p/t No. p/t

1 80/045 3 70/202 5 50/172 7 60/195 9 60/187
2 44/188 4 60/065 6 55/087 8 41/117 10 44/105

Table 18.3 Plunge and trend of pole vectors

No. p/t No. p/t No. p/t No. p/t No. p/t

1 10/225 3 20/022 5 40/352 7 30/015 9 30/007
2 46/008 4 40/245 6 35/267 8 49/297 10 44/285

2. Determine the attitude of the fold axis of the folds shown in Fig. 18.23.
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Figure 18.23 Map of plunging
folds.
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3. Using the data from Table 18.4 (see also the map in Fig. 18.24) produces a contoured
point diagram of pole vectors. Then determine:
(a) Trend and plunge of the fold axes.
(b) Attitude of the axial plane.
(c) Approximate interlimb angle.
(d) Sketch the style of the folding.

Table 18.4 Plunge and trend of pole vectors

No. p/t No. p/t No. p/t No. p/t No. p/t

1 58/093 11 43/229 21 10/246 31 41/264 41 53/078
2 49/108 12 51/227 22 32/233 32 26/073 42 23/080
3 60/125 13 61/235 23 22/260 33 36/085 43 30/051
4 65/158 14 28/228 24 49/219 34 16/068 44 42/067
5 60/115 15 41/220 25 46/237 35 15/076 45 36/075
6 48/091 16 58/210 26 32/233 36 34/064 46 32/086
7 59/195 17 15/246 27 40/225 37 57/079 47 24/067
8 16/245 18 06/246 28 47/253 38 43/052 48 15/062
9 68/192 19 35/242 29 47/226 39 46/078 49 36/071

10 41/233 20 60/230 30 04/241 40 33/074 50 40/104
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Figure 18.24 Geological map of a series of folds.
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Tectonites

19.1 Introduction

The term fabric includes the complete spatial and geometrical configuration of all the
components that make up a rock. It is an all-encompassing term that describes the shapes
and characters of individual parts of a rock mass and the manner in which these parts
are distributed and oriented in space (Hobbs, et al., 1976, p. 73). These components and
their boundaries are elements of the fabric. A description of the manner in which these
elements and the boundaries between them are arranged in space constitutes a statement
of the fabric of the body.

19.2 Isotropy and homogeneity

A rock with randomly oriented fabric elements will have the same physical and geomet-
rical properties in all directions, and is therefore isotropic. Such rocks are rare in nature.
Usually the best that can be said is that a rock mass is approximately isotropic on some
specified scale.

If any two identically oriented, equal-volume samples taken from a rock mass are
identical in every respect, the mass from which they came is said to be homogeneous. At
best, some rock masses are only quasi-homogeneous, that is, the proportions of the various
mineral components and their distribution are only approximately uniform. Samples
from such a mass that are large compared with the grain size will then be statistically
indistinguishable, and the mass is said to be statistically homogeneous. A region of a rock
body which is homogeneous with respect to the orientation or pattern of orientation for
a given fabric element is a termed a fabric domain. In attempting to describe a particular
fabric, it is important to insure that the sample is from such a domain.

493
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19.3 Preferred orientation

Almost all rocks, including sedimentary, igneous and metamorphic, show some degree of
preferred orientation and therefore are anisotropic. Such rocks are of considerable interest
for the processes of formation and deformation are often recorded by these anisotropic
fabrics. Such rocks are termed tectonites. These fabrics may be planar or linear, and they
are marked by a preferred orientation of shape or lattice. Some studes include papers by
Bjørnerud and Boyer (1996), Bons and Jessell (1996), Lapierre, et al. (1996), and Park
(1996).

19.4 Planar and linear fabrics

At the outcrop or in a hand specimen, planar or linear structures which make up the fabric
are visible as traces on the exposure faces. If the structure is simple and well developed,
there may be no problem in determining its nature and attitude. However, when the traces
are faint, or several different traces are present on the same exposure faces, it may be
difficult to tell whether a planar or linear structure is present merely by inspecting several
two-dimensional faces. The attitudes of the exposure plane and the traces of fabric on
them can be fitted into a three-dimensional picture with the aid of the stereonet.1

Classification

1. Planar structures
(a) Planar parallelism of planar fabric elements (Fig. 19.1a).
(b) Planar parallelism of linear fabric elements (Fig. 19.1b).

2. Linear structures
(a) Linear parallelism of linear fabric elements (Fig. 19.1c).
(b) Linear parallelism of planar fabric elements (Fig. 19.1d).

3. Composite structures
(a) Combined structures: two or more planar or linear structures in combination, or

both.
(b) Complex structures: two fabrics marked by either linear or planar fabric elements

only.
i Linear + planar fabrics marked by linear elements.

ii Linear + planar fabrics marked by planar elements.

1Usually only 5–10 measurements are required so that either the Wulff or Schmidt net can be used. We will illustrate
both.
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(a) (b) (c) (d)

Figure 19.1 Planar and linear fabrics: (a) planar structure marked by planar elements; (b) planar
structure marked by linear elements; (c) linear structure marked by linear elements; (d) linear structure
marked by planar elements (from Oertel, 1962).

0.9

0.1 0.2 0.3

0.4 0.5 0.6

0.7 0.8

Figure 19.2 Strength of preferred orientation on a plane (from MacCaskie, 1986, with permission of
the Journal of Geology).

The description of these fabrics entails the attitude of the planar or linear structure,
and the remainder of this chapter is devoted to methods for determining this attitude,
but it is also useful to give some information on the overall strength of the alignment of
the fabric elements. Commonly terms such as “weak” or “strong” are used, but a more
accurate evaluation may be useful. The plots shown in Fig. 19.2 were generated using
pseudo-random numbers for mean resultant vectors with a range of R̄ = 0.1–0.9 (see
§7.4). These plots can be used to visually estimate the strength of the fabric in the field.
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Planar structures

If a planar structure is present, then each trace may be thought of as an apparent dip of
that plane and the method used to find the true dip from two apparent dips may be used.
However, more than two points are required to demonstrate that the structure is, in fact,
a plane, and the more points that are used the more certain is its existence. If only two
points are available, a plane that satisfies the measurements can be found, and this then
used to check the results on an exposure face (natural or artificial) perpendicular to the
plane.

Problem

• The attitude data of Table 19.1 represent the measurements taken from five different
outcrop faces or from an oriented specimen on which five non-parallel faces have been
cut. Determine the attitude of the planar structure.

Table 19.1 Data for analysis of
planar structure

Face Strike & dip Pitch of trace

1 N 40 E, 20 SE 67 S
2 N 46 W, 32 NW 5 N
3 N 68 E, 42 S 75 W
4 N 20 W, 62 W 60 S
5 N 20 E, 46 W 79 N

(b)

N

l1

l2

l3
l4

l5

N

(a)

l1

l2

l3
l4

l5

S

Figure 19.3 Attitude of a planar fabric: (a) data plot; (b) analysis.

Construction

1. Using the pitch angle plot represent each measured trace as the points li (i = 1–5
(Fig. 19.3a). The great circle representing the exposure plane is, of course, used to
plot these points but it need not actually be included on the diagram.
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2. The five points representing these trace points lie on the same great circle S

(Fig. 19.3b). This great circle represents the structural plane defined by the fabric
measurements.

Answer

• The dip and strike of the structural plane S are N 50 W, 55 SW.

Linear structures

If the structure is linear, traces will be present on all faces except the one perpendicular
to the line (see Figs. 19.1c,d). As shown in Fig. 19.4, a rod-shaped fabric element cut
by an oblique exposure plane P will expose an ellipse. The long axis of this ellipse is
an apparent lineation of the true linear structure, that is, the trace marked by the long
axis in an orthographic projection of the linear structure onto an exposure face (Lowe,
1946). The true direction of the line lies in the plane N which is normal to the exposure
plane and also contains the trace. Normal planes can be constructed from measurements
on exposure faces. The intersection of any two will ideally fix the attitude of the line.
In practice more points are needed to confirm the nature of the structure and to increase
confidence in the result.

Figure 19.4 Intersection of
exposure plane P and plane N
normal to P and containing the
fabric trace is parallel to the
long axis of the rod-shaped
element (Lowe, 1946).

P

N

Problem

• The attitude data of Table 19.2 represent the measurements taken from five different
outcrop faces or from an oriented specimen on which five non-parallel faces had been
cut. Determine the attitude of the linear structure.

Construction I

1. Plot as a pair of points each fabric trace li and the pole of the corresponding exposure
plane Pi (Fig. 19.5a).

2. Add the great circle passing through each pair of these points (Fig. 19.5b).
3. These arcs intersect at a point which represents the linear structure L.
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Table 19.2 Data for analysis of
linear structure

Face Strike & dip Pitch of trace

1 N 12 W, 70 E 19 N
2 N 35 E, 60 W 68 SW
3 N 30 W, 65 W 47 N
4 N 70 E, 80 S 25 SW
5 N 46 W, 18 SW 36 NW

(a) (b)
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l4

l5
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P4

P5
L

N N

Figure 19.5 Linear structure (method of Lowe, 1946): (a) data plot; (b) analysis.

Answer

• The attitude of the linear structure is L(26/284).

This method of locating the line of intersection of the N planes is similar to that used
in the β diagram, and has the same disadvantage (see §18.2). As we have seen in §5.9,
when planes intersect at small angles, the location of the intersection point is strongly
influenced by small variations in the measured angles. In contrast to the idealized data
of this example problem, it may be difficult to accurately determine the orientation of
the line.

An alternative approach avoids this problem and has the additional advantage of being
amenable to numerical treatment.

Construction II

1. As before (Steps 1 and 2), plot the pairs of trace points li and the poles of the exposure
planes (in Fig. 19.6a these poles are not labeled).

2. Draw the great circle which passes through each pair of points and plot its pole Pi

(note that these constructed poles are not the measured poles of the exposure planes).
3. The second set of pole points define a great circle whose pole represents the linear

structure (Fig. 19.6b).
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Figure 19.6 Linear structure (method of Cruden, 1971): (a) data: (b) analysis.

Table 19.3 Data from a
macro-porphyritic basalt

Face Strike & dip Pitch of trace

1 horizontal trend = 106
2 N 12 W, 82 E 45 N
3 N 45 E, 90 44 SW
4 N 23 W, 80 W 46 N
5 N 53 E, 85 SE 50 SW
6 N 46 W, 18 SW 36 NW

Clark & McIntyre, 1951a

Answer

• The attitude of this pole L is identical to the intersection found by the previous method.

Problem

• In these two previous examples, the data were contrived to define exactly a plane and
a line. In real life such data will always show a dispersion of points due to imperfectly
developed fabric and measurement errors. Table 19.3 contains the data for measure-
ments made of the linear fabric in a basalt.

Results

1. The plot using Lowe’s (1946) method of Fig. 19.7a shows a considerable spread of
intersections. Locating the mean point L presents a problem.

2. In contrast, the plot using Cruden’s (1971) method illustrates the ease in fitting the
best-fit great circle and therefore the pole point L.

Where two or more fabric traces are present on the exposure faces, these techniques for
identifying planar and linear structures and determining their attitude may be combined.
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Figure 19.7 Linear structure (Clark & McIntyre, 1951a): (a) Lowe’s plot; (b) Cruden’s plot.

19.5 Complex structures

In some rocks, fabric elements of just one shape may be arranged to give more than one
structure, even though there is only a single trace on an exposure face (Den Tex, 1954). A
simple experiment may help to see how this is possible: A parallel alignment of pencils
on a table top is analogous to linear structure marked by linear elements (Fig. 19.1b) and a
collection of pencils scattered randomly on a table top is analogous to the case of a planar
structure marked by linear elements (Fig. 19.1c). If the dispersion of the pencils is now
restricted so only orientations within some angle of azimuth, say 30◦, are represented, the
result is a configuration intermediate between the two end member classes. It possesses
both a dominant linear fabric (the still strong alignment) and a subordinate planar fabric
(the tendency to spread in a plane). A similar pattern involving planar elements can be
generated which is intermediate between Figs. 19.1a and 19.1d.

The geometrical analysis of such fabrics depends on the fact that in a given series of
random exposure planes, certain faces will be more favorably oriented for observing the
traces of the internal structure than others. Specifically, those exposure planes parallel
to a linear structure, and those perpendicular to a planar structure will exhibit the best
developed traces. Conversely, those planes perpendicular to the linear structure and those
parallel to the planar structure will show no traces at all.

Principal linear, subordinate planar structure

Such complex structures occur when, for example, linear elements are statistically
arranged with linear parallelism, but with a deviation into a plane. The deviation that
produces this subordinate structure means that the principal structure can not be as well
developed.

Figure 19.8a shows the equal-area plot of the poles P of exposure planes which
contained individual traces l. Exposure faces oriented so that no trace is visible on them
must also be examined, but they are not plotted. For optimum results, the measured
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planes should be well distributed in space for this type of analysis to yield a reasonable
estimate of the structure.
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Figure 19.8 Complex structures (data taken from Figs. 5 and 6 of Den Tex, 1954): (a) principal linear
with subordinate planar structure; (b) principal planar with subordinate linear structure.

Analysis

1. The li points cluster about a center L that represents the principal linear structure.
2. The trace points are also spread out along another great circle, which contains six

of the ten individual l points, as well as the center L. This is the subordinate planar
structure.

3. Note the tendency for the poles of the trace-containing exposure planes to be dis-
tributed along the great circle 90◦ from the linear structure L.

Construction of the linear structure using intersection great circles drawn through the
respective poles and traces would have approximated the position of L, but it could not
have detected the spreading that marks the subordinate planar structure.

Principal planar, subordinate linear structure

A similarly complex structure may result from planar elements oriented in such a manner
as to mark a planar structure, but with deviations that are controlled by a tendency to
remain parallel to a line within the plane. Figure 19.6b shows the plot of such a case.

Analysis

1. The majority (7 of 10) trace points exhibit a tendency to lie close to a great circle S.
2. Within S, there is a tendency for the trace points to cluster around a center L. The four

remaining poles are located approximately 90◦ from L. The point L is, therefore, a
subordinate linear structure lying within the principal plane.
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3. There is a similar, though less pronounced tendency for the poles P also to lie along
this same great circle. Six of ten poles are less than 45◦ from S and are roughly
symmetrical with respect to it. The S plane is therefore the principal planar structure.

19.6 LS tectonites

The complex fabrics of the last section are members of a continuous spectrum of fabrics
which range from perfectly linear, or L tectonites, to perfectly planar, or S tectonites.
These are the end members of a general class of LS tectonites. Intermediate members
have intermediate relative strengths of the linear and planar components. A useful way of
characterizing fabrics of this spectrum is to note that they generally have three mutually
perpendicular planes of symmetry, the plane of S is one of these and the other two are
parallel and perpendicular to L.

For field identification, it is useful to divide these fabrics into discrete intervals (Flinn,
1965; Schwerdtner, et al., 1977) giving five types:

L, L > S, L ≈ S, L < S, S tectonites.

An additional importance of this approach is that it may be possible to correlate the fabric
geometry with the shape of the strain ellipsoid.

Other types of fabrics, such as the combined structures, will generally have lower
symmetries, either monoclinic or triclinic. These can not be included in the LS scheme,
and their fabric components have to be described separately.

19.7 Exercises

• For the following sets of measurements, analyze the data for the structure involved.

Question 1: Exposure plane Pitch of trace

N 80 W, 30 N 20 W
N 50 E, 80 N 30 W
Horizontal N 46 W
N 5 E, 10 S 40 S
N 72 E, 20 S 80 W

Question 2: Exposure plane Pitch of trace

N 15 W, 70 E 80 N
N 52 E, 50 SE 40 NE
N 0, 45 E 74 N
N 86 E, 60 S 30 E
N 43 E, 50 W 25 NE
N 52 E, 35 N 14 NE
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Question 3: Exposure plane Pitch of trace 1 Pitch of trace 2

N 30 E, 30 W 15 N 85 N
N 45 W, 20 SW 30 SE 70 SE
N 20 W, 60 E 52 N 5 S
N 25 E, 40 E 36 S 28 N
N 80 W, 70 E 70 E 40 W
N 50 E, 55 SW 50 SW 15 NE

Question 4: Exposure plane Pitch of trace 1 Pitch of trace 2

N 70 W, 30 S 28 E 80 W
N 60 W, 10 E 35 E 90
N 90 W, 20 N 55 E 73 E
N 20 W, 40 E 26 N none
N 15 W, 45 W 45 S 30 N
N 55 E, 57 SW 85 S 15 N
N 50 E, 90 20 SW 60 NE
N 40 W, 30 NE 60 N 35 N

Question 5: Exposure plane Pitch of trace

N 50 W, 50 NE 55 NW
N 90 W, 30 N 90
N 20 W, 30 N 27 N
N 10 W, 70 E 40 N
N 48 E, 26 NE 46 NE
N 20 W, 70 E 68 N
N 32 E, 52 W 38 N
N 4 E, 70 W 10 N
N 85 W, 45 N 90
N 85 E, 65 S none
N 20 E, 75 W 60 N
N 45 W, 20 NE 46 NW
N 90 W, 52 S none
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Drill hole data

20.1 Introduction

Exploration of the underground by drilling and the recovery of core samples is an impor-
tant technique for the geologist, especially in mining, engineering and petroleum projects.
Several authors have tackled the geometrical problems which arise (Fisher, 1941; Stein,
1941; Mertie, 1943). In applied projects the identification of fractures is particularly
important (Lau, 1983; Kulander, et al., 1990; Sikorsky, 1991). A good overview of many
practical aspects of drilling, coring and analysis is provided by Goodman (1976, p. 127–
157), and we follow his basic approach.

The information gained from a drilling program depends on the number of holes
drilled, the orientation of the holes, the core recovery and the structures seen in the cores.
Because drilling is expensive, it is important to extract the maximum information from
as few holes as possible.

Inclined holes tend to wander during drilling, especially if long and, at least in part,
this is due to rock anisotropy (Brown, et al., 1981). If accurate measurements are needed,
down-the-hole survey instruments are lowered along the borehole to measure its plunge
and trend at known distances. From this information, the curved path of the hole can
then be calculated (Howson & Sides, 1986). Special still or television cameras can also
be used.

Our concern here is with the structural information that can be obtained from recovered
cores and the basic case involves the attitude of a structural plane. The determination of
the true attitude of such a plane is treated in detail. Some of the problems involved in the
interpretation of the structure of folded rocks are then outlined.

