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Preface to the second
edition

The book written in 1941 by the late Charles Coulson served to
introduce a great many students to the basic ideas that underlie linear
wave motion. Just prior to his death he was beginning to give thought
to the task of revising his book in order to take account of the changes
in the teaching of the subject that have inevitably taken place since it
was first written. It is to be regretted that he left no plan indicating the
modifications he intended to make. Consequently, when accepting his
last request to me to see that a new edition of his book should appear in
print, I had to undertake my own re-planning of this work without
benefiting from any of his ideas or the special gift of physical insight
that he brought to his teaching.

The task of revision is never a straightforward one, and when
working on the present book I was always conscious of the fact that a
text like “Waves”, which has stood the test of time so well, obviously
had a content and style of presentation that suited it to the needs of a
very wide readership. Accordingly, I considered it proper to preserve
as much as possible of the original structure and writing. So, within the
framework of the eight chapters comprising the original book, 1 have
confined my own contributions very largely to the inclusion of new
sections and examples wherever these seemed to be needed.

In recent years there has been a considerable growth in the study of
nonlinear wave phenomena and it seemed important to me that some
account of these matters should be given in this new edition. In order to
accomplish my task within a modest number of pages, and to keep this
first encounter with the subject at a level which is compatible with the
rest of the book, rather careful selection of material was necessary.
Essentially, this amounted to confining the illustrations used to fluid
mechanics, since only there is the structure of problems sufficiently
simple to enable them to be formulated without undue time first being
spent developing the physical background. Despite this restriction, the
chapter contains enough basic material to enable students familiar
with more than a first course in subjects as diverse as solid mechanics,
plasticity, ferromagnetism, hydrology and chromatography to proceed
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as far as formulating and solving certain rather simple problems.

In his Preface to the first edition Charles Coulson wrote “the object
of this book is to consider from an’ elementary standpoint as many
different types of wave motion as possible.” It is my hope that by
revising and extending his work as I have, this same statement is as true
now as it was when he wrote these words in 1941.

Alan Jeffrey
January 1977
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1
The wave equation

§1 Introduction

We are all familiar with the idea of a wave; thus, when a pebble is
dropped into a pond, water waves travel radially outwards; when a
piano is played, the wires vibrate and sound waves spread through the
room; when a television station is transmitting, electric waves move
through space. These are all examples of wave motion, and they have
two important properties in common: firstly, energy is propagated to
distant points; and, secondly, the disturbance travels through the
medium without giving the medium as a whole any permanent dis-
placement. Thus the ripples spread outwards over a pond carrying
energy with them, but as we can see by watching the motion of a small
floating body, the water of the pond itself does not move in the
direction of propagation of the waves. In the following chapters we
shall find that whatever the nature of the medium which transmits the
waves, whether it be air, a stretched string, a liquid, an electric cable or
some other medium, these two properties which are common to all
these types of wave motion, will enable us to relate them together. In
the linear case they are all governed by a certain differential equation
called the wave equation or, as it is sometimes termed, the equation of
wave motion (see §5), and the mathematical part of each separate
problem merely consists in solving this equation with the right bound-
ary conditions, and then interpreting the solution appropriately.

§2. General form of progressive waves

Consider a disturbance ¢ which is propagated in the positive direction
along the x axis with velocity c. There is no need to state explicitly what
¢ refers to; it may be the elevation of a water wave or the magnitude of
afluctuating electric field. Then, since the disturbance is moving, ¢ will
depend on x and r. When ¢ =0, ¢ will be some function of x which we
may call f(x). f(x) is the wave profile, since if we plot the disturbance ¢
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against x, and “‘photograph” the wave at ¢ = 0, the curve obtained will
be ¢ = f(x). If we suppose that the wave is propagated without change
of shape, then a photograph taken at a later time ¢ will be identical with
that at ¢ = 0, except that the wave profile has moved a distance ct in the
positive direction of the x axis. If we took a new origin at the point
x =ct, and let distances measured from this origin be called X, so that
x =X +ct, then the equation of the wave profile referred to this new
origin would be

¢ =f(X).
Referred to the original fixed origin, this means that
¢ =flx—ct). 1

This equation is the most general expression of a wave moving with
constant speed ¢ and without change of shape, along the positive
direction of x. If the wave is travelling in the negative direction its form
is given by (1) with the sign of ¢ changed, so that then

¢ =f(x+ct). )

§3 Harmonic waves

The simplest example of a wave of this kind is the harmonic wave, in
which the wave profile is a sine or cosine curve. Thus if the wave profile
att=0is

(¢)i=0=a cos mx,

and the wave moves to the right with the constant speed ¢ then, at time
t, the displacement, or disturbance, is

¢ =acosm(x —ct). 3)

The maximum modulus of the disturbance a is called the amplitude.
This type of wave profile repeats itself at regular distances 27r/m. The
distance 27/m is known as the wavelength A of this periodic wave
profile. Equation (3) could therefore be written

d=a coszf—r(x—ct). 4)

The time taken for one complete wave to pass any point is called the

period 7 of the wave. It follows from (4) that the argument 2{—’ (x—ct)
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must pass through a complete cycle of values as ¢ is increased by 7. Thus
from the periodicity of the cosine function we conclude that

Iy =2,

and so

T=A/c. (5)

The frequency n of such a periodic wave is the number of waves
passing a fixed observer in unit time. Clearly

n=1/s, 6)
so that
C=HA, @)
and equation (4) may thus be written in either of the equivalent forms,
x t
¢ =acos 217(;—;), 8)
or
¢ =acos 2#()%- nt). 9)

Sometimes it is useful to introduce the wave number k, which is the
number of waves in a unit distance. Then

k=1/A, (10)
and we may write equation (9)
@ = acos 2mw(kx —nt). (11)

If we compare two similar waves
¢1=acos 27 (kx —nt),
¢r=acos {27 (kx —nt)+e},

we see that ¢, is the same as ¢; except that it is displaced a distance
&/2mk or, equivalently, eA/27. The quantity ¢ is called the phase of ¢
relative to ¢,. If ¢ =2, 4, . . . then the displacement is exactly one,
two, ... wavelengths, and we say that the waves are in phase; if
€ =, 3m, ... then the two waves are said to be exactly out of phase.
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Even if a wave is not an harmonic wave, but the wave profile consists
of a regularly repeating pattern, the definitions of wavelength, period,
frequency and wave number still apply, and equations (5), (6), (7) and
(10) are still valid.

§4 Plane waves

It is possible to generalise equation (1) to deal with the case of plane
waves in three dimensions. A plane wave is one in which the distur-
bance is constant over all points of a plane drawn perpendicular to the
direction of propagation. Such a plane is often called a wavefront, and
this wavefront moves perpendicular to itself with the velocity of
propagation c.

Suppose that the unit normal along the direction of propagation is »
and that it has direction cosines (I, m, n). Then if r, with components
(x,y, z), is the position vector of a general point P on the plane
wavefront at time ¢, we see from Fig. 1 that the equation of this
wavefront is

v.r=Ilx+my+nz=p,

where p is the perpendicular distance from the origin O measured
along the vector » to the point Q at which this line meets the
wavefront.

plane
wavefront

Fig. 1
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As the plane wavefront moves with constant speed ¢ along w, it
follows that if Q is distant & from O at time ¢ = 0, so that p = a« +cf, the
above result may be written

Ix + my +nz —ct = a(cont). (12)

If, at any moment ¢, ¢ is to be constant for all x, y, z satisfying (12),
then it is clear that

¢ =f(Ix +my+nz—ct),
or
é=f(w.r—ct), (13)

is a function which fulfils all these requirements and therefore repre-
sents a plane wave travelling with speed ¢ in the direction [:m:n
without change of form. When, later, nonlinear waves are discussed,
we shall see that the name wavefront is also used to characterise a
somewhat different, though related, property of a wave.

§5 The wave equation

The expression (13) is a particular solution of the wave equation
referred to on page 1. Since I, m, n are direction cosines, I>+m?+
n?=1, and it is easily verified that when f is twice differentiable the
function ¢ satisfies the differential equation
2, 0 ¢ Fo_15¢

v ¢—6x2+6y2+622_02 ot (14)
which bears a close resemblance to Laplace’s equation. This is the
equation which is called the wave equation. It is one of the most
important linear partial differential equations in the whole of
mathematics, since it represents all types of linear wave motion in
which the velocity is constant. The expressions in (1), (2), (8), (9), (11)
and (13) are all particular solutions of this equation. We shall find, as
we investigate different types of wave motion in subsequent chapters,
that equation (14) invariably appears, and it will be our task to select
the solution that is appropriate to our particular problem. There are
certain types of solution that occur often, and we shall discuss some of
them in the rest of this chapter, but before doing so, there is one
important property of the fundamental equation to which reference
has already been made that must be explained further.
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§6 Principle of superposition

The wave equation is linear. That is to say, ¢ and its partial derivatives
never occur in any form other than that of the first degree. Conse-
quently, if ¢ and ¢ are any two solutions of (14), a;¢, +az¢, isalsoa
solution, a; and a, being two arbitrary constants. This is an illustration
of the principle of superposition, which states that, when all the
relevant equations are linear we may superpose any number of indi-
vidual solutions to form new functions which are themselves also
solutions. We shall often have occasion to do this and it is, indeed, the
fundamental principle on which methods for seeking solutions to the
wave equation are based.

A particular instance of this superposition, which is important in
many problems, comes by adding together two harmonic waves going
in opposite directions with the same amplitude and speed. Thus, with
two equal amplitude waves similar to (11) moving in opposite direc-
tions, we obtain

¢ =acos 27 (kx —nt)+a cos 2w (kx+ nt)
=2a cos 27kx cos 27nt. (15)

This is known as a stationary wave, to distinguish it from the earlier
progressive waves. It owes its name to the fact that the wave profile
does not move forward. In fact, ¢ always vanishes at the points for
which cos 27kx = 0; that is for

s tp3 s
4k’ 4k’ 4k’

These points are called the nodes of the wave and the intermediate
points, where the amplitude 2a cos 27kx of ¢ is greatest, are called
antinodes. The distance between successive nodes, or successive
antinodes, is 1/2k, which, by (10), is half a wavelength.

Using equal amplitude harmonic wave functions similar to (13), we
find corresponding stationary waves in three dimensions, given by

d=acos{2w(w.r—ct)/A}+acos2w(v.r+ct)/A}
=2acos 2mv .x/A) cos (2mct/A). (16)
In this case ¢ always vanishes on the planes

v.r=Ix+my+nz =+(2m+1)r/4,

x=

where m=0, 1, ..., and these are known as nodal planes.
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§7 Special types of solution

We shall now obtain some special types of solution of the wave
equation which we shall be able to apply to specific problems in later
chapters. We may divide our solutions into two main types, represent-
ing stationary and progressive waves.

We have already dealt with progressive waves in one dimension. The
equation to be solved is

&

19
232

¢’ o

i'o
ox

=3

¢

Its most general solution may be obtained by a method due to
d’Alembert. We change to new variables u =x —ct, and v =x +ct.
Then it is easily verified that under this transformation

0 _3 00 b__ b,

0x oJu av ot ou dv

a¢ a¢ ’o ¢ 624» Po 2 8¢ 9
4222 42¢ 22 ¢ 2P 4228

o Cowon T o oot

When these changes are made the wave equation becomes

62
¢ =0.
ou dv

The most general solution of this is

¢ =f(u)+g(v),

f and g being arbitrary twice differentiable functions of their argu-
ments. In the original variables this is

o =f(x—ct)+g(x+ct). 17

The harmonic waves of §2 are special cases of this, in which f and g are
cosine functions. The waves f and g travel with speed c, in opposite
directions, with f moving to the right and g to the left.

In two dimensions the wave equation is

P, 5_159 18

+
ox’ ay2 c? ot

By an obvious extension of d’Alembert’s method it follows that the
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most general solution involving only plane waves is
¢ =f(x +my —ct)+g(Ix + my +ct), (19)

where, as before, f and g are arbltrary twice differentiable functions of
their arguments and /*+m?=1. Strictly speakmg, these should be
called line waves, since at any moment ¢ is constant along the lines
Ix + my = const.

In three dimensions the partial dlﬁerentlal equation is

So Fo o135

axZ ay? 8z ¢ ot (20)
and the most general solution involving only plane waves is
¢ =f(x +my+nz—ct)+g(x +my +nz +ct), (21)

in which I’+m?+n*=1 and f,g satisfy the same differentiability
condition as before.

There are, however, other solutions of progressive type, not involv-
ing plane waves. For suppose that we transform (20) to spherical polar
coordinates r,60,y, then the three-dimensional wave equation
becomes

79,20, 1 3(5ngM), L o4 17
or? r or +r2sin0 a0 né (22)

sin®0 oy®> c? at*’

If we are interested in solutions possessing spherical symmetry (i.e.
independent of 6 and ¢) we shall have to solve the simpler equation

6¢ 200 _ 16¢ ' 23)

This may be written
& 1 8
?(fd’) == ?(rd'),
showing (cf. equation (17)) that it has solutions

rg =f(r—ct)+g(r+ct),

where f and g are again arbitrary twice differentiable functions of their
arguments. We see, therefore, that there are progressive type solutions

¢ =%f(r—ct)+%g(r +ct). (24)
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Let us now turn to solutions of stationary type. These may all be
obtained by the method known as the separation of variables. In one
dimension we have to solve

Fo_1 59
ax* c*or®
Let us try to find a solution of the form
¢ =X(x)T(),

X and T being functions solely of x and ¢, respectively, whose form is
still to be discovered. Substituting this form of ¢ in the differential
equation and dividing both sides by the product X (x) T(¢) we obtain an
equation involving only ordinary derivatives
1dX_ 1 &T

X dx* T dr*” 25)
The left-hand side is independent of ¢, being only a function of x, and
the right-hand side is independent of x, being only a function of ¢. Since
the two sides are identically equal, this implies that each is independent
both of x and ¢, and must therefore be constant. Putting this constant
equal to —p?, we arrive at the two equations

X"+p*X=0,T"+c*p*T=0. (26)

Employing a concise but obvious notation, we see that these equations
give, apart from arbitrary constants,

X =c.os DX, T= c.os cpt, 27
sin sin
which are to be read X equals cos or sin px, etc. A typical solution
therefore is a cos px cos cpt, in which p is arbitrary. In this expression
we could replace either or both of the cosines by sines, and by the
principle of superposition the complete solution is the sum of any
number of terms of this kind with different values of p.

The constant —p2 which we introduced, is known as the separation
constant. We were able to introduce it in (25) because the variables x
and ¢ had been completely separated from each other and were in fact
on opposite sides of the equation. There was no reason why the
separation constant should have had a negative value of —p® except
that this enabled us to obtain harmonic solutions (27). If we had set
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each side of (25) equal to +p?, the solutions would have been
X =exp (xpx), T = exp (xcpt), (28)

This method of separation of variables can be extended to any
number of dimensions. Thus in two dimensions a typical solution of
(18) is

b= px % gy P rer, 29)

in which p>+¢*>=r%p and q being allowed arbitrary values. An
alternative version of (29), in which one of the functions is exponential,
is

COS CcOoSs
= +
¢ sin P* exp (£qy) sin "¢ (30

in which p>—¢*=r>.

It is easy to see that there is a variety of forms similar to (30) in which
one or more of the functions is altered from an harmonic to a
hyperbolic or exponential term.

In three dimensions we have solutions of the same type, two typical
examples being

COS COS COS COS

2,2, .2_ .2
=, . . . t, +q°+r°= 1
¢ sin px sin v sin rz sin s p 1 r s (3 )

and

cosh cos  cos 2 2.2 2
= :’: —_— —_— + = .
¢ sinh px exp (£qy) sin rz sin sct, p —q +r'=s". (32)

There are two other examples of a solution in three dimensions that
we shall discuss. In the first case we put x =rcos 6, y =rsin 6, and we

use r, 0 and z as cylindrical coordinates. The wave equation then
becomes

éi loag 1 3_¢+_¢= 14’
6r2r6r r’ a0% a9z ¢? ot*
A solution can be found of the form
¢ =R(r)®(0)Z(z)T(¢), (33)

where, by the method of separation of variables, R, @, Z, T are
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functions only of r, 8, z and ¢, respectively, and satisfy the equations

d’R 1dR m 2 d’e 2
—_— - —_——— + = —— —

37T 5 ZRR=0, T m?@,

&’z d&’T

2= 9%  gE=—cp’Tn’=p’-¢". (34

The only difficult equation is the first, and this is just Bessel’s equation
of order m, with solutions J,,(nr) and Y,,(nr). J,, is finite and Y, is
infinite when r =0, so if a solution is required which is finite at the
origin we shall require only the J,, solutions. The final form of ¢ is
therefore

COS _COS  COS

Im
Yo (nr) sin mé sin & sin P £ (35)

¢=

Ifp istobe smgle valued, m must be an integer; but n, ¢ and p may be
arbitrary provided that n>= p—gq?. Hyperbolic modifications of (35)
are possible, similar in all respects to (31) and (32).

Our final solution is one in spherical polar coordinates r, 6, ¢. The
wave equation (22) has a solution R (r)®(0)¥W(y)T(¢), where

2 2
1 d de m?
—_— +1)— =
sin 0 d0< odo) {"(" D sin20}® 0,

2
dR+2dR {2 n(n+1)}R 0.
dr® 'r dr

Here m,n and p are arbitrary constants, but if ¥(y) is to be single
valued, m must be integral. The first two of these equations present no
difficulties. The @-equation is the generalised Legendre’s equation
with solution

0(8) =P, (cos 8),

and if © is to be finite everywhere, n must be a positive integer. When
m =0 and n is integral, P, (cos @) reduces to a polynomial in cos 6 of
degree n, known as the Legendre polynomial P, (cos ). For other
integral values of m, Py’ (cos @) is defined by the equation

m

m M d
P (cos 6) =sin 0————d (s 6)" {P, (cos 6)}.
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A few values of P,(cos ) and P,'(cos 6) are given below, for small
integral values of n and m. When m >n, P,'(cos §) vanishes identi-

cally.
Po(cos §)=1
Py(cos @) =cos 0
P5(cos 8) =3%(3 cos’9—1)
P;(cos 8) =3(5 cos® 8 —3 cos 6)
P.(cos 6) =§(35 cos* 6 —30 cos® 9+ 3)
Pi(cos ) =sin @
P3(cos 8) =3 sin 8 cos 6
P} (cos 8)=3sin @ (5cos’6—1)
P3(cos 8) =3 sin’ 6.

To solve the R-equation put R(r) =r /2S(r), and we find that the
equation for S(r) is just Bessel’s equation

=0,

d’S 1dS (, (n +%)2}
+ +ip*—
dr® rdr { §

—
r
so that
S(')=Jn+1/2(P') or  Y.1,2(pr).

Collecting the various terms, the complete solution, apart from hyper-
bolic modifications, is seen to be

COs

1729, cos
= 1/29n+1/2 m
o=r Yasrrs (pr)P,(cos 6) sin my sin cpt. (36)

If ¢ has axial symmetry, we must only take functions with m =0, and if
it has spherical symmetry, terms with m=n=0. Now Jy,,(z)=
V(2/7z)sin z, and also Y1,2(z) = —V(2/7z) cos z, so that form =n =
0 this becomes

_1COS  COoS
= L. 37
é=r sin pr sin p (37)

A solution finite at the origin is obtained by omitting the cos pr term.
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§8 List of solutions

We shall now gather together for future reference the solutions
obtained in the preceding pages.

Progressive waves

1 dimension

Fp 18 _
—xg;=25 T?, ¢=f(x—ct)+g(x+ct) Qa7
2 dimensions
s, Fo_1 5
axz 8y2 2 5%
¢ =f(lx+my—ct)+g(lx +my +ct), ’+m*=1 (19)

3 dimensions

a¢ K a¢ 132¢

2 2t 2y
x> ay oz® c* ot
¢ =f(x+my+nz—ct)+g(lx +my+nz+ct), P+m*+n*=1 (21)
3 dimensions, spherical symmetry
’p 200 13

1 1
+__—._._ = — — —_—
PYCIRINESv Rl Ry £ ) rf(r ct)+rg(r+ct). (24)

Stationary waves
1 dimension
cos  COS
¢ 1 3¢ ® " sin px sin cpt @7)
o a
& =exp (£px £cpt) (28)
2 dimensions
cOS COS COS 2, 2_.2
= t,p-+q = 29
¢ sinpxsinqysinrc pra=r (29)

cos cos s 2 o
= + - = 30
d sin P* exp (xqy) sin ret,p*—q*=r* (30)
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3 dimensions

Plane Polar Coordinates (r, 6)

 p 139 1a¢ 1 ¢ _Jm, . cOS__cOS
E

02 o =3

a® ror r’a6* Y. sin

Cylindrical Polar Coordinates (7, 6, z)
a¢ 1dp 13°¢ ¢ 135

__________2.3_

Zrar r*a6* o

Jon Cos cOs  cos 2 2 2
= t’ = — .
® Y. (nr) sin mé sin £ sin & n=pP T4

Spherical Polar Coordinates (r, 8, )

Vo, 206, 1 s ,,_.9) 4 L de_135¢
ar ror r’sin a6 a0/ r*sin*@ ap* c* o>’
J, cos

—1729n+172 m
=r P, ) t.
¢ Ym/z(pr) (cos 0) ¥ in P
Spherical symmetry
b 23 130 ,-100S __ COs
=+ ==5 = = t.
o v 2o P sinPsin P

nr) . mé . cnt
(nr) sin

(35a)

(35b)

(36)

37

It should be noted that there are exponential modifications of all the

above equations.

In solving problems, we shall more often require progressive type
solutions in cases where the variables x, y, z are allowed an infinite
range of values, and stationary type solutions when their allowed range

is finite.
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§9 Equation of telegraphy

There is an important modification of the wave equation which arises
when friction, or some other dissipative force, produces a damping.
The damping effect is usually allowed for (see e.g. Chapter 2 and

elsewhere) by the inclusion of a term of the form p%?, which will arise

when the damping force is proportional to the velocity of the vibra-
tions. The revised form of the fundamental equation of wave motion,
known as the equation of telegraphy, is

1(0°p o¢
Vi = { + —}.
P=2 P (38)
. i . . L
If we omit the term ' this equation is the same as that occurring in the

flow of heat, though the mathematical properties of the resulting
equation are then quite different and do not characterise wave propa-
gation. If in (38) we set ¢ = u exp (—pt/2), we obtain an equation for u
of the form

, 1(d°u 1,
Very often p is so small that we may neglect p?, and then (39) is in the
standard form which we have discussed in §8, and the solutions given
there will apply. In such a case the presence of the dissipative term is
shown by a decay factor exp (—pt/2). If this is written in the form
exp (—t/to), then to(=2/p) is called the modulus of decay. When the
term in p® may not be neglected, we have to solve (38), and the method
of separation of variables usually enables a satisfactory solution to be
obtained without much difficulty.

There is an alternative solution to the equation of telegraphy that is
sometimes useful. Taking the case of one dimension, and supposing
that p is so small that p*> may be neglected, we have shown that the
solution of (38) may be written in the form

& =exp (—pt/2)f (x —ct), (40)

where f is any twice differentiable function of its argument. Since f is
otherwise arbitrary, we can put

f(x—ct)y=exp{-p(x—ct)/2c}g(x —ct),

where g is now an arbitrary function with the same differentiability
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properties as f. Substituting this in (40) we get
¢ =exp (—px/2¢)g(x —ct). (41)

This expression resembles (40) except that the exponential factor now
varies with x instead of with ¢.

§10 Exponential form of harmonic waves

Most of the waves with which we shall be concerned in later chapters
will be harmonic. This is partly because, as we have seen in §8,
harmonic functions arise very naturally when we try to solve the wave
equation; it is also due to the fact that by means of a Fourier analysis,
any function may be split into harmonic components, and hence by the
principle of superposition, any wave may be regarded as the resultant
of a set of harmonic waves.

When dealing with progressive waves of harmonic type there is one
simplification that is often useful and which is especially important in
the electromagnetic theory of light waves. We have seenin (11) that a
progressive harmonic wave in one dimension can be represented by
¢ =a cos 2ar(kx —nt). If we allow for a phase ¢, it will be written
¢ =a cos {27 (kx —nt)+e}. Now this latter function may be regarded
as the real part of the complex quantity

a exp {zi[2w(kx —nt)+€]}.

Itis most convenient for much of our subsequent work if we choose the
minus sign and also absorb the phase &€ and the amplitude a into one
complex number A. We shall then write

¢ = A exp {2mi(nt —kx)}, A =a exp (—ig). (42)

This complex quantity is itself a solution of the wave equation, as can
easily be seen by substitution, and consequently both its real and
imaginary parts are also solutions. Since all our equations in ¢ are
linear, it is possible to use (42) itself as a solution of the wave equation,
instead of its real part. In any equation in which ¢ appears to the first
degree, we can, if we wish, use the function (42) and assume that we
always refer to the real part, or we can just use (42) as it stands, without
reference to its real or imaginary parts. In such a case the apparent
amplitude A is usually complex, and since A = a exp (—ie), we can say
that |A | is the true amplitude, and —arg A is the true phase. The speed,
of course, as given by (7) and (10), is n/k.
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We can extend this representation of ¢ to cover waves travelling in
the opposite direction by using in such a case

¢ =A exp {2mi(nt +kx)}. (43)

There is obviously no reason why we should not extend this to two or
three dimensions. For instance, in three dimensions

¢=Aexp{2mi(nt—v.r)} (44)

would represent a harmonic wave with amplitude A moving with
speed n in the positive direction of the unit vector ».