First, we need a way of describing the orientation of a plane in the recovered core.
A plane which is oblique to the drill hole axis intersects a circular core as an ellipse
(Fig. 20.1). The major axis of this ellipse marks the local dip line of the plane. This line
of dip D′ is easily identified on the core as the low point on the elliptical trace.

504
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Figure 20.1 Core with
intersecting plane.

M

D'

β

β plane

Axis
Pole

δ'

φ

To describe the orientation of this plane in the core two angles are needed. Its inclination
is given by the local dip angle δ′. To specify the local dip direction a reference line
is needed, and, as we will see, there are several ways of establishing this. Then the
local trend of D′ is measured in the plane normal to the core axis, called the β plane,
and is given by the angle β measured from this reference mark M in a clockwise or
anticlockwise sense as viewed in the direction of drilling.

20.2 Oriented cores

Special techniques are available which allow the in situ orientation of the core to be
recovered (Zimmer, 1963; Goodman, 1976, p. 142f). Here we assume that the method of
fixing this orientation takes the form of a mark made along the top edge of the inclined
cylindrical core parallel to the axis of the hole. Other marking schemes can be converted
to this one or the construction easily adapted to other conventions. Almost always explo-
ration holes are drilled downward and all the examples treat this case. In the rare case of
a hole drilled upward the various techniques can be easily adapted.

There are two states, each with its own set of geometrical features. One is the core and
the plane it intersects and the other is the true attitude of the plane. These two are related
by a simple rotation.

The first step is to measure the orientation of the plane in the core given by its inclination
δ′ and its trend β. With these angles, finding the true attitude of the plane is essentially
the problem of two tilts in reverse. In plotting the structural plane on the stereonet it is
convenient to represent it by its pole and this requires the core-pole angle φ = δ′.

Problem

• Drill hole H(40/030) intersects a plane whose attitude is D(60/260). What is the
orientation of the plane in the recovered core?
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Construction

1. Plot drill hole H(60/040) and pole P(50/060) representing the pole of the plane
(Fig. 20.2a). As a visualization aid D(60/260) and the corresponding great circle are
useful.

2. Add the reference mark M on the primitive with the same trend as H (Fig. 20.2b).
3. About axis R(00/120) (perpendicular to M) rotate H through angle ω = 30◦ to H ′

at the center of the net and P to P ′ along its small circle.
4. Plot D′ representing the local dip line of the plane by counting 90◦ from P ′ and add

its great circle representation. The plunge of D′ is the local dip angle δ′.

Answer

• The orientation of the plane in the core is fixed by the local angles δ′ = 40◦ and
β = 120◦.

(a) (b)

N N

H

P
D

R

D�

H

H�

M

P

P�

β

Figure 20.2 Attitude of plane in oriented core.

The inverse of this type of problem and the more important one is to determine the
true attitude of a plane from measurements made on an oriented core.

Problem

• A drill hole H(40/030) yielded an oriented core with δ′ = 32◦ and β = 68◦. What is
the true attitude of the plane?

Construction

1. Plot points H ′ at the center of the net representing the local orientation of the core
and H(40/030) the true orientation of the drill hole (Fig. 20.3).

2. On the primitive mark points M with the same trend as H and the trend of D′ at
β = 68◦ from M .

3. Locate D′ using the local dip angle δ′ = 32◦. Plot pole P ′ by counting 90◦ from D′.
4. As H ′ rotates to H , P ′ rotates to P , which is the true pole of the plane. The true dip

D and the corresponding great circle can then be added to the diagram.
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Answer

• The true pole is P(44/347) and true dip is D(46/167). The corresponding strike and
dip are N 77 E, 46 SE.

Figure 20.3 True attitude from
an oriented core.
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20.3 Cores without orientation

Because it adds expense, marking devices are not commonly used during routine drilling.
Then, because it is not possible to keep the core from rotating in the drill pipe during
recovery, only a limited amount of information is available from a single hole:

1. The plunge and trend of the drill hole.
2. The distance along the hole where the core was taken.
3. The local dip angle of the intersected plane.

In the special case of a vertical hole, the local dip is also the true dip but the true strike
is unknown. In this case, we can visualize all the possible orientations by rotating the
core at its location at depth through 360◦. During this rotation, the structural plane in the
core will be everywhere tangent to a right-circular cone. The intersection of this cone
with the earth’s surface will be a circle. There are two special cases. If the structural
plane is vertical, the cone degenerates to a line and if it is horizontal it is a plane. Only
in this latter case is the attitude uniquely defined by a single drill hole.

If the drill hole is inclined, the dip angle in the core δ′ no longer represents the true
dip. Again, the true attitude will be tangent to a cone generated by rotating the core about
its axis. Depending on the inclination of the drill hole and the attitude of the plane this
cone will intersect the earth’s surface as an ellipse, parabola or hyperbola.

In such situations, the construction of the appropriate conic section at the earth’s
surface would permit all possible attitudes to be delimited. This requires drawing the
appropriate conic sections accurately and this is not a practical approach.
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Figure 20.4 Single rotated core
and the locus of all possible
poles.

H

A

B

N

C D

Problem

• In a core recovered from a hole H(40/000) a plane has a core–pole angle φ = 30◦.
What can be said of the true attitude of this plane?

Construction

1. Plot point H(40/000) representing the inclined drill hole (Fig. 20.4).
2. The pole of the structural plane lies at a constant angular distance from H , that is, on

a small circle with angular radius corresponding to the core–pole angle φ = 30◦.
3. Locate points A(70/000) and B(10/000). Draw the small circle with radius φ about

H (see §6.9).

Answer

• The two vertical planes tangent to the small circle identify the extreme trends of the
poles and their trends C and D are N 41 W and N 41 E. Points A and B, with the
maximum and minimum inclinations, give the range of plunges from 10◦ to 70◦.

Without further information, there is no basis of locating the particular point on the
small circle which represents the true pole, thus within these limits the true attitude
remains unknown. The smaller the small circle, the more limited the range of attitude.
If φ = 0 the circle degenerates to a point and the attitude of the plane is uniquely
determined.

Additional information can be obtained from several sources. One possibility is that
the true attitude of the plane may be partially known, e.g., the true strike may be known
from surface observations.

Problem

• A drill hole H(50/160) intersects a bedding plane and its core–pole angle φ = 25◦.
The true strike is known to be N 40 E. What are the dip possibilities?
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Figure 20.5 Single hole and partial attitude: (a) strike known; (b) dip known.

Construction

1. Plot point H(50/160) representing the hole and draw a small circle with angular
radius φ = 25◦ (Fig. 20.5a).

2. A radius of the net perpendicular to the known strike direction intersects the small
circle at P1 and P2 and these represent the two possible poles to the bedding.

Answer

• Poles P1(70/130) and P2(38/130) correspond to dip angles of 30◦ and 52◦.

A similar construction based on the known dip angle also yields the possible poles to
the planes and the corresponding strike directions can then be determined.

Problem

• Drill hole H(50/160) intersects bedding with core–pole angle φ = 25◦. The true dip
is δ = 50◦. What are the strike possibilities?

Construction

1. Plot point H(50/160) representing the hole and draw a small circle with angular
radius φ = 25◦ (Fig. 20.5b).

2. Points P1 and P2 on this small circle with plunge angles equal to the complement of
the known dip angle are the possible poles to bedding.

Answer

• The strike directions corresponding to P1(40/128) and P2(40/194) are N 38 E and
N 76 W.
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20.4 Cores with a known plane

Another piece of information can be used if two planes are present in the core and the
attitude of one of them is known. The in situ orientation of the core can then be fixed and
the attitude of the unknown plane determined. As in the case of the oriented core, use is
made of the local reference frame to describe the observed relationship between the two
planes in the core (Goodman, 1976, p. 143f). An arbitrary line can be used but a simpler
approach is to identify the dip direction of the known plane as M .

Problem

• Drill hole H(70/000) intersects both a bed and a fracture. The attitude of the bed is
D(40/130). Measurements of the plane of the fracture in the core yield φ = 40◦ and
β = 122◦ measured clockwise from M . What is the true attitude of the fracture?

N N

(a) (b)

HP1

M

H

M
D

β

P2

Figure 20.6 Drill core with known plane.

Construction

1. Plot the drill hole H(70/000) and the pole P1(50/310) of known bedding (Fig. 20.6a).
(Angle φ1 between H and P1 is not needed.)

2. Draw the great circle whose pole is H representing the β plane and the great circle
through points P1 and H . The intersection of these two is the reference mark M

(Fig. 20.6b).
3. From M count off β = 65◦ to locate the trend of the true dip line D.
4. Locate the pole P2 φ = 40◦ from H along this second great circle. Plot D of the

fracture at 90◦ from P2.

Answer

• The attitude of the bedding is given by P2(24/346) and D(66/166). The corresponding
strike and dip are N 76 E, 66 S.
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20.5 Two drill holes

The solution of the problem of two differently oriented drill holes each intersecting a
single identifiable plane is obtained by drawing the small circles representing the core–
pole cones. The intersections of these circles are possible poles to bedding. There may
be two or four solutions.

N N

H1

H2

P2

P1

H2

H1P1

P2

P3

P4

(a) (b)

Figure 20.7 Two drill holes: (a) two attitudes; (b) four attitudes.

Problem

• Recovered cores from two inclined drill holes yield the following data on the plunge
and trend of each hole and the associated core–pole angle: H1(70/110), φ1 = 60◦ and
H2(40/240), φ2 = 40◦.

Construction

1. Plot the points H1(70/110) and its small circle with radius φ1 = 60◦ and H2(40/240)

and its small circle with radius φ2 = 40◦ (Fig. 20.7a).
2. These two circles intersect at two points P1 and P2 which are the two possible poles.

Answer

• The attitudes of the poles are P1(29/192) and P2(50/296). The corresponding strikes
and dips of the planes are N 78 W, 61 S and N 26 E, 50 E.

If a small circle overlaps the primitive, that is, if it extends into the upper hemisphere,
there may be additional intersections and it is therefore necessary to construct its opposite
(see §6.9 for method).

Problem

• Inclined drill holes and their cores yield: H1(40/040), φ1 = 40◦ and H2(50/240),
φ2 = 70◦.
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Construction

1. Plot H1(40/040) and its small circle with radius φ1 = 40◦ and H2(50/240) and its
small circle with radius φ2 = 70◦ (Fig. 20.7b). The two intersections are P1 and P2.

2. The H2 circle overlaps the primitive and its opposite supplies two additional intersec-
tions P3 and P4.

Answer

• The four possible poles to bedding are P1(40/347), P2(56/097), P3(7.5/014) and
P4(18/079).

If the structure of the area is known, even minimally, it may be possible to reduce the
several solutions to a single acceptable attitude.

If a recognizable marker horizon is present in both cores it is generally possible to
determine the attitude of the structural plane uniquely. The presence of the marker at
known distances along each of the holes permits the location of two points on the marker
horizon to be found and from these an apparent dip.

Problem

• From a single site two holes were drilled. H1(64/000) encountered a marker bed at a
distance of 19.7 m and the core–pole angle φ1 = 52◦. H2(33/270) encountered the
same marker at a distance of 19.4 m and φ2 = 55◦. What is the attitude of the marker
bed?

NN

(a) (b) (c)

H1

H2

P1

P2 D1

D2

A H1

H2

A

O

B1

B2

Figure 20.8 Two holes with marker: (a) stereonet 1; (b) stereonet 2; (c) map.

Stereographic construction

1. Plot points H1(64/000) and H2(33/270).
2. With φ1 = 52◦ and φ2 = 55◦ draw the small circles about each (Fig. 20.8a).
3. The intersections of these circles are possible poles P1(64/193) and P2(17/329). The

corresponding dips are D1(26/013) and D2(73/149) (Fig. 20.8b).
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Orthographic construction

1. From a common point O, plot the trends of the two drill holes in map view (Fig. 20.8c).

2. With the procedures of Chapter 2 locate the points X1 and X2 on the plane and their
depths d1 and d2.

3. Points B1 and B2 are the points along each drill hole X1 and X2. Points B1 and B2 are
the surface points directly above these two points at depth. Line l = B1B2 is then the
trend of an apparent dip on the plane. With the difference in the depths �d = d1 − d2

the apparent dip is then obtained from tan α = �d/l.

Answer

• The apparent dip is A(18/062) and this is compatible only with the plane represented
by D1. The true attitude of the plane is therefore N 77 W, 26 N.

20.6 Analytical solution

For the treatment of the data from a few drill holes the graphic approach is quite satis-
factory. For the routine analysis of data from an extensive drilling program, an analytical
solution is an attractive alternative. Here we derive the solution of the two drill hole
problem. Charlesworth and Kilby (1981) give a related treatment.

For each pole common to two intersecting small circles, there are three unknown
direction cosines. Correspondingly, three relationships involving these three unknown
quantities are required for a mathematical solution. The first is the identity linking the
three direction cosines (L, M, N) of the unknown pole of bedding (see Eq. 7.5)

L2 + M2 + N2 = 1. (20.1)

The other two are obtained from the angle between the pole and the hole and this is given
by the dot product of normalized pole and hole vectors P and H (see Eq. 7.12)

cos φ1 = l1L + m1M + n1N,

cos φ2 = l2L + m2M + n2N,

where (l1, m1, n1) and (l2, m2, n2) give the orientation of each drill hole. Rearranging
gives

l1L + m1M = cos φ1 − n1N,

l2L + m2M = cos φ2 − n2N.
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Using Cramer’s rule, we can express L and M in terms of the determinants of these two
equations. Thus

L =

∣∣∣∣ (cos φ1 − n1N) m1

(cos φ2 − n2N) m2

∣∣∣∣∣∣∣∣ l1 m1

l2 m2

∣∣∣∣
=

∣∣∣∣ cos φ1 m1

cos φ2 m2

∣∣∣∣− N

∣∣∣∣ n1 m1

n2 m2

∣∣∣∣∣∣∣∣ l1 m1

l2 m2

∣∣∣∣
(20.2a)

and

M =

∣∣∣∣ l1 (cos φ1 − n1N)

l2 (cos φ2 − n2N)

∣∣∣∣∣∣∣∣ l1 m1

l2 m2

∣∣∣∣
=

∣∣∣∣ l1 cos φ1

l2 cos φ2

∣∣∣∣− N

∣∣∣∣ l1 n1

l2 n2

∣∣∣∣∣∣∣∣ l1 m1

l2 m2

∣∣∣∣
. (20.2b)

There are five determinants, two in each numerator and one common to both denomina-
tors. They are

D1 = m2 cos φ1 − m1 cos φ2,

D2 = m2n1 − m1n2,

D3 = l1 cos φ2 − l2 cos φ1,

D4 = l1n2 − l2n1,

D5 = l1m2 − l2m1.

Rewriting Eqs. 20.2a and 20.2b using these symbols and squaring gives

L2 = (D1 − ND2)
2

D2
5

and M2 = (D3 − ND4)
2

D2
5

.

Substituting these back into Eq. 20.1 and collecting terms gives

(D2
2 + D2

4 + D2
5)N2 − 2(D1D2 + D3D4)N + (D2

1 + D2
3 − D2

5) = 0. (20.3)

The roots of this quadratic are two values of N , one for each intersection. Using each
of these in Eqs. 20.2, we then have two sets of direction cosines, one for each possible
attitude of the pole. In the problem of Fig. 20.7a the results are: P1(29.38/192.47) and
P2(49.91/296.22).

In the case of four possible attitudes, the plunge −p and trend t +180◦ are used for the
opposite small circle to find the direction cosines of the other two poles. In the problem
of Fig. 20.7b the results are: P1(39.58/347.14), P2(55.60/097.01), P3(7.70/013.92),
P4(17.99/078.84).



20.7 Three drill holes 515

20.7 Three drill holes

In any situation cores from three drill holes completely fix the attitude of a structural
plane. With a marker the attitude can be determined by the simple method of the three-
point problem, but its attitude could already have been found with only two differently
oriented drill holes. Without a marker, the attitude can be determined by finding the
unique pole common to the three core–pole circles.

Problem

• Three drill holes have the following orientations and core–pole angles in the recovered
core. What is the attitude of the bedding?

H1(60/000), φ1 = 51◦,
H2(50/270), φ2 = 67◦,
H3(55/045), φ3 = 38◦.

Approach

• It is a straightforward extension of previous methods to plot the points representing
the inclined drill holes and to construct the intersecting small circles representing each
of the core–pole cones (Fig. 20.9).

Figure 20.9 Three drill hole
problem.

H1
H2

H3

N

P

Answer

• The point common to three circles identifies the unique pole, and its attitude is
P(60/120).

In this contrived problem, the intersecting pairs of small circle are within a degree of
each other. In the real world, because of measurement errors and imperfections of natural
planes, such accuracy is difficult to obtain. If the intersections are close it is usually
possible to make a reasonable estimate the pole’s location. If they are not close, then the
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possibility arises that the plane intersected by the three holes does not have a constant
attitude. More holes may then be required to determine the structure.

The effort of plotting three small circles, especially if one or more of them overlap the
primitive, is time consuming and the analytical approach becomes an attractive alterna-
tive. For this problem the analytical results are: for H1 and H2 P(60.38/119.99), for H2

and H3 P(60.46/119.55), and for H1 and H3 P(60.12/119.21). The small differences
in these calculated values are not significant.

20.8 Interpretation of folds

The deciphering of the structure of folded terranes from drill cores is considerably more
difficult. If the wavelength of the folds is large and enough holes are drilled it should be
possible to represent the structural geometry by structure contours.

If the beds are sharply folded on a small scale, then each hole will intersect planes
with a variety of attitudes. Given certain conditions it may then be possible to determine
something of the attitude of these structures. In order to show the basis of the method,
consider the following situation. The attitude of the axis of a series of small-scale cylin-
drical folds is F(40/110) and these folds are intersected by a drill hole with attitude
H(36/208). At each point along the recovered core there will be a measurable core–pole
angle. For each of these a small circle about the plunging drill hole may be constructed
(Fig. 20.10a). Of all these possible circles one is unique. It is the one tangent to the S-pole
great circle, and for this the core–pole angle φ = φmin.

N

F

H

(a) (b)

N

Figure 20.10 Folded beds: (a) four small circles as possible core–pole cones; (b) two possible fold axes
from the φmin small circles (after Laing, 1977, p. 673–674).

The inverse of this problem, that is, the coring of such folds without knowledge of the
fold attitudes, will give the same series of small circles, of which one can be identified
as the smallest. Without further information a unique solution is not possible.