Before concluding this section let us consider a generalisation of the
one-dimensional form of the equation of telegraphy (38) in terms of
the plane wave representation (42). To be precise, we shall consider
the generalised equation of telegraphy

- N

where g, like p, is a constant. Then, clearly, a plane wave corresponding
to an arbitrary choice of n and k in (42) cannot satisfy (45), so to find
the relationship that they must satisfy it is necessary to substitute (42)
into (45). When this is done the compatibility relation is obtained in the
form

4m*n?~i2mpn —(dw’c*k*+q)=0, (46)
so that the frequency n is seen to become complex for real k, with
=_i[l. _1__ 2272 _2n1/2
n 4‘”14"{167 c’k*+(@q-p )}~ 47)

The plane wave (42) then takes the form

¢ = A exp (—pt/2) exp 2n'i{:t$[161r2c2k2+ (4 —-pz)]m—-kx}.
(48)

It now follows that if p > 0 the wave will attenuate with time, but since
from (47) the frequency depends on the wave length A through the
wave number Kk, it also follows that the speed of propagation of the
wave is frequency dependent. Thus the effect of equation (45) on the
propagation of two initially coincident plane waves with different
frequencies will be to separate them as time increases. By analogy with
optics, this frequency dependence of the propagation speed is called



18 The wave equation

dispersion, and the compatibility relation (46) itself connecting n and k
is known as the dispersion relation for differential equation (45). If
p <0 the solution ¢ in (48) will be unstable since it will grow without
bound.

Dispersion in a partial differential equation representing wave
motion leads directly to change of shape of the wave as it propagates.
This can easily be seen by considering an initial wave form to be
resolved into its Fourier components, when their different propagation
speeds, corresponding to different frequencies, lead to a changed wave
form when they are again superposed at some subsequent time.

In general equations of wave motion exhibit dispersion, and only in
exceptional cases, as with the wave equation (14), will distortionless
propagation be possible. A special exception is provided by the
generalised equation of telegraphy (45) in the case that 4q = p?, for
then (48) becomes

& = A exp (—pt/2) exp 2mwki(=ct —x). (49)

This result shows that irrespective of k, all harmonic plane waves will
propagate at the same speed ¢ to the right or left without distortion,
though they will all be equally attenuated by the factor exp (—pt/2).
For this reason wave solutions to the telegraph equation in which
4q = p? are called relatively undistorted waves. This condition is of
considerable importance in telephone line construction where, if it is
satisfied, the signal will be attenuated as it propagates but not dis-
torted.

§11 D’Alembert’s formula

Let us now consider the wave equation

& &
=0 (50)

together with the initial conditions
B 0)=h(x) and 2(x,0)=k(x), (51)

where h and k are arbitrarily assigned differentiable functions for
—00 <x <00, From the form of the solution that will subsequently be
given in equation (57) it will appear that A must be at least twice
differentiable and k at least once differentiable. The conditions (51)
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are called initial conditions because they involve the specification of
the behaviour of the solution ¢ (x, t) at some specific moment in time,
here taken to be t =0. In the theory of partial differential equations
this initial data is known as the Cauchy data for the wave equation.

Our purpose in this section will be to determine how the solution
evolves away from these initial conditions as time increases. Since the
initial or Cauchy data (51) is assumed to be given for all x, the problem
represented by (50) and (51) is called a pure initial value problem for
the wave equation for the unbounded region —00 <x <co.

It is known from (17) that the general solution to (50), without
considering the conditions (51), is

¢=f(x—ct)+g(x+ct), (52)

where f and g are arbitrary twice differentiable functions. So, setting
t=01in (52), we have at once from the first condition in (51) that

f(x)+g(x)=h(x). (53)

It also follows by differentiation of (52) partially with respect to ¢,
followed by setting ¢ = 0 and using the second condition in (51), that

—cf'(x)+cg'(x)=k(x). (54)

Integration of this last result from an arbitrary point a to x then yields
) +g@) = [ k() ds +g@)-f(@).
Combination with (53) now gives
f0=thtn -5 [ k) s-de@-f@), 9
and
g0 =ty [ KOs HE@-f@). 6

Replacing x by x —ct in (55) and by x +ct in (56) and adding gives, by
virtue of (52),
x~—ct

s=H{he-en+hren-2 [ k@ as+L [ k).

a

Absorbing the minus sign in the third term on the right-hand side by
reversing the limits of integration and then combining the last two
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terms finally yields

o, t)zh(x-ct)+h(x +ct)+i

2 2c
which is the solution to our problem. This is called d’Alembert’s
formula and it is an important result since it provides valuable informa-
tion abput the nature of the solution ¢ and the way it depends on the
Cauchy data (51).

The first conclusion that may be drawn from (57) is that the Cauchy
data given in (51) is sufficient to specify a unique solution to the wave
equation. To see this let us suppose, if possible, that two different
solutions ¢ and ¢ to (51) exist that both satisfy the same Cauchy data
(51). Then, because of the linearity of the wave equation, the function
w = ¢ — i will also be a solution of (50), and it will have for its Cauchy
data on the initial line ¢t = 0 the homogeneous conditions

r ) k(s) ds, (57)

d
w(x,0)=0 and g-(x, 0)=0,

corresponding to h =k =0. D’Alembert’s formula then shows that
w(x, t)=0 for all x, and ¢ =0, so that ¢ =4 and hence the solution is
unique. |

To study the way in which the solution depends on the Cauchy data
let us now consider the solution at a general point (x, o) in the (x, t)
plane with ¢,>0. Then from (57) the solution at (xo, fo) is seen to be
determined only by Cauchy data given on the finite interval x,—cto <
X < xo+cty of the initial line. More precisely, it is only influenced by the
functional values of h at the ends of this interval, and by the function k
over the entire interval by virtue of the integral term in (57).

It is for this reason that the interval

xo—ctosxSxo+ct0 along t=0

on the initial line is called the domain of dependence of the point
(xo, to). The triangular region with point (xo, f,) as vertex and the
domain of dependence of this point as base is called the domain of
determinacy that is associated with the domain of dependence. This is
so called because the solution at each point of it is fully determined by
the initial data that has been assigned to the domain of dependence.

An immediate consequence of (57) is that two sets of different initial
data that coincide only in some interval D of the initial line ¢ = 0 define
two different solutions which are, however, identical in their common
domain of determinacy associated with D.
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If a domain of determinacy on which initial data is given is reduced
to a single point P of the initial line, then the solution will only be
determined at that one point. However, the data at P will influence, but
not determine, the solution at points in the half plane ¢ >0 that lie in an
open triangular region with P as vertex and with sides comprising the
straight lines drawn through P in the direction of increasing time with
gradients dx/dt = +c. It is on account of this that the region so defined
is called the range of influence of the point P. These ideas are
illustrated in Fig. 2(a),(b). A straight line through an arbitrary point

Characteristics

Domain of dependence

(a) (b)
Fig.2

(¢, 0) of the initial line that bounds one side of a domain of determinacy
or a range of influence will have either the equation

x—ct=¢ or x+ct=¢&

These lines belong to one of the two families of parallel straight lines
u = const. and v = const., where

u=x—ct and v=x-+ct,

which are collectively called the families of characteristic curves of the
wave equation (50). Here we have expressly used the term curve rather
than line, in relation to characteristics, since in more general situations
where ¢ is not constant the families of characteristics are indeed
families of curves and not, as in this case, families of parallel straight
lines.

To conclude this section let us consider two different initial value
problems for the wave equation (50) that are determined by assigning



22 The wave equation

the two different sets of Cauchy data
. _ 991 _
@) ¢1(x, 0)=hi(x) and —=(x,0)=ki(x)

and

A

= & 0=kx(x),

(ii) ¢2(x,0)=hy(x) and

where hi, hs, k; and k, are functions with the same differentiability

properties as h and k, respectively. Suppose also that
,hl(X)—hz(X),<8 and ,kl(X)—kz(X),<8 (58)

for —co<x <00, with £ >0, § >0 arbitrary.
Then it follows directly from (57) that

b1(x, t)— do(x, ) = 5{h1(x —ct) — ha(x —ct)}

2c

Taking the modulus of this result and employing the elementary
inequality from the calculus

ff(s) as|< o)l s

+3{hi(x +ct)—hax +ct)}+—1— Jx_ ) (k1(s)—k2(s)) ds.

then gives
d1(x, 1) = a(x, )| <3lh1(x —ct) = halx —ct)|

+3hi(x +ct)—ha(x +ct)l+§1; I . lk1(s)—k2(s)] ds.

So, using inequalities (58), this reduces to the result
|b1(x, 1) — dalx, t)| <€ +6t.

Consequently, for any given ¢ = 7, we conclude that by making 4, and
k, sufficiently close approximations to h; and k;, so that ¢, § are
suitably small, the solution ¢, will approximate solution ¢, arbitrarily
closely forall x and 0<t=<r.

Expressed differently, this fundamental result asserts that the solu-
tion to the wave equation depends continuously on the Cauchy data. This
conclusion is in agreement with observations in the physical world, in
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the sense that if the Cauchy data is slightly altered, then the solution
itself is only slightly changed. We shall have occasion to appeal to this
result when we come to study the idealised motion of a plucked string.

§12 Inhomogeneous wave equation

The wave equation (50) is said to be homogeneous, in the sense that
each term depends linearly on ¢. It has associated with it an
inhomogeneous equation

a —
- ?—f(x, t) (59)

in which, as we shall see in subsequent sections, the inhomogeneous
term f(x, t) which does not contain ¢ represents some externally acting
force. We now set out to determine how the inhomogeneous term will
modify d’ Alembert’s formula when (59) is subject to the initial condi-
tions (51).

Our task may be simplified by observing at the outset that if in (59)
we set ¢ = ¢, +¢,, where ¢, is a solution of the homogeneous wave
-equation (50) subject to the general initial data (51), then ¢, will be a
solution of

E2 za ¢2_
v =f(x 1) (60)

subject to the homogeneous initial conditions

$a(x,00=0 and ¢2(x 0)=0. 61)

Henceforth, we need work only with the initial value problem rep-
resented by (60) and (61).

Our starting point will be to integrate (60) over the region D in Fig.
2ato obtain

[[(E-c2%) axar- [ty ar

D D

Employing Green’s theorem to replace the integral over D on the
left-hand side by a line integral around the boundary oD of D then
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reduces this result to

_sgw a(;;:zdﬁ 2a¢2dt_“f(x ) d dr. 2

Now the boundary dD comprises the three directed straight line
segments BQ, QA and AB in Fig. 2a, and along BQ dx/dt = —c, whilst
along QB dx/dt = c. By virtue of these results (62) may be written

55 (a¢2dr+a¢2dx)§ (a¢2dt+a¢2dx)

ot ax at ax
_§A (a¢2dx+ 2a¢2dt) J'J.f(x,t)dxdt. 63)
D

The bracketed terms in the first two integrals are simply the total
differential d¢,, while in the third integrand the first term vanishes on
AB because of the second initial condition in (61), and the second term
vanishes because as AB is directed along the x-axis dt/dx = 0. Hence
we arrive at the result

§BOC d¢2—§OA ¢ d¢2=J‘If(x, t) dx dt

D

so, recalling the directed nature of the segments BQ and QA of the
boundary, we may write

0$:(Q)-c(B)+ e Q) -cto(d) = [ e ax ar. (64

D

The first of initial conditions (61) assert that ¢.(A ) = ¢(B) =0, so that
(64) becomes

$2(0) == f [ e ax at (65)

Expressing the integral over D in terms of the geometry of triangle
ABQ in Fig. 2a we finally arrive at the result

1 to pxotc(to—t")
balxo, to) = — L I f, ¢) dy' dt'. (66)

2c x0—c (to—t')
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Dropping the suffix zero, and using the fact that ¢ =¢;+ ¢, to
combine d’Alembert’s formula (57) and (66) then shows that the
solution to the inhomogeneous wave equation (60) subject to the
general initial conditions (51) is

h(x—ct)+h(x+ct)+LJ”+“k(s)dS
-—-ct

2 2c J,
+-1-j'
2C 0

The form of the solution to the inhomogeneous problem still
expresses the dependence of the solution on the Cauchy data given on
the domain of dependence of the point (x, t) on the initial line ¢ = 0.
However, now the solution also depends on the behaviour of f(x, t) at
all points interior to the triangle with vertices at (x, t), (x —ct, 0) and
(x +ct, 0) in the (x, t) plane. Consequently, for the inhomogeneous
wave equation, it is appropriate to refer to this entire triangular region
as the domain of dependence of the point (x, t).

o, t)=

x+c(t—t’)
j (', ¥y dx’ dr”. (67)

x—c(t—t’)

§13 Boundary conditions and mixed problems

So far the region in which the solution has been obtained has been
unbounded in space, for we have found ¢ (x, t) subject to the condi-
tions —0o<x <00 and t=0. This situation is undesirably restrictive
because problems often arise in which either the region involved is
semi-infinite, so that x =a and ¢t =0, or it is a bounded region in space
so that, say, a <x <b and ¢ = 0. The line x = a in the first case, and the
lines x=a and x=b in the second case, then represent spatial
boundaries for the regions concerned. On account of this, when the
usual initial data is prescribed for ¢ = 0 along that part of the x axis that
lies within the region, such a problem subject to some conditions that
are to be given on the boundaries is then called a mixed initial and
boundary value problem. Let us now show that if ¢ is specified along
these boundaries, the solution will be uniquely determined throughout
the whole of the region that is involved.

To do this we first need a preliminary result that comes by consider-
ing the characteristic parallelogram in Fig. 3 whose sides comprise
segments AB, BC, CD and DA of characteristic lines. Here the centre
of the parallelogram is assumed to lie at the general point (xo, fo), while
A is taken to be the point (xo+¢, to+m) and C the point (xo—&, to—n)
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d)

tob—————

x

with & 7 arbitrary. A simple calculation using the equations of the
families of characteristics through A and C then shows that B is the
point (xo+cn, to+£/c) and D the point (xo—cn, to—§/c). It is now
merely a matter of elementary algebra to verify that as

d(x,t)=f(x—ct)+g(x+ct),
we must have

$(A)+o(C)=¢(B)+(D). (68)

This useful result asserts that if ¢ is known at three corners of a
characteristic parallelogram, then its value at the remaining point is
determined uniquely by (68).

If, now, we consider Fig. 4, the implication of (68) on a mixed initial
and boundary value problem becomes apparent. Suppose the semi-
infinite region x =0, t =0 is involved and that the initial data (51) is
specified on ¢ = 0 for x = 0. Then from (57) the solution will be known
only in the shaded region. Constructing the characteristic parallelo-
gram PQRS and employing (68) we see that if ¢ is known at points
Q, R and S, then it must also be known at P. Consequently, if ¢ is
specified along the spatial boundary x = 0, the solution may be found
at all points of the unshaded region x —ct >0 and x >0, because from
(57)itisknown at all points R, S of the line x —ct = 0. As the solution is
unique in the shaded region, and (68) is a linear relationship, the
solution will also be specified uniquely throughout the semi-infinite
region.
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Fig. 4

A similar argument can be used to construct a unique solution in a
bounded region a <x <b, t =0 when initial data is givenon g <x <
b,t=0 and ¢ is specified along x =a and x =b.

§14 Extension of solutions by reflection

There is an alternative way of looking at the mixed initial and
boundary value problem just discussed that does not employ result
(68). In place of this it extends the problem, to a pure initial value
problem requiring solution in the unbounded region —00<x <00, in
such a way that the solution of the mixed initial and boundary value
problem that is sought coincides with this solution in the region in
question. We illustrate this approach by considering the mixed initial
and boundary value problem for the homogeneous wave equation
associated with the region 0 < x < o0 and ¢ = 0 illustrated in Fig. 4. The
initial conditions given on the positive half of the x-axis are taken to be

¢(x,0)=h;(x) and aEcté(x,0)=k1(x) for x=0, (69)

and the boundary condition on x = 0 will be taken to be the homogene-
ous condition

¢(0,1)=0. (70)
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Result (57) defines the solution in the shaded region in Fig. 4 when
we make the identifications
h(x)=hi(x) and k(x)=kix).

To obtain ¢ in the unshaded region x —¢t >0 and x >0 it would be
necessary to know h; and k, for negative x. This extension of the initial
data may be made as follows. Firstly, from boundary condition (70)
and the general solution (52), we conclude that

0=f(—ct)+g(ct)

or, equivalently, that

f(=x)=—gx). (71)
Using results (55) and (56) with a =0 we have
fo) =t -5 [ ki) as-dEO-fO), (72
€ Jo
and
g =t +5- [ ki) ds +He@+fO).  (73)
CJo

Replacing x by —x in (72) then gives

fex) =t0+5 [ k-9 ds-3eO—-fO).  (74)

0

It now follows that (73) and (74) can only satisfy (71) if
hi(—x)=—hy(x) and ki(—x)=—k,(x), (75)

thereby showing that if &, and k, are to be extended for negative x,
they must both be extended as odd functions.

Thus the solution of the mixed initial and boundary value problem
(69), (70) for the homogeneous wave equation coincides with the
solution of the pure initial value problem

$(x,0)=h(x) and :Lf(x,O)=k(x)

in the semi-infinite region x =0, t =0, when we set

ki(x)forx=0
—ky(x) for x <0.

hi(x)forx=0

—hi(x) forx <0 and k(x)={

h(x)={
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This form of solution of the problem in terms of an associated pure
initial value problem can be interpreted in terms of reflection. To do
this it is first necessary to observe that in x >0, ¢=0 the solution
comprises waves moving to the right and left. Our extension of the
initial data for x <0 then amounts to regarding the line x =0 as a
reflecting barrier with the property that when a wave moving to the left
reaches it, a reflection takes place together with a change of sign.

The specification of ¢ on a boundary is called a fixed boundary
condition to distinguish it from the so called free boundary condition in
which d¢/dx is specified on a boundary. A unique solution to a free
boundary problem may also be constructed from an associated pure
initial value problem by using d’Alembert’s formula and initial condi-
tions deduced from equations (52), (72) and (73). The details of this are
left as an exercise for the reader (see Example 17).

§15 A solved example

Itis appropriate at this point that we should consider an example which
illustrates an alternative method of approach to a mixed initial and
boundary value problem. We choose to discuss one involving a finite
region in the plane. Let us find a solution of

‘¢ v 19

T2t T 37

ox® dy” c¢c” ot
such that ¢ vanishes on the lines x =0,x =a,y =0, y =b. Since the
boundary conditions imposed on ¢ are such that the lines x =0, @, and

y =0, b are nodal lines, our solution must be of the stationary type.
Referring to §8, equation (29), we see that possible solutions are

COS C€OS COS 2 2 o
= . px . . rct, wherep“+q°=r".
¢ sin p sin v sin P rq

Since ¢ is identically zero at x = 0, and y = 0, we shall have to take the
sine rather than the cosine in the first two factors. Further, since at
x =a, ¢ =0 for all values of y, we must have

sinpa =0
and, similarly,
singb =0.

Hence p =mm/a, and g =nw/b, m and n being integers. A solution
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satisfying all the conditions is therefore
. . cos
& =sin (mmx/a) sin (n7y/b) sin ret,

where

r’=x*(m?/a*+n?/b?.
The most general solution for any x,y in the rectangle 0<x <a,
0=<y=<b and t =0 is the sum of an arbitrary number of such terms,

¢ = Y sin(mmx/a) sin (n7y/b){Cpnn cos rct + D, sinrct}. (76)

To make this solution unique it is necessary to specify the constants
Cinn and D,,, which requires knowledge of the initial conditions.
Suppose ¢ and its derivative d¢p/dt are known at t =0, and that the
infinite series (76) may be differentiated term by term. Then at ¢t =0,
this gives

(#)i=0=Y Cpn sin mmx/a sin nry/b,
(0¢p/t)¢=0=2Y, rcDymn sin mmx/a sin ny/b,

where the left-hand sides are known functions. Now by a suitable
choice of the constants C,,, and D,,, we can always represent the
known functions ¢ and d¢/dt at t =0 in terms of these Fourier series
representations. With this choice of C,,, and D, ¢ is then known for
all ¢t =0 through (76). The precise method by which these constants
may be found will be discussed later.

§16 Examples

1. Show that ¢ =f(x cos 6 +y sin @ —ct) represents a wave in two
dimensions, the direction of propagation making an angle 6 with the
axis of x.

2. Show that ¢ =a cos (Ix +my —ct) is a wave in two dimensions and
find its wavelength.

3. What is the wavelength and speed of propagation of the system of
plane waves ¢ =a sin (Ax + By + Cz — Dt)?

4. Show that three equivalent harmonic waves with 120° phase
between each pair have zero sum.
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5. Show that ¢ =r~'/? cos3 6f(r + ct) is a progressive type wave in two
dimensions, r and 6 being plane polar coordinates, and f being an
arbitrary twice differentiable function. By superposing two of these
waves in which f is a harmonic function, obtain a stationary wave, and
draw its nodal lines. Note that this is not a single-valued function unless
we put restrictions upon the allowed range of 6.

6. By taking the special case of f(x) = g(x)=sin px in equation (24),
show that it reduces to the result of equation (36) in which m =n =0.
Use the relation

2 1/2 .
J1/2(x) = (;) sin x.

7. Find a solution of

such that ¢ =0 when ¢t >0, and ¢ =0 when x =0.

8. Find a solution of

such that ¢ =0 when x > +00 or ¢ > +00,

9. Solve the equation
8%z 2 &’z
—z=C¢ 5,

ot ox

given that z is never infinite for real values of x and ¢, and z =0 when
x =0, or when ¢t =0.

10. Solve

6 V aV
wZ o’

given that V =0 when ¢ >0 and when x =0, and when x =1.
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11. x,y,z are given in terms of the three quantities ¢, n, { by the
equations

x =a sinh £ sin 9 cos ¢,

y =a sinh £ sinq sin ¢,

z=a cosh ¢ cos 7.

Show that the equation

is of the correct form for solution by the method of separation of
variables, when £, 1, { are used as the independent variables. Write
down the subsidiary equations into which the whole equation breaks
down.

12. Show that the equation of telegraphy (38) in one dimension has
solutions of the form

COS COS
¢ “gin ™an " exp (—pt/2),

where m and r are constants satisfying the equation r* = m*c—}p>.

13. Consider the generalised equation of telegraphy in the form
& ¢ { K2 o¢ }
+a+b)o + i
ox’ o’ (a b) abé

By means of the substitution ¢ = ¢ exp {g(a +b)t} show that  satisfies
the equation :

3 ./;_Cz M_(a—b)zw
2

or’ ox

Hence deduce that propagation is relatively undistorted if a =5 and
that the progressive wave solution in either direction is of the form

u =exp (—at)f (x ct),
with f an arbitrary twice differentiable function of its argument.
14. Find the solution to the inhomogeneous wave equation

& ¥é .
5%—&% =sin (kx —wt),
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subject to the homogeneous initial conditions
¢(x,0)=0 and ‘;—‘f(x, 0)=0.

Show that when w/k # c the solution comprises three sinusoidal waves
that propagate with constant but different amplitudes and with speeds
+c and w/k. In the resonance case, when w/k =c, show that the
solution comprises two constant amplitude harmonic waves that prop-
agate with speeds +c together with one harmonic wave whose amp-
litude grows linearly with time.

15. Complete the reasoning in §13 that gave rise to equation (68).
Prove that d¢/ax and d¢/dt both satisfy corresponding expressions in
relation to the corners A, B, C and D of a characteristic parallelogram.

16. Use the reasoning of §13 to show how d’Alembert’s formula
together with equation (68) can be used to solve the mixed initial and
boundary value problem in the bounded region 0<x <a and ¢t =0.

17. Consider the mixed initial and boundary value problem
2 2
Po_ 0%

2= 0,
ot ox>

subject to the initial conditions
¢(x,0)=h,(x) and %(x, 0)=ki(x) for x=0
and the homogeneous free boundary condition
%(O, t)=0.
ax

By differentiating the general solution (52) partially with respect to x
and using the free boundary condition, show that

fl(=x)=-g'(x).

Use this result, together with the equations that follow when equations
(72) and (73) are differentiated with respect to x, to prove that if the
solution is to be extended for negative x we must have

hi(-x)=-hi(x) and ki(=x)=ki(x).
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Hence conclude that in the associated pure initial value problem the -
functions 4 ,(x) and k ,(x) must be extended for x < 0 as even functions,
and that after reflection at x = 0 of the leftward moving wave its sign is
unchanged.

18. Outline a method of approach using the notion of reflection that
would enable the previous problem to be solved if the free boundary
condition were to be replaced by a so-called mixed boundary condition
of the form

0 e
ad (0, t)+bax 0,8)=0.
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§17 The governing differential equation

In this chapter we shall discuss the transverse vibrations of a heavy
string of mass p per unit length. By transverse vibrations we mean
vibrations in which the displacement of each particle of the string is in a
direction perpendicular to the length. When the displacement is in the
same direction as the string, we call the waves longitudinal; these
waves will be discussed in Chapter 4. We shall neglect the effect of
gravity; in practice this may be approximately achieved by supposing
that the whole motion takes place on a smooth horizontal plane.

In order that a wave may travel along the string, it is necessary that
the string should be at least slightly extensible; in our calculations,
however, we shall assume that the tension does not change appreciably
from its normal value F. The condition for this (see §18) is that the
wave disturbance is not too large.

Let us consider the motion of a small element of the string PQ (Fig.
5) of length &s. Suppose that in the equilibrium state the string lies
along the axis of x, and that PQ is originally at P,Q,. Let the
displacement of PQ from the x axis be denoted by y. Then we shall
obtain an equation for the motion of the element PQ in terms of the
tension and density of the string. The forces acting on this element,
when the string is vibrating, are merely the two tensions F acting along
the tangents at P and Q as shown in the figure; let ¢ and ¢ + ¢ be the
angles made by these two tangents with the x axis. We can easily write
down the equation of motion of the element PQ in the y direction; for
the resultant force acting parallel to the y axis is F sin (¢ +8y)—
F sin . Neglecting squares of small quantities, this is F cos ¢ 4. The

equation of motion is therefore
62
F cos ¢6¢=p8saT¥. €))
Now we have )
dy 2 ay
tan ¢ =—= ==2
an ¢ % 5 thatsec” ¢ ¢ e ox,
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i
ox -
0 Py Qo x
Fig. 5
so from (1)
2 2
a’y ox
p—=F cos® 1/1? 5;
62y
=F cos* y—3. 2
cos ¢ P (2)

However, elementary arguments show

o=}

when equation (2) becomes

&y _ Q)z}"ﬁ
a ¢ {1+(ax x? ®)

where ¢ =F/p.
This equation is nonlinear because of the presence of the bracketed
term, but if the displacements involved are small enough for us to

ay\? . o . . .
neglect (-a—i’-) compared with unity it may be linearised to give

y 14
x?  ¢?

QD
<
|

(4)

N

(<3
D

t*
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We thus arrive at the linear wave equation already encountered in
Chapter 1.
The general solution

y=f(x—ct)+g(x+ct)

to (4) represents waves of arbitrary shape moving in opposite direc-
tions along this infinite string, and with the constant speed ¢ = (F/p)"/>.
The shape of these progressive waves will remain unchanged as they
propagate.

A more complete discussion, in which we did not neglect terms of
second order, would show us that the speed was not quite independent
of the shape, and indeed, that the wave profile would change slowly
with time. Something of this will be discussed later when in Chapter 9
we come to consider nonlinear equations, but for the time being we
shall be content to work with (4). It is, indeed, an excellent approxima-
tion except when there is a sudden “kink’ in y in which case we cannot

2
neglect (Z—i’) .

§18 Kinetic and potential energies

Since the transverse speed of any point of the string is dy/at we can
easily determine the kinetic energy of vibration. It is
dy\?
T=|3 (—) :
[30(2) ax 5)
The potential energy V is found by considering the increase of length
of the element PQ. This element has increased its length from &x to 8s.

We have therefore done an amount of work F(8s —x). Summing for
all the elements of the string, we obtain the formula

V=JF(és—éx)=J’F{\/(1+(§—z)2)—1} dx
=1 F! (ﬂ)z dx, approximately. (6)

ox

The integrations in (5) and (6) are both taken over the length of the
string and they will be finite provided the disturbance is localised, for
then the remainder of the string will be at rest.
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With a localised progressive wave y = f(x —ct) moving to the right
with speed c, these equations give

7= [ty ax=1F [ (7 a, )
and

v=iF[ (P ax ®
Thus the kinetic and potential energies are equal. The same result
applies to the localised progressive wave y = g(x +ct), moving to the
left with speed c, but it does not, in general, apply to the stationary type

waves y =f(x —ct)+g(x +ct).
We can now decide whether our initial assumption is correct, that
the tension remains effectively constant. If the string is elastic, the
change in tension will be proportional to the change in length. We have

2
seen in (6) that the change in length of an element 8x is %(2—;’) éx.

Thus, provided that g—z is of the first order of small quantities, the

change of tension is of the second order, and may safely be neglected.
This assumption is equivalent to asserting that the wave profile does
not have any large “‘kinks”, but has a relatively gradual variation with
x.

The significance of the curvature of the string on the equation
governing its motion can most easily be seen by observing that the
radius of curvature r at P is, from elementary calculus,

T/

which allows the right-hand side of (4) to be written ¢ cos y/r.

§19 Inclusion of initial conditions

We may now employ d’ Alembert’s formula to obtain a solution to (4)
once initial conditions are given for the string motion. These amount to
specifying its initial shape and the initial transverse speed with which
each point of this infinitely long string is moving.

So, setting

y(x, 0) = h(x) (initial shape)
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and
ay s
5—{-(x, 0) = k(x), (initial transverse speed)

we at once deduce from equation (57), Chapter 1, that the subsequent
displacement is given by

yix, t)=h(x—ct);—h(x +ct)+%1’_ | k(s) ds. ©)

§20 Reflection at a change of density

The discussion above applies specifically to strings of infinite length.
Before we discuss strings of finite length, we shall solve two problems
of reflection of waves from a discontinuity in the string. The first is
when two strings of different densities are joined together, and the
second is when a mass is concentrated at a point of the string. In each
case we shall find that an incident wave gives rise to a reflected and a
transmitted wave.

Consider first, then, the case of two semi-infinite strings 1 and 2
joined at the origin as in Fig. 6. Let the densities per unit length of the
two strings be p, and p,. Denote the displacements in the two strings by

!

y1 and y,. Let us suppose that a train of harmonic waves is incident
from the negative direction of x. When these waves meet the change of
string material, they will suffer partial reflection and partial transmis-
sion. If we choose the exponential functions of §10 to represent each of
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these waves, we may write

¥1 = Yincident  Yreficcteds

(10)
Y2 = Ytransmitteds
where
Yincident = A, €xp 2mi (nt - k1X),
Vrefiected = B1 €xp 2wi(nt + kx), 11)

Ytransmitted = A2 €Xp 271 (nt — k).

A, isreal, but A, and B, may be complex. According to §10 equation
(42), the arguments of A, and B, will give their phases relative to the
incident wave. All three waves in (11) must have the same frequency n,
but since the wave speeds in the two wires are different, they will have
different wavelengths 1/k; and 1/k,. The reflected wave must, of
course, have the same wavelength as the incident wave. Since the
velocities of the two types of waves are n/k, and n/k, (Chapter 1,
equations (7) and (10)), and we have shown in (3) that c¢*=F/p,
therefore

ki/k3=p1/ps. (12)

In order to determine A, and B; we must now use the appropriate
boundary conditions. In this case these are the conditions which must
hold at the interior boundary point x =0. Since the two strings are
continuous, we must have

y1(0,t)=y,(0,t) forally,

and as the two slopes must be the same where the strings meet we also
require

3)’1 3)’2

(0 t)= (O t) forallt.

If this latter condition were not satisfied, we should have a finite force
acting on an infinitesimal piece of string at the common point, thus
giving it infinite acceleration. We shall often meet boundary conditions
in other parts of this book; their precise form will depend of course
upon the particular problem under discussion. In the present case, the
two boundary conditions give

A1 +31 =A2,
211’i(—k1A1 +k1B1) = Zﬂi(—szz).
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These equations have a solution

B, = kl_—lﬁ :‘ﬁ = Z_k‘_ (13)
Ay kit+ky Ay kytkd
Since k1, k; and A, are real, this shows that B, and A, are both real.
A, is positive for all k; and k,, but B, is positive if k; >k, and negative
if k1<k,. Thus the transmitted wave is always in phase with the
incident wave, but the reflected wave is in phase only when the incident
wave is in the denser medium; otherwise it is exactly out of phase.
The coefficient of reflection R is defined to be the ratio, R =

2_ kl_kz
IB1/A| —(k1+k2

2
) which, by (12), we may write

e~ R a9

Since, from (7) and (8), the energy of a progressive wave is propor-
tional to the square of its amplitude, it follows that R represents the
ratio of reflected energy to incident energy. Similarly, since no energy
is wasted, the coefficient of transmission T, which gives the ratio of
transmitted energy to incident energy, is equal to 1 —R,

_ 4\/01‘/02
=W+ 1

§21 Reflection at a concentrated load

A similar discussion can be given for the case of a mass M concentrated
at a point of the string. Let us take the equilibrium position of the mass
to be the origin as in Fig. 7, and suppose that the string is identical on
the two sides. Then if the incident wave comes from the negative side
of the origin, we may write, just as in (10) and (11):

Y1 = Yincident t Yreflected
Y2 = Ytransmitted
where
Yincident = A1 €Xp 27i(nt —kx),
Yrefectea = B1 €xp 27ri (nt +kx), (16)

Yeransmitted = A2 €Xp 27ri(nt — kx).
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Fig.7

The boundary conditions are that for all values of ¢
(i) y1(0,0)=y2(0,9) (17)

2
G H220,0-220,0|-MT%. (18

The first equation expresses the continuity of the string and the second
is the equation of motion of the mass M. We can see this as follows: the
net force on m is the difference of the components of F on either side,
so that if ; and ¢, are the angles made by tangents to the string at M
with the x axis, we have

& yz(0 t) = F(sin ¢, —sin ).

Since ¢, and ql/z are assumed to be small, we may put sin , = tan ¢, =
ayz
ox’

Substituting from (16) into (17) and (18), and cancelling the term
exp 2int, which is common to both sides, we find

A1 +B1 =A2,
2wikF(A,— A, +B;) = 4w’n*MA,.

,sin ¢, = —a—; and (18) is then obtained.

Let us write
mn>M/kF =p. (19)
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Solving these equations then gives

B,_ —ip _—p’—ip ~tp
A, 1+ip 1+p? (20)
Az 1 1""lp

A_1—1+zp~1+p @1)

In this problem, unlike the last, B, and A, are complex, so that there
are phase changes. These phases (according to §10) are given by the
arguments of (20) and (21). They are therefore tan™' (p) and
tan~" (—1/p), respectively. The coefficient of reflection R =|B,/A, [,
which equals p?/(1+p?), and the coefficient of transmission T is
1-R=1/(1 +p2). If we write p = tan 6, where 0<@ <m/2, then we
find that the phase changes are 6 and 7/2+6, and also R = sin’ 0, T=
cos” 6.

§22 Alternative solutions

The two problems in §§20, 21 could be solved quite easily by taking a
real form for each of the waves instead of the complex forms (11) and
(16). The reader is advised to solve these problems in this way, taking,
for example, in §21, the forms

Yincident = @1 €08 2ar(nt —kx),
Yreflected = bl Ccos {27r(nt + kX) + 8}, (22)
Ytransmitted = @2 COS {211' (nt—kx)+ 1]}

In most cases of progressive waves, however, the complex form is the
easier to handle; the reason for this is that exponentials are simpler
than harmonic functions, and also the amplitude and phase are rep-
resented by one complex quantity rather than by two separate terms.

§23 Strings of finite length, normal modes

So far we have been dealing with strings of infinite length. When we
deal with strings of finite length it is easier to use stationary type waves
instead of progressive type waves. Let us now consider waves on a
string of length [, fastened at the ends where x =0, I. We have to find a
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solution of the wave equation
Py_13y
ox? c*at”

subject to the boundary conditions y =0, at x =0, /, for all z. Now by
Chapter 1, §8, we see that suitable solutions are of the type

Cos Cos

It is clear that the cosine term in x will not satisfy the boundary
condition at x =0, and we may therefore write the solution

y =sin px(a cos cpt +b sin cpt).

The constants a, b and p are arbitrary, but we have still to makey =0
at x =[. This implies that sinpl/=0, or that pl=m,2m,37.... It
follows that the solution is

y—sm—z;z(a cos%+b sin n;ct) r=1,2,3,.... (23)

Each of the solutions (23), in which r may have any positive integral
value, is known as a normal mode of vibration. It is also called an
eigenfunction of the wave equation corresponding to the given bound-
ary conditions. The most general solution is the sum of any number of
terms similar to (23) and may therefore be written

. rvrct} (24)

X
Zsm—l——{a,cos 7 +b nT

The values of a, and b, are determined by means of the initial
conditions

y(x, 0) = h(x) (initial shape)

and

ay s .

B;(x, 0) = k (x) (initial transverse speed).
Thus, when =0

y(x, 0)=h(x)=2 a, sin rax/I, (25)
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and
%(x, 0)=k(x)=Y b,(rmc/l) sin rmx/l. (26)

Once h and k have been specified, then each a, and b, is found from
(25) and (26), and hence the full solution is obtained. We shall write
down the results for reference. The Fourier analysis represented by
(25) and (26) gives

1l
a,=zj h(x)sinﬂdx
o {

1
b,=ij k(x) sin 7™ dx. 27)
rmc Jo {

In particular, if the string is released from rest when ¢ = 0, every b, = 0.

§24 String plucked at mid-point

As an illustration of the theory of the last section, let us consider the
case of a plucked string of length / released from rest when the
mid-point is drawn aside through a distance h (as in Fig. 8). In

g

=1

0 172 172

Fig. 8

accordance with (25) and (26) we can assume that

P . rax rarct
y=1> a sm——-l cos——,
r=1

rox

7 and the coefficients a, have to

When ¢ =0, this reduces to ). a, sin
r
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be chosen so that this is identical with

2
y= —I-hx, O0<x=<3l
y=2a-x,  H<x=t
If we multiply both sides of the equation
. rux
y= Z a, sin -—l—

by sinrx/l and integrate from x =0 to x =/, as in the method of
Fourier analysis, all the terms except one will disappear on the
right-hand side, and we shall obtain
) 2 2n rox " 2n rax
-a,= —xsin——dx+| —(—x)sin——dx.
2a, L 7 x sin ] dx J;/z 7 (I ~x)sin ]
Whence

8h . rmw .
a, =—— sin— when r is odd,
Tr 2

=( when r is even.
So the full solution, giving the value of y at all subsequent times, is

_ _81 o 1 sin @Cn+ )7 sin 2n+1)mx cos 2n+1)mct
Y TS @n+1) 2 I ]

Thus the value of y is the result of superposing certain normal modes
with their appropriate amplitudes. These are known as the partial
amplitudes. The partial amplitude of any selected normal mode (the
rth for example), is just the coefficient a,. In this example, a, vanishes
except when r is odd, and then a, is proportional to 1/r”, so that the
amplitude of the higher modes is relatively small.

It is appropriate that here we should add a few words in justification
of this example, since it apparently violates various assumptions
already made. Namely, that the initial data should be assumed to be
differentiable and that the string should have no sudden “kinks” in it.
Both of these conditions are violated at point P in Fig. 8.

The justification for our analysis comes, in fact, from the result
proved at the end of §11 and from the assumption that the displace-
ment is small. The first result enables us to replace the initial profile in
Fig. 8 by a smooth approximation to it by rounding off the kink at P.
The assumption of a small displacement ensures that the radius of

(28)
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curvature of the approximation to the string profile at P is not
unreasonably small, so that equation (4) rather than (3) is the appro-
priate one with which to work.

§25 Energies of normal modes

The rth normal mode (23) has a frequency rc/21l. Also, there are zero
values of y(i.e. nodes) at the points x =0, I/r, 2l/r, ..., (r —Di/r, L. If
the string is plucked with the finger lightly resting on the point //r it will
be found that this mode of vibration is excited. With even-order
vibrations (r even) the mid-point is a node, and with odd-order
vibrations it is an antinode.

We can find the energy associated with this mode of vibration most
conveniently by rewriting (23) in the form

rox { rarct }

y=Asin—cos{——+¢ (29)

l l

Here A is the amplitude and ¢ is the phase. According to (5) the kinetic
energy is

1 2 2.2 2 ‘

T=%p‘L (‘;—f) dx=1—il—'-’3A2sin2{$+s}. (30)
Similarly, by (6) the potential energy is
1 2 2,20

V=1FL (j—i’) dx=%—A2cos2{’—”li’+e}. 31)

Now F/p = ¢?, and so the two coefficients in (30) and (31) are equal.
The total energy of this vibration is therefore
2.2.2

—g A% (32)

The total energy is thus proportional to the square of the amplitude
and also to the square of the frequency. This is a result that we shall
often find as we investigate various types of wave motion.

As a rule, however, there are several normal modes present at the
same time, and we can then write the displacement (24) in the more
convenient form

A, sin——cos{—+¢, (33)

y=1 i {

r

18

rmx {mct }
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A, is the amplitude, and ¢, is the phase, of the rth normal mode. When
we evaluate the kinetic energy as in (30) we find that the “‘cross-terms”
vanish, since

STX

1]
jsinilxsin—dx 0, ifr#s.
o l l

Consequently the total kinetic energy is just

w’c er2A2 {r1il-ct+8’}’
and in a precisely similar way the total potential energy is
2
TFo 2.2 2 {rﬂct }
TE r —te&.
o Y. reA; cos T te

By addition we find that the total energy of vibration is
w’c’p
41

This formula is important. It shows that the total energy is merely the
sum of the energies obtained separately for each normal mode. It is
due to this simple fact, which arises because there are no cross-terms
involving A,A;, that the separate modes of vibration are called normal
modes. It should be observed that this result holds for both the kinetic
and potential energies separately as well as for their sum.

We have already seen that when a string vibrates, more than one
mode is usually excited. The lowest frequency, c/2l, is called the
ground note, or fundamental, and the others, with frequencies rc/2|,
are harmonics or overtones. The frequency of the fundamental varies
directly as the square root of the density. This is known as Mersenne’s
law. The tone, or quality, of a vibration is governed by the proportion
of energy in each of the harmonics, and it is this that is characteristic of
each musical instrument. The tone must be carefully distinguished
from the pitch, which is merely the frequency of the fundamental.

We can use the results of (34) to determine the total energy in each
normal mode of the vibrating string which we discussed in §24.
According to (28) and (33) A, =0, and

8h 1 (2n+1)1r
Qnrly 2

Y rPAL. (34)

A2n+1

Consequently, the total energy of the even modes is zero, and the
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energy of the (2n + 1)th mode is 16c2h’p/(2n + 1)%z*1. This shows us
that the main part of the energy is associated with the normal modes of
low order. We can check these formulae for the energies in this
example quite easily. For the total energy of the whole vibration is the
sum of the energies of each normal mode separately:

16c*h?p = 1
w2l Zo(@2n+1)%

Now 1/12+1/3%+1/5%+...=m*/8 so the total energy is 2c*h’p/l, or
2Fh?/1. But the string was drawn aside and released from rest in the
position of Fig. 8, and at that moment the whole energy was in the form
of potential energy. This potential energy is just F times the increase in
length, 2F{(I*/4 +h?'2~1/2}. A simple calculation shows that if we
neglect powers of h above the second, as we have already done in our
formulation of the equation of wave motion, this becomes 2Fh 2/1, thus
verifying our earlier result.

This particular example corresponds quite closely to the case of a
violin string bowed at its mid-point. A listener would thus hear not
only the fundamental, but also a variety of other frequencies, simply
related to the fundamental numerically. This would not therefore be a
pure note, though the small amount of the higher harmonics makes it
much purer than that of many musical instruments, particularly a
piano.

If the string had been bowed at some other point than its centre, the
partial amplitudes would have been different, and thus the tone would
be changed. By choosing the point properly any desired harmonic may
be emphasised or diminished, a fact well known to musicians.

total energy =

§26 Normal coordinates

We have seen in §25 that it is most convenient to analyse the motion of
a string of finite length in terms of its normal modes. According to (33)
the rth mode of the rth eigenfunction is

. rmx rmct
y=A, sm—-l—— cos {_I +s,}.
We often write this

y, = b, sin . (35)



50 Waves on strings

The expressions ¢, are known as the normal coordinates for the string.
There are an infinite number of these coordinates, since there are an
infinite number of degrees of freedom in a vibrating string. The
advantage of using these coordinates can be seen from (30) and (31); if
the displacement of the string is

y Zl ¢r SIn _. (36)
then
=4pl z b2,
e "; 262, (37)

where a dot denotes differentiation with respect to time.

The reason why we call ¢, a normal coordinate is now clear; for in
mechanics the normal coordinates g1, gz . . . ¢, are suitable combina-
tions of the original variables so that the kinetic and potential energies
can be written in the form

T=a¢3+a,4*+asgs+
V=bigi+baqi+bgi+.... (38)

The similarity between (37) and (38) is obvious. Further, it can be
shown, though we shall not reproduce the analysis here, that Lag-
range’s equations of motion apply with the set of coordinates ¢, in just
the same way as with the coordinates g, in ordinary mechanics.

§27 String with load at its mid-point

We shall next discuss the normal modes of a string of length / when a
mass M is tied to its mid-point as in Fig. 9. Now we have already seen in
§25 that in the normal vibrations of an unloaded string the normal
modes of even order have a node at the mid-point. In such a vibration
there is no motion at this point, and it is clearly irrelevant whether
there is or is not a mass concentrated there. Accordingly, the normal
modes or even order are unaffected by the presence of the mass, and
our discussion will apply to the odd normal modes.
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!

0 172 1/2 x
Fig. 9

|
Just as in the calculations of §§20, 21, in which there was a
discontinuity in the string, we shall have two separate expressions y,
and y, valid in the regions 0<x <1/2 and I/2 < x <. It is obvious that
the two expressions must be such that y is symmetrical about the
mid-point of the string. y, must vanish at x=0 and y, at x =1
Consequently, we may try the solutions

y1=a sin px cos (cpt +¢),
y2=a sinp(l —x) cos (cpt +¢). (39)

We have already satisfied the boundary condition y, =y, at x =[/2.
There is still the other boundary condition which arises from the
motion of M. Just as in (18) we may write this

F[‘””(l/z H-2242, :)] ‘”’(z/z f).

Substituting the values of y; and y, as given by (39) and using the
relation F = czp, we find

pl. pl_pl
2tan2 M

The quantity pl/2 is therefore any one of the roots of the equation
x tan x = pl/M. If we draw the curves y =tan x, y = pl/Mx, we can see
that these roots lie in the regions 0 to 7/2, 7 to 3m/2, 27 to 5#/2, etc.
If we call the roots x;, x, ... then the frequencies cp/2m become
cx,/ml. Xf M is zero so that the string is unloaded, x, = (r + 1/2)r, so the
presence of M has the effect of decreasing the frequencies of odd
order.

= const. (40)
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If we write n for the frequency of a normal mode, then, since
n = cp/ 2, it follows that (40) can be written in the form of an equation
to determine n directly,

x tanx =pl/M, wherex = (wl/c)n. 41)

This equation is called the period equation. Its solutions are the
various permitted frequencies (and hence periods), or eigenvalues,
associated with the normal modes. Period equations occur very fre-
quently, especially when we have stationary type waves, and we shall
often meet them in later chapters. This particular period equation is a
transcﬁndental equation with an infinite number of roots.

!

§28 Damped vibrations

In the previous paragraphs we have assumed that there was no
frictional resistance, so that the vibrations were undamped. In prac-
tice, however, the air does provide a resistance to motion; this is
roughly proportional to the velocity. Let us therefore discuss the
motion of a string of length [ fixed at its ends but subject to a resistance
proportional to the velocity. The fundamental equation of wave

motion (4) has to be supplemented by a term in ‘;—f and it becomes
y 1 {82y ay}
—S=={—5+p—{. 4
a? cla? Par 42)

A solution by the method of separation of variables (cf. §9) is easily
obtained, and we find

y = A exp (—1pt) sin ax cos (V(c’a®~p?/4)t +¢).

Since y is to vanish at the two ends, we must have, as before, sin al =0,

andhencea =rx/l,r=1,2, 3, ....The normal modes of vibration are
therefore

y =A, exp (—3pt) sin r%c cos (gt +&,), (43)
where

- r21r2 C2 P_Z

TP Ty
The exponential term exp (— 3pt) represents a decaying amplitude with
modulus (see §9) equal to 2/p. The frequency q/2 is slightly less than
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when there is no frictional resistance. However, p is usually small, so
that this decrease in frequency is often so small that it may be
neglected.

§29 Method of reduction to a steady wave

There is another interesting method of obtaining the speed of propaga-
tion of waves along a string, which we shall now describe and which is
known as the method of reduction to a steady wave. Suppose that a
wave is moving from left to right in Fig. 10 with speed c. Then, if we

Yl
P és 0 .

Fig. 10

superimpose on the whole motion a uniform speed —c the wave profile
itself will be reduced to rest, and the string will everywhere be moving
with speed c, keeping all the time to a fixed curve (the wave profile).
We are thus led to a different problem from our original one; for now
the string is moving and the wave profile is at rest, whereas originally
the wave profile was moving and the string as a whole was at rest..
Consider the motion of the small element PQ of length 8s situated at
the top of the hump of a wave. If  is the radius of curvature at this top
point, and we suppose, as in §17, that the string is almost inextensible,
then the acceleration of the element PQ is c¢’/r downwards. Conse-
quently, the forces acting on it must reduce to (c*/r)p 8s. But these
forces are merely the two tensions F at P and Q and, just as in §17,
they give a resultant F 8s/r downwards. Equating the two expressions,
we have

c’p

—=8s =F§r£ so thatc? = F/p.
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This is, naturally, the same result as found before. The disadvantage of
this method is that it does not describe in detail the propagation of the
wave, nor does it deal with stationary waves, so that we cannot use it to
get the equation of wave motion, etc. It is, however, very useful if we
are only concerned with the wave speed, and we shall see later that this
simple artifice of reducing the wave to rest can be used in other
problems as well.

§30 Uniqueness of motion by the energy
integral method

We conclude our discussion of vibrating strings by using an energy
argument to give an alternative proof of the uniqueness of the solution
to a mixed initial and boundary value problem. This method is of
interest not only because it establishes the uniqueness of the solution in
this case, but also because it is capable of considerable generalisation.
Let us consider waves on a string that is clamped at its ends x = 0 and
x =a and along which waves move with speed c¢. The transverse
displacement y will thus be determined by the wave equation.

Oy _ 29
9y _ 20% 4
at2 c ax 2 (4 )

for which the boundary conditions are
y(0,8)=y(a,1)=0 forallt. (45)

For initial conditians we will assume that
dy
y(x,0)=h(x) and E(x, 0) =k(x), (46)

where h, k are arbitrary functions with the usual differentiability
properties and subject only to the conditions #(0)=h(a)=k(0)=
k(a)=0 in order to be compatible with the boundary conditions.
Suppose, if possible, that two different solutions y, and y, exist
satisfying these mixed initial and boundary conditions and set w =
y1—Y2. Then, because of the linearity of the wave equation, we have
*w 262w
at ¢ a” “7

while from its manner of definition w must satisfy the homogeneous
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boundary conditions
w(0,t)=w(a,t)=0 foralls, (48)

and the homogeneous initial conditions
w(x,0)=0 and %?(x, 0)=0 for 0<x=a. (49)

From (5) and (6) we know that the total energy E(¢) at time ¢ is

so-[ (@) G e o0

so that as ¢>= F/p,
dE c(owdw  ,ow Ow
a Pl Voo —}
X dx ot
Using (47) to replace 3°w/at in the integral in (51) then enables us to

write
dE 2 J ] <aw aw)
- dx’
dr 7€ )y ax\ar ox

P (e W 3

det pe dt 0x/x=o0 ot 0x/x=a )
This result taken together with the second initial condition in (49) used
for x =0, a then shows

(51)

or

%1? =0 sothatE(t)=const. (52)

Setting ¢ = 0 in (50) and employing both conditions in (49), the first
after differentiation with respect to x, gives the result

E(t)=0 forallt. (53)
However, as the integrand of (50) is essentially non-negative this
implies at once that

aw ow
o (x,t)=0 and 5;(x, 1)=0,

or
w(x, t) = const,
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for 0=<x=<a and all t=0. As w =0 on the initial line we must have
w=y,—y,=0for 0=<x =<a and all t =0. This proves that the solution
is unique.