One way of obtaining a solution is to examine cores from several differently oriented
holes, or, since it is common for drill holes to curve with depth, from an examination of
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cores from a number of points along the hole whose variable attitudes are known. If the
curve of the deflected drill hole lies in a vertical plane, and the minimum small circles are
drawn at a number of points, two great circles may be drawn which are tangent to them.
In Fig. 20.10b, such small circles associated with points H1, H2 and H3 along the hole
are shown. Note that for an additional point H4 the hole is locally parallel to the S-pole
great circle, or, equivalently, perpendicular to the fold axis and the minimum small circle
has degenerated to a point.

In this example, the two possible fold axes have quite different attitudes F1(40/110)

and F2(40/325) and it might be possible to reject the spurious one if the general structural
trend of the area is known, even approximately. If, in addition to curving in the vertical
plane, a horizontal component of curvature is also present then the bilateral symmetry
exhibited by the example of Fig. 20.10b will be destroyed and a unique solution can be
obtained.

Other information may also be taken into account. If slaty cleavage is seen in some of
the rocks, then two different planes will be present in the cores. Such cleavage often has
a reasonably constant attitude which may be known from surface exposures. With the
attitude of the cleavage planes known, the attitude of the variable bedding could then be
determined at any point using the construction of Fig. 20.5. Further, the intersection of
cleavage and bedding could be found, and this related to the fold axis. Details of these and
other closely related techniques, together with some important limitations are discussed
by Laing (1977). Scott and Berry (2004) and Scott and Selley (2004) have developed a
comprehensive system for analyzing folds from drill hole data.

20.9 Exercises

1. Two vertical holes are drilled. H1 cut a marker at a depth of 65 m. H2, located 120 m
on a bearing of N 30 W, encountered the same marker at 33 m. What is the dip, and
what are the strike possibilities?

2. In a vertical drill hole the core–bedding angle is 20◦. In a second hole, with attitude
50/045, the core–bedding angle is 15◦. What are the possible attitudes of the plane
encountered?

3. A vertical hole encountered a marker at 14.8 m, and the core–bedding angle is 60◦.
A second hole inclined at 30/020 is located 60 m due east. The marker was found at
33.6 m along the drill hole and the core–bedding angle is 45◦. What is the attitude of
the marker plane?

4. With a recognizable marker horizon why do two differently inclined holes give more
information than two parallel holes?

5. Three drill holes intersect a prominent planar structure. From the following informa-
tion, what is the attitude of this plane?

82/217, φ = 17◦, 61/159, φ = 34◦, 50/173, φ = 30◦.
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Maps and cross sections

21.1 Geological maps

A variety of structural techniques have been described in previous chapters. In the main,
the approach has been one of dissecting the geological map and examining its parts. The
map is, however, more than the sum of these geometrical parts, and it remains to consider
some of the more collective features.1

Properly done, the map is an exceedingly important tool in geology. The graphical
picture it gives of the location, configuration and orientation of the rock units of an
area could be presented in no other way. Essential as the map is, however, it is not
without limitations, and if it is to be of maximum use these limitations must be fully
understood. The most important point to realize is that geological maps generally record
both observations and interpretation. In part, the element of interpretation is due to a
lack of time and complete exposure; it is almost never possible to examine all parts of an
area. If a complete map is to be produced, this lack of observed continuity then requires
interpolation between observation points and such interpolation is, to a greater or lesser
degree, interpretive.

To distinguish between observation and interpretation several devices may be adopted.
Most commonly, special symbols are used to identify several degrees of certainty in
the location of lithologic contacts (Fig. 21.1); additional map symbols can be found in
Compton (1985, p. 372). The choice of these symbols depends both on the ability to
locate the boundaries in the field and on the scale of the map. A common rule of thumb
is that a solid line is used if the contact is known and located to within twice the width
of the line (Kupfer, 1966). Accordingly, a very thin, carefully drawn pencil line 0.1 mm
wide covers 1 m on a 1:10 000 map and is appropriate for a contact known within 2 m

1Compton (1985) gives an excellent description of how to effectively present field data in the form of maps and sections.
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Contact location approximate Questionable contact

Location concealed

Location inferredDefinite contact, showing dip

Vertical contact

50

90

Figure 21.1 Map symbols for lithologic contacts.

on the ground, and a thin ink line 0.3 mm wide is appropriate for a contact known within
6 m. Clearly, the detail that can be shown on a map is scale dependent.

If contacts are represented by less certain lines, it is important that their inferred
locations make geometrical sense; if a contact line crosses a valley it should obey the
Rule of Vs according to the inferred attitude. It is quite misleading to show uncertain
contacts as if they were all vertical, though many examples of this practice can be found.

Factual and interpretive data may also be distinguished by considering the two aspects
more or less separately. An outcrop map is one method of presenting field observations in
a more objective way (Fig. 21.2a). Another way of conveying the essential information
of an outcrop map, but without actually drawing in the boundaries of the exposed rock
masses, is to show abundant attitude symbols, which then serve two functions: to record
the measured attitude, and to mark the locality where the attitude can be measured.

(b)(a)

Figure 21.2 Hypothetical maps. Lithologies: 1, sandstone; 2, limestone; 3, sandy soil; 4, limy soil; 5,
clayey soil. (a) Outcrop and soil map showing facies interpretation (after Kupfer, 1966); (b) interpretation
as a mélange; the blocks of sandstone and limestone are shown by outcrops and soils, the clay soil and
covered areas are underlain by mélange matrix (after Hsü, 1968).

However, even an outcrop map or its equivalent can never be entirely objective for sev-
eral reasons. What constitutes an exposure of rock is itself subject to some interpretation.
For purposes of mapping, a thin rocky soil at the top of a low hill might be considered to
be an outcrop by a worker in a poorly exposed area. In contrast, a geologist working in
mountainous terrain would probably not give such an exposure a second glance because



520 Maps and cross sections

there are many better exposures. Differences such as these will certainly affect, and may
even control the accuracy and completeness of the mapping.

Even with these limitations, it is, of course, important to strive for as high a level of
objectivity as possible, and to discuss the difficulties involved in this quest in the text
which accompanies the map.

There is another and much more fundamental reason why geological maps are
inevitably interpretive. Even the simplest rock mass is extremely complex, and a
complete physical and chemical description of a single outcrop could, quite literally,
take years and questions concerning the origin of the rock would almost certainly
remain. Clearly, such detailed studies are rarely feasible. The question then arises: What
observations are to be made and recorded? The process of deciding what is important
is guided in at least two ways. First, observations are made which have proven in the
past to give results. Routine descriptions of attitude, lithology, visible structures and
so forth are an important preliminary stage; some check lists have been published to
facilitate this type of field description. However, the creative part of field study involves
asking critical questions and then attempting to find the answers. These questions are
formulated on the basis of knowledge, intuition and imagination. In this search for
understanding, the older, often well-established approaches may actually be a barrier
which must be broken through if progress is to be made.

For example, the interpretive aspect of the map of Fig. 21.2a is based on an application
of the so-called laws of superposition, original horizontality, original continuity and
faunal assemblage (see Gilluly, et al., 1968, p. 92, 103). There are, however, rock bodies
composed largely of sedimentary materials which do not obey these laws: a mélange is
an example (Hsü, 1968). French for mixture, the term mélange is applied to a mappable
body of deformed rocks consisting of a pervasively sheared, fine-grained, commonly
pelitic matrix with inclusions of both native and exotic tectonic fragments, blocks or slabs
which may be as much as several kilometers long (Dennis, 1967, p. 107). Figure 21.2b
is an interpretive map based on the recognition of a mélange.

Furthermore, the identification of even well-exposed rock is not always so straight-
forward that all geologist agree. And, as progress is made, concepts change. The most
dramatic way of illustrating these changes is to compare two maps of the same area made
at different times. One of the most startling examples, given by Harrison (1963, p. 228),
involves a part of the Canadian Shield (Fig. 21.3). The earlier map was made at a time
when “granites” were thought be entirely magmatic in origin. Later, a map was produced
after it was realized that metamorphism and metasomatism could produce many of these
same rocks. The result is that there is little in common between the two maps. This is an
extreme example, but most geological maps still reflect, to a greater or lesser degree, the
prejudices of the authors and their times.

As with most things, progress in mapping is an evolutionary process. Each step along
the way is, at best, an approximation. These steps, because they are incomplete, neces-
sarily involve some interpretation on the part of the investigator. Just as in the making of
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Figure 21.3 Two maps of same area: (a) map of 1928: 1, granites with inclusions; 2, basic intructions; 3,
metamorphic rocks with granite inclusions; (b) map of 1958: 1, granitic rocks; 2, migmatites with some
granite; 3, basic intrusions; 4, metamorphic rocks (after Harrison, 1963).

a geological map, so too does the use of the map as an aid to understanding the structure
and history of an area involve several stages of development. The first step does not con-
stitute making structural interpretations, but is rather a repetition of the experience and
thinking of the original observer. This step is indispensable in gaining a complete under-
standing of both the map and the area it represents, and the facility to do this can only
be achieved with practice. Two attitudes toward maps greatly increase their usefulness:

1. Regard any geological map as a progress report. Improvement can always be made
by further work based on the original mapping, either by the study of new exposures,
or a more detailed study using new concepts and techniques.

2. Develop a critical outlook toward the lines and symbols on the map. By refusing to
accept them completely, especially those that are clearly interpretive, and by adopting
a questioning attitude toward the nature of the various map units and structures, new
questions may arise that can be answered directly from the map, or from a visit to the
area.

21.2 Other types of maps

Lithologic map units, and even different structural elements are often shown in color on
geological maps, in combination with the normal symbols printed in black. However, a
carefully prepared black and white structural map is often superior to a colored one. On
such maps the lithologic units should not be represented by purely geometrical patterns,
such as parallel rulings and other such regular patterns. Such patterns fail to express
the variously curved lines of strike of the deformed rocks. It is both easier and conveys
considerably more information to draw the lines of strike freehand. Further, certain
features can be depicted in this way which would be most difficult otherwise. For example,
the transition between directionless and foliated rocks can be expressed by a parallel
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change in the map pattern. The two contrasting maps of Fig. 21.4 illustrate the value of
this approach.

(a) (b)
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Figure 21.4 Two black and white structures maps of the same area (from Balk, 1937, with permission of
the Geological Society of America).

In addition to surface geological maps, there are a number of other types which may
be constructed. Maps may, of course, be drawn wherever rock are exposed, as in a mine.
A structure contour map is a type of geological map. Similarly, an isopach map is a
geological map, with the zero contour being the underground equivalent of a lithologic
contact. An isopach map is also a picture of the structure of the lower boundary of a
formation at the time the upper boundary was horizontal. A paleogeological map por-
trays the distribution of rock units immediately below the surface of an unconformity. A
worm’s eye map is a picture of the unconformity as seen from below; Leversen (1960)
gives a number of examples. A palinspastic map restores the rock units to their rela-
tive positions before structural displacement. Although difficult to draw, such maps are
important because they introduce stages of historical development into the description
of the geology of an area.

21.3 Geological history

After describing the geometry of a rock mass, the next step is to work out the time
sequence by which that geometry developed. This concern for history includes both the
local chronology, and the dating of these events in terms of the geological time scale.
The dating is largely a matter of paleontology and radiometric measurements. The local
sequence of events, however, can be worked out without reference to either the geological
time scale or to absolute time.

There is a geological feature, not previously discussed, which is of great assistance
in dating structures and bracketing periods of deformation. An unconformity is a sur-
face of erosion or non-deposition that separates younger from older sedimentary rocks.
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There are several important types (Dennis, 1967, p. 159). An angular unconformity is
characterized by an angular discordance between the two sets of strata (Fig. 21.5a). In
contrast, a parallel unconformity (also called a disconformity) is marked by an evident
break between the two parallel strata (Fig. 21.5b). A non-depositional unconformity is
a surface of non-deposition; physical evidence of this surface may not be evident, and
paleontologic evidence may be needed to demonstrate the time gap (Fig. 21.5c). A het-
erolithic unconformity (also called a non-conformity) describes the situation where the
older rock are non-stratified (Fig. 21.5d).

(a) (b) (c) (d)

Figure 21.5 Important types of unconformities: (a) angular unconformity; (b) parallel unconformity; (c)
non-depositional unconformity; (d) heterolithic unconformity.

In determining the local chronology it must be kept in mind that several events may
have been synchronous; for example, deposition may occur during folding and faulting.
A further complication is that a given structure may be the result of several episodes of
movement. Nevertheless, though it may be quite involved, the sequence can be worked
out using rather simple geometrical relationships. The following criteria are self-evident:

1. Folds are younger than the folded rocks.
2. Faults are younger than the rocks they cut.
3. Metamorphism is younger than the rock it affects.
4. The erosion represented by an unconformity is younger than the underlying rocks and

older than the overlying ones. This is strictly true only for a small area; erosion and
deposition at widely separated localities may be synchronous.

5. Intrusive igneous rock are younger than the host rocks. This is especially clear where
they are in cross-cutting relationships.Asimilar rule holds for other types of intrusions
such as salt domes and sandstone dikes, with the qualification that the act of intrusion
is younger though the materials may be older or younger.

An elementary, hypothetical map and the minimum number of events in chronological
sequence derived from it illustrates this approach (Fig. 21.6).

21.4 Structure sections

One of the problems in reading a geological map is to perceive the structures portrayed on
its two-dimensional surface in their proper three-dimensional setting. Several techniques
for doing this, especially the powerful down-structure method of viewing maps, have
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1. Deposition of pre-metamorphic sedimentary rocks
2. Folding and metamorphism of these rocks

3. Uplift and erosion

4. Deposition of second sedimentary sequence
5. Second episode of folding

6. Faulting

7. Igneous intrusion

8. Erosion

9. Deposition of third sedimentary sequence
10. Erosion to present topography

Map lithologies (oldest to youngest)

1 2 3 4

Figure 21.6 History from a geological map.

been described in earlier chapters. Vertical structure sections, though they have their
limitations, are also useful in helping to work out and depict the structural relationships at
depth, particularly when the structures are diverse and no single down-structure direction
exists. The line of the section is chosen so as to reveal particular geological relationships.
The section is oriented so that the right-hand end is its more easterly end or is oriented
due north (Compton, 1985, p. 108). Once the location and orientation of the section are
fixed, the technique for constructing a vertical section is straightforward and, in general,
consists of two parts:

1. The topographic profile along the chosen line of the section.
2. Structural data, such as contacts, attitudes, and so forth, which are added to the line

representing the topographic surface and then extrapolated into the underground.

For the topographic profile, the edge of a piece of paper is laid the full length of the
chosen section line (Fig. 21.7). Points of intersection of the topographic contours and
the section are marked along this edge. Other features, such as the crests of hills or the
locations of streams should also be marked, even though a contour line is not present.
The elevations of the contours must also be indicated; every contour may be marked,
especially if they are widely spaced, or if closely spaced, only those which mark change
in slope directions may be used.

A series of elevations lines are then drawn on a second sheet of paper with a spacing
equal to the contour interval and plotted at the same scale as the map. The topographic
points along the section line are then transferred from the edge of the marked paper, which
now represents the line of section, by projecting the contour marks to the corresponding
elevation lines, and each of the points so located is joined with a line representing the
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Figure 21.7 Line of section and topographic profile from a map.

topography. If the spacing of the contour lines is wide, the map may have to be consulted
to assist in sketching in topographic details (Fig. 21.8).
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Figure 21.8 Topographic profile along the line of section.

In constructing this profile, it is easy to exaggerate the vertical dimension by enlarging
the vertical scale while keeping the horizontal scale the same. Such an alteration of the
vertical scale introduces profound geometrical distortions (see §21.6). Generally, only
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unexaggerated sections should be constructed for serious structural work, because only
with them are the true geometrical relationships preserved. If more space is required to
plot a wealth of structural data, the whole section should be uniformly enlarged (see
§21.7).

The second step is to add the structural data to the constructed topographic profile. The
various contacts and attitude points can be marked at the same time as the topographic
elevations; if there are abundant details which must be transferred it may be less confusing
to make two separate plots.

Map data on either side of the section line may be projected to the section; the allowable
distance of projection depends on the constancy of the trend of structural features normal
to the section line. Where the structures plunge, the map patterns may be projected to the
plane of the vertical section with essentially the same construction used for fold profiles.
This may also be used to show the structure which existed above the section and has
been removed by erosion. When this is complete, all the surface information will have
been utilized.

If subsurface information is available, it should then be added. This includes direct
geological data on lithologies and contacts obtained from drill holes, and indirect data
from geophysical surveys, such as prominent reflection surfaces.

In extrapolating the surface data downward into the underground, several different
approaches may be used. In folded sedimentary rocks, making some reasonable assump-
tions, the form of parallel folds may be reconstructed as rounded or angular forms (see
Chapter 14). Even if the plane of the section is not exactly perpendicular to the axes of
folds, up- and down-plunge projections may still be used as an aid in depicting the form
of the folds.

Lithologic boundaries with no regular features can only be projected downward using
the surface attitude; this is only a first approximation and will, at best, be valid only
for relatively shallow depths. One example of such an unpredictable boundary is the
contact of a discordant intrusive igneous body. Alternatively, such contacts might be
shown schematically.

After taking these rather purely geometrical steps, the making of further predictions
depends on a thorough understanding of the various processes of folding, thrusting and so
forth, and this can only come with experience.As on the geological map, the various lines
of the structure section should indicate the degree of certainty in location. Questionable
areas should be so indicated or even left blank. The predictions will not everywhere have
the same confidence at the same depth. It follows that the lower limit of the structural
representation should have an irregular boundary. For example, it might be possible
to portray a thousand meters of uniformly dipping sedimentary rocks with reasonable
accuracy; on the other hand, the nature of the rocks and structures under a thin sheet of
alluvium might be completely unknown.

If structure sections are prepared in black and white, lithologic symbols can be used
to indicate the different rock units in much the same manner as with black and white



21.6 Vertical exaggeration 527

structure maps.Avariety of symbols are used, and several of these are shown in Fig. 21.9;
Compton (1985, p. 376–377) gives many more. The meaning of any such symbols used
must, of course, be identified on the section, either by labeling the units directly or by
including a list in the legend.

In its final form, the section should be labeled with geographical coordinates because
knowing the orientation is as important as its location. The line of the section should also
appear on the accompanying map. Prominent topographic features should be labeled to
assist in orienting the reader. The scale, especially if different from that of the map, is
also important.