It follows as a direct corollary of this result that the quantity

“1 fay\2 1 (6_y)2}

E®m= I {2 <6t) +2F ox dx (54)
is an invariant of the mixed initial and boundary value problem (47),
(48) and (49). Expressed differently, we may say that the quantity E(¢)
is conserved in such a problem. This is a strict mathematical conse-
quence of the form of the problem and involves no approximation.
Arguments employing conservation of energy have, of course, already
been used elsewhere in this chapter, though there the justification for
them was essentially based on physical grounds. It only becomes
necessary to make any approximation when E(¢) is identified with the
energy of wave motion on a stretched string. For obvious reasons,

arguments involving an expression analogous to (54) are called energy
integral methods.

§31 Examples

1. Find the speed of waves along a string whose density per unit length
is 0-4 kg m™" when stretched to a tension 0-9 N.

2. A string of unlimited length is pulled into a harmonic shape
y =a cos kx, and at time ¢t =0 it is released. Show that if F is the
tension and p the density per unit length of the stnng, its shape at any
subsequent time ¢ is y =a cos kx cos kct, where ¢’=F/p. Find the
mean kinetic and potential energies per unit length of string.

3. Find the reflection coefficient for two strings which are joined
together and whose line densities are 2-5kgm ™" and 0-9 kgm™".

4. An infinite string lies along the x axis. At t=0 that part of it
between x = +a is given a transverse velocity a®—x>. Describe, with
the help of equation (9), the subsequent motion of the string, the speed
of wave motion being c.

5. Investigate the same problem as in question (4) except that the
string is finite and of length 24, fastened at the points x = +a.
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6. What is the total energy of the various normal modes in question
(5)? Verify, by summation over all the normal modes, that this is equal
to the initial kinetic energy.

7. The two ends of a uniform stretched string are fastened to light rings
that can slide freely on two fixed parallel wires x =0, x =/, one ring
being on each wire. Find the normal modes of vibration.

8. A uniform string of length 3/ fastened at its ends, is plucked a
distance a at a point of trisection. It is then released from rest. Find the
energy in each of the normal modes and verify that the sum is indeed
equal to the work done in plucking the string originally.

9. Discuss fully the period equation (41) in §27. Show in particular
that successive values of x approximate to rm, and that a closer
approximation is x = ra +pl/Mrm.

10. Show that the total energy of vibration (43) is
1plAZ exp (—pt)iq® +pq cos (qt +¢,) sin (qt +¢,) +3p” cos® (qt +¢,)},
and hence prove that the rate of dissipation of energy is
1pplAZ exp (—pt){2q sin (gt +&,) +p cos (qt +e&.)}.

11. Two uniform wires of densities p; and p, per unit length and of
equal length are fastened together at one end and the other two ends
are tied to two fixed points a distance 2/ apart. The tension is F. Find
the normal periods of vibration.

12. The density per unit length of a stretched string is m/x*. The
endpoints are at x = a, 2a, and the tension is F. Verify that the normal
vibrations are given by the expression

A x\ /2 cos ,_mp® 1
y = A sin[6 log. (x/a)](a) sinpt,wheret9 =7

Show that the period equation is 8 log. 2=nm,n=1,2,...

13. A heavy uniform chain of length [ hangs freely from one end, and
performs small lateral vibrations. Show that the normal vibrations are
given by the expression

y = AJo(2pVix/g}) cos (pt +&),
where J, represents Bessel’s function (§7) of order zero, x being

measured from the lower end.
Deduce that the period equation is Jo(2pV{l/g}) =0.
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14. Use the method of §30 to prove the uniqueness of the mixed initial
and boundary value problem

Sy _
ot?

62y
2_
c ax 2>
subject to the initial conditions

ay

y(x, 0)=h(x) and —(x,0)=k(x),
and the mixed boundary conditions
ay
+B—=(0,1)=
ay(0,)+B,2(0,1)=0

and

ad
ay(a,)+B;2(a, =0,

for all t =0, where a, 8 are constants.
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Waves in membranes

§32 The governing differential equation

The vibrations of a plane membrane stretched to a uniform tension T
may be discussed in a manner very similar to that which we have used
in Chapter 2 for strings. When we say that the tension is T we mean that
if a line of unit length is drawn in the surface of the membrane, then the
material on one side of this line exerts a force T on the material on the
other side and this force is perpendicular to the line we have drawn. Let
us consider the vibrations of such a membrane; we shall suppose that
its thickness may be neglected. If its equilibrium position is taken as the
(x, y) plane, then we are concerned with displacements z (xy) perpen-
dicular to this plane. Consider a small rectangular element ABCD as
in Fig. 11 of sides x, §y. When this is vibrating the forces on it are (a)

Tdx
B

Sx Ty

oy
Toy T éx
D

Fig. 11

two forces T 8x perpendicular to AB and CD, and (b) two forces T 8y
perpendicular to AD and BC. These four forces act in the four tangent
planes through the edges of the element. An argument precisely
similar to that uzsed in Chapter 2, §17, shows that the forces (a) give a

resultant T 8x.g;£2 8y perpendicular to the plate. Similarly, the forces
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2

az
(b)reducetoaforce T 8y e 8x. Let the mass of the plate be p per unit
area; then, neglecting gravnty, its equation of motion is

az 2 2
3y’ 6x6y+T 8x8y p8x8y

or
s 2o
ax’ eyl P

This may be put in the standard form of the wave equation in two
spatial dimensions

&z %z 1 d*z
_+_—__
ax? ay2 c?a¥ @
where
c2=T/p. (2)

Thus we have reduced our problem to the solution of the standard
wave equation and shown that the speed of waves along such mem-
branes is ¢ =V (T/p).

§33 Solution for a rectangular membrane

Let us apply these equations to a discussion of the transverse vibrations
of a rectangular membrane ABCD shown in Fig. 12 of sides a and b.
Take AB and AD as axes of x and y. Then we have to solve (1) subject
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to certain boundary conditions. These are that z = 0 at the boundary of
the membrane, for all £. With our problem this means that z = 0 when
x=0,x=a,y=0,y=>b, independent of the time. The most suitable
solution of the equation of wave motion is that of §8, equation (29). It
is

__COS__COS __COS 2 22
2= sinPsin Psin re, pra=r.
If z is to vanish at x = 0, y = 0, we shall have to reject the cosines in the
first two factors. Further, if z vanishes at x = a, then sin pa = 0, so that
p =mmr/a, and similarly ¢ =nw/b, m and n being positive integers.
Thus the normal modes of vibration may be written

z=A sin xsin mcos (rct +¢), 3)

b

where
r’=m?/a*+n*/b*m’.
We may call this the (m, n) normal mode. Its frequency is rc/24r, or
2 2

NEmi “

The fundamental vibration is the (1, 1) mode, for which the frequency

is
(G+32)5)
a’ b*/4p)
The overtones (4) are not related in any simple numerical way to the
fundamental and for this reason the sound of a vibrating plate, in which
as arule several modes are excited together, is much less musical to the
ear than a string, where the harmonics are all simply related to the
fundamental.

In the (m,n) mode of (3) there are nodal lines x =0, a/m,
2a/m,...,a, and y =0, b/n, 2b/n, ..., b. On opposite sides of any
nodal line the displacement has opposite sign. A few normal modes are
shown in Fig. 13, in which the shaded parts are displaced oppositely to
the unshaded.

The complete solution is the sum of any number of terms such as (3),
with the constants chosen to give any assigned shape when ¢ = 0. The
method of choosing these constants is very similar to that of §22,
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(3.3)
Fig. 13

except that there are now two variables x and y instead of one, and
consequently we have double integrations corresponding to (27).

According to (4) the frequencies of vibration depend upon the two
variables m and n. As a result it may happen that there are several
different modes having the same frequency. Thus, for a square plate
the (4, 7), (7, 4), (1, 8) and (8, 1) modes have the same frequency: and
for a plate for which a = 3b, the (3, 3) and (9, 1) modes have the same
frequency. When we have two or more modes with the same fre-
quency, we call it a degenerate case. It is clear that any linear
combination of these modes gives another vibration with the same
frequency.

§34 Normal coordinates for a rectangular
membrane

We can introduce normal coordinates as in the case of a vibrating string
(cf. §26). According to (3) the full expression for z is

z= Z Amn c0s (rct +¢,) sin mT sin n;ry 5)
We write this
n
i ©)

z= Sll'l h— SlIl e
Z,n ¢mn a b

where ¢, are the normal coordinates. The kinetic energy is

” <3t) dx dy, @)
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and this is easily shown to be
T=Y $0ab mn, (®)

where a dot signifies differentiation with respect to time. The potential

energy may be calculated in a manner similar to §14. Referring to Fig.

11 we see that in the displacement to the bent position, the two

tensions T 8y have done work T 8y. (arc AB —6x). As in §17, this
, 0z\2 )

reduces to approximately %T(é) 8x 8y. The other two tensions T 8x

have done work 3T(8z/dy)’ 6x 8y. The total potential energy is there-

fore
oG fes o

In the case of the rectangular membrane this reduces to
V=Y spabc’r’pl.. (10)

It will be seen that T and V are both expressed in the form of Chapter
2, equation (38), typical of normal coordinates in mechanical prob-
lems.

8§35 Circular membrane

With a circular membrane such as a drum of radius a, we have to use
plane polar coordinates r, 8 instead of Cartesians, and the solution of
equation (1), apart from an arbitrary amplitude, is given in §8,
equation (35a). It is

cos
z =J,(nr) sin m@ cos nct.

We have omitted the Y, (nr) term since this is not finite at r = 0. If we
choose the origin of 6 properly, this normal mode may be written

z = I,,(nr) cos m@ cos nct. (11)

If z is to be single-valued, m must be a positive integer. The boundary
condition at r = a is that for all values of ¢ and ¢, J,,(na) cos mé cos nct
equals zero. So that J,,(na)=0. For any assigned value of m this
equation has an infinite number of real roots, each one of which
determines a corresponding value of n. These roots may be found from
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tables of Bessel functions. If we call them n,,,.1, Am2 . . . Amy, . . ., then
the frequency of (11) is n¢/2m, or ch,. /27, and we may call it the
(m, k) mode. The allowed values of m are 0,1, 2,...and of k are
1,2,3,.... There are nodal lines which consist of circles and radial
lines. Figure 14 shows a few of these modes of vibration, shaded parts
being displaced in an opposite direction to unshaded parts.

2,1

1)

©,2) ©.3) 2
Fig. 14

The nodal lines obtained in Figs. 13 and 14 are known as Chladni’s
figures. A full solution of a vibrating membrane is obtained by
superposing any number of these normal modes, and if nodal lines
exist at all, they will not usually be of the simple patterns shown in
these figures. Asin the case of the rectangular membrane so also in the
case of the circular membrane, the overtones bear no simple numerical
relation to the fundamental frequency, and thus the sound of a drum is
not very musical. A vibrating bell, however, is of very similar type, but
it can be shown that some of the more important overtones bear a
simple numerical relation to the fundamental; this would explain the
pleasant sound of a well-constructed bell. But itis a little difficult to see
why the ear so readily rejects some of the other overtones whose
frequencies are not simply related to the fundamental. A possible
explanation is that the mode of striking may be in some degree
unfavourable to these discordant frequencies. In any case, we can
easily understand why a bell whose shape differs slightly from the
conventional, will usually sound unpleasant.
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§36 Uniqueness of solutions

The uniqueness of the solution of a mixed initial and boundary value
problem involving a vibrating plane membrane may be established for
an arbitrary shape of membrane by means of a generalisation of the
energy integral approach of §30. The task of showing this in the case of
arectangular plane membrane is left as an exercise for the reader (§37,
Example 7). It should, however, be noticed that if only boundary data
is given the solution will not be unique, for then any normal mode, or
eigenfunction, will be a possible solution. Only when Cauchy data is
given in addition, comprising the specification of z and 6z/a¢ over the
membrane at time ¢ =0, is there sufficient information available to
determine a unique solution.

The same is true, of course, of the vibrating string clamped at each
end, where again the boundary conditions by themselves suffice only to
determine the normal modes. The task of determining how to specify
sufficient information in order that a solution of a partial differential
equation should be unique is central to the study of such equations.
Something of the important physical consequences of these matters
should already be apparent from our study of waves on strings and
membranes.

§37 Examples

1. Find two normal modes which are degenerate (§33) for a rectangu-
lar membrane of sides 6 and 3.

2. Obtain expressions for the kinetic and potential energies of a
vibrating circular membrane. Perform the integrations over the 6-
coordinate for the case of the normal mode

z = Al (nr) cos m@ cos mct.

3. Arectangular drum is 0-1 m X 0-2 m. It is stretched to a tension of
5000 Nm™', and its mass is 0-02kg. What is the fundamental
frequency?

4. A square membrane bounded by x =0, a and y =0, a is distorted

into the shape
. 2mx . 3
z=A sin—sin 2Ty
a a
and then released. What is the resulting motion?
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5. A rectangular membrane of sides a and b is stretched unevenly so
that the tension in the x direction is T; and in the y direction is T,. Show
that the equation of motion is

xz 2 P37

ay? Par
Show that this can be brought into the standard form by changing to
new variables x/+'T1, y/v/T2, and hence find the normal modes.

T

6. Show that the number of normal modes for the rectangular mem-
brane of §33 whose frequency is less than N is approximately equal to
the area of a quadrant of the ellipse

Hence show that the number is roughly 7pabN?/T.
7. Consider the energy

Em:” {2" ) 2F[ “d"dy

associated with a vibrating rectangular membrane stretched over the
region D with boundary D comprising the rectangle 0<x <a, 0<
y <b. Its motion is governed by the wave equation

a z_ ¥z 9z
(o)
o ax® ay
and it is clamped along 3D so that on this boundary it satisfies the
conditions
z=0 on x=0, x=a, y=0 and y=b.

It also satisfies the initial conditions
a
z(x,y,0)=h(x,y) and a—:(x, y,0)=k(x,y).

By consideration of dE/dt show, by means of Green’s theorem, that
the subsequent motion is unique.
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Longitudinal waves in
bars and springs

§38 Differential equation for waves along a bar

The vibrations which we have so far considered have all been trans-
verse, so that the displacement has been perpendicular to the direction
of wave propagation. We must now consider longitudinal waves, in
which the displacement is in the same direction as the wave. Suppose
that AB in Fig. 15 is a bar of uniform section and mass p per unit
length. The passage of a longitudinal wave along the bar will be
represented by the vibrations of each element along the rod, instead of
perpendicular to it. Consider a small element PQ of length 8x, such
that AP = x, and let us calculate the forces on this element, and hence
its equation of motion, when it is displaced to a new position P'Q". If
the displacement of P to P’ is £, then that of Q to Q' will be £ + 8¢, so
that P'Q’ = 8x +6¢. We must first evaluate the tension at P’. We can do
this by imagining 8x to shrink to zero. Then the infinitesimally small
element around P’ will be in a state of tension T where, by Hooke’s
Law,
extension

orig. length

— ALjp X o€ —0x
8x—>0 ox

P=

1%
—Aax. (1)

Returning to the element P'Q’, we see that its mass is the same as that
: .
of PQ, that is p 6x, and its acceleration is a7§ Therefore
ER3
x—=Tg —Tp
P 3t Q P

8T 3¢
—ax8x—)¢ax26x, by (1).
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P 0
A= < ox | |8
Al 37 8x + 8¢ [~— |8
P' Ql
Fig. 15

Thus the equation of motion for these longitudinal waves reduces to
the usual wave equation

3¢ 13d%¢
T3 3T

2_
Yt ity wherec“=A/p. 2)

The speed of waves along a rod is therefore V(A/p), a result similar in
form to that for the speed of transverse oscillations of a string.
The full solution of (2) is soon found if we know the boundary
conditions.
(i) At afree end the tension must vanish, and thus, from (1), 8¢/dx =
0, but the displacement will not, in general, vanish as well.
(ii) At a fixed end the displacement ¢ must vanish, but the tension will
not, in general, vanish also.

§39 Free vibrations of a finite bar

If we are interested in the free vibrations of a bar of length [/, we shall
use stationary type solutions of (2) as in §8, equation (27). Thus

& = (a cos px +b sin px) cos {cpt +¢€}.

If we take the origin at one end, then by (i) 3¢/dx has to vanish atx =0
and x = [. This means that b = 0, and sin pl =0, so that pl = nw, where
n=1,2,....Thefree modesare therefore described by the functions
nmwx nwct

&, =a, cos e cos { }
This normal mode has frequency nc/2l, so that the fundamental
frequency is ¢/2l, and the harmonics are simply related to it. There are
nodes in (3) at the points x =1/2n, 31/2n, 51/2n, ...(2n—1)l/2n; and
there are antinodes (§6) at x =0, 21/2n,41/2n.. .. I. From (1) it follows

3)
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that these positions are interchanged for the tension, nodes of motion
being antinodes of tension and conversely. We shall meet this
phenomenon again in Chapter 6.

§40 Vibrations of a clamped bar

The case of a rod rigidly clamped at its two ends is similarly solved. The
boundary conditions are now that £ =0 at x =0, and at x =/. The
appropriate solution of (2) is thus

@)

én=a, sinTcos —l"'-+£,,

This solution has the same form as that found in Chapter 2, §23, for the
transverse vibrations of a string.

nwx { nwrct ]

§41 Normal coordinates

We may introduce normal coordinates for these vibrations, just as in
§§26 and 34. Taking, for example, the case of §40, we should write

&= Z‘; &n sin T;—x (5)
where
&, =a, cos {n_-zlrc_t_'_s"}'

The kinetic energy of the element PQ is 3p 8x . £2, so that the total
kinetic energy is

1
L 106 dx = 3 pl2. ©)

The potential energy stored up in P'Q’ is approximately equal to

. .. . . d
one-half of the tension multiplied by the increase in length; or 3A 558):.
Thus the total potential energy is

"1 r0£\2 1 7°n%% ,,
L M5) =33 ek @
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§42 Case of a bar in a state of tension

The results of §§39, 40 for longitudinal vibrations of a bar need slight
revision if the bar is initially in a state of tension. We shall discuss the
vibrations of a bar of natural length [, stretched to a length /, so that its

equilibrium tension T is
T0=A(l _"’). @®)

lo

Referring to Fig. 15, we see that 8x now represents the length of P'Q’
when in the stretched, non-vibrating state. The completely
unstretched length is therefore not 8x but (ly/!) 8x, so that tension at P’
is not given by (1), but by the modified relation

8x +8¢&—(lo/1) 6x

Tp. =A g;l_,ﬂol ( lo / l) ox
Al 8¢ .
=To+ .
To ook’ using (8) 9

The mass of PQ is po(lo/1) 8x where porefers to the unstretched bar, so
the equation of motion is

& aT
po(lo/l) 8x675= TQ Tp =—6x

_N ¢
=l 35 from (9).

We have again arrived at the standard wave equation

ag 1 9%

o where c¢>=A1%/pol}. (10)

It follows that ¢ = (I/lo)co, Where co is the velocity under no permanent
tension. Appropriate solutions of (10) are soon seen to be
&=a, 51ny—;z§cos{£7—lr—c-t+s,,}, forn=1,2.... 11
The fundamental frequency is ¢/2/, which, from (10), can be written
co/2lo. Thus with a given bar, the frequency is independent of the
amount of stretching.
The normal mode (11) has nodes where x =0, I/n, 2l/n,...,l. A
complete solution of (10) is obtained by superposition of separate
solutions of type (11).
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§43 Vibrattons of a loaded spring

We now offer a discussion of the vibrations of a spring suspended from
its top end and carrying a load M at its bottom end. When we neglect
the mass of the spring it is easy to show that the lower mass M in Fig. 16

A B C

x+X+¢
ox + X +6¢
?
M
CY) (b) ©)
unstretched stretched stretched
equilibrium vibrating

Fig. 16

executes simple harmonic motion in a vertical line. Let us, however,
consider the possible vibrations when we allow for the mass m of the
spring. Put m = pl, where p is the unstretched mass per unit and [ is the
unstretched length. We may consider the spring in three stages. In
stage (a) we have the unstretched spring of length [. The element PP’ of
length 8x is at a distance x from the top point A. In stage (b) we have
the equilibrium position when the spring is stretched due to its own
weight and the load at the bottom. The element PP’ is now displaced to
QQ'. P is displaced a distance X downwards and P’ a distance X +6X.
Lastly, in stage (c) we suppose that the spring is vibrating and the
element QQ' is displaced to RR'. The displacements of Q and Q' from
their equilibrium positions are ¢ and ¢ +6¢. The new length RR’ is
therefore 6x + 86X +6¢£. The mass of the element is the same as the mass
of PP', that is, p 8x, and is, of course, the same in all three stages.
We are now in a position to determine the equation of motion of
RR’. The forces acting on it are its weight downwards and the two
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tensions at R and R’. The tension Tx may be found from Hooke’s
Law, by assuming that 8x is made infinitesimally small. Then, as in §42,

_, extension
orig. length’

—2 Lim (6x +6X+8§)—8x,
&x-»0 8x

- (‘3}—‘+a—5) (12)

So the equation of motion of RR' is
8¢
p ¢Sx5t—2 =resultant force downwards

=gp ox + TR'_ TR,
aT
= +— .
gp 6x . éx
Dividing by p 8x and using (12), this becomes

ag N ("X af)
ar’ pl\ax®  ox

This last equation must be satisfied by £ = 0, since this is merely the
position of equilibrium (b). So
A 3°X

ngax

By subtraction we discover once more the standard wave equation

1 9% 2_A_Al
=522 S== 13
x> c*ar” ¢ p m (13)

This result is very similar to that of §42. However, before we can solve
(13) we must discuss the boundary conditions. There are two of these.
Firstly, when x = 0, we must have ¢ =0 for all ¢. Secondly, when x =1,
(i.e., the position of the mass M) we must satisfy the law of motion

M[Z_;g]x:, =Mg —[Tk-+.
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Using (12), this becomes

3’ AToX ag]
| =g-=|—+=| .
[atz]x=l g M[&x 0X Jx=I

As before, this equation must be satisfied by ¢ = 0, since this is just the
equilibrium stage (b). Thus

AfQd
O—g—ﬁ[g]x="

So, by subtraction we obtain the final form of the second boundary

condition
&E A [ag]
—| =-—l=] . 14
[atz]x=l Miox1x=1 ( )
The appropriate solution of (13) is
& =a sin px cos (pct +¢€). (15)

This gives ¢ =0 when x =0, and therefore satisfies the first boundary
condition. It also satisfies the other boundary condition (14) if

pl tan pl = m/M. (16)

By plotting the curves y =tanx, y =(m/M)/x, we see that there are
solutions of (16) giving values of pl in the ranges 0 to w/2, r to
3mw/2,.... The solutions become progressively nearer to nw as n
increases.

We are generally interested in the fundamental, or lowest, fre-
quency, since this represents the natural vibrations of M at the end of
the spring. The harmonics represent standing waves in the spring itself,
and may be excited by gently stroking the spring downwards when in
stage (b). If m/M is small, the lowest root of (16) is small; writing
pl =z, we may expand tan z and get

z(z+23/3+ ..)=m/M.
Approximately
22 (1+2%/3)=m/M.

We may put z> in the term in brackets equal to the first order
approximation z>=m/M, and then we find for the second order
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approximation

e m/M
1+m/3M’

The period of the lowest frequency in (15)is 27/pc, or, 2ml/cz. Using
the fact that ¢> = Al/m, this becomes

1
217\/—-—-—1(M:3m).

If the mass of the spring m had been neglected we should have
obtained the result 27/ (IM/A). It thus appears that the effect of the
mass of the spring is equivalent, in a close approximation, to adding a
mass one-third as great to the bottom of the spring.

§44 Waves in an anharmonic lattice

We conclude this chapter by making a brief study of longitudinal
vibrational waves that can occur in a long coupled chain of spring and
mass systems. Each individual system in the chain will be taken to be of
length L and to comprise N equal masses m attached in a line, one to
the other, by weightless identical springs. When a large number of
these systems are connected to make a long chain it will be sufficient for
us to consider the motion in only one such system. This follows because
if we apply suitable periodic initial conditions there will then be
periodicity of behaviour with any translation of length L, in the sense
that any two masses a distance L apart in the chain will exhibit the
same motion at any given time.

A mathematical model of this type can be used to describe the
atomic vibrations in crystalline solids which, because of their regular
structure, give rise to extremely long periodic chains. Regular struc-
tures of this nature are known as lattices, and their study in terms of the
discrete model just outlined is called lattice dynamics. When the spring
coupling is assumed to obey Hooke’s Law these are called harmonic
lattices, but when the spring behaviour is nonlinear they are then said
to form anharmonic lattices. Our purpose here will be to construct a
continuum approximation to a simple anharmonic lattice. These occur,
for example, in the study of certain materials that exhibit anomalous
heat conduction properties, and for which a continuum description is
found to be more appropriate than a discrete one.
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The situation in the lattice under consideration is illustrated in Fig.
17 where, in the undisturbed state, the masses m are all at a distance
h = L/N apart. We shall let x, measured from point A as origin, be the
general position along the chain, while y; denotes the displacement of
the jth mass from its equilibrium position. The nonlinear spring will be
taken to be described by the simple quadratic law

T=x(A+ad), 17)

where A is the displacement from the equilibrium position and x, « are
constants.

3
3
3
3
3
3

T_—
t~

If a dot is used to denote differentiation with respect to time, it is
readily shown that the equation of motion of the jth mass in

my; =% (yye1~ ;) =%y = yi-1) +xa[(yje1—y;)* = (y; —yj-1)°),  (18)

which follows by considering the forces exerted on the jth mass by the
two adjacent nonlinear springs after displacement. An initial value
problem for this lattice then amounts to specifying (y;);=o0 and (¥;);-0
forj=1,2,...,N.

To reduce this discrete description to a continuum approximation
we now assume that Taylor’s theorem may be used to interpret y;.; in
terms of partial derivatives of y; with respect to x. The justification for
this follows from the closeness of the masses and the smallness of the
displacements y;. We thus start from the relationships

ay h* %y h ay h4ay

Yier = Yi [hax+2‘ax 3ax® 4 axt O(h)]

and

dy h>d’y h’dy h“ay ]
f=Ye_ 4= — — — +__ _.___
YY1 [hax 20 0x2 31 ax> 4! ax* +O®)
Employing these results in (18), and neglecting terms of order
greater than O(h?), we arrive at the nonlinear partial differential
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equation

Fy_ 2 y\2) 3%y
¢ {1+2ah(ax) }axz’ (19)
where ¢?>=xh?/m. The initial conditions for the lattice are then
replaced by the specification of (y),~o and (dy/ax),-o on the initial line
0<x <L, with periodicity conditions at the ends of the interval.