21.5 Other types of sections

A number of variations are possible. Composite sections can be drawn by projecting data
to the section plane from some distance, or by combining in one section several different
lines that meet at angles. This is generally done to show greater diversity than would be
possible along a single, straight line of section.

One way of suggesting three dimensions is to use multiple sections. Two groupings
are common, but a number of combinations are possible. A coulisse diagram is a group of
parallel sections drawn and arranged serially to take advantage of some special point of
view, such as along the strike of a fault, or in the direction of a fold axis. Fence diagrams
may be thought of as two intersecting coulisse diagrams giving the appearance of an egg
crate.

Time, rather than geographical location, may be the basis for a series of structure
sections. As with palinspastic maps, increments of deformation are subtracted from the
observed structural geometry, and thus progressively earlier stages in the historical devel-
opment are illustrated. Figure 21.9 is an abridged version of a famous group of such
sections; an examination of the originals and the maps on which they are based is well
worth the effort.

21.6 Vertical exaggeration

It is a very common practice to draw cross sections with the vertical scale enlarged
relative to the horizontal scale; that is, to stretch the section vertically while leaving the
horizontal dimension unaltered (see Suter, 1947). This practice is especially common in
sections showing stratigraphic or geomorphic information where more space is needed to
plot vertical details or to accentuate certain features which would otherwise be obscure.
The result is known as a vertically exaggerated section, and the degree of the stretch is
defined by an exaggeration factor V

V = vertical scale

horizontal scale
. (21.1)
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Coarse clastic sediments: 
sandstones and locally conglomerates

Limestone

Shale

Basement rocks 
(greenstones, breccia and cherts) 

Early folding near margin of sedimentary basin with simultaneous deposition of coarse
clastics in marginal trough.  

Thrusting and continued folding. Rocks carried toward the trough. 
Deposition of coarse clastics continues. 

Further folding with formation of a new thrust.

Thrusts are folded as main syncline becomes 
recumbent.

Involution of the syncline and 
renewed thrusting. 

Tightening up of the folds 
 and imbricate thrusting.

Figure 21.9 Diagrammatic sections showing progressive development of complex folds and thrusts
(after Ferguson & Muller, 1949).
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For example, if the horizontal scale is 1/50 000 and the vertical scale is 1/10 000, then
V = 5.

Vertically exaggerated sections also arise naturally in a number of situations. For
example, seismic profiles plot horizontal distance against return time of the seismic
signal. The result is that the section of the reflecting horizons is exaggerated. When using
these for structural interpretations special care is required (Stone, 1991).

Largely because of continued exposure to such sections most geologists tend to think
in terms of them, and unexaggerated sections often have an “unnatural” appearance. It
is therefore vital to understand in detail the geometrical implications of vertical exag-
geration. This will both aid in deciding whether to draw such sections or not, and in
interpreting the exaggerated sections of others.

(a)
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0

(b)
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Figure 21.10 Structure sections: (a) natural section; (b) exaggerated section 2× (after Wentworth,
1930).

As a result of this vertical stretching, both angles of dip and thicknesses are sys-
tematically distorted. A useful way of treating these changes is to consider the vertical
exaggeration as an artificially introduced strain. For example, vertical exaggeration can
be described by a strain ellipse (see Fig. 21.10), and this emphasizes the profound geo-
metrical change which accompanies such exaggeration.

In exaggerating a section, horizontal dimensions are left unchanged and vertical dimen-
sions are multiplied by the exaggeration factor. In Fig. 21.11a, the distancew is unchanged
while the distance d becomes V d . From this geometry, we obtain two relationships.

w = d/ tan δ and w = V d/ tan δ′.

where δ and δ′ are, respectively, the original and exaggerated dip angles. Equating these
two expressions and rearranging we then have

tan δ′ = V tan δ. (21.2)

In Fig. 21.12 this equation is graphically represented for selected values of δ′ over a
range of exaggeration factors V = 1–10.
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Figure 21.11 Analytical relationships: (a) exaggerated dip δ′; (b) exaggerated thickness t′.
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Figure 21.12 Exaggerated dip angle as a function of vertical exaggeration.

An examination of this graph makes clear the effect of vertical exaggeration on dip
(or slope) angles. In general, all angles are steepened, but small angles are affected
relatively more, with the result that small differences in inclination are accentuated.
It is this property which is of advantage in depicting subtle variations in slope in the
presentation of geomorphic information. On the other hand, differences between steep
dips are diminished. For example, at V = 10 planes dipping at angles of 30◦ and 60◦
appear with inclinations of 80◦ and 87◦. Thus the important distinction between the dips
of primary normal and thrust faults is lost and this is a serious disadvantage.

The effect of exaggeration on thickness is also of interest. The basic situation is shown
in Fig. 21.11b. From this geometry we obtain expressions involving original thickness t

and exaggerated thickness t ′:

w = t/ sin δ and w = t ′/ sin δ′.
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Figure 21.13 Normalized exaggerated thickness t′/t: (a) as a function of dip δ; (b) as a function of δ′.

Again equating and rearranging, we have

t ′

t
= sin δ′

sin δ
. (21.3)

The factor t ′/t is the normalized exaggerated thickness, that is, the exaggerated thickness
of a layer with true thickness t = 1. Figure 21.13a gives a graphic representation of this
equation for values of V = 1–10. As can be readily seen, t ′/t varies with the dip. The
limiting cases occur when the layer is horizontal and the thickness is multiplied by the
exaggeration factor

t ′0 = V t,

and when the bed is vertical and its thickness remains unchanged

t ′90 = t.

This graph also shows that most of the variations in thickness are confined to a relatively
narrow range of shallow dip angles. For example, at V = 10,

t ′0 = 10 and t ′25 = 2.3.

Thus a layer of uniform thickness but variable inclination within this range will appear
to have approximately a four-fold variation in thickness, and it is easy to see that small
real variations in thickness would be masked. Because it spreads out the curves, a more
useful plot shows exaggerated thickness as a function of exaggerated dip (Fig. 21.13b).

From these considerations it should be clear that vertically exaggerated cross sec-
tions severely distort the form and orientation of geological structures, thus tending to
destroy the very information the structure section seeks to show – the true geometrical
relationships at depth. Therefore, they should not be used for serious structural work.
For those few situations where a vertical exaggerated section may aid a presentation, the
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smallest possible exaggeration factor should be used. In addition, there is an important
responsibility to keep the reader informed of the degree of exaggeration used. This can
be accomplished several ways:

1. Include a bar scale for both the horizontal and vertical dimensions.
2. Give the actual exaggeration factor on the section.
3. Include a protractor of exaggerated dip angles.
4. Include a natural-scale section in addition to the exaggerated one for easy comparison.

The last approach is perhaps the most effective one, but it is quite useful to supply
all items. Since exaggerated sections are so common, a natural-scale section should be
clearly labeled no vertical exaggeration.

There is another subtle distortion which appears when sections of regional extent are
drawn as if the earth were flat. Sea level is depicted as a horizontal straight line so that
the floors of sedimentary basins appear distinctly concave upward; vertical exaggeration
further compounds the distortion. If true sections are drawn, it is, of course, sea level
which should appear as a curve and the basin floors more nearly a straight line. This
difference in basin geometry has important bearing on the physical properties of basin
fill (Price, 1970, p. 15) and on the mechanics of basin evolution (Dallmus, 1958). Again,
construct accurate, true-scale sections. Then if there is a genuine reason to distort them
do so with caution, and alert the reader of what you have done.

21.7 Enlarged sections

Instead of vertically exaggerating a section in order to show abundant details, it is prefer-
able to enlarge both vertical and horizontal dimensions uniformly. With a scanner and
graphic software, it is easy to do this for any existing cross section.

There are however times when a completely graphical method is useful. Cluer (1992)
described the method of radial projection, a simple way of doing this that could be used
in the field (Fig. 21.14). This can be used either to plot an enlarged section or to enlarge
an existing section. All that is required is the scaling factor defined as

F = profile scale

map scale
. (21.4)

Problem

• With a map scale 1/2000 construct a profile with scale 1/1000 along the section line
AB.

Procedure

1. Through points A and B draw lines at angles of 45◦ to intersect at a point O

(Fig. 21.14). Then ∠AOB is a right angle.
2. Construct the bisector of ∠AOB. This line intersects AB at its midpoint M .
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3. The scaling factor F is

F = 1/1000

1/2000
= 2.0.

4. Locate point M ′ so that OM ′ = F(OM) = 2(OM).
5. Through M ′ draw a line perpendicular to OM ′ to intersect the extended lines from O

to locate points A′ and B ′. These are the end points of the enlarged section line and
M ′ is its midpoint.

6. Draw radial lines from O through control points on the original profile line to intersect
the new section line A′B ′.

7. With these new control points the profile is completed just as before using a contour
spacing F times that of the original map or section.

This construction is based on the fact that the pair of isosceles right-triangles AOB
and A′OB ′ are similar. Corresponding lengths of such triangles are proportional. By
construction OM ′ is F times OM and therefore A′B ′ is F times AB, as required.

O

A

A� B�
M�

M
B

Figure 21.14 Method of radial projection (after Cluer, 1992).

This construction also may be used to reduce the size of a section, in which case
F < 1.0. Then if line A′B ′ is the original section line on the map, length OM ′ is
multiplied by this scaling factor to give the length of the reduced line AB. Using the
projection point O, control points are then projected from A′B ′ back to AB.

21.8 Exercises

1. Using an available geological map, construct a true-scale cross section showing both
topography and structure.

2. With this result, now construct the section with a modest vertical exaggeration.
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Block diagrams

22.1 Introduction

A block diagram is one of the best ways of presenting a wealth of geological information
in a compact, three-dimensional form. Almost at a glance, the relationships between
the structural data plotted on the visible surfaces of the block can be integrated into a
complete spatial picture. The construction of such a diagram entails drawing a scaled
block, possibly adding topography to the upper surface, and representing the geological
structures on its top and sides.

Such a scaled block may be constructed by the methods of descriptive geometry, but
the procedure is fairly involved and time consuming. Fortunately, there are a number of
alternatives.

22.2 Isometric projection

The unit cube is the basic building block, but a cube of any size differs only by a scale
factor. There are several ways to draw such a cube. One of the simplest ways is to use
a special isometric graph paper.1 With this graph paper, the cube is simply traced in.
The three front edges of the resulting block intersect at 120◦ and all have equal lengths
(Fig. 22.1a).

The length of the diagonal of the top of the unit cube is l = √
2 (Fig. 22.1b). The

plunge of the line of sight, which is also an axis of three-fold symmetry, is then given by
(Fig. 22.1c)

tan p = 1/l or p = arctan(1/
√

2) = 35.264 39◦.

1The term isometric applies to a method of projection in three dimensions having three axes equally inclined and all lines
drawn to scale (Borowski & Borwein, 1991, p. 311).

534
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On the isometric graph the line of sight is represented by the intersection of the front
three edges and it is perpendicular to the page. The scale along each of the edges is equal
to (cos p) × 100% = 81.4966% of the edge lengths of the original cube.

Projection plane

Line o
f s

ight

1 p

p

(a)

(b)

1 1

l

l
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Figure 22.1 Isometric cube: (a) isometric graph paper; (b) top of unit cube; (c) line of sight.

Isometric projections have a number of useful properties as well as some which require
some caution (Lobeck, 1958, p. 120–121):

1. The block has the same scale in the direction of any of the three edges.

2. Distances in other directions are not commensurate with each other unless measured
on the two sides of the block.

3. All lines parallel in the object are parallel in projection.

4. All vertical lines in the object are vertical in projection.

5. All angles are distorted, and even two angles lying in the same plane can not be
compared unless they have the same orientation.
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Figure 22.2 Sructural plane: (a) cube faces; (b) strike line in projection (after Phillips, 1971, p. 57).
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Having produced an isometric cube, we now need to add the traces of structural planes
to its faces (Phillips, 1971, p. 56–59). We start by unfolding the cube in the manner of
descriptive geometry to produce an orthographic projection of the cube faces (Fig. 22.2a).
The trace of a plane whose attitude is N 20 W, 30 W is added to the map face.2 The traces
of this plane on the two vertical sections are then added using apparent dips. On the right
side βR = 65◦ and on the left side βL = 25◦ (these two angles are marked with black
dots in Fig. 22.2a). With Eq. 1.7

tan α = tan δ sin β, (22.1)

we find that αR = 27.62◦ and αL = 13.71◦. These are then plotted on the two cube faces
(Fig. 22.2a).

Next we need to add these traces to the faces of the cube in projection. For the top face,
there is a simple graphical method for doing this (Phillips, 1971, p. 57). Figure 22.2b
shows the top of the cube ABCD and the corresponding rhombus AB ′CD′. The strike is
added to the square as line AP. A line parallel to the common horizontal diagonal through
point P intersects the side of the rhombus at point P ′. Line AP ′ is the orientation of
the strike line in projection. This strike could just as easily be drawn as a line CP and
constructing line CP ′ in the same way.

This construction applies only to strike lines with northerly trends. For strikes with
westerly or easterly trends points B or D are used. Otherwise the construction is the
same.

Now we add the traces of the inclined plane to the sides of the cube (Fig. 22.3). Cube
edges BC and CD are both five grid units long. From 5 tan αR = 1.6 grid units point
M is located on the vertical line below C. Line BM, which represents the apparent dip
on the right face in projection, is added to the projection. Similarly, from 5 tan αL =
1.2 grid units locate point N on the vertical line below D. Line CN, which represents
the apparent dip on the left face, is added to the projection. Triangles BCM and CBN
represent the shaded triangles of Fig. 22.2a in projection. Using these apparent dip lines,
the actual linked segments APQR can be completed on the three faces of the cube.

As a check, draw a line parallel to the apparent dip line BM from corner A; it should
also locate point R, as it does.

22.3 Isometric cube as a strain problem

The view of a plane with a square and circle along an inclined line of sight and the same
square and circle appropriately strained homogeneously are formally identical. In §17.6
we used this fact to generate a fold profile by simply distorting the geological map of the

2As we have seen in §1.4 measured attitudes always have an associated uncertainty. However, once we decide on a best
estimate then the plotting of any derived values should be as accurate as possible. It is for this reason that we retain extra
decimal places even though they are not strictly significant.
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Figure 22.3 Construction of plane on isometric block (after Phillips, 1971, p. 57).

folds. In the present context, this means that two-dimensional strain theory can be used
to describe the transformations produced by the method of isometric projections. From
Eq. 12.7

Rs = tan φ

tan φ′ . (22.2)

With φ = 45◦ (Fig. 22.4a) and φ′ = 30◦ (Fig. 22.4b) we have

Rs = 1

1/
√

3
= √

3 = 1.732 05 . . .

and we can immediately write down the principal stretches which describe this transfor-
mation:

S1 = 1 exactly and S2 = 1/
√

3 = 0.577 35 . . .

We can now express the relationship between the strike as portrayed on the map and
its orientation on the top of the isometric cube. The angle the strike direction makes with
the horizontal radius before strain is φ (Fig. 22.5a). In projection this angle becomes φ′
(Fig. 22.5b). Again from Eq. 12.7

tan φ′ = tan 70√
3

or φ′ = 57.772 06.

This result is the same found by the graphic method of Fig. 22.2b.
This same approach can also be used to determine the orientation of the trace of the

plane on each of the two sides of the cube.
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(a) (b)

φ�φ φ�φ

Figure 22.4 Square to rhombus transformation: (a) before strain (φ = 45◦); (b) after strain (φ′ = 30◦).

(a) (b)

φ φ�

Figure 22.5 Strike direction on map: (a) before strain (φ = 70◦); (b) after strain (φ′ = 57.77◦).

1. Left side:

(a) Using the left square of Fig. 22.2a, add a circle and the trace of the plane through
its center making an angle φ with the vertical diagonal of the square (Fig. 22.6a1).

(b) Homogeneously flatten this square into a rhombus. The trace of the plane now
makes an angle φ′ with this same diagonal (Fig. 22.6a2).

(c) Rotate this rhombus 30◦ clockwise (Fig. 22.6a3).

2. Right side:

(a) Using the right square of Fig. 22.2a, add a circle and the trace of the plane through
its center making an angle φ with the vertical diagonal of the square (Fig. 22.6b1).

(b) Homogeneously flatten this square into a rhombus. The trace of the plane now
makes an angle φ′ with this same diagonal (Fig. 22.6b2).

(c) Rotate this rhombus 30◦ anticlockwise (Fig. 22.6b3).

In both cases, the resulting rhombuses together with the traces of the structural plane
are the same as found by the graphical method of Fig. 22.3.
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Figure 22.6 Strain transformation of sides of the cube: (a) left side; (b) right side.

We can also find the orientation of these traces on the sides of the isometric cube by
direct calculation.

1. Left side: The required angle φ = 45 − α = 17.38. Then

tan φ′ = (tan φ)/
√

3 or φ = 58.71.

The apparent dip α′ in projection on the left side of the cube is then α′ = φ′ − 30 =
13.53.

2. Right side: In terms of the known apparent dip the required angle φ = 45−α = 17.38.
Then

tan φ′ = (tan φ)/
√

3 or φ = 10.24.

The apparent dip in projection on the right side of the isometric cube is then α′ =
30 + φ′ = 49.24.

22.4 Orthographic projection

A more general approach to constructing a cube uses a special orthographic net. In
both its form and use this net closely resembles the stereonet. The geometrical basis is
shown in Fig. 22.7a: point P on the lower hemisphere is projected orthographically to
the diametral plane where it appears as point P ′. The radial distance r from center O to
P ′ is

r = cos p. (22.3)
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Representations of great and small circles are then constructed in the same manner as in
the method of stereographic projection. Here the set of curves related to the great circles
are semi-ellipses and the set related to the small circles are straight lines (Fig. 22.7b).
Aside from these differences, the method of plotting lines and planes, and performing
rotations is essentially the same as before.

It should be noted that because of the closely spaced grid lines near the primitive circle,
it is usually easier to count off complementary angles outward from the center of the net
than inward from the primitive.

(a) (b)

O P�

P

r

p

Figure 22.7 Orthographic net: (a) geometrical basis; (b) resulting net.

22.5 General cube

With the orthographic net, a cube in any desired orientation can be constructed. There are
two equivalent ways of doing this: (1) by revolving the cube into the desired orientation,
and (2) by a direct plot. Because it aids visualization, the first method will introduce the
use of the orthographic net.

Problem

• Construct a cube so that the line of sight plunges 30/320.

Construction by rotation

1. On an overlay sheet with north marked, draw a square whose sides are equal in length
to the radius of the net, located so that the front corner is at the center of the net. In
this problem the trend is toward the northwest, so the square is drawn in the northwest
quadrant (Fig. 22.8a).

2. Rotate this square so that the line of sight trends due north. Here this requires a
clockwise rotation of 40◦ (Fig. 22.8b).

3. Next rotate the block so that the plunging line of sight is represented by a point at
the center of the net. This maneuver is performed in exactly the same way as on
the stereonet. First rotate the net 90◦ so the rotational axis is horizontal. To perform
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the rotation, the two upper points move south along the small circles (straight lines)
and the center point moves along the vertical diameter a distance equivalent to 60◦
(Fig. 22.8c).

4. The three lines radiating from the center point represent the solid angle made by the
front three faces of the cube and each appears correctly foreshortened. The cube is
then completed by drawing in the other edges.

(a) (b) (c)
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Figure 22.8 Cube on the orthographic net by rotation (after McIntyre & Weiss, 1956).

Direct plot

1. In its final position, the top of the cube dips 60◦ due north (Fig. 22.8c). This inclined
plane is represented by the great circle located by counting 60◦ inward from the
primitive or 30◦ outward from the center to locate the dip vector D, which is then
traced in (Fig. 22.9a).

2. To locate the left corner (point 4) count off 50◦ anticlockwise from D along the great
circle. The right corner (point 2) is similarly found by counting off 40◦ clockwise
from D. As a check, the angular distance along the arc from points 2 to 4 must be 90◦.

3. To locate the lower corner (point 5) count off 60◦ from point 1 southward along the
radius of the net. A comparison with the results derived by rotation will show that
they are the same. As before, the cube can then be completed (Fig. 22.9b).

At this point, a simple proportional change in the lengths of the three lines representing
the front edges of the cube can be made.

22.6 Computer plot of cube

There is an alternative way of rotating a unit cube into any desired orientation: the
application of the rotation matrices of §7.6. As in the graphic method two steps are
required to rotate the line of sight vector into the vertical orientation.
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Figure 22.9 Cube by direct plot: (a) great circle representing the top of the cube; (b) completed cube;
(c) computer plot.

1. First rotate the trend of the vector parallel to the x axis by a rotation about z. This is
given by

Rz =
⎡
⎣cos ωz − sin ωz

sin ωz cos ωz 0
0 1

⎤
⎦ .

2. Then rotate the vector parallel to the z axis by rotation about y.

Ry =
⎡
⎣cos ωy 0 − sin ωy

0 1 0
sin ωy 0 cos ωy

⎤
⎦ .

Or the rotation can be accomplished in one step by the single rotation R = RyRz. In
expanded form

R =
⎡
⎣ cos ωy cos ωz − cos ωy sin ωz sin ωy

sin ωz cos ωz 0
− sin ωy cos ωz sin ωy sin ωz cos ωy

⎤
⎦ .

Table 22.1 Corners of unit cube of
Fig. 22.8a before rotation

Top (x, y, z) Bottom (x, y, z)

1 (0, 0, 0) 5 (0, 0, 1)
2 (1, 0, 0) 6 (1, 0, 1)
3 (1, −1, 0) 7 (1, −1, 1)
4 (0, −1, 0) 8 (0, −1, 1)
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For example, the rotation of the cube of Fig. 22.9b is given by ωz = +40◦ and
ωy = −60◦. The x, y coordinates of each point are then plotted. This is equivalent to
projecting the corner points orthographically to the xy plane (Fig. 22.9c).

22.7 Geological structure

The next step is to add the structures to the block faces. Starting with the geological map
(Fig. 22.10a) we use the orthographic net to obtain the contacts in projection (Fig. 22.10b).
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Figure 22.10 Structural conversion (after Lisle, 1980): (a) geological map; (b) completed block.

By constructing a grid on the geological map and an equivalent foreshortened grid
on the parallelogram representing the top of the cube, the geological boundaries are
transferred from the map to the top of the cube in much the same manner used in the
construction of the fold profile in Fig. 17.8, except here the spacing of both sets of grid
lines must be adjusted.

The next step is to determine the orientation of the traces of the various planar structures
on the top and sides of the cube, and, if desired, the orientation of lines within the block.
The basic approach is to plot the structural data as points on the net and then rotate these
points into the cube coordinates.

Construction

1. Plot the poles of the bedding at points A and B on the limbs of the fold, the pole of
the axial plane cleavage at C, and the plunging hinge line F exactly in the same way
as they would be plotted on the stereonet.

2. Rotate these four points in the same direction and amount as the points X, Y and Z

were rotated. Note that the point F moves to the primitive, reappears 180◦ opposite
and continues its rotation (Fig. 22.11a).
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Figure 22.11 Structural planes: (a) construction on orthographic net; (b) traces transferred to block
(after Lisle, 1980).

3. With the new positions of the poles A, B and C, draw in the three corresponding
great circular arcs. Only one of these planes is shown in Fig. 22.11a; it is the arc
representing the axial plane cleavage at C.

4. Draw lines from the center O to the points of intersection of the structural planes and
the three faces of the cube. Again, only one of these is shown on the figure giving the
orientation of the traces of the cleavage at C with the top (point 1) and the front right
side (point 2). With these, the traces of planes parallel to C can be accurately drawn
on the top and right sides. Usually the trace can be continued to the third side without
further information from the net.

5. The orientation of the hinge line within the block is found by a line from O to F ′, and
the hinge line can then drawn in from a hinge point on the map (Fig. 22.11b).

The completed block diagram, with the structure on all visible faces, as well as within
the block, is shown in Fig. 22.10b.

22.8 Orthographic cube as a strain problem

As in the case of the isometric cube, the general orthographic cube may be viewed as
a strain problem. The formulation is a bit more involved because the line of sight is no
longer an axis of symmetry so each cube face must be treated separately. Therefore, we
need an alternative way of determining the shape and orientation of the projection ellipse
on each face.

If a unit circle (Fig. 22.12a) is observed along a line of sight inclined to its plane the
result is an ellipse (Fig. 22.12b). The length of the ellipse axis perpendicular to the line of
sight is unchanged, while the axis in the direction of the line of sight is reduced. You can
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actually see this transformation by rotating and tilting the page and viewing the circle
obliquely.

The length of the minor semi-axis of this projection ellipse is a function of the angle
p the line of sight makes with the plane of the circle. From Fig. 22.12c

S2 = sin p, (22.4)

hence the strain ratio Rs = 1/ sin p.

(a) (b)

r = 1

p

Line of sight

S2

(c)

S2

1 1

1

Figure 22.12 Map face: (a) unit circle; (b) projection ellipse; (c) line of sight and S2 (2× scale).

With this result we know the shape of the projection ellipse for the top of the unit cube
of the previous example. Here p = 30◦, so S2 = 0.5 and as before S1 = 1. Applying
this strain to the square after the first rotation about the z axis (Fig. 22.13a), we obtain its
shape in orthographic projection (Fig. 22.13b), and this is the same as found graphically
with the orthographic net.

Figure 22.13 Map face of
orthographic cube: (a) after
rotation; (b) after strain.

(a) (b)

To obtain the shapes of the two side faces several additional steps are needed: determine
the angle the line of sight makes with the plane, and the trend of this line on the plane.

1. The angle the line of sight vector L makes with the plane of the two side faces is
obtained from the dot product of L(p/t) = L(l, m, n) and the pole vectors on the left
and right. In the example of Fig. 22.8a, these vectors are simply the two edges of the
cube top before rotation. The unit vector in the +x direction is the pole of the left face
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Figure 22.14 Traces of
projection plane on cube faces.
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Figure 22.15 Projection ellipses on left and right cube faces.

PL(+1, 0, 0) and the unit vector in the −y direction is PR(0, −1, 0). The dot product
of two unit vectors is

cos θ = L · P.

This gives the angle θ between L and each of the pole vectors PL and PR in turn. The
required angle L makes with each plane is then 90 − θ . With these angles we then
can calculate the shape of the projection ellipse using Eq. 22.4. There is a shortcut to
calculating this angle between L and the plane. Because cos θ = sin(90 − θ), the dot
product in this case gives the angle L makes with the plane directly. Further, because
S2 = sin(90−θ), we have the desired shape of the ellipse without further calculation.

2. The orientation of the major axes of these projection ellipses is established by plotting
the traces of the plane of projection on each face, and this simply requires the apparent
dips on these faces using Eq. 1.7 (Fig. 22.14).
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3. We can then homogeneously strain both these faces (Fig. 22.15). Then as in the
isometric case we can determmine the orientation of any line in projection using

tan φ′ = tan φ

Rs

.

22.9 Topography

If the area has even a small amount of relief, the three-dimensional aspect of the block
may be enhanced by adding topography to the diagram. A number of systems for doing
this have been devised to adjust map topography systematically to the proportions and
scales of the block diagram. The easiest approach method uses a relatively simple graphic
method. Given a topographic map, or any part of it, the problem is to show the surface
forms on a block in any desired orientation.
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Figure 22.16 Topography on a block diagram: (a) topographic map with superimposed grid; (b)
transferring topographic detail to the block (after Goguel, 1962, p. 119).

Construction

1. Draw a square grid on the map with the ordinate in the direction of the proposed line
of sight. The grid spacing should be dictated by the amount of detail to be transferred
to the block (Fig. 22.16a).

2. Draw a unit cube in the required orientation. Position this cube below the map so
that its front corner lies exactly along the line of sight to the corresponding front
corner of the map. The cube can then be multiplied to the dimensions of the map by
drawing other lines parallel to the line-of-sight line to the outside corners of the map
(Fig. 22.16b).

3. The depth of the block depends on the depth of the structure to be shown. In the
example, the 300 m level is placed at the top of the unit cube.
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4. Along the base of the block reproduce the abscissa scale of the grid and locate it in
the correct position with respect to the map grid.

5. From an oblique view, the front-to-back grid spacing is foreshortened; this contracted
grid scale is related to the map grid scale by a factor of sin p, where p is the vertical
angle which the line of sight makes with the map plane. This corrected scale is plotted
along the edge of a strip of paper.

6. The map scale, as measured vertically, is similarly reduced by a factor of cos β. This
new scale is added to the strip.

7. The positions on the block of a series of points, topographic or otherwise, are then
located. For example, point M is at the corner of the horizontal grid number 5 and the
vertical grid number 7. On the block, 5 on the corrected grid scale is moved to 7 on
the lower abscissa scale, keeping the measuring scale vertical. The elevation of point
M is 350 m, and this height is located on the corrected vertical scale, and the point is
then plotted. The procedure is continued until enough points have been located.

8. The topography on the upper surface of the block may be shown with foreshortened
contours (Fig. 22.16b).

22.10 Modified blocks

In order to show certain features better, a number of modifications may be used. The
block may be cut into pieces and the pieces separated to expose its internal parts. Similar
cuts may be made to remove corners or variously shaped slices to show other structural
details to advantage.

Another way of emphasizing certain features is to dissect the block along a certain
structural surface. For example, a complexly folded and faulted stratigraphic horizon
could be shown by artificially removing all the overlying material. An excellent example
is given by Goguel (1962, p. 134).

Especially in mountainous areas, the presence of topographic relief may hinder rather
than aid the presentation, and it may be desirable to eliminate the complications of the
outcrop pattern caused by it. This can be accomplished by projecting the structures to
a horizontal plane. Any plane can be used, but it is often convenient to use sea level
because the topographic contours also use this as datum.

Procedure

1. On a transparent overlay sheet, rule a series of closely spaced lines parallel to the
trends of the fold axes on the geological map (Fig. 22.17a).

2. Select a series of points on the contact of a lithologic marker. These points should be
spaced closely enough to allow the structure to be accurately sketched.

3. Each point is projected to sea level (or other chosen level) by moving it parallel to the
trend lines in the direction of the plunge through a distance equal to h/ tan p, where
h is the elevation of the point and p is the plunge.
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Figure 22.17 Horizontal outcrop map from geological map: (a) projection of structural data (from
Turner & Weiss, 1963, p. 164); (b) geometry of projection.

This procedure can also be viewed as a transformation of coordinate axes. Two steps
are required. First, as we have done several times, rotate the geographical coordinate
axes about z so that x′ is parallel to the trend of the fold axes. A typical point P(x, y, z)

relative to the initial axes becomes P(x′, y′, z) relative to these new axes (Fig. 22.17b).
Point P ′ is then projected to the horizontal plane to become P ′′(x′′, y′), where

x′′ = x′ + �x and �x = h/ tan p.

NW SE
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Figure 22.18 Block diagram showing plunging structures in the Western Alps (from Argand, 1911).
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Figure 22.18 is a famous block diagram with an artificially planar upper surface show-
ing the plunging structures of the Pennine Nappes in the Alps. In constructing this dia-
gram, the axial continuity of the cylindrical folds was used as a guide in tracing out the
structures on both the top and front of the block.

22.11 Exercises

1. Using the map of Fig. 22.19, construct a block diagram using the orthographic method.

Figure 22.19

60

40

40

N

2. Repeat using the general method.
3. Using an available geological map, construct a scaled block (it is advisable to initially

choose a simple structure.)



Appendix A
Descriptive geometry

A.1 Introduction

The emphasis in this book is the geometrical description and analysis of geological
structures, especially by graphical means. The basis of much of this is descriptive geom-
etry: the art of accurately drawing three-dimensional objects and of graphically solving
associated space problems.1 It is based on the idea of depicting such objects by means of
projections. Everyday examples of projections are shadows and photographs. Both are
the result of projecting various parts of an object to a plane by rays of light. These rays
are projectors which connect points on the object with the corresponding points on the
image plane.

By projecting an object to an image plane, a view of that object is obtained. Alterna-
tively, a view may be thought of as an actual picture of the object obtained along a line
of sight perpendicular to the corresponding image plane.

A.2 Orthographic projection

The simplest type of projection, and the one used most in engineering as well as for
many purposes in geology, is the orthographic projection. Orthographic means “drawn
at right angles” and refers to parallel projectors that are perpendicular to an image plane
(Fig. A.1a). The most important property of this projection is that the images of objects
appear in their true shape.2

1The system now called descriptive geometry was developed by the French mathematician, scientist and designer Gaspard
Monge [1746–1818].

2This method of projection is widely used to produce plans for engineering and architectural projects. In most professional
and commercial applications the actual drawings are produced with the aid of Computer Aided Design (CAD) programs.
AutoCAD is the de facto standard. Jacobson (1996) describes an add-on to display and analyze geological orientation
data. Even more elaborate programs are commonly used in the petroleum industry to combine structural information
and seismic data, for example, gOcad (see http://gocad.org).

551
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(a) (b)

Figure A.1 Orthographic projection: (a) projectors; (b) projection lines (after Warner & McNeary, 1959).

As in the orthographic projection illustrated in Fig. A.1, it is usually convenient to
refer to three separate image planes: a horizontal Top View and two vertical planes at
right angles, called the Front and Side Views. Together, these constitute the principal
views. Other image planes, giving auxiliary views, may have any other orientation.

Views are related to the object in two ways: by projectors which connect points on
the image plane with the corresponding point on the object (Fig. A.1a) or by projection
lines which connect points on the several views (Fig. A.1b).

In Fig. A.1a a three-dimensional object is projected orthographically to the sides of the
cube (Fig. A.2a), and the whole then projected to the plane of the page. In order to show
the true shape of the object, it is necessary to obtain a direct or normal view of an image
plane. Such a view could be obtained by rotating the cube so that our line of sight is
perpendicular to a particular plane of interest. We could obtain direct views of all image
planes simultaneously by unfolding the cube, just as one unfolds a cardboard box, so
that all the faces lie in a common plane (Fig. A.2b). During this unfolding process, the
edges which act as hinges are called folding lines (abbreviated FL).3 Any edge may act
as a folding line, though most commonly lines that lie in the horizontal plane are used.
If auxiliary planes are needed it may be necessary to unfold about other lines, possibly
through angles other than 90◦.

In practice, of course, the three-dimensional box is never actually constructed nor is the
unfolding process so literally followed.All this is by-passed and the required orthographic
views are constructed directly. Figure A.2c shows the basic method of construction and
the use of lines connecting corresponding points on different image planes. These are
the projection lines, and they are perpendicular to the common edges or folding lines.

As can be seen in Fig. A.1b, the projection lines cross the lines of intersection as they
pass from one view to another. However, after unfolding, literally or figuratively, there

3The term folding line seems to have lost favor. We retain it here because it encapsulates a powerful aid in visualizing in
three dimensions the data in only two. Simply fold a drawing along a folding line over the edge of a table and see the
results in three dimensions.
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Figure A.2 Three dimensions to two: (a) unfolding; (b) resulting representation; (c) formal drawing.

is a gap between the Front and Side Views (Fig. A.2c), and we need a way of bridging
it. The easiest way is to bisect the right angle between the folding lines. The projection
lines from the Front View are then extended to this bisector and then to the Side View.

Any other view can be constructed if two views are given. This is the basis of the
orthographic method of solving problems graphically. One simply seeks the particular
view, called the normal or direct view, which shows the required lengths and angles in
their true dimensions.

A.3 Graphical solutions

An important value of the method of descriptive geometry is in developing the ability to
visualize geometrical relationships in three dimensions. An important part of this process
is to produce clear and accurate drawings. This requires some basic pieces of equipment.

1. Drafting-quality compass.
2. Large-radius protractor.
3. Triangles (30◦–60◦ and 45◦) of several sizes.
4. Triangular metric and engineers scales.
5. A straight edge (a larger triangle can serve this function).
6. Pencils with reasonably hard lead; Several colored ones are useful.

Graphical solution of problems involving points, lines and planes in a three-
dimensional setting can not be absolutely accurate. Limiting factors include the scale
and accuracy of the drawing and the skill of the drafter. With a light touch and a sharp
pencil it is possible to draw a line as narrow as about 0.1 mm. The intersection of two
perpendicular lines is then a small square about 0.1 mm on a side. The maximum error in
measuring the distance between two such points is twice this. For other angles the area
of intersection is an equilateral parallelogram and the maximum error is even greater.
As the width of the line is independent of the scale, the accuracy of a given drawing
depends linearly on the scale, other factors being equal. If the scale is doubled, the
fractional error is reduced by one-half.
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Theoretically, a mathematical solution is capable of absolute accuracy, but no solution
can be more accurate than the original data on which it is based. Therefore a graphical
solution can be just as accurate as needed if it is within the limits of the numerical
observations.