When the spring law is linear, so that @ = 0, the continuum approxi-
mation (19) reduces to the standard wave equation in which c?=
xh’/m. Equation (19) represents the simplest continuum approxima-
tion for the anharmonic lattice characterised by the spring law (17).
This equation is an example of an important class of nonlinear partial
differential equations which are said to be of quasilinear type. In these
equations the highest order derivatives all occur only to degree one.

Although we shall not be able to prove it here, it can be shown that
solutions of this equation always cease to be differentiable after some
finite time 7 (cf. Chapter 9, §102). This is not in agreement with
experimental observations of anharmonic lattices so that equation (19)
cannot be regarded as providing a satisfactory description of the lattice
for times approaching 7. To improve the approximation it is necessary
to retain more terms when the Taylor series are substituted into the
equation of motion (18).

If, instead of neglecting terms of order greater than O(h %), we retain
one more term and neglect terms of order greater than O(h 4), we
obtain in place of (19) the equation

o’y [ay dy\2d’y _h* d'y
2 W) s Tz )
a? ¢ lax® *2a 12 ax* (20)
where again ¢ =xh’/m.

Thisis a fourth-order equation of degree one in its highest derivative

so that this, too, is a quasilinear equation. Its form may be simplified by
means of a change of variable to

au ou EX u
_._.+
o ua y u—=0, 21)

where
E=x—ct, T=cah’, w=h/24a and u=ay/d¢.
This is the celebrated Korteweg—de Vries (KdV) equation first derived

by Korteweg and de Vries in 1895 in connection with long water waves
in shallow channels.
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As this equation cannot be studied here, it must suffice for us to
remark that its solutions do not suffer from the differentiability
difficulties associated with solutions of equation (20), and it can be
used as a continuum approximation to an anharmonic lattice.

The anharmonic lattice has thus provided us with an example of a
wave type physical situation for which a linear wave equation is an
unacceptable mathematical model. Furthermore, although we were
unable to demonstrate it in this account, only the second nonlinear
approximation can be regarded as being in any way satisfactory. This
situation contrasts sharply with the way we were able to approximate
the equation of the string in Chapter 2, §17 by the standard wave
equation.

§45 Examples

1. Find the velocity of longitudinal waves along a bar whose mass is
0-225 kgm™" and for which the modulus is 9% 10° N.

2. Consider a bar in which the cross-section at position x along its
length is a function S (x) of x only. Reformulate the equation of motion

in §38 for an element of the bar to show that it takes the form
oT ¢
ax ox = Spo 5xa—x—2,

where now pq is the density per unit volume of the material of the bar.
Show also that Hooke’s Law implies that the tensile force T is given by

T=S(ija—§,
ax

where Y is a constant for the material of the bar. It is known as Young’s
modulus. Hence deduce that when the cross-section of the bar varies
with x, the displacement £ must satisfy the equation

&+1(§)a_f _13%
ox? S\dx/ax ¢* at”
where ¢>= Y/po.

3. Waves are transmitted from an ultrasonic generator to their point
of application along a bar whose cross-section S obeys the equation

Skx)=Soe ** witha>0.
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Obtain a solution ¢ to the equation derived in the previous example in
the form £(x, t) = h(x) e~ and use it to show that when n*>a?c® the
amplitude of the waves transmitted along the bar grows at an exponen-
tial rate.

4. Two semi-infinite bars are joined to form an infinite rod. Their
moduli are A; and A and the densities per unit length are p, and p-.
Investigate the reflection coefficient (see §20) and the phase change on
reflection, when harmonic waves in the first medium meet the join of
the bars.

5. Investigate the normal modes of a bar rigidly fastened at one end
and free to move longitudinally at the other.

6. A uniform bar of length / is hanging freely from one end. Show that
the frequencies of the normal longitudinal vibrations are (n +3) c/2I,
where c is the velocity of longitudinal waves in the bar.

7. The modulus of a spring is 7-2x 107> N. Its mass is 0-01 kg and its
unstretched length is 0-012 m. A mass 0-04 kg is hanging on the lowest
point, and the top point is fixed. Calculate to an accuracy of one per
cent the periods of the lowest two vibrations.

8. Investigate the vertical vibrations of a spring of unstretched leﬁgth
2! and mass 2m, supported at its top end and carrying loads M at the
mid-point and the bottom.
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Waves in liquids

§46 Summary of hydrodynamical formulae

In this chapter we shall discuss wave motion in liquids. We shall assume
that the liquid is incompressible, with constant density p. This con-
dition is very nearly satisfied by most liquids, and the case of a com-
pressible fluid is dealt with in Chapter 6. We shall further assume that
the motion is irrotational. This is equivalent to neglecting viscosity and
assuming that all the motions have started from rest due to the
influence of natural forces such as wind, gravity, or pressure of certain
boundaries. If the motion is irrotational, we may assume the existence
of a velocity potential ¢ if we desire it. It will be convenient to
summarise the formulae which we shall need in this work.

(i) If the vector u with components (i, v, w) represents the velocity of
any part of the fluid, then from the definition of ¢

u=-V¢=—grad ¢, (1)

so that in particular u = —d¢/dx, v =—d¢/dy, w = —d¢d/dz.
(ii) On a fixed boundary the velocity has no normal component, and
hence if 3/dv denotes differentiation along the normal,

ap/ov =0. (2)

(iii) Since no liquid will be supposed to be created or annihilated, the
equation of continuity must express the conservation of mass; it is

du dv dw
a=—t—t—=
Veu= Ty ez ®)
Combining (1) and (3), we obtain Laplace’s equation
2 6 ¢ a d> 9 d>
= =0. 4
Ve = ay +7 4

(iv) If H(x, y, z, t) is any property of a particle of the fluid, such as its
velocity, pressure or density, then dH/at is the variation of H at a
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particular point in space, and
| DH
Dt
is the variation of H when we keep to the same particle of fluid. This

quantity is known as the total derivative, or the material derivative
following the fluid, and it can be shown that

or,

Pﬂ:gl.[-_l.{,.uéﬂ.*.v_ag.*.wi{ (5)
Dt o “ox 3y 8z "
(v) If the external forces acting on unit mass of liquid can be rep-
resented by a vector F, then the equation of motion of the liquid may

be expressed in vector form

Du 1
—=F--Vp.
Dt P vp
In Cartesian form this is
a—u+u%+vy+w%=ﬂ—}-QIZ, (6)

ot ax dy az

with two similar equations for v and w.

(vi) Animportant integral of the equations of motion can be found in
cases where the external force F has a potential V, so that F=-VV.
The integral in question is known as Bernoulli’s Equation:

2 t

where C is an arbitrary function of the time. Now according to (1),
addition of a function of ¢ to ¢ does not affect the velocity distribution
given by ¢ ; it is often convenient, therefore, to absorb C into the term

2ilysv-2_g )
p a

%? and (7) can then be written

£+lu2+ V——%=const. (8)
p 2 ot

A particular illustration of (8) which we shall require later occurs at the



Tidal waves, general conditions 81

surface of water waves; here the pressure must equal the atmospheric
pressure and is hence constant. Thus at the surface of the waves
(sometimes called the free surface)

1,

¢
— + ——— .
> n+V o = constant )

§47 Tidal waves and surface waves

We may divide the types of wave motion in liquids into two groups; the
one group has been called tidal waves, and arises when the wavelength
of the oscillations is much greater than the depth of the liquid. Another
name for these waves is long waves in shallow water. With waves of this
type the vertical acceleration of the liquid is neglected in comparison
with the horizontal acceleration, and we shall be able to show that
liquid originally in a vertical plane remains in a vertical plane through-
out the vibrations; thus each vertical plane of liquid moves as a whole.
The second group may be called surface waves, and in these the
disturbance does not extend far below the surface. The vertical
acceleration is no longer negligible and the wavelength is much less
than the depth of the liquid. To this group belong most wind waves and
surface tension waves. We shall consider the two types separately,
though it will be recognised that tidal waves represent an approxima-
tion and the results for these waves may often be obtained from the
formulae of surface waves by introducing certain restrictions.

§48 Tidal waves, general conditions

We shall deal with tidal waves first. Here we assume that the vertical
accelerations may be neglected. One important result follows
immediately. If we draw the z axis vertically upwards (as we shall
continue to do throughout this chapter), then the equation of motion in
the z direction as given by (6), is

We are to neglect %‘tg and thus

9
P _ —gp, sop =—gpz +constant.

0z
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Let us take our (x, y) plane in the undisturbed free surface, and write
{(x, y, t) for the elevation of the water above the point (x, y, 0). Then, if
the atmospheric pressure is po, we must have p = po when z =¢. So the
equation for the pressure becomes

p=potgoe({-2z). (10)

We can put this value of p into the two equations of horizontal motion,
and we obtain

Du - o Dv a
Dr 8 D 8y (1)
The right-hand sides of these equations are independent of z, and we
deduce therefore that in this type of motion the horizontal acceleration
is the same at all depths. Consequently, as we stated earlier without
proof, in shallow water the velocity does not vary with the depth, and
the liquid moves as a whole, in such a way that particles originally in a
vertical plane, remain so, although this vertical plane may move as a
whole.

§49 Tidal waves in a straight channel

Let us now apply the results of the last section to discuss tidal waves
along a straight horizontal channel whose depth is constant, but whose
cross-section A varies from place to place. We shall suppose that the
waves move in the x direction only (extension to two dimensions will
come later). Consider the liquid in a small volume as in Fig. 18
bounded by the vertical planes x, x +68x at P and Q. The liquid in the
vertical plane through P is all moving with the same horizontal velocity
u(x) independent of the depth. We can suppose that A varies suffi-
ciently slowly for us to neglect motion in the y direction. We have two
equations with which to obtain the details of the motion. The first is
(11) and may be written

ou du du ol

—tu—+w—=-g—=

at ax 9z ax
Since u is independent of z, we have ou/dz = 0. Further, since we shall
suppose that the velocity of any element of fluid is small, we may
neglect u(du/dx) which is of the second order, and rewrite this
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‘

AN

Fig. 18
equation
ou _ a_{
o Bax (12)

The second equation is the equation of continuity. Equation (3) is not
convenient for this problem, but a suitable equation can be found by
considering the volume of liquid between the planes at P and Q, in Fig.
18. Let b(x) be the breadth of the water surface at P. Then the area of
the plane P which is covered with water is [A +b({]p; therefore the
amount of liquid flowing into the volume per unit time is [(A +b¢)u 1p.
Similarly, the amount flowing out per unit time at Q is [(A +b{)ulo-
The difference between these is compensated by the rate at which the
level is rising inside the volume, and thus

4

(A +b)uwlp —[(A +bulo=b SxE

Therefore

(A +bOul =t

Since blu is of the second order of small quantities, we may neglect this
term and the equation of continuity becomes

oL

——(A )=b>. (13)
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Eliminating u between (12) and (13) gives us the equation

FL 9 ( a;)
ar® ox Agax ) (14)
In the case in which A is constant, this reduces to the standard form
Fr 18 .
;€=? 5t—§ withc?= Ag/b. (15)

This is the familiar wave equation in one dimension, and we deduce
that waves travel with speed V(Ag/b). If the cross-section of the
channel is rectangular, so that A = bh, h being the depth, then

c =(gh). (16)

With an unlimited channel, there are no boundary conditions
involving x, and to our degree of approximation waves with any profile
will travel in either direction. With a limited channel, there will be
boundary conditions. Thus, if the ends are vertical, u =0 at each of
them.

We may apply this to a rectangular basin of length /, whose two ends
are at x =0, . Possible solutions of (15) are given in §8, equation (27).
They are

{ =(a cos px + B sin px) cos (cpt +¢).
Then, using (13) and also the fact that A = bh, we find

d . .
5:%@ cos px + B sin px) sin (cpt +¢).

and so

u =£—(a sin px — B cos px) sin (cpt +¢€).

The boundary conditions u =0 at x=0,/, imply that 8 =0, and
sin pl =0. So

L =a, cos%rfcos{g;—c—t+s,}, forr=1,2,3,... 17

and

(18)

U, =—-sin—sin——+g¢,.

ac . rox . {nrct }
h l l
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It will be noticed that nodes of u, and {, do not occur at the same

points.
The vertical velocity may be found from the general form of the
equation of continuity (3). Applied to our case, this is

u Jow

ox o0z

Now u is independent of z and w = 0 on the bottom of the liquid where
= —h. Consequently, on integrating we find

Th (z+h) cosTsm —l—+8,

We may use this last equation to deduce under what conditions our
original assumption that the vertical acceleration could be neglected, is
valid. For similarly to (12), the vertical acceleration Dw,/Dt is effec-
tively ow,/dt, giving

w,=-(z+h)-?;-=_ma'c rwx.{nrct } (19)

w’r’c’a, +h rax gzc_t+
7h (z+h)cos ] cos{ ] e,}.
The maximum value of this is 7°r°ca,/I?, and may be compared with
the maximum horizontal acceleration zrc2a,/lh. The ratio of the two
for an arbitrary rth mode is rmh/l; that is 2mwh/A, since, from (17)
A =2l/r. We have therefore confirmed the condition which we stated
as typical of these long waves, namely that the vertical acceleration
may be neglected if the wavelength is much greater than the depth of

water.

§50 Tidal waves on lakes and tanks

We shall now remove the restriction imposed in the last section to
waves in one dimension. Let us use the same axes as before and
consider the rate of flow of liquid into a vertical prism bounded by the
planes x,x +6x,y,y +8y. In Fig. 19, ABCD is the undistributed
surface, EFGH is the bottom of the liquid, and PQRS is the moving
surface at height ¢(x, y) above ABCD. The rate of flow into the prism
across the face PEHS is [u(h +{) y]., and the rate of flow out across
RQFG is [u(h +¢) 8y Jc+sx- The net result from these two planes is a

gain :

a
—a{u(h +{) 6x by.
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Similarly, from the other two vertical planes there is a gain
d
——— + .
oy L+ D) 88y

The total gain is balanced by the rising of the level inside the prism, and
thus

]
—a{u(h +{)} 6x 6y—-%{v(h + )} 6x 8y =g—f6x 8y.

As in §49 we may neglect terms such as u{ and v¢, and thus write the
above equation of continuity in the form

a(hu)_{_a(hv)= _@’. 20)
x  ay at
We have to combine this equation with the two equations of motion
(11), which yield, after neglecting square terms in the velocities,

w__ o w__ o

ot ox’ ot ay

Eliminating 4 and v gives us the standard equation

3/.d a/,a 1d%¢
—— —_— +_ — =,
ax (haf) dy (haf) g o’ 22)
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If h is constant (tank of constant depth) this becomes
2 2 1 2
g¢, 3¢ LK ci=gh. (23)

x® oy cor
This is the usual wave equation in two dimensions and shows that the
velocity is v (gh). If we are concerned with waves in one dimension, so
that { is independent of y (as in §49) we put 8°¢/dy>= 0 and retrieve
(15).
We have therefore to solve the wave equation subject to the
boundary conditions;
(i) w=0atz=-h,

(ii) gf =( at a boundary parallel to the y axis, and
4 .
5;= 0 at a boundary parallel to the x axis,

(iii) %=O at any fixed boundary, where 56; denotes differentiation

along the normal to the boundary.

This latter condition, of which (ii) is a particular case, can be seen as
follows. If Ix + my = 1 is the fixed boundary, then the component of the
velocity perpendicular to this line has to vanish. That is, lu +mv = 0.
By differentiating partially with respect to ¢ and using (21), the
condition (iii) is obtained.

§51 Tidal waves on rectangular and circular
tanks

We shall apply these formulae to two cases; first, a rectangular tank,
and, second, a circular one, both of constant depth.

Rectangular tank. Let the sides be x=0, a and y =0, b. Then a
suitable solution of (23) satisfying all the boundary conditions (i) and
(if) would be

{=A cos[i‘?-cosg{—ycos (rmct+¢), 24)

where p=0,1,2...,4=0,1,2,..., and r’=p?*/a’*+4*/b>. This
solution closely resembles that for a vibrating membrane in Chapter 3,
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§33, and the nodal lines are of the same general type. The reader will
recognise how closely the solution (24) resembles a “choppy sea.”

Circular tank. If the centre of the tank is taken as the origin and its
radius is a, then the boundary condition (iii) reduces to 3/dr =0 at
r = a. Suitable solutions of (23) in polar coordinates have been given in
Chapter 1, equation (35a). We have

{ = A cos m8J,,(nr) cos (cnt +¢). (25)

We have rejected the Y,, solution since it is infinite at r =0, and we
have chosen the zero of @ so that there is no term in sin mé. This
expression satisfies all the conditions except the boundary condition
(iii) at r = a. This requires that J;, (na)=0. For a given value of m
(which must be integral) this condition determines an infinite number
of values of n, whose magnitudes may be found from tables of Bessel
Functions. The nodal lines are concentric circles and radii from the
origin, very similar to those in Fig. 14 for a vibrating membrane. The
period of this motion is 27/cn.

§52 Paths of particles

It is possible to determine the actual paths of individual particles in
many of these problems. Thus, referring to the rectangular tank of §49
the velocities u and w are given by (18) and (19). We see that

w —mr(z+h) rox

—=———cot—.

u l l
This quantity is independent of the time and thus any particle of the
liquid executes simple harmonic motion along a line whose slope is
given by the above value of w/u. For particles at a fixed depth, this

direction changes from purely horizontal beneath the nodes to purely
vertical beneath the antinodes.

§53 Method of reduction to a steady wave

We shall conclude our discussion of tidal waves by applying the
method of reduction to a steady wave, already described in §29, to the
case of waves in a channel of constant cross-section A and breadth of
water line b. This is the problem of §49 with A constant. Let ¢ be the
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velocity of propagation of a wave profile. Then superimpose a velocity
~c on the whole system, so that the wave profile becomes stationary
and the liquid flows under it with mean velocity c. The actual velocity at
any point will differ from c since the cross-sectional area of the liquid is
not constant. This area is A +b{, and varies with {. Let the velocity be
¢ +0 atsections where the elevation is {. Since no liquid is piling up, the
volume of liquid crossing any plane perpendicular to the direction of
flow is constant, so that

(A +b¢)(c +0) =constant = Ac. (26)

We have still to use the fact that the pressure at the free surface is
always atmospheric. In Bernoulli’s equation at the free surface (9) we
may put d¢/at = 0 since the motion is now steady motion; also V = g¢
at the free surface. So, neglecting squares of the vertical velocity, this
gives

3(c +6)*+g¢ =const.=3c>.

Eliminating @ between this equation and (26), we have
A 2 C 2

(A+b{)2+2g{ C ’

and so,
e Mk ey

Consequently we arrive at the result

2__2_8(A+b{)2
=% 2a+b 27)

If ¢ is small, so that we may neglect { compared with A/b, then this
equation gives the same result as (16), namely, c*>=gA/b. We can,
however, deduce more than this simple result. For if {>0, the
right-hand side of (27) is greater than gA/b, and if £ <0, it is less than
gA/b. Thus an elevation travels slightly faster than a depression and so
it is impossible for a long wave of this type to be propagated without
change of shape. Further, since the tops of waves travel faster than the
troughs, we have an explanation of why waves break near the sea-
shore when they reach shallow water.
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§54 Surface waves, the velocity potential

We now consider surface waves, in which the restriction is removed
that the wavelength is much greater than the depth. In these waves the
disturbance is only appreciable over a finite depth of the liquid. We
shall solve this problem by means of the velocity potential ¢. We know
¢ must satisfy Laplace’s equation (4) and at any fixed boundary
d¢/dv =0, by (2). There are, however, two other conditions imposed
on ¢ at the free surface. The first arlses from Bernoulli’s equation (9).
If the velocity is so small that u”> may be neglected, and if the only
external forces are the external pressure and gravity, we may putu’ = 0
and V =g{ in this equation, which then becomes
o¢

{ [ ot ] free surface.
The second condition can be seen as follows. A particle of fluid
originally on the free surface will remain so always. Now the equation
of the free surface, where z = {(x, y, t) may be written

0=f(x,y,z,t)=¢(x,y,t)—z.

Consequently, f is a function which is always zero for a particle on the
free surface. We may therefore use (5) with H put equal to f, and we
find

(28)

Df oL, 93 93
0=E_5+u5;+05_w
Now from (28)
o _ 1a(a¢)__1a_u
dx g at\ox

on the surface.

Thus 3£/éx is a small quantity of order of magnitude not greater than
u; consequently u(3{/dx) and v(3{/dy) being of order of magnitude
not greater than u”, may be neglected. We are left with the new
boundary condition

x_,--% (29)

at 9z’

Combining (28) and (29) we obtain an alternative relation

¢ o _
a8 T (30)
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We summarise the conditions satisfied by ¢ as follows:

(i) Laplace’sequation V¢ = 0in the liquid, (C))]
(ii) d¢p/3v = 0on afixed boundary, )
(iii) ¢ = é %(?b on the free surface, (28)
(iv) %__% on the free surface, (29)
ag 0z
9o, 9% _
) pYe; +g p 0 on the free surface. 30)

Only two of the last three conditions are independent.

§55 Surface waves on a long rectangular tank

Let us apply these equations to the case of a liquid of depth h in an
infinitely long rectangular tank, supposing that the motion takes place
along the length of the tank, which we take as the x direction. The axes
of x and y lie, as usual, in the undisturbed free surface. Condition (i)
above gives an equation which may be solved by the method of
separation of variables (see §7), and if we want our solution to
represent a progressive wave with velocity c, a suitable form of the
solution would be

d=(Ae™+Be ™)cosm(x —ct).

A, B, m and ¢ are to be determined from the other conditions (ii)—(v).
At the bottom of the tank (ii) gives d¢/0z =0,0or A e ™ —B e™ =0.
So A e =B e™ =3C, say, and hence

¢ = C coshm(z +h) cos m(x —ct). (31)

Condition (v) applies at the free surface where, if the disturbance is not
too large, we may put z = 0; after some reduction it becomes

c?=(g/m) tanh mh.
Since m = 2m/A, where [ is the wavelength, we can write this

2 8\ 27h
==—tanh—. 32
27 an A (32)
Recalling from Chapter 1, §3, that ¢ =n/k and A = 1/k, we recognise
that (32) is merely the dispersion relation for this wave motion. Itis this
strong dispersive action in water waves that leads to the changing
shape of waves as they progress.

[
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Condition (iii) gives us the appropriate form of ¢; it is
mcC
I4 =——g— cosh mh sin m(x —ct).

This expression becomes more convenient if we write a for the

amplitude of ¢; when a = (mcC/g) cosh mh. Then
{=asinm(x—ct), (33)

and

ga coshm(z +h)

mc coshmh

¢ = cos m(x —ct). (34)
If the water is very deep so that tanh (27h/A) = 1, then (32) becomes
= gA/2m, and if it is very shallow so that tanh (27wh/A) =27h/A, we
retrieve the formula of §49 for long waves in shallow water, giving
2
c“=gh.
We have seen in Chapter 1 that stationary waves result from
superposition of two opposite progressive harmonic waves. Thus we
could have stationary waves analogous to (33) and (34) defined by

¢ = a sin mx cos mct, (35)
and
_8ga coshm(z+h)

me  cosh mh sin mx sin mct. (36)

We could use these last two equations to discuss stationary waves in a
rectangular tank of finite length.

§56 Surface waves in two dimensions

We shall now discuss surface waves in two dimensions, considering two
cases in particular.

Rectangular tank. With a rectangular tank bounded by the planes
x =0, a and y =0, b, it is easily verified that all the conditions of §54
are satisfied by

{=A cosp cosq—ﬂ—'—ycosrct
a b

gAcoshr(z+h) pmx qmy .
rc coshrh ST a cos _b_ sin ret,

¢=
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where
p=1,2,...;9=1,2,...;r*=n*(p*/a*+4*/b?)
and
c*=(g/r) tanh rh. (37

Circular tank. Suppose that the tank is of radius a and depth h. Then
choosing the centre as origin and using cylindrical polar coordinates
r, 8, z, Laplace’s equation (cf. Chapter 1, §7) becomes

8¢ 13¢ 16¢ 6¢
8r2 r or +r 90°  9z> =0. (38)

A suitable solution can be found from Chapter 1, equation (35a),
which gives us a solution of the similar equation

Fo 13 154 1a¢ o

2 -—+—3—

or ar r’ 90> c¢* ar®
in the form
Im cos cos
= . 6 . f.
¢ Y (nr) sin m sin ne

In this equation let us make a change of variable, writing ¢t =iz, where
i>=—1. We then get Laplace’s equation (38) and its solutions are
therefore
In cos _cosh
= . mo ,m=0,1,2,....
¢ Y, (nr) sin ™0 Ginp "2 ™ 0,1

In our problem we must discard the Y solution as Y,,(r) is infinite
when r =0. So, choosing our zero of  suitably, we can write

@ =J,.(nr) cos mé (A cosh nz + B sinh nz).

At the bottom of the tank condition (ii) gives, as in §55, A sinh nh =
B cosh nh, so that

¢ = CJ,.(nr) cos m@ coshn(z +h).

The constants m and n are not independent, since we have to satisfy
the boundary condition at r = a. This gives J,,(na) = 0, so that for any
selected m, n is restricted to have one of a certain set of values,
determined from the roots of the above equation. The function C
above will involve the time, and in fact if we are interested in waves
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whose frequency is f, we shall try C « sin 2#ft. Putting C = D sin 2#ft,
where D is now a constant independent of r, 8, z or ¢, we have

¢ = DJ,,(nr) cos m@ cosh n(z +h) sin 2#ft. (39)
The boundary condition §54 (iii) now enables us to find ¢; it is
= %IIJ,,. (nr) cos mé@ cosh nh cos 2xft. (40)

The remaining boundary condition §54 (iv) gives us the period equa-
tion; it is
—47°f* DJ,,(nr) cos mé cosh nh sin 2aft

+gnDJ,, (nr) cos m@ sinh nh sin 2xft =0,
or
47°f* = gn tanh nh. 41)

For waves with a selected value of m (which must be integral) n is
found and hence, from (41), f is found. We conclude that only certain
frequencies are allowed. Apart from an arbitrary multiplicative con-
stant, the nature of the waves is now completely determined.