The choice of method, mathematical or graphical, depends on the requirements of the
problem and the nature of the observational data. In geology great accuracy is illusive.
Thus graphical solutions produced under normal working conditions usually give satis-
factory results for most purposes. In addition, the graphical method has one enormous
advantage: the actual construction of the various orthographic views is an extremely
important aid in visualizing the problem in three dimensions, and in thinking through the
sequence of steps which lead to the correct answer. If the graphical method is chosen,
the accuracy of any drawing may be improved in a number of ways.

1. Enlarge the drawing. The optimum size is just slightly larger than the data require.
This insures requisite accuracy and economy of time.

2. Draw lines as narrow as possible with a hard, sharp pencil using light pressure.
3. Locate intersections using angles as close to 90◦ as possible.
4. Measure angles with a large-radius protractor.
5. Avoid cumulative errors. Wherever possible measure the total length of a line without

lifting the scale for intermediate points.
6. Quality drawing instruments help maintain a higher degree of accuracy. It is especially

important that the compass be able to hold its setting.
7. If drawings are to be worked on over a considerable length of time, dimensionally

stable materials are advisable. For most purposes, a more practical approach is to
complete a construction in as short a working time as possible.

8. Mistakes may be minimized by keeping the actual construction simple and compact,
and by labeling all the points on the drawing.

The solution of problems involving lengths and angles can be solved with just two
fundamental constructions: the determination of the true length of a line segment and the
rotation of a plane figure into any required orientation.

A.4 Angles and bisectors

In several of these as well as other constructions we need a method for graphically
bisecting angles and lines.

Angle bisector

1. With point O as center, and using a convenient but arbitrary radius draw an arc cutting
the two sides at points P1 and P2 (Fig. A.3a).
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2. Then with each of these two point as centers draw two arcs with the same radius
intersecting at point P .

3. Line OP is the bisector of angle AOB.

By construction, the triangles OP1P and OP2P have corresponding pairs of equal
sides and a third side in common. They are therefore conjugate. Corresponding angles
of conjugate triangles are also equal, that is ∠P1OP = ∠P2OP, as required.

O

P1

P2
B

P
A B

P1

P2

O

A

(a) (b)

Figure A.3 Bisectors: (a) angle AOB; (b) line segment AB.

Line bisector

1. With end points A and B as centers, draw two arcs intersecting at points P1 and P2

(Fig. A.3b).

2. Line P1P2 intersects AB at point O, which is its midpoint. This line has the added
virtue of being perpendicular to AB.

By construction the pair of isosceles triangles AP1B and AP2B have sides AP1 =
BP1 = AP2 = BP2. These triangles also share a common side AB, and they are therefore
also conjugate. Also by construction the pairs of angles at A and B are equal.

Triangles AP1O and BP1O have an equal side, share a side and one equal angle and
are conjugate. For the same reason triangles AP2O and BP2O are also conjugate.

Similarly, the pairs of triangles AP1O and AP2O and BP1O and BP2O are also con-
gruent. As a result, all four triangles are congruent and the four angles at O are equal
and therefore all are right angles.

It is important to locate the intersection of the arc pairs in these constructions accurately.
This requires that they intersect at 90◦ or close to it. This is easily accomplished by setting
the radius to approximately 70% of distance P1P2 (Fig. A.3a) or AB (Fig. A.3b).
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A.5 Projection of a point

The basis of descriptive geometry is the projection of a point to a specified image plane.
The idea is to project a point A in space to, say, the Top View where it is represented by its
image AT and to the Front View where it is represented by its image AF (Fig. A.4a). By
rotating the Front View into the plane of the Top View (Fig. A.4b), we now have a repre-
sentation of all three dimensions on just a two-dimensional composite plane (Fig. A.4c).
With this representation, we can easily solve any spatial problem. We can also recover
the third dimension at any time from this representation by simply folding the drawing
over the edge of a tabletop.

Given any two such views, we can always find the projection of the point on any other
view. For concreteness, we start with two given principal views and there are three cases.

1. Project the point to a third principal view (Fig. A.5a),
2. Project the point to a vertical auxiliary view (Fig. A.5b).
3. Project the point to an inclined auxiliary view (Fig. A.5c).

(a) (b) (c)

FL
T
F

AT

AF

AT

AF
A

TOP

FRONT

TOP

FRONT

Figure A.4 Projection of point A: (a) projection to AT and AF; (b) unfolding of the Front View; (c)
two-dimensional composite plane (after Steidel & Henderson, 1983, p. 71).

(a) (b) (c)

AS

AT

AF A1

AT

AF A1

AT

AF

Figure A.5 Projection of a point: (a) third principal plane; (b) vertical auxiliary plane; (c) inclined
auxiliary plane.

Third principal view

Given two principal views we can always construct the third principal view. The basic
method depends on the fact that the image point on any view is located at the intersection
of the projection lines from the other two views.
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There are two basic ways for locating the image on a third view. The first involves
determining a distance. In Fig. A.6a the distance D from FL1 to image point AF in the
Front View also represents the distance point A is below its image point AT . Then point
AS is located on the projection line from the Top View at this same distance. If this
distance is determined with a scale, there are two potential errors: first in making the
initial measurement and second in plotting this measured distance. A better way is to
transfer D from the Front View to the Side View with a pair of dividers.

The second method constructs intersecting projection lines. In Fig. A.6b image point
AS lies on the projection line from AT and from AF . As in Fig. A.2c, the gap between
the two vertical views is bridged with the bisector of the angle between FL1 and FL2.
The projection line from AF is extended to this bisector parallel to FL1 and then parallel
to FL2 to locate AS on the projection line from AT .

AT
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FL1

FL
2

TOP

FRONT

SIDE

AT AS

AF

FL1
FL

2

TOP

FRONT

SIDE

(a) (b)

bisector

D

D

Figure A.6 Projection of a point to a third principal plane.

Vertical auxiliary view

The projection of a point to a vertical auxiliary view requires an additional step. The
orientation of the required auxiliary plane is specified by the oblique folding line FL2.
Thereafter the procedure is the same. Distance D is the same as in the previous case,
which is then transferred to the auxiliary plane and the image point A1 located on the
projection lines from AF (Fig. A.7a).

The second method requires the construction of the bisector of the acute angle between
FL1 and FL2. The projection line from AF is then extended via this bisector to the
projection line from AT to locate point A1 on the auxiliary plane (Fig. A.7b).
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Figure A.7 Projection of a point to a vertical auxiliary plane.

Inclined auxiliary view

The projection of a point to a general auxiliary plane requires yet another step to take into
account its angle of inclination, which is taken here to be 60◦. The entire construction
is usually performed on a single figure but three are used here to make the several steps
clearer. As before FL2 fixes the line of intersection of the auxiliary plane with the Top
View. A second folding line FL3 is then drawn perpendicular to FL2 (Fig. A.8a).

Use the second folding line to establish a view of the inclined auxiliary plane of the
profile. The image point AF is projected to it. This locates the image point A1 on the
trace. This point is then projected to the FL3, using distance D1 or intersecting projection
lines to locate the point on the required horizontal plane (Fig. A.8b). The final location
of image point A1 is then added to the horizontal representation of the auxiliary view
(Fig. A.8c).
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Figure A.8 Projection of a point to a general auxiliary plane.
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A.6 Projection of a line

The projection of a line segment involves a straightforward application of the previous
methods for a single point. We now simply project the two end points individually to the
required view.

Using the first method, determine the distances DA and DB of the image points AF

and BF on the Front View and then transfer these to the Side View to locate the image
points AS and BS (Fig. A.9a).

With the second method, the projection lines from points AT and BT are extended
directly to the Side View and from AF and BF the Side View via the bisector to locate
AS and BS at the intersections (Fig. A.9b).
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Figure A.9 Projection of a line to a principal plane.

A.7 Length of a line

An important special case is the projection of the line segment to the auxiliary plane on
which it appears in true length (TL). There are an infinite number of such views, but it
is most convenient to choose the vertical plane parallel to the image of the line in the
Top View, so we draw FL2 parallel to this trace. The construction of the image on the
auxiliary plane is the same as in the previous example.

With the first method, distances DA and DB are determined on the Front View and
then transferred to the Side View (Fig. A.10a).

Using the second method, the projection lines are extended from the Front View to the
Side View. In both cases the segment A1B1 is the true length (Fig. A.10b).4

4We now have the trend and plunge of the line.
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Figure A.10 True length of a line segment.

A.8 Point view of a line

A final case involves constructing a view of an end or point view of a line. We will not
often need such a view directly, but it will be used in conjunctions in another construction.

Having obtained the view of the true length of a line segment, draw FL2 perpendicular
to this line and extend the projection lines from the Top and Front Views to this new
auxiliary view, using either the dimension D (Fig. A.11a) or intersecting projection lines
(Fig. A.11b).
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Figure A.11 Point view of a line.

A.9 Projection of a plane

The next class of projections involves a plane area. The simplest representation of such
an element of area is a triangle. Other areas can be built up from a series of such triangles.
Just as the projection of a line involved two points, the projection of a plane involves
three points.

To illustrate the general method, we choose to project the plane from the Top and Front
Views to a vertical auxiliary view.
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The first method uses the distances DA, DB and DC determined on the Front View
which are then transferred to the auxiliary view to fix the locations of the image points
A1, B1 and C1 (Fig. A.12a).

The second method extends the projection lines directly from the Top View and the
projection lines from the Front View via the bisector of the obtuse angle between FL1
and FL2 to the auxiliary view (Fig. A.12b).
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Figure A.12 Projection of a plane.

A.10 Edge view of a plane

An important special case is the projection of the triangle to the auxiliary view where it
appears as in edge view.

The first step is to draw a horizontal line on the Front View from the point of inter-
mediate elevation BF to locate point B ′

F on the opposite side (Fig. A.13a). This point is
then projected back to the Top View to locate point B ′

T . Line BT B ′
T appears in its true

length. Folding line FL2 is then drawn perpendicular to the line.
Distances DA, DB and DC , determined on the Front View, are transferred to the

auxiliary view. Note that line BT B ′
T appears in point view.5

Alternatively, the points AT , BT and CT are projected directly and points AF , BF and
CF are projected via the bisector to the auxiliary view (Fig. A.13b).

A.11 Normal view of a plane

The true shape (TS) of the plane requires the construction of the normal view, and this in
turn requires that a view of the plane in edge view be obtained, as in the previous section

5We now have found the strike and dip of the plane.
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Figure A.13 Edge view of a triangular element.

(Fig. A.14). Then FL3 is drawn parallel to the trace of the plane in this view. Distances
DA, DB and DC are determined on the Top View and transferred to the required auxiliary
view to give points A2, B2 and C2. These are the corners of the triangle in the required
view.

In principle, the second method can also be used. In this example, however, there is a
problem. When the bisected angle is small, the crossover points on the bisector may be
located at some considerable distance. Figure A.14 shows this construction for point A,
where this difficulty is apparent. If the projection lines for points B and C were similarly
constructed, the figure would be more than double in size. This is usually not practical.

A.12 Coordinate geometry and vector components

The final case is to determine the true size (TS) of the triangular element. From two
principal views, this requires an auxiliary plane that displays the triangle in normal view.

Our goal has been to describe purely graphical methods for presenting and analyzing
points, lines and planes. There are, however, other methods and it is useful to indicate
the connection of these with the methods of orthographic projection.

To do this we establish a right-handed Cartesian coordinate system (Fig. A.15a). We
can then assign coordinates to image points on the three principal planes: AT (x, y),
AF (y, z) and AS(x, z). With any two of these we then have the coordinates of the spatial
point A(x, y, z) (Fig. A.15b).

Similarly, for two points we have A(x, y, z) and B(x, y, z). With these we can then
find the equation of the line, and determine associated properties including its orientation
and its length.

Finally for three points A(x, y, z), B(x, y, z) and C(x, y, z) we can find the equation
of the plane and its properties.
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Figure A.14 Normal view of a triangular element.

In a closely related way, points on the principal image planes can be represented by
position vectors AT (x, y), AF (y, z) and AS(x, z) (Fig. A.15c). With these we then have
the position vector for the points A in three dimensions A(x, y, z).

With a second position vector B(x, y, z) we can form the vector from points A to B.
Similarly, with a third vector C we can find the vector from, say, points A to C. From
these two, we can then form the vector dot product to obtain the area of the triangle and
cross product to obtain its orientation (see §7.3).
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Figure A.15 Coordinate geometry: (a) coordinate axes; (b) principal coordinate planes; (c) vectors.



Appendix B
Spherical trigonometry

B.1 Introduction

A spherical triangle is a figure on the surface of a sphere bounded by the arcs of three
great circles (Fig. B.1a). It has six parts: three angles A, B and C and three opposite sides
a, b and c. Each angle is measured by the angle between the two planes whose traces are
the intersecting great circles and each side by the angle it subtends at the center of the
sphere.

A

B

C

a

b

c

A'

B'

C'

a'

b'

c'

(a) (b)

Figure B.1 Stereogram: (a) general spherical triangle; (b) corresponding polar triangle.

Plane and spherical triangles differ in several ways but there are also some similarities
despite the fact that one deals with two dimensions and the other with three. This similarity
accounts for much of the power of spherical trigonometry. The Laws of Sines for plane
and spherical triangles are

sin A

a
= sin B

b
= sin C

c
and

sin A

sin a
= sin B

sin b
= sin C

sin c
.

The form of each of these is identical. The only difference is due to the fact that the sides
of spherical triangles are measured in angles, not lengths as is the case in plane triangles.

564
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(a) (b) (c)

Figure B.2 Triangles with 90◦ angles; (a) right-triangle; (b) birectangular; (c) trirectangular.

Spherical triangles arise in many stereographic constructions and for problems involv-
ing these spherical trigonometry is an attractive way of obtaining solutions quickly and
accurately. Additional background and problems can be found in Higgs and Tunnell
(1966) and in Phillips (1971). A number of closely related crystallographic applications
are described by Phillips (1963).1

B.2 General properties

Every spherical triangle has a corresponding polar triangle, which is formed by locating
the poles of each of the three sides of the original triangle A′, B ′ and C′ and then
connecting each pair of these points with the arcs of great circles a′, b′ and c′ (Fig. B.1b).
These two types of triangles have a number of important properties (Palmer, et al. 1950,
p. 193):

1. The sum of the sides is less than 360◦.
2. The sum of the angles is greater than 180◦ and less than 540◦. A consequence is that

any unknown angle can not be found directly from the other two angles.
3. If two angle are equal, the sides opposite are equal, and conversely.
4. If two sides are unequal, the angles opposite them are unequal, and the greater angle

lies opposite the greater side, and conversely.
5. The sum of two sides is greater than the third side.
6. If one triangle is the polar of another, then the latter is the polar triangle of the former.
7. The sides and the angles of a spherical triangle are the supplements, respectively, of

the opposite angles and sides in the polar triangle, and conversely.

B.3 Right-spherical triangles

One class of spherical triangles contains a 90◦ angle. If only one is present it is known
as a right-spherical or Napierian triangle2 (Fig. B.2a). In special sub-cases, there may
be two (Fig. B.2b) or three 90◦ angles (Fig. B.2c).

1The subject seems to have fallen out of general favor; the book by Palmer, Leigh and Kimball (1950) is the most recent
on the subject in our library.

2John Napier [1550–1617], a Scottish theologian and amateur mathematician, invented logarithms and the decimal point
notation, and contributed to the theory of spherical triangles.



566 Spherical trigonometry

The important case involves a single 90◦ angle. If any two of the remaining five
parts are known, any unknown third part can be determined. Ten special cases cover
all possible situations and the separate formulas are readily available (Zwillinger, 1996,
p. 468). These are not needed, however, because all may be easily formulated with the
aid of Napier’s rules.

1. The sine of any middle part is equal to the product of the tangents of the two adjacent
parts.

2. The sine of any middle part is equal to the product of cosines of the two opposite
parts.

These rules are easily remembered by noting that the letter A occurs in both the words
tangent and adjacent, and the letter O in both cosine and opposite. The middle, adjacent
and opposite parts are easily identified with a simple diagram known as Napier’s device
– a circle divided into five sectors, each containing the value of one of the five parts.
Two known parts together with any unknown third part will always be arranged in the
compartments so that three parts are all adjacent, or two parts are opposite a third.
Figure B.3 shows typical distributions of the middle, adjacent and opposite parts.

(a) (b)

MA

A

M

O

O

Figure B.3 Napier’s device: (a) middle M and adjacent A parts; (b) middle M and opposite O parts.

These five parts of the triangle are labeled 1–5, starting from the right angle (Fig. B.4a).
Each time a problem is to be solved, the device is sketched and the value of each known
and unknown part is entered in the appropriate sector in cyclical order, starting with the
horizontal radius on the right. The values written to the left of the vertical diameter are
the complementary angles of the appropriate parts (Fig. B.4b). The order may be taken
in either a clockwise or anticlockwise direction so long as the pattern is consistent in
both the triangle and the device. We adopt an anticlockwise sense here.

In a closely related case, the triangle may contain a 90◦ side (Fig. B.5a). The solution
of any unknown part is obtained from the corresponding polar triangle (Fig. B.5b). In
practice, this figure is not actually needed. Starting the numbering scheme from the 90◦
side, the five parts are entered as before, except that supplementary angles are now used
(Fig. B.5c).
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Figure B.4 Right-spherical triangle: (a) 90◦ angle; (b) Napier’s device.
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Figure B.5 Right-spherical triangles: (a) 90◦ side; (b) polar equivalent; (c) Napier’s device.

Table B.1 Functions in terms of
angles in the first quadrant

−x 90 ± x 180 ± x

sin − sin x + cos x ∓ sin x
cos + cos x ∓ sin x − cos x
tan − tan x ∓1/ tan x ± tan x

The formulas which result from the application of Napier’s rules can be simplified by
using one of the identities in Table B.1, or the identities for the composite angles

sin[90 − (180 − x)] = sin(x − 90) = − cos x, (B.1a)

cos[90 − (180 − x)] = cos(x − 90) = + sin x, (B.1b)

tan[90 − (180 − x)] = tan(x − 90) = −1/ tan x. (B.1c)
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B.4 Examples of right-triangles

The methods of spherical trigonometry can be used both to obtain a numerical result to
a specific problem or to obtain a general formula for an entire class of problems.

Apparent dip

Given the dip, determine the apparent dip in the direction specified by its structural
bearing. This problem was treated in Fig. 1.10 and Eq. 1.5 where the analytical solution
was obtained by using plane trigonometry. The solution also applies to the plunge of a
line in a plane treated in Fig. 3.3 and Eq. 3.3.

1. Number the elements of the problem (Fig. B.6a): Part 1 = α (unknown apparent dip),
Part 4 = δ (dip), and Part 5 = β (bearing). Note that δ is assigned to the point of
intersection of the two planes; in the usual stereographic construction δ is a side of a
triangle, not an angle.

2. Sketch Napier’s device and enter the values of the corresponding parts: Part 1 = α,
Part 4 = 90 − δ, and Part 5 = β (Fig. B.6b). Note that Parts 2 and 3 are not used.

3. Applying the first of Napier’s rules gives

sin β = tan α tan(90 − δ) or tan α = tan δ sin β. (B.2)

90 − δ

α

β

(a) (b)

δ

α

β

D

90

Figure B.6 Apparent dip: (a) stereogram; (b) device.

Pitch

Given the dip of a plane and the structural bearing of a line on it, determine the pitch of
the line (see also Fig. 3.8 and Eq. 3.4).

1. Label the elements of the spherical triangle (Fig. B.7a): Part 3 = r (pitch), Part 4 = δ

(dip), and Part 5 = β (bearing).
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2. Sketch the device and fill in compartments for Part 3 = 90 − r , Part 4 = 90 − δ, and
Part 5 = β (Fig. B.7b).

3. Applying Napier’s Rule 2 gives

sin(90 − δ) = tan(90 − r) tan β or tan r = tan β/ cos δ. (B.3)

90 − r

90 − δ
β

(a) (b) δ β

 r

D 90

Figure B.7 Pitch: (a) stereogram; (b) device.

Pitch and plunge

Given the plunge of a line in a plane determine its pitch.

1. Label the elements of the spherical triangle (Fig. B.8a): Part 1 = p (plunge), Part
3 = r (pitch), and Part 4 = δ (dip).

2. Sketch the device and fill in compartments for Part 1 = p, Part 3 = 90 − r , and Part
4 = 90 − δ (Fig. B.8b).

3. Applying Napier’s Rule 1 gives

sin p = cos(90 − r) cos(90 − δ) or sin r = sin p/ sin δ. (B.4)

Strike error

Determine the maximum strike error given the dip of a structural plane and the maximum
operator error (see Fig. 5.22a).

1. Label the elements of the triangle (Fig. B.9a): Part 2 = εS (maximum strike error),
Part 3 = δ (dip), and Part 5 = εO (maximum operator error).

2. Sketch the device and fill in compartments for Part 2 = 90 − εS , Part 3 = 90 − δ, and
Part 5 = εO (Fig. B.9b).
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90 − r

90 − δ

(a) (b) δ

 r

D 90

p

p

Figure B.8 Pitch and plunge: (a) stereogram; (b) device.

(a) (b)

90 − εs

90 − δ

εo

D
Pδ

εs

εo

90

Figure B.9 Strike error: (a) stereogram; (b) device.

3. Applying Napier’s Rule 1 gives

sin εO = cos(90 − εS) cos(90 − δ) or sin εS = sin εO/ sin δ. (B.5)

Direction cosines

For triangles with a 90◦ side it is sometimes possible to reduce problems to the simpler
case of two triangles with 90◦ angles. The problem illustrated here is the conversion of
plunge and trend to direction cosines (compare Fig. 7.3 and Eqs. 7.7).

1. Plot the point representing the plunging line and draw the circular arcs between this
point and the three coordinate axes +x, +y and +z. The measured angles along these
arcs are the direction angles α, β and γ (Fig. B.10a).
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2. The spherical triangle whose sides are these direction angles does not contain a 90◦
element. However, if the trace of the vertical plane containing the line is added to the
diagram two right-triangles result.
(a) From Triangle 1 and the corresponding device (Fig. B.10b), by Napier’s Rule 2

we obtain

sin(90 − α) = cos p cos t or l = cos α = cos p cos t. (B.6a)

(b) From Triangle 2 and, again, Napier’s Rule 2 and the corresponding device
(Fig. B.10c)

sin(90 − β) = cos p cos(90 − t) or m = cos β = cos p sin t. (B.6b)

(c) Finally from simple geometry

cos γ = cos(90 − p) or n = cos γ = sin p. (B.6c)

90 − α

p

90 − β

p

(a) (b) (c)

t

x

y
z

α

β

t

2

1

p

γ
t'

90 90

 t' = 90 − t

Figure B.10 Direction cosines: (a) stereogram; (b) first device; (c) second device.

Intersection errors

The problem of the maximum error associated with the line of intersection of two planes
was treated in Fig. 5.23. The derivation involves the solutions of two separate triangles.

1. First, the triangle with a 90◦ angle (Fig. B.11a): Sketch a device and enter the values:
Part 3 = 90 − 1

2δ, Part 4 = 90 − B1, and Part 5 = εO (Fig. B.11b). Then Rule 1 gives

sin(90 − B1) = tan(90 − 1
2d) tan εO.

With sin(90 − B1) = cos B1 and tan(90 − 1
2d) = 1/ tan 1

2d we have

cos B1 = tan εO/ tan 1
2d. (B.7a)
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90 − B1

(a) (b)

90

εO

d/2

εO

B1

90 − δ/2 90

Figure B.11 Intersection error (first triangle): (a) stereogram; (b) device.

2. Second, the triangle with a 90◦ side (Fig. B.12a): Sketch a device and enter the values:
Part 2 = 90 − (180 − εT ), Part 4 = 90 − [180 − (90 − εT )], and Part 5 = 180 − B2

(Fig. B.12b). Then Rule 2 gives

sin[90 − (180 − εT )] = cos(180 − B2) cos[90 − (180 − (90 − εO))].

Making the substitutions

− cos εT = sin[90 − (180 − εT )],
− cos B2 = cos(180 − B2),

+ cos εO = cos[90 − (180 − (90 − εO))],

this becomes

cos B2 = cos εT / cos εO. (B.7b)

B.5 Oblique-spherical triangles

The data may be such that the resulting spherical triangle has no 90◦ part and it is then
termed oblique. For such triangles we need three parts to solve for any unknown fourth
part. With the scheme used for plane triangles, the three angles are labeled A, B and C

and the three opposite sides a, b and c.
A number of formulas are available for solving for any unknown part of such triangles,

but the following list is sufficient for most purposes. Some derivations are given in Higgs
and Tunell (1966) and Palmer, et al. (1950), and Zwillinger (1996, p. 469–471) gives a
more complete compilation.
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90

(a) (b)

B2

εT
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 (180 − εT)

90 – [180 – 
 (90 − εO)]

180 − B2

90
 −

 ε
Ο

 

90

Figure B.12 Intersection error (second triangle): (a) stereogram; (b) device.

One reason for the large number formulas is to cover all possible labeling patterns,
though it is often simpler to label the known and unknown elements so that just one from
the group will do (Fig. B.13). However, the alternative forms serve as a useful way of
checking the accuracy of the calculations.

A

B

C

a

b

c

A

B

C

a

b

c

A

B

C

a

b

c

(a) (b) (c)

Figure B.13 Three alternative labeling patterns.

Law of Sines

sin A

sin a
= sin B

sin b
= sin C

sin c
. (B.8)

Law of Cosines for Sides

cos a = cos b cos c + sin b sin c cos A, (B.9a)

cos b = cos c cos a + sin c sin a cos B, (B.9b)

cos c = cos a cos b + sin a sin b cos C. (B.9c)
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Law of Cosines for Angles

cos A = − cos B cos C + sin B sin C cos a, (B.10a)

cos B = − cos C cos A + sin C sin A cos b, (B.10b)

cos C = − cos A cos B + sin A sin B cos c. (B.10c)

Napier’s Analogies

sin 1
2(A − B)

sin 1
2(A + B)

= tan 1
2(a − b)

tan 1
2c

,
sin 1

2(a − b)

sin 1
2(a + b)

= tan 1
2(A − B)

cot 1
2C

, (B.11a)

cos 1
2(A − B)

cos 1
2(A + B)

= tan 1
2(a + b)

tan 1
2c

,
cos 1

2(a − b)

sin 1
2(a + b)

= tan 1
2(A + B)

cot 1
2C

. (B.11b)

In solving oblique spherical triangles, two situations arise. In the first, the distribution
of the known elements is such that any unknown part can be obtained unambiguously.
In the second, there may be two solutions. In problems involving these cases, there are
a variety of ways of obtaining solutions; we illustrate only one way.

Unambiguous cases

1. Two sides and included angle are known (b, A, c): solve Eq. B.9a directly for the
unknown side a

cos a = cos b cos c + sin b sin c cos A,

and all sides are known.
2. Two angles and included side are known (B, a, C): solve Eq. B.10a directly for

angle A

cos A = − cos B cos C + sin B sin C cos a,

and all angles are known.
3. All sides are known (a, b, c): solve Eqs. B.9 for each of the three unknown angles

cos A = cos a − cos b cos c

sin b sin c
, cos B = cos b − cos c cos a

sin c sin a
,

cos C = cos c − cos a cos b

sin a sin b
.

4. All angles are known (A, B, C): solve Eqs. B.10 for each of the three unknown sides

cos a = cos A + cos B cos C

sin B sin C
, cos b = cos B + cos C cos A

sin C sin A
,

cos c = cos C + cos A cos B

sin A sin B
.
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Ambiguous cases

1. Two angles and the side opposite one of them are known (a, b, A; a 	= b). There are
two solutions if a < b; the second is found by replacing B with its supplementary
angle arccos(− cos B)):

(a) Solve Eq. B.8 for unknown side B,

sin B = sin A sin b

sin a
,

(b) then the first of Eqs. B.11a for unknown side c,

tan 1
2c = sin 1

2(A + B) tan 1
2(a − b)

sin 1
2(A − B)

,

(c) and then Eq. B.10c for the unknown angle C,

cos A = cos c − sin a sin b

sin a sin b
.

2. Two sides and the angle opposite one of them are known (A, B, a; A 	= B). There
are two solutions if A < B; the second is found by replacing b with its supplementary
angle arccos(− cos b)):

(a) Solve Eq. B.8 for unknown side b,

sin b = sin a sin B

sin A
,

(b) then Eq. B.9c for unknown angle C,

cos C = cos c − cos a cos b

sin a sin b
,

(c) and then Eq. B.10c for the unknown side c,

cos c = cos C + cos A cos B

sin A sin B
.

B.6 Examples of oblique triangles

Several examples will illustrate how to obtain solutions in both the unambiguous and
ambiguous oblique spherical triangles.
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Dihedral angle

Determine the dihedral angle between two intersecting planes (see construction of
Fig. 5.18). This problem can also be solved using the dot product of two pole vectors
(see §7.3). This is the unambiguous case of two angles and included side.

1. On a stereogram, the two planes are represented by great circles (Fig. B.14). The
spherical triangle containing the unknown dihedral angle is formed by arcs of these
two circles and the primitive.

2. Label the parts of this triangle so that the unknown angle is A, the dips of the two
planes B and C, and the angle between the two strike directions a.

3. We may solve for angle A directly by using Eq. B.10a:

cos A = − cos B cos C + sin B sin C cos a.

Figure B.14 Dihedral angle.

A
B

C a

b
c

Drill hole problem

Given the plunge and trend of a single drill hole which intersects a plane, the measured
core–pole angle in the recovered core, and the known strike of the beds, what is the
dip of the plane? This type of problem was treated graphically in Fig. 20.5a. This is the
ambiguous case of two angles and a side opposite one of them.

1. On a stereogram, point C represents the inclined drill hole; a radius of the net through
this point and a radius in the dip direction (normal to the given strike) define angle A.
A small circle with radius equal to the core–pole angle φ is the locus of all possible
poles to the plane.

2. The actual poles of the possible planes are located at the points of intersection of the
strike-normal radius and the small circle, labeled B1 and B2. With these two we can
then find the possible values of sides c1 and c2. These are the complements of the
plunge angles for the two poles.
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(a) First solution (Fig. B.15a): labeling the angle between the two radii A, the angular
radius of the small circle a and the side between A and B1 as c1. Find the unknown
value by solving Eq. B.8 for B

sin B1 = sin A sin b/ sin a.

Then with the first of Eqs. B.11a

tan 1
2c1 = sin 1

2(A + B1) tan 1
2(a − b)

sin 1
2(A − B1)

,

and the first possible dip δ1 = 2 arctan 1
2c1.

(b) Second solution (Fig. B.15b): the value of the second angle isB2 = arccos(− cos B1).
Then the second possible value of side c is

tan 1
2c2 = sin 1

2(A + B2) tan 1
2(a − b)

sin 1
2(A − B2)

,

and the second possible dip δ2 = 2 arctan 1
2c2.

(a) (b)

A
A

CC

B2

B1

a

a

bb
c1 c2

D1

D2

Figure B.15 Drill hole problem: (a) first solution; (b) second solution.
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Gere, J.M., 2001, Mechanics of Materials: Fifth Edition, Brooks/Cole Thompson Learning, Pacific

Grove, Calif.
Ghaleb, A.R., & N. Fry, 1995, CSTRAIN: a FORTRAN 77 program to study Fry’s plots in

two-dimensional simulated models: Computers & Geosciences, v. 21, p. 825–831.
Ghosh, S.K., 1993, Structural Geology: Fundamentals and Modern Developments: Pergamon

Press, Oxford.
Gill, J.E., 1935, Fault nomenclature: Royal Society of Canada Transactions, Third series, v. 35,

sec. 4, p. 71–85.
Gill, J.E., 1941, Normal and reverse faults: Journal of Geology, v. 43, p. 1071–1079.
Gill, J.E., 1971, Continued confusion in the classification of faults: Geological Society of America

Bulletin, v. 82, p. 1389–1392.
Gilluly, J., A.C. Waters & A.O. Woodford, 1968, Principles of Geology: Third Edition, Freeman,

San Francisco.
Goetze, C., & B. Evans, 1979, Stress and temperature in the bending lithosphere as constrained

by experimental rock mechanics: Geophysical Journal of the Royal Astronomical Society,
v. 59, p. 463–478.

Goguel, J., 1962, Tectonics: Freeman, San Francisco.
Goodman, R.E., 1976, Methods of Geological Engineering in Discontinuous Rock: West Pub-

lishing Company, St. Paul, Minn.
Graham, R.L., D.E. Knuth & O. Patashnik, 1989, Concrete Mathematics: Addison-Wesley Pub-

lishing Co., Reading, Mass.
Gretener, P.E., 1981, Pore Pressure: Fundamentals, General Ramifications and Implications for

Structural Geology (Revised): American Association of Petroleum Geologists Continuing
Education Course Notes Series, No. 4.

Hafner, W., 1951, Stress distribution and faulting: Geological Society of America Bulletin, v. 62,
p. 373–398.

Halliday, D., & R. Resnick, 1978, Physics, Parts I and II Combined : Third Edition, John Wiley
& Sons, New York.



584 References

Handin, J., 1969, On the Coulomb-Mohr failure criterion: Journal of Geophysical Research, v. 74,
p. 5343–5349.

Haneberg, W.C., 1990, A Lagrangian interpolation method for three-point problems: Journal of
Structural Geology, v. 12, p. 945–948.

Haneberg, W.C., 2004, Computational Geosciences with Mathematica: Springer, Berlin.
Hanna, S.S., & N. Fry, 1979, A comparision of methods of strain determination in rocks from

southwest Dyfed (Pembrokeshire) and adjacent areas: Journal of Structural Geology, v. 1,
p. 155–162.

Hansen, E., 1971, Strain Facies: Springer Verlag, New York.
Hansen, W.R., 1960, Improved Jacob staff for measuring inclined stratigraphic intervals:American

Association of Petroleum Geologists Bulletin, v. 44, p. 252–255.
Harker, A., 1884, Graphical methods in field geology: Geological Magazine, v. 1, p. 154–162.
Harker, A., 1885, On slaty cleavage and allied rock structures, with special reference to the

mechanical theories of their origin: British Association for the Advancement of Science
Report, p. 813–852.

Harrison, J.M., 1963, Nature and significance of geological maps: in C.C. Albritton, Jr., editor,
The Fabric of Geology, Addison-Wesley, Reading, Mass., p. 225–232.

Herold, S.C., 1933, Projection of dip angle on profile section: American Association of Petroleum
Geologists Bulletin, v. 17, p. 740–742.