§57 Paths of the particles

In §55 we discussed the progressive wave motion in an infinite straight
channel. It is possible to determine from (34) the actual paths of the
particles of fluid in this motion. For if X, Z denote the displacements of
a particle whose mean position is (x, z) we have

_0¢ gacoshm(z+h)
ox ¢ coshmh
7o dp  gasinhm(z+h)

=== 2= ————" 0 —ct),
9z ¢ coshmh m(x =ct)

X= sin m(x —ct),

in which we have neglected terms of the second order and a dot
signifies differentiation with respect to time. Thus

_ga coshm(z+h)
mc? cosh mh

cos m(x —ct),

Z_ga sinhm(z +h)
mc? cosh mh

sinm(x —ct).
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Eliminating ¢, we find for the required path
X2 ZZ g2 a 2

+ = .
cosh>m(z +h) sinh®>m(z+h) m>c*® cosh’ mh (42)

These paths are ellipses in a vertical plane with a constant distance
(2ga/mc?) sech mh between their foci. A similar discussion could be
given for the other types of wave motion which we have solved in other
paragraphs.

§58 The kinetic and potential energies

The kinetic (K.E.) and potential energies (P.E.) of these waves are
easily determined. Thus, if we measure the P.E. relative to the
undisturbed state, then, since { (x, y) is the elevation, the mass of liquid
standing above a base A in the (x, y) plane is p{dA. Its centre of mass
is at a height 3¢, and thus the total P.E. is

j%gpzsz, @3)

the integral being taken over the undisturbed area of surface. Likewise
the K.E. of a small element is 3pu’ dr, dr being the element of volume
of the liquid, so that the total K.E. is

T= J jpu’dr, (44)

the integral being taken over the whole liquid, which may, within our
approximation, be taken to be the undisturbed volume.

With the progressive waves of §55, { and ¢ are given by (33) and
(34), and a simple integration shows that the K.E. and P.E. in one
wavelength (27r/m) are equal, and per unit width of stream, have the
value

igpa’h. (45)

In evaluating (44) it is often convenient to use Green’s Theorem in

”{(%)24“(%)2*(%)2} dr= j ¢%‘f ds.
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The latter integral is taken over the surface S which bounds the
original volume 7, and d/dv represents differentiation along the out-
ward normal to this volume. Since d¢/dv =0 on a fixed boundary,
some of the contributions to T will generally vanish. Also, on the free
surface, if { is small, we may put d¢/dz instead of d¢p/dv.

§59 Rate of transmission of energy

We shall next calculate the rate at which energy is transmitted in one of
these surface waves. We can illustrate the method by considering the
problem discussed in §55, concerning progressive waves in a rectangu-
lar tank of depth h. Let AA' in Fig. 20 be an imaginary plane fixed in
the liquid perpendicular to the direction of wave propagation. We shall
calculate the rate at which the liquid on the left of AA’ is doing work

)

\
/

Fig. 20

upon the liquid on the right. This will represent the rate at which the
energy is being transmitted. Suppose that the tank is of unit width and
consider that part of AA’ which lies between the two lines z, z +6z
(shown as PQ in the figure). At all points of this area the pressure is p,
and the velocity is u. The rate at which work is being done is therefore
pu 8z. Thus the total rate is

(o]

J pu 6z.
—h
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We use Bernoulli’s equation (8) to give us p; since u” may be neglected,
and V = gz, therefore

= pot 02— goz
P=PoTp o 8Pz

Now, according to (1) u = —d¢/ox and from (34),

+
_gacoshm(zth) o ).
mc  coshmh

Putting these various values in the required integral we obtain

0
+
sinm(x—ct)J‘ ga coshm(z +h)

n C cosh mh (Po—gpz) dz

0

dz.

2 2 2
. 2 _ pg a” cosh®m(z+h)
sin” m(x —ct) ,‘-_h c cosh® mh

This expression fluctuates with the time, and we are concerned with its
mean value over a cycle. The mean value of sin m (x —ct) is zero, and of
sin” m(x —ct) is 3. Thus the mean rate at which work is being done is

0

2 2
PE D ech®mh j cosh®> m(z +h) dz,

2c _h
which is easily seen to be

1gpa’c(1+2mh cosech 2mh).

In terms of the wavelength A =2#/m, this is

igpa c{ 1 +i)—\ll- cosech 4—:&} (46)

Now from (45) we see that the total energy with a stream of unit width
is 3gpa’ per unit length. Thus the velocity of energy flow is

c h 47h
2{1+TC sech 1 } 47)

We shall see in a later chapter that this velocity is an important quantity
known as the group velocity.
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§60 Inclusion of surface tension
General formulae

In the preceding paragraphs we have assumed that surface tension
could be neglected. However, with short waves this is not satisfactory
and we must now investigate the effect of allowing for it. When we say
that the surface tension is T, we mean that if a line of unit length is
drawn in the surface of the liquid, then the liquid on one side of this line
exerts a pull on the liquid on the other side, of magnitude T. Thus the
effect of surface tension is similar to that of a membrane everywhere
stretched to a tension T (as in Chapter 3, §32) placed on the surface of
the liquid. We showed in Chapter 3 that when the membrane was bent
there was a downward force per unit area approximately equal to
(g gd)
ox~ ay
Thus in Fig. 21 the pressure p, just inside the liquid does not equal the
atmospheric pressure po, but rather

d d
p=po-T{Z44+ 24} (48)
The reader who is familiar with hydrostatics will recognise that the
excess pressure inside a stretched film (as in a soap bubble) is T(1/R, +
1/R;), where R, and R, are the radii of curvature in any pair of
perpendlcular planes through the normal to the surface. We may put
Ry =—8°¢/dax* and R, = —9°¢/dy’ to the first order of small quantities,
and then (48) follows immediately.

air

Fig. 21

Thus, instead of being p = p, at the free surface of the liquid, the

N ¥L ¥ .
correct condition is that p +T{ a—%+8——2} is constant and equal to po.
X dy
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We may combine this with Bernoulli’s equation (9), in which we
neglect u” and put V = gz. Then the new boundary condition which
replaces §54 (iii) is now

o T( 8¢ 8¢
at g{+p{6x2 +6y}—0’ (49)

We still have the boundary condition §54 (iv) holding, since this is not
affected by any sudden change in pressure at the surface. By combining
(29) and (49) we find the new condition that replaces §54 (v). It is

3 ¢ o T{ @ & }a¢
—+——=0. 0
o 8oz~ plax® oay*Joz (50)
We may collect these formulae together; thus, with surface tension
(i) V¢ =0in the body of the liquid 4)
(i) a¢/ dv = 0 on all fixed boundaries 2)
(m) ——gl+ { 6x€ + ay_{} 0 on the free surface (49)
(iv) a//dt = —a¢/z on the free surface 29)
3 ¢> a¢ T{ }a¢
+__ —_—
v — pYe az Do oy 0 on the free surface (50)

Only two of the last three equations are independent.

§61 Capillary waves in one dimension

Waves of the kind in which surface tension is important are known as
capillary waves. We shall discuss one case which will illustrate the
conditions (i)-(v). Let us consider progressive type waves on an
unlimited sheet of water of depth h, assuming that the motion takes
place exclusively in the direction of x. Then, by analogy with (31) we
shall try

¢ =C coshm(z +h) cos m(x —ct). 1)
This satisfies (i) and (ii); (iv) gives the form of £, which is
¢ =(C/c) sinh mh sin m(x —ct). (52)
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We have only one more condition to satisfy; if we choose (v) this gives

—m?c?C cosh mh cos m(x —ct)+mCg sinh mh cos m(x —ct)
+gm3C sinh mh cos m(x —ct) =0,

giving
¢*=(g/m+Tm/p) tanh mh. (53)

This equation is really the modified version of (32) when allowance is
made for the surface tension; if T=0, it reduces to (32).
When h is large, tanh mh = 1, and if we write m =2/A, we have

> 8A  2@T
¢ 21r+ v (54)
The curve of ¢ against A is shown in Fig. 22, from which it can be seen
that there is a minimum velocity which occurs when A= 47°T/gp.
Waves shorter than this, in which surface tension is dominant, are
called ripples, and it is seen that for any velocity greater than the
minimum there are two possible types of progressive wave, one of
which is a ripple. The minimum velocity is (4g T/p)"/%, and in water this
critical velocity is about 0-23 m sec”!, and the critical wavelength is
about 0:017 m. Curves of ¢ against A for other values of the depth h
are very similar to those in Fig. 22.

cy

Fig.22
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§62 Examples

1. Find the potential and kinetic energies for tidal waves in a tank of
length L using the notation of §49.

2. Find the velocity of any particle of liquid in the problem of tidal
waves in a circular tank of radius a (§51). Show that when m =0 in
(25), particles originally on a vertical cylinder of radius r coaxial with
the tank, remain on a coaxial cylinder whose radius fluctuates; find an
expression for the amplitude of oscillation of this radius in terms of .

3. Tidal waves are occurring in a square tank of depth % and side a.
Find the normal modes, and calculate the kinetic and potential ener-
gies for each of them. Show that when more than one such mode is
present, the total energy is just the sum of the separate energies of each
normal mode.

4. What are the paths of the particles of the fluid in the preceding
question?
5. A channel of unit width is of depth h, where h =kx, k being a
constant. Show that tidal waves are possible with frequency p/2, for
which

¢ = AJo(ax'"?) cos pt,
where a®*=4p?/kg, and J, is Bessel’s function of order zero. It is
known that the distance between successive zeros of Jo(x) tends to 7
when x is large. Hence show that the wavelength of these stationary
waves increases with increasing values of x. (This is the problem of a
shelving beach.)

6. At the end of a shallow tank, we have x = 0, and the depth of water
h is h =hex®™. Also the breadth of the tank b is given by b = box".
Show that tidal waves of frequency p/2m are possible, for which

¢ =Ax"J,(rx*) cos pt,
where
s=1-m, a’=p*/ghe, r=als,
2u=1-2m-n and q=|u/s|.
Use the fact that J,,(x) satisfies the equation

§x£+1 d—’+(1—-"—'—)1 0.
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7. Prove directly from the conditions (i)-(v) in §54 without using the
results of §55 that the velocity of surface waves in a rectangular
channel of infinite depth is V(gA/27).

8. Find the paths of particles of fluid in the case of surface waves on an
infinitely deep circular tank of radius a.

9. A tank of depth A is in the form of a sector of a circle of radius a and
angle 72°. What are the allowed normal modes for surface waves?

10. If X, Y, Z denotes the displacement of a particle of fluid from its
mean position x,y, z in a rectangular tank of sides a and b when
surface waves given by equation (37) are occurring, prove that the path
of the particle is the straight line

icotp—‘".fX=Lcotq—wy—Y=lcoth r(z +h)Z.
pr a qm b r

11. Show that in surface waves on a cylindrical tank of radius @ and
depth h, the energies given by the normal modes (39) are

_ 21,_3DZf2p

1% cosh® nh cos® 2xft J' Ji(nr) rdr,
0

and
T =%nmpD? sin® 2#ft cosh nh sinh nh J' JZ(nr)rdr.
0
Use the fact that the total energy must be independent of the time to
deduce from this that the period equation is
47*f* = gn tanh nh.

12. Show that when we use cylindrical polar coordinates to describe
the capillary waves of §60, the pressure condition at the free surface
§60 (iii) is
ap T{azg 1o 1 azg}
——gl+— 5+-—=+5—3(=0.
a S e a0
Use this result to show that waves of this nature on a circular basin of
infinite depth are described by

¢ = CJm(nr) cos mé cos 2ft,

¢ =2"C 1 (nr) cos mé sin 27fs
2af
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where
Ji(na)=0 and 4x*f*=gn+Tn’/p.

13. Show that capillary waves on a rectangular basin of sides a, b and
depth h are given by

;osh r(z+h) mmx  nwy

d=A sinh 1% cos 2 cosTcosZﬂft,
= TA s TE s MY
= 2ﬂ:fcos 2 %7 sin 27ft,
where m=0,1,2,...;n=0,1,2...;r*=n*m?*/a*+n?*/b?), and

the period equation is
47*f*=(gr +Tr’/p) tanh rh.

Verify, that when n = 0, this is equivalent to the result of §61, equation
(53).
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Sound waves

§63 Relation between pressure and density

Throughout Chapter 5 we assumed that the liquid was incompressible.
An important class of problems is that of waves in a compressible fluid,
such as a gas. In this chapter we shall discuss such waves, of which
sound waves are particular examples. The passage of a sound wave
through a gas is accompanied by oscillatory motion of particles of the
gas in the direction of wave propagation. These waves are therefore
longitudinal. Since the density p is not constant, but varies with the
pressure p, we require to know the relation between p and p. If the
compressions and rarefactions that compose the wave succeed each
other so slowly that the temperature remains constant (an isothermal
change) this relation is p = kp. But normally this is not the case and no
flow of heat, which would be needed to preserve the temperature
constant, is possible; in such cases (adiabatic changes)

p=kp", €9)

where k and y are constants depending on the particular gas used. We
shall use (1) when it is required, rather than the isothermal relation.

§64 The governing differential equation

There are several problems in the propagation of sound waves that can
be solved without using the apparatus of velocity potential ¢ in the
form in which we used it in Chapter 5, §§54-61; we shall therefore
discuss some of these before giving the general development of the
subject.

Our first problem is that of waves along a uniform straight tube, or
pipe, and we shall be able to solve this problem in a manner closely
akin to that of Chapter 4, §38, where we discussed the longitudinal
vibrations of a rod. We can suppose that the motion of the gas particles
is entirely in the direction of the tube, and that the velocity and
displacement are the same for all points of the same cross-section.
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Suppose for convenience that the tube is of unit cross-sectional area,
and let us consider the motion of that part of the gas originally confined
between parallel planes at P and Q a distance 8x apart as in Fig. 23.

P Q

- o 55X |-

ot §X + 6 j-—v
PI Ql
Fig. 23

x+¢

The plane P is distant x from some fixed origin in the tube. During the
vibration let PQ move to P'Q’, in which P is displaced a distance ¢
from its mean position, and Q a distance ¢ +6¢. The length P'Q’ is
therefore 6x + 8¢ We shall find the equation of motion of the gas at
P'Q’. For this purpose we shall require to know its mass and the
pressure at its two ends. Its mass is the same as the mass of the
undisturbed element PQ, namely, pox, where po is the normal average
density. To get the pressure at P’ we imagine the element 8x to shrink
to zero; this gives the local density p, from which, by (1), we calculate
the pressure. We have

p=Limp08x/(8x+8§)=po(1+a—£) 1=P0(1"‘i‘ , (2)

8x-+0 0x ax

if we may neglect powers of 3¢/dx higher than the first. The quantity
(p —po)/po will often occur in this chapter; it is called the condensation
s. Thus

s=—0£/ox,  p=po(l+s). 3)

The net force acting on the element P'Q’ is pp-—po', and hence the
equation of motion is
2

¢ _ o
Po 6x57z Pr—po=—__ dx,
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or,

3¢ op
s % 4
ar* ox “)

Po

We may use (2) to rewrite (4) in the form

FE__dpsn_ b 7

at? =—a$ podp ax?

It thus appears then that ¢ satisfies the familiar equation of wave
motion

¥e 1 %€
a2 2 a2

. 2 _
YR iy with ¢“ =dp/dp. 5)

This equation shows that waves of any shape will be transmitted in
either direction with velocity v(dp/dp). In the case of ordinary air at
0° C, using (1) as the relation between p and p, we find that the velocity
is ¢ = 332 metres per sec., which agrees with experiment. Newton, who
made this calculation originally, took the isothermal relation between
p and p and, naturally, obtained an incorrect value for the velocity of
sound.

A more accurate calculation of the equation of motion can be made,
in which powers of d£/dx are not neglected, as follows. From (2) we
have the accurate result

o¢

Y
=kp” =kpJ(1+=) .
p=kp kp"(l ax)

So, now using (4) in which no approximations have been made,
e vob
Posr ™ (1 +og/axy ™" ox?

or,

2 2
Ty e L ©

at* po {1+a&/axP " ax*

Equation (5) is found from (6) by neglecting 3¢/0x compared with
unity. A complete solution of (6) is, however, beyond the scope of this
book. It is easy to see that, since (6) is not in the standard form of a
wave equation, the velocity of transmission depends upon the fre-
quency, and hence as the equation is dispersive a wave is not, in
general, transmitted without change of shape.
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§65 Solutions for a pipe of finite length

We must now discuss the boundary conditions. With an infinite tube, of
course, there are no such conditions, but with a tube rigidly closed at
X = X0, we must have £ =0 at x = x,, since at a fixed boundary the gas
particles cannot move.

Another common type of boundary condition occurs when a tube
has one or more ends open to the atmosphere. If we suppose that the
waves inside the tube do not extend their influence to the air beyond
the end of the tube, then at all open ends the pressure must have the
normal atmospheric value, and thus, from (1) and (2), 3¢/dx = 0. Since
the waves do extend a little outside the tube, this last equation is not
strictly accurate. The usual modification is to increase the effective
length of the tube by a small end-correction depending on the area of
the cross-section of the tube. We shall not, however, include such
corrections in what follows.

To summarise:

L € 1 8%, 2_
) o in the tube, and ¢ “ = dp/dp, (5)
(i) £=0ataclosedend, )
(iii) —% =s=0atan open end. 8)

§66 Normal modes

We shall apply these equations to find the normal modes of vibration of
gas in a tube of length /. These waves will naturally be of stationary
type.

(a) Closed at both ends x=0,l. This problem is the same
mathematically as the transverse vibrations of a string of length [ fixed
atits ends (cf. Chapter 2, §23). Conditions (i) and (ii) of §65 give for the
normal modes

t .
g=Asincos [T4e ), r=1,2,... ©)

(b) Closed at x =0, open at x =1 (a “stopped tube”’). Here condi-
tions (ii) and (iii) give £ =0 at x = 0, and 9¢/0x = 0 at x = [. The normal
modes are
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) N\7x 1\ 7rct
, =A, += = —|J—+e1, =0,1,2,....
I3 Asm(r 2)1 cos{(r+2) ] +s} r=0,1,2
(10)

(c) Open at both ends x =0,1. We have to satisfy the boundary
condition (iii) 8¢/9x = 0 at x =0, [. So the normal modes are

E=A, cosi’l'—xcos {'—’;—C—tﬂ,}, r=1,2,.... 1)

In each case the full solution would be the superposition of any
number in terms of the appropriate type with different r. The funda-
mental periods in the three cases are 2I/c, 4l/c and 2I/c, respectively.
The harmonics bear a simple numerical relationship to the fundamen-
tal, which explains the pleasant sound of an organ pipe.

§67 Normal modes in a tube with moveable
boundary

We shall now solve a more complicated problem. We are to find the
normal modes of a tube of unit sectional area, closed at one end by a
rigid boundary and at the other by a mass M free to move along the
tube. Let the fixed boundary be taken as x =0, and the normal
equilibrium position of the moveable mass be at x =1 as in Fig. 24.

Fig. 24

Then we have to solve the standard wave equation with the boundary
conditions that when x =0, (ii) gives £ =0, and that when x =1 the
excess pressure inside, p — po, must be responsible for the acceleration
of the mass M. This implies that

2

)
p—p0=M?§r whenx =1

The first condition is satisfied by the function
&= A sin nx cos (nct+¢). (12)
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To satisfy the second condition, we observe that from (3),
P —po=(dp/dp)(p —po) = —c’po 3¢/ dx.
So this condition becomes

J 0
M—g— czpo—f atx =1
ax

Using (12) this gives, after a little reduction,
nl tan nl = lpo/M.

The allowed values of n are the roots of this equation. There is an
infinite number of them, and when M = 0, so that the tube is effectively
open to the air at one end, we obtain equation (10); when M =0, 50
that the tube is closed at each end, we obtain equation (9).

§68 The velocity potential. General formulae

So far we have developed our solutions in terms of £, the displacement
of any particle of the gas from its mean position. It is possible, however,
to use the method of the velocity potential ¢. Many of the conditions
which ¢ must satisfy are the same asin Chapter 5, but a few of them are
changed to allow for the variation in density. It is convenient to gather
these various formulae together first.
(i) If the motion is irrotational, as we shall assume, u=—-V¢, (cf.
Chapter 5, equation (1)); (13)
(i) atany fixed boundary, 3¢/dv = 0 (cf. Chapter 5, equation (2));(14)
(iii) the equation of continuity (cf. Chapter 5, equation (3)) is slightly
altered, and it is now

aap ..
—_— + T
Py div (pu) =0,

or

ap 0

a3
o T P+ —(pv)+5;(;DW)=0- (15)

(iv) The equations of motion are unchanged; if F is the external force
on unit mass, in vector form, they are

D

D“ —F—-vp (ct. Chapter 5, equation (6)). (16)
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(v) In cases where the external forces have a potential V, we obtain
Bernoulli’s equation (cf. Chapter 5, equation (8))

Idi’+1u2+ V—a—¢=const. 17
p 2 ot

in which we have absorbed an arbitrary function of the time into
the term d¢/at (cf. Chapter 5, equation (8)).

§69 The differential equation of wave motion

In sound waves we may neglect all external forces except such as occur
at boundaries, and thus we may put V=0 in (17). Also we may
suppose that the velocities are small and neglect u’ in this equation.
With these approximations Bernoulli’s equation becomes

[ —
p ot

We can simplify the first term; for

J’ dp _ J’ (d_P)@

P do/p’

and if the variations in density are small, dp/dp may be taken as
constant, and equal to ¢? as in (5). Thus

I%:czf%z C2 logep = Cz{loge (1 +S)+]Ogep0}o
So

d
j;p =c¢2s +const.,

if s is small. If we absorb this constant in ¢, then Bernoulli’s equation
takes its final form
c2s—agp/at=0. (18)

Laplace’s equation for ¢ does not hold because of the changed
equation of continuity. But if 4, v, w and s are small, (15) can be
written in a simpler form by the aid of (13); namely,

pods/ot —pVi¢p =0.
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This is effectively the same as
os
==V?4. 1
Pyl (19)

Now let us eliminate s between (18) and (19), and we shall find the
standard of wave equation

p 170
V¢ =2 (20)

This shows that ¢ is indeed the velocity of wave propagation, but
before we can use this technique for solving problems, we must first
obtain the boundary conditions for ¢. At a fixed boundary, by (ii)
a¢/av = 0. At an open end of a tube, the pressure must be atmospheric,
and hence s = 0. Thus, from (18),

ap/at =0. (21)

This completes the development of the method of the velocity
potential, and we can choose in any particular problem whether we
solve by means of the displacement & or the potential ¢. It is possible to
pass from one to the other, since from (3) and (18)

£es=52 22)

§70 An example

We shall illustrate these equations by solving the problem of stationary
waves in a tube of length /, closed at one end (x =0) and open at the
other (x =[). This is the problem already dealt with in §66(b), and with
the same notation, we require a solution of

yo_15¢
ax® ¢t a¥
subject to the conditions
ap/ax =0atx =0,
ap/at=0atx =1
It is easily seen that

¢ =a cos mx cos (cmt +¢€)
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satisfies all these conditions provided that cos m! =0, and somi = /2,

3m/2,..., (r+3)m, . ... So the normal modes are
N\mx 1\ mct
¢, =a, cos (r+2)T cos {(r +—2—) ] +s,},

and from this expression all the other properties of these waves may
easily be obtained. The reader is advised to treat the problems of
§66(a) and (c) in a similar manner.

§71 Spherical symmetry

Our next application of the equations of §69 will be to problems where
there is spherical symmetry about the origin. The fundamental wave
equation then becomes (see Chapter 1, equation (23))

Fp 200 13

sor c ot

with solutions of progressive type
1 1
¢ =7f(r —ct) +;g(r +ct).

There are solutions of stationary type (see Chapter 1, equation (37))

_1COS  cOS
é=r " . mr .
sin  sin

cmt.

If the gas is contained inside a fixed sphere of radius a, then we must
have ¢ finite when r =0, and a¢/or = 0 when r = a. This means that

A
¢ =Tsm mr cos (cmt +¢),

with the condition
tan ma = ma. : (23)

This period equation has an infinite number of roots which approxi-
mate to ma = (n +1/2)m when n is large. So for its higher frequencies
the system behaves very like a uniform pipe of length a open at one
end and closed at the other.

This analysis would evidently equally well apply to describe waves in
a conical pipe.
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§72 The kinetic and potential energies

We shall now calculate the energy in a sound wave. The kinetic energy
is clearly [ 3pu® dV, where dV is an element of volume. We may put
p = po without loss of accuracy. In terms of the velocity potential this
may be written

J%Po(Vd))z dV =-3p, j¢v2¢ dV+3po jf q;:#:’ ds. (24)

The last expression follows from Green’s theorem just as in Chapter 5,
§58, and the surface integral is taken over the boundary of the gas.
There is also potential energy because each small volume of gas is
compressed or rarified, and work is stored up in the process. To
calculate it, consider a small volume V,, which during the passage
of a wave is changed to V. If s, is the corresponding value of the
condensation, then from (3), we have, to the first degree in s,

Vi=Vo(l—s,). (25)

Further, suppose that during the process of compression, V and s are
simultaneous intermediary values. Then we can write the work done in
compressing the volume from V, to V; in the form

V1

—j p dV.

Vo

But, just as in (25), V= V(1 —s), and hence
dV= "Vo dS.

We may also write

p=po+(dp/dp)(p —po)

=po+cpos.
Thus the potential energy may be written

jo (Po+¢pos) Vo ds = poVos: +3¢poVos3
=po(Vo— V1) +3c’poVosi.

This is the contribution to the P.E. which arises from the volume V.
The total P.E. may be found by integration. The first term will vanish in
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this process since it merely represents the total change in volume of the
gas, which we may suppose to be zero. We conclude, therefore, that the
potential energy is

_[ 3¢%pos? dV. (26)

It can easily be shown that with a progressive wave the K.E. and P.E.
are equal; this does not hold for stationary waves, for which their sum
remains constant.