Hewett, D.F., 1920, Measurement of folded beds: Economic Geology, v. 15, p. 367–385.
Higgins, C.G., 1962, Reconstruction of flexure fold by concentric arc method: American Associ-

ation of Petroleum Geologists Bulletin, v. 46, p. 1737–1739.
Higgs, D.V., & G. Tunell, 1966, Angular Relations of Lines and Planes: Second Edition, W.H. Free-

man and Company, San Francisco.
Hill, M.L., 1959, Dual classification of faults: American Association of Petroleum Geologist

Bulletin, v. 43, p. 217–221.
Hill, M.L., 1963, Role of classification in geology: in C.C. Albritton, Jr., editor, The Fabric of

Geology, Addison-Wesley, Reading, Mass., p. 164–174.
Hobbs, B.E., W.D. Means & P.F. Williams, 1976, An Outline of Structural Geology: John Wiley,

New York.
Hoek, E., & J.W. Bray, 1981, Rock Slope Engineering: Third Edition, Institute of Mining and

Metallurgy, London.
Holcombe, R.J., 2001, GEOrient: www.earthsciences.uq.edu.au/ rodh/software/index.html
Holdsworth, R.E., 1988, The stereographic analysis of facing: Journal of Structural Geology,

v. 10, p. 219–223.
Hossack, J.R., 1979, The use of balanced cross-sections in the calculation of orogenic contraction:

a review: Journal of the Geological Society of London, v. 136, p. 705–711.
Hossain, K.M., 1979, Determination of strain from stretched belemnites: Tectonophysics, v. 88,

p. 279–288.
Howson, M., & E.J. Sides, 1986, Borehole desurvey calculations: Computers & Geoscience, v. 12,

p. 97–104.
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abnormal pressures 259
absolute uncertainty 46
acceleration 198
active folding 406
active tectonics 346
acute folds 374
adjacent parts 566
affine transformation of plane 290
ambiguous cases 575
Amontons’s law 241, 259
amplitude 372
analytical solutions 15
ancient tectonics 349
angle bisector 554
angle of internal friction 248
angle of rotation 277
angle of shear 272
angle of static friction 242
angles 564
angular folds 372, 433
angular forms 410
angular unconformity 523
anisotropic rocks 263
anisotropy 263, 410, 494
anticline 379
anticlockwise rotation 109, 188
anticlustering 302
antiforms 379
Appalachian Piedmont 467
apparent dip 1, 568
apparent dip vector 21
apparent plunge 59
apparent rotation 285
apparent thickness 30, 36
arctan function 134
area of parallelogram 140
area strain 282
area stretch 282
arithmetic mean 7
aspect ratio 373
asymmetric folds 373, 442
“at a point” 199
attitude 1
AutoCAD, 551
auxiliary plane 267

auxiliary views 552
average density 274
average rotation 284
axes 130
axial plane cleavage 375
axial plane 375
axial-plane thickness 385, 443
axial surface 375
azimuth 1

balanced cross sections 426
“beach balls” 267
bearing 1
bedding-plane slip 411
best-fit indicatrix 392
beta diagram 468
beta plane 505
biaxial stress 206
blind spot 489
block 165
block diagram 534
bluntness 373
boundary conditions 364
bow and arrow rule 180
box folds 433
branch faults 182
breakouts 255
brittle 240
brittle–ductile 251
brittle–plastic 251
broad forms 306, 365
buckles 410
buckling 365, 404

c surfaces 289
Canadian Shield 520
card-deck models 272
Cartesian stress components 201
Cauchy’s formula 233
Cauchy–Green tensor 336
change in length 311
change in orientation 310
change of right angle 312
characteristic equation 234, 238
characteristic roots 234
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characteristic wavelength L 404
chevron forms 433
circle 286
circular distributions 143
circular normal 146
cleavage 375
cleavage front 308
cleavage orientation 387
cleavage orientation graph 387
cleavage refraction 401
clinometer 4
clock arithmetic 145
clockwise rotation 109, 188
clockwise-up convention 314
close fold 371
clustering 302
coaxial flow 354, 355
coaxial superpositions 285
coefficient of dynamic friction 241
coefficient of internal friction 248
coefficient of static friction 241
coefficient of viscosity 403
cohesive shear strength 248
column matrices 135, 137
compass 4
competence 399
competent rocks 399
complex structures 500
composite sections 527
computer graphs 463
concentric forms 410
cone of rotation 109
confining pressure 240
conjugate angles 555
conjugate axis 389, 390
conjugate radii 321
conjugate shear fractures 252
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contact strain 408
continuous medium or continuum 275
continuum boundary 275
continuum mechanics 275
contours of equal density 476
contractional fault 165
conventional tilt correction 119, 155
conventional triaxial test 240
convergent cleavage fan 375
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converging pattern 454
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coordinate system 131
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cotangent method 17, 65
coulisse diagram 527
Coulomb criterion of shear failure 247
Coulomb–Terzaghi criterion 261
Cramer’s rule 163, 395, 514
crest 370
crest line 370
critical outlook 521
critical questions 520
cross product 136, 139

crystallographic axis 370
cubic equation 238
cylindrical surface 370

daylight 490
deck of cards 272
décollement 427
décollement thrust 429
decomposition 331
deformation path 352
deformation tensors 290
deformed bodies 269
deformed fossils 304
deformed grains 302
deformed pebbles 306
deformed trilobite 316
degrees of certainty 518
del 161
depth 30
depth of folding 427
depth to plane 43
derivative 47
descriptive geometry 551
detachment fault 190
deviatoric stress 223
dextral faults 166
dextral shear 273
diagonal form 204
diametral plane 88
differential stress 243
differentials 47
dihedral angle 101, 576
dilatancy number 362
dilation of dikes 195
dip 2
Dip and strike from geological map 76
dip domains 435
dip interpolation 419
dip isogon 382
dip notation 3
dip slip 166
dip vectors 20
direct view 169, 553
direction angles 132
direction cosines 131, 570
direction of younging 376
directional derivative 161
disconformity 523
discrepancy 6, 8
disharmonic folds 408
disharmony 427
displacement field 269
displacement vector 269, 298
distance to plane 44
divergent cleavage fan 376
divergent isogons 384
domain 493
domal structure 183
dominant linear fabric 500
dot product 136, 153, 230, 242, 312, 545
down-dip view 73, 172
down-plunge view 456, 459
down-structure 172
downward inclination 92
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“drag” folds 378
drill hole problem 576
drill hole survey instruments 504
drilling 504
ductile 240
ductile regime 250
ductile shear zone 349
ductility 251
duplex 181

eccentric angle 226
echelon faults 165, 183
edge view 32
edge view of plane 561
effective stresses 222
effective value 411
eigenvalues 233
eigenvectors 233
Einstein summation convention 233
elements 493
ellipses 388
ellipsoid 264
engineering geology 489
enlarged sections 532
epicenter 267
equal-angle net 92
equatorial stereographic net 92
equilibrium mineral assemblages 357
error 5, 8
error propagation 46
Euler angle 118
Euler axis 118
“Eulerian” 270
evolute 425
exaggerated dip angles 529
expansion by cofactors 139
extension 185, 186, 270
extension fractures 240, 253
extensional fault 165
external forces 199
external rotation 278

fabric 493
facing 194
fault 165
fault-bend folds 438
fault-bend folds 184
fault-drag folds 184
fault plane 267
fault-propagation folds 438
fault zone 165, 183
faunal assemblage 520
fence diagrams 527
finite neutral surface 412, 415
finite strain tensor 340
finite-amplitude folds 405
finite-element model 411
first order patterns 255
Fisher distribution 149
flats and ramps 185
flattening 365
flattening index 388, 397
flexural flow 411
flexural-slip folding 410

floor thrusts 181
flow 346, 356
flow laws 402
fluctuation F, 308
fold 369
fold attitudes 380
fold axis 370, 469
fold hinge 443
fold limb 372
fold profile 370
folded layer 40
folding line 11, 552
folding 369
folds with divergent isogons 384
folds with strongly convergent

isogons 384
folds with weakly convergent

isogons 384
footwall 165
force 198
forward model 287
forward modeling 272
forward problems 118, 251
fractional uncertainty 46
free body 204
frictional equilibrium 255
frictional resistive force 241
front view 552, 556
full girdle 483

garnet porphyroblast 350
general two-dimensional stress 208
gentle fold 371
geological history 522
geological structure 543
geometrical flattening 405
geothermobarometry 357
giga-annum 348
girdle 482
golden ratio 283
gradient of h, 161
gradient vector 162
graphical method 554
great circle 88, 89
Griffith cracks 250

hangingwall 165
Hartmann’s rule 252
Heim’s rule 257
heterolithic unconformity 523
high-angle faults 168
hinge faults 188
hinge line 370, 469
hinge point 370, 463
hinge surface 463
hinge zone 372
home position 93
homogeneous 271, 493
homogeneously deformed 271
hoop stresses 255
horizontal axis 110
horizontal components 185
horse 181
hydraulic fractures 255
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hydrostatic component 223
hyperbolas 388
hypocenter 267

identity matrix 332
image plane 551
imbricate structure 181
implied absolute uncertainty 15
implied uncertainty 15
inclination 1
inclined auxiliary view 558
inclined axes 116
inclined drill hole 42
inclined horizontal folds 381
inclined plunging folds 381
incompetent rocks 399, 403
infinitesimal amplitude 404
infinitesimal neutral surface 412
inflection lines 370
inflection points 370, 443
inflection surface 375
inhomogeneous deformation 269
inhomogeneous simple shear 441
interference patterns 451
internal forces 199
“internal friction” 250
internal rotation 278
International System of Units 16
interpretation of folds 516
intersecting planes 64
intersection errors 571
intersection vector 67, 142
invariant properties 234
inverse deformation tensor 338
inverse matrix 333
inverse problem 118, 251, 287, 289
inverse thickness 388
involutes 425
irregular folds 449
isochoric deformation 282
isoclinal fold 371
isogon 383
isometric graph paper 534
isometric projection 534
isotropic 302, 493

Jacob’s staff 31
Jura Mountains 428

Kalsbeek net 476
kilo-annum 348
kinematics 346, 356
kink bands 433
klippe 179

L tectonites 502
Lagrangian 270
Lambert equal-area projection 471
latent roots 234
law of Cosines for Angles 573
law of Cosines for Sides 573
Law of Sines 573
Laws of Sines 564
laws of superposition 520

layer-parallel shortening 365
least-squares criterion 394
left separation 169
left slip 166
left-lateral faults 166
left-slip faults 166
left-stretch tensor 331
length of line 559
limiting equilibrium analysis 243
line 57
line bisector 555
line of sight 72
line vectors 67
linear elastic fracture mechanics 250
linear extrapolation 82
linear fabrics 494
linear interpolation 77
linear structures 497, 498–500
lines of no finite longitudinal strain

(NFLS) 278
lines of no instantaneous stretching 360
listric normal fault 190
listric thrusts 181
lithostatic 257
low-angle faults 168
LS tectonites 502

macroscopic view 274, 354
major axis 389
map coordinates 464
map lithologies 524
map symbols 2, 3, 58, 455, 519
margin of error 8
mass 198
material coordinates 269, 309
material description 270, 291, 337
material displacement gradient tensor 300
material view 356
matrix 331
maximum differential stress 258
maximum observer error 106
maximum operator error 9, 105
maximum strike error 9, 105
maximum trend error 69, 106
mean direction 145
mean normal stress 223
mean resultant length 147
measured stretches 321
median surface 372
mega-annum 348
mélange 520
method of cofactors 158
method of radial projection 532
micro-boudins 354
micro-folds 354
microscopic view 274, 354
migmatites 450
migmatitic gneisses 449
minor axis 389
minor folds 375
mistake 5
mixing 449
modified Griffith criterion 250
modular arithmetic 145
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Mohr Circle 294, 360
for finite strain 314
for stress 210
plane 210

monoclinic symmetry 355
motion 346
mushroom fold 371

nabla 161
nadir point 92
Napier’s Analogies 574
Napier’s device 566
Napier’s rules 566
Napierian triangle 565
narrow forms 286, 306, 307
negative angles 279
neutral folds 380
Newtonian flow 403
NFLS, 278, 280
no vertical exaggeration 532
nodal planes 267
non-coaxial flow 355
non-coaxial superposition 285, 351
non-conformity 523
non-depositional unconformity 523
normal component 200
normal equations 395
normal faults 251
normal pressure 259
normal separation 169
normal slip 166
normal view of plane 553, 561
normalize 131
normalized axial plane thickness 385
normalized exaggerated thickness 531
normalized orthogonal thickness 385
null combination 171

oblique faults 264
oblique horizontal traverse 33
oblique slip 167
oblique-spherical triangles 572
observations and interpretation 518
observed apparent dips 25
obsidian/pumice rock 450
obtuse folds 374
off-axis circle 331
offset line 195
on-axis circle 332
open fold 371
open fractures 261
opposite parts 566
opposite 92, 112, 125
orientational angle 310
oriented cores 505
origin of lines 315
origin of normals 218, 315
origin of planes 218
original continuity 520
original horizontality 520
orthogonal rotation tensor 331
orthogonal thickness 385
orthographic construction 460
orthographic net 539

orthographic projection 10, 539, 551
orthorhombic symmetry 355
outcrop map 519
outcrop pattern 72, 454
outcrop trace 84
outcrop width 30, 33
outliers 6
overburden pressure 254
overcoring 255
overfolds 373
overthrust 168, 179
overturned folds 373

pachymetric indicatrix 388
paleogeological map 522
palinspastic map 522
parallel folds 384, 410
parallel isogons 444
parallel lines 79
parallel unconformity 523
parallelogram rule 134
parametric equations 226
partial limb angles 434
particle 269
passive behavior 441
pathline 356
Pennine Nappes 550
percentage uncertainty 46
perfect fold 373
permissible volume 275
physical flattening 406
physical plane 210
piercing points 178
pitch 57, 568
pitch and plunge 569
pitch of line 61
pivotal faults 188
planar fabrics 494, 496
planar structure 496
Plane 1
plane in compression 200
plane in tension 200
plane stress 204
plotting techniques 93
plunge 57
plug and chug 15
plunge of line 59
plunging folds 454
point maximum 482
point view of line 560
polar net 104
polar triangle 565, 566
pole 97, 315
pole for normals 218
pole for planes 218
pole vector 141
polyharmonic folds 408
pore fluid factor 259
pore fluid pressure 259
pore pressure 222
positive angles 278
positive plunge angles 133
positive rotations 151
positive trend angles 133
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post-circle broad form 286, 307
post-multiply 334
power law creep 402
pre-circle broad form 286, 307
pre-multiplying 336
primitive 89
principal axes 277
principal diameters 93
principal directions 203
principal extension rates 360
principal extensions 349
principal stresses 203, 209
principal stretches 277
principal stretching axes 360
principal views 552
probability 478
products of vectors 136
profile coordinates 464
progress report 521
progressive deformation 350
projection lines 552
projections 551

line 559
plane 560
point 556

projectors 551, 552
propagated uncertainty 48
ptygmatic micro-folds 354
Pumpelly’s rule 377
pure shear flow 367
pure shear stress 207
pure shear 297, 352

ramp 185
random error 6
random samples 478
rate of area strain 360
rate of deformation tensor 357
rate of extension 359
reciprocal quadratic elongation 311
reclined folds 380, 381
recumbent folds 380, 381
related tensors 331
relative displacement 288, 291
relative displacement vector 272
relative uncertainty 46
relative velocity 358
relative velocity field 359
representative elementary volume 275
residual 394
restoration 328
resultant length 147
resultant vector 145, 147
reversal rule 336, 338
reverse separation 169
reverse slip 166
revolve 114
right lateral faults 166
right separation 169
right slip 166
right to left 152
right-hand rule 149
right-spherical triangle 565
right-stretch tensor 331

rigid rotation 109
rock mass 275
rock slopes 489
rollover anticline 185
roof thrusts 181
root mean square error 395
root mean square 9
rotating motion 359
rotation 346
rotation matrices 541
rotational faults 188
rotational problems 154
rotations 149
round down 16
round up 16
rounded folds 372
rounded forms 410
rounding off 16
row matrix 137
row times column multiplication 137, 150, 153
row times column rule 229
Rule of Vs 74, 519

S surfaces 289
S tectonites 502
sample standard deviation 8
sampling problem 487
San Andreas Fault zone 346
S-C fabrics 289
scalar or dot product 21
scaling tool 463
scatter diagrams 474
Schmidegg counter 475
Schmidt net 472
Schnitteffekt 489
seismicity 256
seismogenic zone 259
seismograph records 266
semi-brittle 240
sense of rotation 188
separation 165, 168
Sequential rotations 114
set 487
Shackleton’s rule 377
shear folding 441
shear fractures 240
shear strain 279
shear zone 165, 287
shearing component 200
sheath fold 452
shift 184
side views 552
sides 564
similar folds 384, 441
similar triangles 78
simple shear flow 367
simple shear 272, 276
single-sense shear 444
singular 333
sinistral faults 166
sinistral shear 273
skew-symmetric 363
slickenfiber 176
slickenlines 176
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slickenplanes 176
slickenside 176
slickensteps 176
slickenstriae 176
slickenstructures 176
slickenzone 176
slip 165
slip event 262
small angle intersection 78
small circle 89
small circles 124
snow-ball garnets 350
sole thrust 182
spatial coordinates 269, 309
spatial description 270, 338
spatial view 356
spatially invariant 370
spherical distributions 147
spherical normal 149
spherical projection 88
spherical triangle 564
S-pole diagram 469
standard state 257
static equilibrium 198
steady flow 356
stereogram 89
stereographic projection 88
stirred porridge 449
stored elastic strain energy 262
strain 276, 544
strain distribution 443
strain ellipse 276
strain parameters 313
strain path 352
strain ratio 278
strain refraction 401
strain rosette 316
strain tensors 331
strain-rate tensor 362
stress 201, 205, 206
stress drop 262
stress ellipse 224
stress ellipsoid 264
stress inversion 266
stress matrix 201, 203
stretch 270, 346
stretch history 353
stretching motion 359
strike 1, 2
strike error 569
strike-normal 32
strike notation 2
strike-slip 267
strong fabrics 495
structural bearing 1
structural facing 376
structural contours 84
structure contours 66, 82
structure sections 523
subangular fold 372
subordinate planar fabric 500
subrounded fold 372
sum in quadrature 52
sum of vectors 134

superimposed deformations 284
superimposed stress states 215
symmetric fold 372
symmetric matrix 363, 372
syncline 379
synforms 379
synkinematic metamorphism 349
systematic error 6
systematic joints 487

Taylor series 53
“tectonic rafts” 266
tectonites 494
tensor notation 232
tensors of second rank 229
Terzaghi’s relationship 223
Texas Sharpshooter Fallacy 6
The World Stress Map project 255
thickness 30
thickness in drill holes 41
thickness measurements 32
three drill holes 515
three-point problem 24, 80, 157
thrust 168
thrust faults 251, 427
tight fold 371
tightness 371
tilted fault block 190
top view 552, 556
topographic contours 84
topographic profile 524
topography 547
torque 198
total station 24
trace 234
traction 199
trajectories 288
transected fold 379
transformation of axes 213
transformed axes 396
translating motion 359
translation 346
translation rate 358
translational faults 166
transpose matrices 293
transpose 334, 362
transverse axis 389, 390
trend 1, 57
triclinic symmetry 355
trough 370
trough line 370
true dip 1
true dip vector 21
true length 559
true shape 561
turntable 109
two drill holes 511
two tilts 121
two-dimensional scalar field 161

unambiguous cases 574
uncertainty 5, 8, 46
unconformity 522
uniaxial stress 205
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uniform translation vector, 291
unimodal 147
unimodal distribution 144
unit base vectors 131
unit matrix 332
unit shear 279
unknown scale factor 317
unsteady flow 356
upright horizontal folds 381
upright plunging folds 381

vector analysis 160
vector field 161
vector operator symbol 161
vector processor 150, 291
vector processors 229
vectors 130
velocity field 356
velocity gradient 347
velocity-gradient tensor 358
velocity profile 347
vergence 373
vertical auxiliary view 557

vertical axis 110
vertical exaggeration 527
vertical folds 381
vertical hole 507
vertically exaggerated section 527
visualize 553
von Mises distribution 146
vorticity 360
vorticity gauges 362
vorticity number 362
vorticity tensor 362

wavelength 372
weak fabrics 495
wild folds 449
window 179
Wrench faults 251
Wulff net 92

yield point 250

zenith point 88
zoned minerals 357
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