§73 Progressive waves in a tube of
varying section

We conclude this chapter with a discussion of the propagation of waves
along a pipe whose cross-sectional area A varies slowly along its
length. Our discussion is similar in many respects to the analysis in §64.

Consider the pipe shown in Fig. 25, and let us measure distances x
along the central line. It will be approximately true to say that the
velocity u is constant across any section perpendicular to the x axis.
Suppose that the gas originally confined between the two planes P, Q
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at distances x, x + 8x is displaced during the passage of a wave, to P'Q’,
the displacement of P being ¢ and of Q being ¢ +8¢£. Consider the
motion of a small prism of gas such as that shaded in the figure; its
equation of motion may be found as in §64, and it is

¢ op
PO~ Tox @7

We must therefore find the pressure in terms of £ This may be
obtained from the equation of continuity, which expresses the fact that
the mass of gas in P'Q’ is the same as that in PQ. Thus, if p is the
density,

PoA (x) 8x =pA(x +¢£) . {6x + 8¢},

and so
por () =p{ A+ {1+].

Neglecting small quantities, this yields

o ¢ aA}
=p{l+=+=>—1.
po p{l ox A ox

Therefore

Eliminating p between (27) and (28) we find

¢ dpop a{l ) }
—_—— e = —_— ——-A s
P32 = "y ax ¢ PO 1A ax A9

where, as usual, ¢>=dp/dp. So the equation of motion is

FE_ 20138
?_czax{A ox (Ag)}' (29)

In the case in which A is constant this reduces to the former equation
(5). An important example when A is not constant is the co-called
exponential horn used in the construction of high-fidelity tweeter
speakers. In these the tube is approximately symmetrical about its
central line and the area varies with the distance according to the law
A = A, e*™, where a and A, are constants.
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With this form of A, (29) reduces to

FE 2{625 af}
Yl Peeaiie §

A solution is possible by the method of separation of variables (see §7).
We find that

&= B, exp (inct + m1x) + B, exp (inct + myx), (30)

where m; and m, are given by —a ++v(a’—n®). Consequently, the
general solution has the form

£=e""{B, exp[i(nct — (n*—a?"*x)]

+B,exp[i(nct+(n*—a?"*x)},

in which the first term represents a wave moving to the right while the
second represents a wave moving to the left. These waves move along
the horn at a speed ¢, given by

e =c/(1—a’c*/w?'?, (31)

where we have set w = nc.

This expression indicates that propagation will only occur when the
frequency w >ac. The quantity ac thus defines a cutoff frequency for
the horn. We conclude from this that waves can be sent outwards along
the horn with a speed which is approximately independent of the
frequency, and with an attenuation factor e”** which is independent of
the frequency. It is the approximate double independence of fre-
quency which allows good reproduction of whatever waves are gener-
ated at the narrow end of the horn, and which is responsible for this
choice of shape. Other forms of A will not, in general, give rise to the
same behaviour.

§74 Examples

1. Use the method of §65 to investigate sound waves in a closed
rectangular box of sides a,, a, and as. Show that if the box is large, the
number of such waves for which the frequency is less than n is
approximately equal to one-eighth of the volume of the quadric
x*/ai+y?*/a5+z°/a3=4n"/c*. Hence show that this number is
approximately 47n’a,a,as/3c>.
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2. Investigate the reflection and transmission of a train of harmonic
waves in a uniform straight tube at a point where a smooth piston of
mass M just fits into the tube and is free to move.

3. Show that the kinetic and potential energies of a plane progressive
wave are equal.

4. Show that the kinetic and potential energies of stationary wavesin a
rectangular box have a constant sum.

5. Find an equation for the normal modes of a gas which is confined
between two rigid concentric spheres of radii a and b.

6. Show that a closer approximation to the roots of equation (23) is
ma=m+)7—1/{(n+H=}.

7. Find numerically the fundamental frequency of a conical pipe of
radius one metre open at its wide end.

8. The cross-sectional area of a closed tube varies with the distance
along its central line according to the law A = Aox". Show that if its
two ends are x = 0, and x = [, then standing waves can exist in the tube
for which the displacement is given by the formula.

£=x1"2] (gx/c) cos {qct +€},
where
m=(n+1)/2 and J,.(ql/c)=0.
Use the fact that J,, (x) satisfies the equation
dJ 1dJ m?
..._.+—- — — —— ={.
dx? x dx+<1 xz)J 0
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§75 Maxwell’s equations

Before we discuss the propagation of electric waves, we shall summar-
ise the most important equations that we shall require. These are
known as Maxwell’s equations. Let the vectors E (components E,, E,,
E.) and H (components H,, H,, H,) denote the electric and magnetic
field strengths. We shall suppose that all our media are isotropic with
no ferromagnetism or permanent polarisation. Thus, if £, and uo are
the free space dielectric constant and permeability, respectively, and
we write x,. for the relative dielectric constant (or permittivity) and x,,
for the relative permeability, the related vectors comprising the
magnetic induction B and the dielectric displacement D are given by
the equation B= uox,H, D= gox E. Further let j (components j,,
Jy»Jz) denote the current density vector, and p the charge density.
Then, if we work in SI units with ¢ denoting the velocity of light,
Maxwell’s equations may be summarised in vector form as follows:

divD=p, 1
divB=0, (2)

oD

=1 +—
curl H=j o (3)

B
curlE= — Py 4
where

D=¢goxE, %)
B = uoxnH. (6)

To these equations we must add the relation between j and E. If o is
the conductivity, which is the inverse of the specific resistance, this
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relation is
i=oE. (7)

For conductors o is large, and for insulators it is small.

The above equations have been written in vector form, but it is
informative to display them also in terms of their components. If we
wish to write these equations in their full Cartesian form, we have to
remember that

divD=v.p=L, 8y D
ox dy o9z
and that
curlHEVXH:(BHZ_%,%_%’@_%)
dy 0z 9z ox ox dy
The preceding equations then become

oD, oD, oD, 3By aB aB
Tt = @ =0 (2)
ox dy oz ox ay 6
°H, oH, . oD, O, OE,__oB,
ay oz 7 ar ay oz at
oH, oH, oD, . dEx aE JoB

X _ zZ_; +_____y r Nt 4 '
w2ty O e Tw @
oH, oH, . oD O, _OE,_ _3B,
x oy e ax a3y ot

Dx = oneEx, Dy = 80"0Ey, Dz =goxE, (51)

Bx = I"Omex’ By = MO"mHy, Bz = ”'OmeZ (6')
jx=a'Exy jy=0'Ey’ jZ=UE2' (7')

Equations (1)-(4) are sometimes called Maxwell’s Equations and
equations (5)-(7) constitutive relations. Simple physical bases can
easily be given for (1)—(4). Thus, (1) represents Gauss’ Theorem, and
follows from the law of force between two charges; (2) represents the
fact that isolated magnetic poles cannot be obtained; (3) is Ampere’s
Rule that the work done in carrying a unit pole round a closed circuit
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equals the total current enclosed in the circuit; part of this current is the
. . . . oD
conduction current j and part is Maxwell’s displacement current —67;

(4) is Lenz’s law of induction.

These seven equations represent the basis of our subsequent work.
They need to be supplemented by a statement of the boundary
conditions that hold at a change of medium. If suffix n denotes the
component normal to the boundary of the two media, and suffix s
denotes the component in any direction in the boundary plane, then in
passing from the one medium to the other

D,, B, E; and H, are continuous. (8)

In cases where there is a current sheet (i.e. a finite current flowing
in an indefinitely thin surface layer) some of these conditions need
modification, but we shall not discuss any such cases in this chapter.

There are two other important results that we shall use. First, we
may suppose that the electromagnetic field stores energy, and the
density of this energy per unit volume of the medium is

(e o E* + poxHD). 9)

Second, there is a vector, known as the Poynting vector, which is
concerned with the rate at which energy is flowing. This vector, whose
magnitude and direction are given by

(ExH), (10)

represents the amount of energy which flows in unit time across unit
area drawn perpendicular to it. E and H are generally rapidly varying
quantities and in such cases it is the mean value of (10) that has physical
significance.

§76 Non-conducting media and the wave
equation

We shall first deal with non-conducting media, such as glass, so that we
may put o = 0 in (7); we suppose that the medium is homogeneous, so
that %, and x., are constants. If, as usually happens, there is no residual
charge, we may also put p =0 in (1), and with these simplifications,
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Maxwell’s equations may be written
divE=0, divH=0,

oH JE
curl E = —poxm o curl H=g¢x. v (11)

These equations lead immediately to the standard wave equation, as
we see by employing the identity

curl curl H= grad div H- V’H.

From the fourth of the equations in (11) we find

E
grad div H— V*H = gox, curl %7 = 80%% curl E.

Substituting for divH and curl E, we discover the standard wave
equation

(12)
where we have set gopo = 1/c’. Eliminating H instead of E we find the
same equation for E,

V’E e (13)

According to our discussion of this equation in Chapter 1 this shows
that waves can be propagated in such a medium, and that their velocity
is c/\/(x,xm). In free space, where x. = x, = 1, this velocity is just c.
But it is known that the velocity of light in free space has exactly this
same value, so that we are thus led to the conclusion that light waves
are electromagnetic in nature. X-rays, y-rays, ultra-violet waves,
infra-red waves and radio waves are also electromagnetic, and differ
onlyin the order of magnitude of their wavelengths. We shall be able to
show later, in §78, that these waves are transverse. Experiment has
shown that ¢ =2-998 X 10° m/sec.

In non-conducting dielectric media, like glass, x. is not equal to
unity; also x, depends on the frequency of the waves, but for light
waves in the visible region we may put x,, = 1. The velocity of light is
therefore c/«/x,. Now in a medium whose refractive index is K it is
known experimentally that the velocity of light is ¢/K. Hence, if our
original assumptions are valid, x, = K. This is known as Maxwell’s
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relation. It holds good for many substances, but fails because it does
not take sufficiently detailed account of the atomic structure of the
dielectric. It applies better for long waves (low frequency) than for
short waves (high frequency).

§77 Electric and magnetic potentials

A somewhat different discussion of (11) can be given in terms of the
electric and magnetic potentials. Since div B =0, it follows that we can
write
B=uoxnH=curl A, (14)

where A is a vector yet to be determined. This equation does not define
A completely, since if ¢ is any scalar, curl (A +grad ¢) = curl A. Thus
A is undefined to the extent of addition of the gradient of any scalar,
and we may accordingly impose one further condition upon it.

If B=curl A, and curl E=—-4B/dr, it follows, by elimination of B,
that

curl {E+%} =0.
at
Integrating then gives
A
+—==

E T grad ¢,

where ¢ is an arbitrary scalar function. Consequently we have
0A
E= —gradd;——aT. (15)

In cases where there is no variation with the time, this becomes
E = —grad ¢, showing that ¢ is the analogue of the electrostatic
potential.

Eliminating H from the relations

poxmH=curl A,
JE

curl H= soxeg,

and using (15) to eliminate E, we find

‘A
grad div A—V’A = —eoy.oxexm{ grad % +%7}
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and so

VA=

Kedm A . KX OP
S +grad {div A+ 2= 2R,
c? ot & div c? ot

where we have again used the fact that in SI units oo =1/c>. Let us
now introduce the extra allowed condition upon A, and write

L] (16)

divA+—— —=0.
c” ot

Then A satisfies the standard wave equation

V’A .
e a7
Further, taking the divergence of (15), we obtain, by (16)
. 2 J .. 2 HeXm 32¢
= = — —_—— - + —_—
0=divE=-V"¢ atdWA Vo 2 o
Thus ¢ also satisfies the standard wave equation
2
v2g = Xkm TP (18)

c? a*
A similar analysis can be carried through when p and j are not put
equal to zero, and we find

B=curl A, (14')
E-—gradg -2, (15)
0=div A +%¥m Z—‘f, (16))
vA=24m f’;—,‘%—uoxmi, (17)
V2 =% fT‘f—E;e. (18)

¢ and A are known as the electric potential and magnetic or vector
potential, respectively. It is open to our choice whether we solve
problems in terms of A and ¢, or of E and B. The relations (14')-(18’)
enable us to pass from the one system to the other. The boundary



124 Electric waves

conditions for ¢ and A may easily be obtained from (8), but since we
shall always adopt the E, B type of solution, which is usually the
simpler, there is no need to write them down here.

There is one other general deduction that can be made here. If we
use (3), (5) and (7) we can write, for homogeneous media

curl H=cE+¢g¢x. %

Taking the divergence of each side, and noting, from (1), that div E=
p/eox., we find

ot EoXe
Thus, on integration,
p=poe %, where 8 =a/eox.. (19)

0 is called the time of relaxation. It follows from (19) that any original
distribution of charge decays exponentially at a rate quite independent
of any other electromagnetic disturbances that may be taking place
simultaneously, and it justifies us in putting p =0 in most of our
problems. With metals such as copper, 6 is of the order of 10" secs.,
and is beyond measurement; but with dielectrics such as water @ is
large enough to be determined experimentally. Equation (19) only
applies to the charge at an internal point in a medium; charges at the
boundary of a conductor or insulator do not obey this equation at all.

§78 Plane polarised waves in a dielectric
medium

We next discuss plane waves in a uniform non-conducting medium,
and show that they are of transverse type, E and Hbeing perpendicular
to the direction of propagation. Let us consider plane waves travelling
with velocity V in a direction [, m, n. Then E and H must be functions
of a new variable

u=slx+my+nz—Vt. (20)
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When we say that a vector such as E is a function of u, we mean that
_ each of its three components separately is a function of u, though the
three functions will not in general be the same. Consider the fourth
equation of (11). Its x component (see (3')) is

If dashes denote differentiation with respect to u, this is
mH;—nH;,=—gox.VE..
Integrating with respect to u, this becomes
mH, —nH, = —e¢x.VE,,

in which we have put the constant of integration equal to zero, since we
are concerned with fluctuating fields whose mean value is zero. There
are two similar equations to the above, for E, and E,, and we may write
them as one vector equation. If we let n denote the unit vector in the
direction of propagation, so thatn=(/, m, n) with I>*+m>*+n’=1, we
have

nxXH=—¢ox.VE. 21

Exactly similar treatment is possible for the third equation of (11); we
get

nXE=pox,VH. (22)

Equation (21) shows that E is perpendicular to n and H, and (22) shows
that H is perpendicular to n and E. In other words, both E and H are
perpendicular to the direction of propagation, so that the waves are
transverse, and in addition, E and H are themselves perpendicular; E,
H and nforming a right-handed set of axes. If we eliminate H from (21)
and (22) and use the fact that

nxXnXE]J=m.Em—n.nE=-E,

since n is perpendicular to E and n is a unit vector, we discover that
V? = ¢?/x.%m, showing again that the velocity of these waves is indeed
/Nt m). '

It is worth while writing down the particular cases of (21) and (22)
that correspond to plane harmonic waves in the direction of the z axis,
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and with the E vector in the x or y directions. The solutions are

E,=0 H, = —V(eoxe/worm)a e?¢~Y
E,=a /" H,=0 (23)
E, =0 H,=0

E,=b P!V H,=0

E,=0 H, = +V(goxe/ mormb €74V (24)
E.=0 H,=0.

In accordance with §10, a and b may be complex, the arguments giving
the two phases. It is the general convention to call the plane containing
H and n the plane of polarisation, though not all books conform to this
nomenclature. Thus (23) is a wave polarised in the (x, z) plane, and
(24) a wave polarised in the (y, z) plane. By the principle of superposi-
tion (§6) we may superpose solutions of types (23) and (24). If the two
phases are different, we obtain elliptically polarised light, in which the
end-point of the vector E describes an ellipse in the (x, y) plane. If the
phases are the same, we obtain plane polarised light, polarised in the
plane y/x =—b/a. If the phases differ by 7/2, and the amplitudes are
equal, we obtain circularly polarised light, which, in real form, may be
written

E,=acosp(t—2z/V) H, =—(eoxe/poxm)a sinp(t—z/V)
E,=asinp(t—z/V) H, = +V(eoxe/ poxm)a cos p(t—z/ V)

E.=0 . H,=0 (25)
The end-points of the vectors E and H each describe circles in the (x, y)
plane.

In all three cases (23)-(25), when we are dealing with free space
(% =xm = 1) the magnitudes of E and H are equal.

§79 Rate of transmission of energy in plane
waves

By the use of (10) we can easily write down the rate at which energy is
transmitted in these waves. Thus, with (25) the Poynting Vector is

simply
1/2
(0, 0, az(ﬂ’f_‘i) )
MoXm



Reflection and refraction of light waves 127

This vector is in the direction of the positive z axis, showing that energy
is propagated with the waves. According to (9), the total energy per
unit volume is

1 2 2 2
3(e0%E°+ uoxmH )= Eoxed”.

From these two expressions we can deduce the velocity with which the
energy flows; for this velocity is merely the ratio of the total flow across
unit area in unit time divided by the energy per unit volume. This is
¢/ (xe%m) so that the energy flows with the same velocity as the wave.
This does not hold with all types of wave motion; an exception has
already occurred in liquids (§59).

When we calculate the Poynting Vector for the waves (23) and (24),
we must remember that E X His not a linear function and consequently
(see §10) we must choose either the real or the imaginary parts of E and
H. Taking, for example, the real part of (23), the Poynting Vector lies
in the z direction, with magnitude

80%0 1/2 2 2 ( Z)
t——}.
(£22) "a*costpls-2

Mo¥Xm

This is a fluctuating quantity whose mean value with respect to the time
is

20° (e ot/ o) /2.
The energy density, from (9), is ox.a’ cos® p(t —z/V), with a corre-
sponding mean value ze0x.a’. Once again the velocity of transmission
of energy is 3a*(gox./ oXm)' ?+3E0%e = ¢/ (%e%m), Which is the same
as the wave velocity.

§80 Reflection and refraction of light waves

We shall next discuss the reflection and refraction of plane harmonic
light waves. This reflection will be supposed to take place at a plane
surface separating two non-conducting dielectric media whose refrac-
tive indices are K; and K,. Since we may put xi,=xm=1, the
velocities in the two media are ¢/K;, ¢/K,. In Fig. 26 let Oz be the
direction of the common normal to the two media, and let AO, OB,
OC be the directions of the incident, reflected and refracted (or
transmitted) waves. We have not yet shown that these all lie in a plane;
let us suppose that they make angles , w—6' and ¢ with the z axis, OA
being in the plane of the paper, and let us take the plane of incidence
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(i.e. the plane containing OA and Oz) to be the (x, z)-plane. The y axis
is then perpendicular to the plane of the paper.

X

Fig. 26

Since the angle of incidence is 6, then as in (20), each of the three
components of E and H will be proportional to

exp {ip[ct — Ky (x sin 8 +z cos 0)]}.

Let the reflected and transmitted rays move in directions with direction
cosines (I;, my, ny) and (I, m,, n,), respectively, so that n; =—cos 6’,
n, =cos ¢. Then the corresponding components of E and H for these
rays will be proportional to

exp {ip[ct — Ki(lix +myy +n,z)]}
and
exp {ip[ct — Kx(lox +may +n,z)]}

Thus, considering the E, components, we may write the incident,
reflected and transmitted values

A exp {ip[ct— K (x sin 6 +z cos §)]},
A exp{iplct — K (lix +myy +n.z)]}
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and
A, exp {ip[ct — Ks(lox +may +n,2)]}.

These functions all satisfy the standard wave equation and they have
the same frequency, a condition which is necessary from the very
nature of the problem.

We shall first show that the reflected and transmitted waves lie in the
plane of incidence. This follows from the boundary conditions (8) that
E, must be continuous on the plane z =0. That is, for all x, y, ¢,

A exp {ip(ct—Kyx sin 0)}+ A, exp {ip[ct —K:(lix +m1y)]}
= A, exp {ip[ct — K5(lox + may)]}.
This identity is only possible if the indices of all three terms are
identical, so that we conclude
ct—Kx sin@=ct—K(l;x +my)=ct — K;(l,x + myy).
Thus
K;sin 8 =K, l,= Ksl,,
0=Km,;=K,m,.

The second of these relations shows that m;=m,=0, so that the
reflected and transmitted rays OB, OC lie in the plane of incidence
xOz. The first relation shows that /;=sin 6, so that the angle of
reflection 6’ is equal to the angle of incidence 6, and also

K, sin 8 =K, sin ¢. (26)

This well-known relationship between the angles of incidence and
refraction is known as Snell’s law.

Our discussion so far has merely concerned itself with directions,
and we must now pass to the amplitudes of the waves. There are two
main cases to consider, according as the incident light is polarised in
the plane of incidence, or perpendicular to it.

Incident light pelarised in the plane of incidence

The incident ray AO has its magnetic vector in the (x, z) plane,
directed perpendicular to AO. To express this vector in terms of x, y, z
it is convenient to use intermediary axes &, 1, { through O indicated in
Fig. 27, where the directions of £ and { are as shown. Here 7 coincides
with the y axis which is perpendicuiar to the plane of the paper, while {
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Fig. 27

is in the direction of propagation, and ¢ is in the plane of incidence.
Referred to these new axes, H lies entirely in the £ direction, and E in
the n direction. We may use (23) and write

E.=E;=0, E,=a;exp{ip(ct—Ki{)}
H,=H;=0, H;=-Ka,exp{ip(ct—Ki{)}.

Now { =x sin 8 +z cos 6, and so it follows that:

incident wave

E, =0, H, =—K;a; cos 6 exp {ip[ct —K(x sin 8 +z cos 9)]}.

E, =a exp{ip[ct —K:(x sin § +z cos §)]}, H,=0,

E, =0, H, =Ka, sin 6 exp {ip[ct — K (x sin 8 +z cos 6)]}.
Similar analysis for the reflected and refracted waves in which we
replace 6 by 7w — 6 and ¢ in turn, enables us to write
reflected wave

E,. =0, H, = Kb, cos 0 exp {ip[ct—K(x sin § —z cos )]},
E, = b, exp{ip[ct — Ki(x sin 8 —z cos 0)]}, H, =0,
E,=0, H, = Kb, sin 8 exp {ip[ct — Ki(x sin 8 —z cos 6)]}:
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refracted wave

E, =0, H, =—Ksa; cos ¢ exp {ip[ct — K> (x sin ¢ +z cos ¢)]}.

E, =a, exp {ip[ct — K> (x sin ¢ +z cos ¢)]}, H, =0,

E,=0, H, =K,a, sin ¢ exp {ip[ct — K>(x sin ¢ +z cos ¢)]}.
We may write the boundary conditions in the form that E,, E,, KE,,
H,, H, and H, are continuous at z = 0. These six conditions reduce to

two independent relations, which we may take to be those due to E,
and H,:

ay +b1 =da,,
—Ka;cos 8+ Kb, cos 8 =—K,a; cos ¢.
Thus

a, - b1 _ a
Kicos@+Kscosp Kycos@—Kycos¢p 2K,cos@

Using Snell’s law (26) in the form K : K, =sin ¢: sin 0, this gives

a; by as

sin(0+¢)=—sin (0—¢)=23in¢ cos @’ 27

Equation (27) gives the ratio of the reflected and refracted amplitudes.
If medium 2 is denser than medium 1, K, > K, so that 8 > ¢, and thus
bi/a; is negative; so there is a phase change of 7 in the electric field
when reflection takes place in the lighter medium. There is no phase
change on reflection in a denser medium, nor in the refracted wave.
The same conclusion is true for the magnetic field H, though it must be
remembered here and later in this chapter that the positive directions
for E and H are defined by én¢ in Fig. 27 and their counterparts
relative to OB, OC, the n direction being along the y axis throughout.

Incident light polarised perpendicular to the plane of incidence

A similar discussion can be given when the incident light is polarised
perpendicular to the plane of incidence; in this case the roles of E and
H are practically interchanged, H, for example being the only non-
vanishing component of H. It is not necessary to repeat the analysis in
full. With the same notation for the amplitudes of the incident,
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reflected and refracted waves, we have

a; _ b1 _ a
sin 20 +sin2¢ sin20—sin2¢ 4cosfsing

It follows from (28) that the reflected ray vanishes if sin 26 = sin 2¢.
Since 6 # ¢, this implies that  +¢ = w/2, and then Snell’s law gives

K, sin 8 = K; sin ¢ =K cos 0,

(28)

SO
tan 6 = K,/ Ky = V(Kkze/K1¢). (29)

With this angle of incidence, known as Brewster’s angle, there is no
reflected ray.

There will be a phase change of 7 in E on refiection when sin 26 <
sin 2¢. If reflection takes place in the lighter medium so that K, <K,
this holds for @ greater than Brewster’s angle; but if K; > K, it holds
for @ less than Brewster’s angle. In all other cases there is no phase
change on reflection.

In general, of course, the incident light is composed of waves
polarised in all possible directions. Equations (27) and (28) show that if
the original amplitudes in the two main directions are equal, the
reflected amplitudes will not be equal, so that the light becomes partly
polarised on reflection. When the angle of incidence is given by (29) it
is completely polarised on reflection. This angle is therefore sometimes
known as the polarising angle.

8§81 Internal reflection

An interesting possibility arises in the discussion of §80, which gives
rise to the phenomenon known as total or internal reflection. It arises
when reflection takes place in the denser medium so that ¢ > 6. If we
suppose 6 to be steadily increased from zero, then ¢ also increases and
when sin 8 = K,/K;, ¢ =a/2. If 0 is increased beyond this critical
value, ¢ is imaginary. There is nothing to disturb us in this fact
provided that we interpret the analysis of §80 correctly, for we never
had occasion to suppose that the coefficients were real. We can easily
make the necessary adjustment in this case. Take for simplicity the
case of incident light polarised in the plane of incidence. Then the
incident and reflected waves are just as in our previous calculations.
The refracted wave has the same form also, but in the exponential
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term, K sin ¢ = K sin @, and is therefore real, whereas
K cos ¢ =V(K3— K3 sin® ) = V(K3 —K?sin® 9),

and is imaginary, since we are supposing that internal reflection is
taking place and therefore K;sin 8 >K,. We may therefore write
K cos ¢ = +iq, where q is real. Thus the refracted wave has the form

E,=ajexp{ip[ct — K, sin 6x xiqz]}
=a, exp (xpqz) . exp {ip[ct — K, sin 6x]}.

For reasons of finiteness at infinity, we have to choose the negative
sign, so that it appears that the wave is attenuated as it proceeds into
the less dense medium. For normal light waves it turns out that the
penetration is only a few wavelengths, and this justifies the title of total
reflection. The decay factor is

exp (—pqz) =exp {—pV(K?sin® 6 —K3)z}.

This factor increases with the frequency so that light of great frequency
hardly penetrates at all. In actual physical problems, the refractive
index does not change from K to K, abruptly, as we have imagined;
however, Drude has shown that if we suppose that there is a thin
surface layer, of thickness approximately equal to one atomic diame-
ter, in which the change takes place smoothly, the results of this and the
preceding paragraphs are hardly affected.

§82 Partially conducting media, plane waves

In our previous calculations we have assumed that the medium was
nonconducting, so that we could put o =0. When we remove this
restriction, keeping always to homogeneous media, equations (1)~(7)
give us

divE=0,
divH=0,
JE
= E+ )
curl H=ocE+¢&ox B
JH

curl E=—pwoxm—.
Mo ot
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Now we have the identity

curl curl E = grad div E-V’E=-V’E,

so that
oH 3 OE xexm O°E
V2E = poxm curl o = Rorm curl H= cr,u,oxm§+ 22"‘ et
and so
XXy OE oE
VE=-2 —S+ n— 30
2 o TfLoXx ot (30

A similar equation holds for H. Equation (30) will be recognised as the
equation of telegraphy (see §9). The first term on the right-hand side
may be called the displacement term, since it arises from the displace-

oD . . . .
ment current E and the second is the conduction term, since it arises

from the conduction current j. If we are dealing with waves whose
frequency is p/2, E will be proportional to € ; the ratio of the first to
the second term is therefore of the order gox.p/o. This means that if
p »&. /o, only the displacement term matters (this is the case of light
waves in a non-conducting dielectric); but if p < gox./0, only the
conduction term matters (this is the case of long waves in a good
metallic conductor). In the intermediate region both terms must be
retained. With most metals, if p <10’ per second we can neglect the
first term, and if p > 10" per second we can neglect the second term.

Let us discuss the solutions of (30) which apply to plane harmonic
waves propagated in the z direction, such that only E, and H, are
non-vanishing (as in (24)). We may suppose that each of these compo-
nents is proportional to

exp {ip(t—qz)}. (31)

where p/2w is the frequency and q is still to be determined. This
expression satisfies the equation (30) if

2 XeXm ag .
3 1 — },
1 02 { 8o%epl (32)

so that g is therefore complex, and we may write it

q=a—ip,
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- 2)1/2
o2 =2l 1+ (—2) " 41]
2c°L EoXcP

r 21172
g2 =Xem {1+( a )}/ —1]. (33)
2c” L E0%cD

The “velocity” of (31) is 1/q; but we have seen in §80 that in amedium
of refractive index K the velocity is ¢/K. So the effective refractive
index is c¢q which is complex. Complex refractive indices occur quite
frequently and are associated with absorption of the waves; for,
combining (31) and (33) we have the result that E, and H, are
proportional to ‘

where

exp{—pBz}.explip(t—az)} (34)

This shows that a plane wave cannot be propagated in such a medium
without absorption. The decay factor may be written e where
k = pB. k is called the absorption coefficient. In the case where o/&ox.p
is small compared with unity (the case of light waves in most non-
conducting dielectrics), k is approximately equal to (o/ 2ceo)V (%m/%0).
Now the wavelengthin (34) isA = 27r/ap, so that in one wavelength the
amplitude decays by a factor e ™**, approximately exp (—7a/eox.p).
As we are making the assumption that o/eox.p is small, the decay is
gradual, and can only be noticed after many wavelengths. The distance
travelled before the amplitude is reduced to 1/e times its original value
is 1/k, which is of the same order as o.

The velocity of propagation of (34) is 1/a, and thus varies with the
frequency. With our usual approximation that o/eox.p is small, this
velocity is

~/xc_xm{ - (280(:%17)2}. G3)

We can show that in waves of this character E arid H are out of phase
with each other. For if in accordance with (31), we write

E,=aexp{ip(t—qz)},
H, =b exp{ip(t—qz)},
then the y-component of the vector relation

JH
C l E = — -,
ur M 0oXm ot



136 Electric waves

gives us the connection between a and b. It is

9E, 3H,
="MoXm™T,
9z POy

which is equivalent to
qa = poxmb. (36)

Now ¢ is complex and hence there is a phase difference between E,
and H, equal to the argument of q. This is tan"'(8/a), and with the
same approximation as in (35), this is just tan~"(o/2eox. p), which is
effectively o/2¢e0x.p.

§83 Reflection from a metal

It is interesting to discuss in more detail the case in which the
conductivity is so great that we may completely neglect the displace-
ment term in (30). Let us consider the case of a beam of light falling
normally on an infinite metallic conductor bounded by the plane z = 0.
Let us suppose also, as in Fig. 28, that the incident waves come from

X

—

Free space

———

Fig. 28

the negative direction of z, in free space, for which x. = %, = 1, and are
polarised in the (y, z)-plane. Then, according to (24), they are defined
by:
incident wave

E.=a:ip(t—z/c)}, Hy=aiexplipt—2z/c)}, (37a)
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reflected wave

E.=bexp{ip(t+z/c)}, H,=—b,exp{ip(t+z/c)}.
(37b)

In the metal itself we may write, according to (31) and (36),
E.=azexplip(t—qz)}, H,=(qa:/poxm)exp{ip(t—qz)}. (37¢)

These values will satisfy the equation of telegraphy (30) in which we
have neglected the displacement term, if

2 TLoXm . 2.
q"=-———i="2v%,
P
where
v’ = opoxm/2p,
so that

q=vy(1-1i). (37d)

Inside the metal, E and H have a /4 phase difference, since, as we
have shown in (36), this phase difference is merely the argumentof q.
The boundary conditions are that E, and H, are continuous at z = 0.

This gives two equations
a;+b,=a,
a;—bi=qa/poxm.
Hence
a, _ by _a
1+q/uckm 1—q/poxm 2

Since q is complex, all three electric vectors have phase differences.
The ratio R of reflected to incident energy is |b; /a4|*, which reduces to

(38)

(Y~ poxm) +y’
(y+poxm) +v°>
In the case of non-ferromagnetic metals, vy is much larger than g% m,
so that approximately
_ 2”’0" m
Y

This formula has been checked excellently by experiments for
wavelengths in the region of 107> cms.

R=1
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It is an easy matter to generalise these results to apply to the case
when we include both the displacement and conduction terms in (30).

We can use (38) to calculate the loss of energy in the metal. If we
consider unit area of the surface of the metal, the rate of arrival of
energy is given by the Poyntmg Vector. This is 3a;|°>. Similarly
the rate of reflection of energy is 3|b;|%. So the rate of dissipation is
Hla* =643 ThlS must be the same as the Joule heat loss. In our units,
this loss is o E* per unit volume per unit time. If we take the mean value
of EZ in the metal, it is a straightforward matter to show that fo oE%dz
is indeed exactly equal to this rate of dissipation.

§84 Radiation pressure

When the radiation falls on the metal of §83, it exerts a pressure. We
may calculate this, if we use the experimental law that when a current j
is in the presence of a magnetic field H there is a force woxmj X H acting
onit. In our problem, there is, in the metal, an alternating field E, and a
corresponding current oE. The force on the current is therefore
roxmo E X H, and this force, being perpendicular to E and H, lies in the
z direction. The force on the charges that compose the current is
transmitted by them to the metal as a whole. Now both E and H are
proportional to e ””* (see equations (37¢,d)) so that the force falls off
according to the relation e *7”*. To calculate the total force on a unit
area of the metal surface, we must integrate wox 0 E X Hfrom z =0to
z =00. EXH s a fluctuating quantity, and so we shall have to take its
mean value with respect to the time. The pressure is then

(ho%ma)(1/pom)|azf” Jm 2y e 7" dz,
or, ’
(o/4p)la2l*.
Using (38) this may be expressed in the form
(ordxm/pllas*{(y +poxm)* +v7 .

8§85 Skin effect

There is another application of the theory of §83 which is important.
Suppose that we have a straight wire of circular section, and a rapidly
alternating e.m.f. is applied at its two ends. We have seen in §83 that
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with an infinite sheet of metal the current falls off as we penetrate the
metal according to the law e . If py is small, there is little attenua-
tion as we go down a distance equal to the radius of the wire, and
clearly the current will be almost constant for all parts of any section
(see, however, question (12) in §87). But if py is large, then the current
will be carried mainly near the surface of the wire, and it will not make
a great deal of difference whether or not the metal is infinite in extent,
as we suppose in §83, or whether it has a cross-section in the form of a
circle; in this case the current density falls off approximately according
to the law e™™" as we go down a distance r from the surface. This
phenomenon is known as the skin effect; it is more pronounced at very
high frequencies.

We could, of course, solve the problem of the wire quite rigorously,
using cylindrical polar coordinates. The formulae are rather compli-
cated, but the result is essentially the same.

§86 Propagation in waveguides

The last topic we examine in this chapter is the propagation of
electromagnetic waves inside long straight hollow metal ducts. These
are called waveguides, and as the duct will be assumed to be empty, the
waves will propagate in a region in which p =0 =0 and x.=x,,= 1.
From (39) the electric vector E will then satisfy the vector wave
equation

1
VE== v (39)

while from the first Maxwell equation (1) we must also require of E that
divE=0. (40)

Our task will thus be to seek a solution of (39) that satisfies (40), and
which also obeys appropriate boundary conditions for E on the walls of
the duct which we will assume to be perfect conductors. We shall take
the z axis to lie along the duct and to have associated with it the unit
vector k. The duct itself will be supposed to be of constant cross
section.

The task of solving this problem will be much simplified if we notice
that the vector

E =curl (uk) (41)
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will satisfy both (39) and (40), provided only that the scalar u satisfies
the scalar wave equation

14

Vu=—

“ 02 ot

|

42)

N

This result follows because
V[ curl (uk)] = curl [V*(uk)],

2

z[curl uk)]= curl[ z(uk)}

and
div curl (uk)=0.

If we consider harmonic waves with frequency p/2+ that propagate
in the z direction with wave number k/27 we may set

u(m, )= (x,y) exp {i(pt —kz)}, (43)
in which r is the general position vector in the duct. It is then a
consequence of (41) and (43) that
=§2 exp {ilpt—kz)}, E,=- % exp {i(pt —kz)}, E,=0.
(44)

The harmonic time behaviour assumed for E will also apply to B, so
that once this time dependence has been taken into account Maxwell’s
equations (3) and (4) can be put in the form

E= —ic—fcurl B 45)
p

A

B=—curlE, (46)

S |-

where we have separated out the time dependence by writing
E( t)=E@exp (ipt) and B, t)=B@) exp(pt). (47)

Comparing (44) with the first expression in (47) then shows that E(r)
has the components

-9 - =—% —i E,=0. (48
—ayexp( ikz), E, aJcexp( ikz), . =0. (48)
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When used in (46) this result leads to the following components for
B(r)

§,=_§E,, é,:fé,, é,=—i(v2¢)exp(—ikz>. (49)

Inspection of (48) and (49) shows that E and B are orthogonal
because . B=0. Although E lies purely in the (x, y)-plane, and so is
transverse to the direction of propagation k, the vector B will only be
transverse if V¢ = 0. To emphasise the transverse nature of E, awave
of this type in which B, # 0 will be called a transverse electric wave,
which is usually abbreviated to a TE wave. If, however, V2¢ =0, so
that B is also purely transverse to the direction of propagation, then the
wave will be called a transverse electromagnetic wave, or a TEM wave.

To proceed further we now observe that the vector

V = curl curl (uk) (50)

is also a solution of (39) and (40). Then, because of the relationship
that exists between the time independent parts E and V of (41) and
(50), it can be seen by inspection of (45) and (46) that when E is given
by (41), B will be given by (50), and conversely. So, analogously to the
previous case, we find that when B is given by (50),

52 ke, BB iks),  Bm
B, 3y exp (—ikz), B, Py exp (—ikz), B,=0 (51)

and

ke . ke’ . ic?
Ex=—pc—By, E, = ——;—éx, E, =%(V2¢)exp (~ikz).  (52)

Here agam the vectors E and B are orthogonal since E.B =0, but this
time it is the B that is purely transverse and E that will only be
transverse if V2¢ = 0. For this reason, when E, # 0, waves of this type
are called transverse magnetic waves, or TM waves.

We have thus identified three essentially different modes of propa-
gation in a waveguide according as the waves in question are of the TE,
TEM or TM types. The detailed nature of the wave propagation in
each case will follow once ¢ has been found from the boundary
conditions that have still to be specified.

To solve for ¢ we now substitute (43) into (42) to obtain

Vi +x°¢p =0, (53)
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where

2
x2=E k2, (54)
c

Equation (53) is called the Helmholtz equation and it is this equation
that must be solved if ¢, and hence E and B, are to be determined. The
boundary conditions on ¢ will ensure that only certain values of the
constant x will be permitted. These will be the eigenvalues of the
Helmholtz equation, while the corresponding solutions ¢ will be the
associated eigenfunctions. Each such eigenfunction ¢ will characterise
a different fundamental form of wave propagation that is associated
with the TE, TEM or TM wave that is being propagated.

In passing, we notice from (54) that the wave number k/2# will only
be real if p°/c*>>x". If this condition on the frequency p/21r is not
satisfied k will become imaginary and the waves will attenuate expo-
nentially with z. Thus, for any particular x, the value p. = »xc will define
a cutoff frequency for unattenuated wave propagation.

To conclude, we shall consider the propagation of the TE mode in a
waveguide of rectangular cross section of sides a and b as shown in Fig.
29.

Fig. 29

Using the method of separation of variables by writing
¢(x,y)=Xx)Y(y), (55)



Propagation in waveguides 143

and proceeding as in Chapter 1, §7, we see that after division by XY,
(53) becomes

X Ydr YT (56)
where —a” is the separation constant. Consequently,
d°’X
dx2+a ’X =0, (57
and
d’Y
ozt —a)Y=0. (58)
y

To proceed further we must now introduce boundary conditions for
¢. As the walls are perfectly conducting, the appropriate boundary
condition for the TE mode will be that the tangential component of E
must vanish on the walls. In the simple geometry of the rectangular
waveguide of Fig. 29 this is equivalent to requiring E =0onx=0and
x =a and E =0ony=0andy =b. From (48) and (55) this is seen to
be equivalent to

ap _dX
ax—dx_o onx=0 and x=a 59)
and
8 _dY _ _ _
3y dy 0 ony=0 andy=b. (60)
Solving (57) gives
X =A cosax +B sin ax, (61)

which to satisfy boundary condition (59) requires that B =0 and
sin aa =0, yielding

am=mmfa form=0,1,2,.... (62)
When solving (58) we now set & = a, and
B> =x’—a (63)

to obtain
Y = C cos By + D sin By. (64)
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For Y to satisfy the boundary condition (60) we must have D = 0 and
sin 8b = 0, showing that

Br.=nmw/b forn=0,1,2,.... (65)

Combining (62), (64) and (65) shows that the condition defining x is
2 2

x,2,.=(1’-’ai’) +(%’) form,n=0,1,2, ..., 66)

when the corresponding solution ¢,,, will be

bmn = K cOS m;’—x cos T”y exp (~ikz), 67)
with K an arbitrary constant. :
The components of E in the TE (m, n) mode of wave propagation as

defined in (44) are thus

E, = _(ml: cos Ln_*rr_ sin T‘”y exp {i(pt —kz)},

E, = (m;rl() sin ﬂ:;x cos nT‘try exp {i(pt—kz)},

E,=0.

The components of B follow directly from (46) when it is combined
with the above results, and they are as follows

_ (kmwK\ . mwx _ nmy .
B, = ( va )sm L oS, exp {i(pt —kz)},

__(knmK mwmx . nmwy
= ( ob )cos—sm b exp {i(pt —kz)},

2

in’ m?> n’ max  nmwy
Bz=( ( + ) — —_— 1 — .
’ , —Z+3z) cos—=cos—=exp {i(pt—kz)}

Itis possible to deduce an important result from (54) if we define the
free space wavelength Ao, =2wc/p, the cutoff wavelength A.=27/x
and the guide wavelength A, = 27r/k. For then (54) can be re-written as

_ Ao
Ag_[l"‘().o/Ac)z]l 2> (68)
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showing that the guide wavelength is greater than the free space
wavelength. The cutoff frequency and wavelength for the waveguide
depend, via x,,,, On the dimensions of the waveguide cross-section and
on the mode (m, n) that is propagated. The typical frequency range of
operation for waveguides is between 10° and 10'" Hz. In general, a
waveguide is designed so that for any particular frequency of operation
only one undamped mode will propagate.

§87 Examples

1. Prove the equations (17’) and (18') in §77.

2. Find the value of Hwhen E, =E, =0, and E, = A cos nx cos nct. It
is given that H=0 when ¢ =0, and also x. =x,=1, p =0 =0. Show
that there is no mean flux of energy in this problem.

3. Prove the equation (28) in §80, for reflection and refraction of light
polarised perpendicular to the plane of incidence.

4. Show that the polarising angle is less than the critical angle for
internal reflection. Calculate the two values if K; =6, K, =1.

5. Show that the reflection coefficient from glass to air at normal
incidence is the same as from air to glass, but that the two phase
changes are different.

6. Light falls normally on the plane face which separates two media K
and K. Show that a fraction R of the energy is reflected, and T is
transmitted where

R_(KZ—K1)2 _ 4KK,
K,+K,]’ (K2+Kq)*

Hence prove that if light falls normally on a slab of dielectric, bounded
by two parallel faces, the total fraction of energy reflected is
(K2—K,)?

Ki+K3’
and transmitted is

2K K,

Ki+K3
It is necessary to take account of the multiple reflections that take place
at each boundary.
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7. Light passes normally through the two parallel faces of a piece of
plate glass, for which K =1-5. Find the fraction of incident energy
transmitted, taking account of reflection at the faces.

8. Show that when internal reflection (§81) is taking place, there is a
phase change in the reflected beam. Evaluate this numerically for the
case of a beam falling at an angle of 60° to the normal when K; =16,
K, =1, the light being polarised in the plane of incidence.

9. Show that if x,,, = 1, then the reflection coefficient with metals (§83)
may be written in the form R =1-—v(wvuo/o), where v is the
frequency.

10. A current flows in a straight wire whose cross section is a circle of
radius a. The conduction current j depends only on r the radial
distance from the centre of the wire, and the time . Assuming that the
displacement current can be neglected, prove that H is directed
perpendicular to the radius vector. If j(r, f) and H(r, t) represent the
magnitudes of j and H, prove that

oH

3 ) df
—_ H —_- A = m0——
ar( r)=rj o HoXmO e

11. Use the results of question (10) to prove that j satisfies the
differential equation

19 aj

120 e

ror\ or at

By using the formula for curl in cylindrical polars twice in succession
shows that H[ = H,(r, t)] satisfies the equation

2

H 16H H oH
+———== o1z

Y R [curl curl H]p = poxmo e

Use the method of separation of variables to prove that there is a
solution of the j-equation of the form j =f(r) exp (ipt) where

a = QhoXmop.

Hence show that f is a combination of Bessel functions of order zero
and complex argument.

12. If a in question (11) is small, show that an approxnmate solution of
the current equationisj = A (1 +3iar’ —&a*r?) exp (ipt), where A isa
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constant. Hence show that the total current fluctuates between +J,
where, neglectmg powers of a above the second J=
ma’A(1+a*a?/384). Use this result to show that the heat developed

in unit length of the wire in unit time is > Joa2(1 +a*a?/192). (Ques-
T

tions (10), (11) and (12) are the problem of the skin effect at low

frequencies.)

13. Complete the calculations leading to the results in equations (48)
and (49) of §86.

14. Complete the calculations leading to the results in equations (51)

and (52) of §86.

15. Prove that if ¢ (r) is a solution of the scalar Helmbholtz equation
Vi +A%p =0,

and k is a constant vector, the vectors
1
X=curl (¢k) and Y= y curl X

are independent solutions of the vector Helmholtz equation
VV+A?V=0,

where V is a solenoidal vector (i.e. div V=0).
Hence, by showing that

curl X+Y)=AX+Y),
deduce that V has the general solution
1
‘ V=curl (uk) +x curl curl (uk).

16. Show that in the TM mode for the waveguide considered in §86

B, = (nZK) sin m_ cos T’”y exp {i(pt—kz)},

y

B, = _(m;rK) cos —m—ﬂ— sin T‘n'y exp {i(pt —kz)},

B, =0,
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and

Electric waves

2
E.= _(kmfrc K) cos m;rx sin % exp {i(pt—kz)},

_ \kmrcﬁ() . mmx _ nwy ,
E, = ( b sin —=cos b exp {i(pt—kz)},
. 2 2 2 2,
E,=—(m; K)(Ln—y+%§) smm—ﬂ-sm%exp{t(pt—kz)}

17. Consider propagation in a cylindrical waveguide of radius @ and
take the z axis to coincide with the axis of the guide. By using
cylindrical polar coordinates (7, 0, z) show that ¢ must be a solution of

7ar( 3?)+13042)+ "¢ =0.
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General considerations

§88 Doppler effect

The speed at which waves travel in a medium is usually independent of
the velocity of the source; thus, if a pebble is thrown into a pond with a
horizontal velocity, the resulting water waves travel radially outwards
from the centre of disturbance in the form of concentric circles, with a
speed which is independent of the velocity of the pebble that caused
them.

When we have a moving source, sending out waves continuously as
it moves, the velocity of the waves is often unchanged, but the
wavelength and frequency, as noted by a stationary observer, may be
altered. The velocity is changed, however, when there is dispersion.

Thus, consider a source of waves moving towards an observer with
velocity u. Then, since the source is moving, the waves which are
between the source and the observer will be crowded into a smaller
distance than if the source had been at rest. This is shown in Fig. 30,
where the waves are drawn both for (a) a stationary and (b) a moving
source. If the frequency is n, then in time ¢ the source emits nt waves.

nta

y A DA AN 7 (a) stationary source
Source
—_— Observer
ut
L\ ntd .
yi A = (b) moving source

Fig. 30

If the source had been at rest, these waves would have occupied a
length AB. But due to its motion the source has covered a distance ut,
and hence these nt waves are compressed into a length A’B’, where
AB—A'B’'=ut. Thus

niA —ntA' = ut,
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and so
A=A—-u/n=A(1-u/c), (1)

if ¢ is the wave velocity. If the corresponding frequencies measured by
the fixed observer are n and n’, then, since nA =c =n'A’, we have

,_ nc

n=

o 2)
If the source is moving towards the observer the frequency is
increased; if it moves away from him, the frequency is decreased. This
explains the sudden change of pitch noticed by a stationary observer
when a train sounding its klaxon passes him. The actual change in this
case is from nc/(c —u) to nc/(c +u), so that

An =2ncu/(c*—u?). (3

This phenomenon of the change of frequency when a source is moving
is known as the Doppler effect. It applies equally well if the observer is
moving instead of the source, or if both are moving.

For, consider the case of the observer moving with velocity v away
from the source, which is supposed to be at rest. Let us superimpose
upon the whole motion, observer, source and waves, a velocity —v. We
shall then have a situation in which the observer is at rest, the source
has a velocity —v, and the waves travel with a speed ¢ —v. We may
apply equation (2) which will then give the appropriate frequency as
registered by the observer; if this is n”, then

w__nlc=v) _nlc—v)
c-v)—(-v) ¢

To deal with the case in which both source and observer are moving,
with velocities u and v, respectively, in the same direction, we superim-
pose again a velocity —v upon the whole motion. Then in the new
problem, the observer is at rest, the source has a velocity u —v, and the
waves travel with velocity ¢ —v. Again, we may apply (2) and if the
frequency registered by the observer is n", we have

4)

w_ nlc—v) _n(c-v)
T(-v)-w-v) c-u "

)

These considerations are of importance in acoustic and optical prob-
lems; it is not difficult to extend them to deal with cases in which the
various velocities are not in the same line, but we shall not discuss such
problems here.
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§89 Beats

We have shown in Chapter 1, §6, that we may superpose any number
of separate solutions of the wave equation. Suppose that we have two
harmonic solutions (Chapter 1, equation (11)) with equal amplitudes
and nearly equal frequencies. Then the total disturbance is

@ =a cos 2mw(kix —nit)+a cos 2w (kox —nat)

=2 ) {k1+k2 _n1+n2‘}0052 {kl—kzx__nl-nz‘}
=44 COS 2T 2 X 2 1 w 2 2 L.

(©6)

The first cosine factor represents a wave very similar to the original
waves, whose frequency and wavelength are an average of the two
initial values, and which moves with a velocity (n, +n,)/(k; +k>). This
is practically the same as the velocity of the original waves, and is
indeed exactly the same if n,/k; = n,/k,. But the second cosine factor,
which changes much more slowly both with respect to x and ¢, may be
regarded as a varying amplitude. Thus, for the resultant of the two
original waves, we have a wave of approximately the same wavelength
and frequency, but with an amplitude that changes both with time and
distance.

We may represent this graphically, as in Fig. 31. The outer solid
profile is the curve

y =2a cos 217{k1 Zkzx e ant}.
The other profile curve is the reflection of this in the x axis. The actual
disturbance ¢ lies between these two boundaries, cutting the axis of x
at regular intervals, and touching alternately the upper and lower
profile curves. If the velocities of the two component waves are the
same, so that n,/k,=n/k,, then the wave system shown in Fig. 31
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moves steadily forward without change of shape. The case when n,/k
is not equal to n,/k; is dealt with in §91.

Suppose that ¢ refers to sound waves. Then we shall hear a resultant
wave whose frequency is the mean of the two original frequencies, but
whose intensity fluctuates with a frequency twice that of the solid
profile curve. This fluctuating intensity is known as beats; its fre-
quency, which is known as the beat frequency, is just n; —n., that is,
the difference of the component frequencies. We can detect beats very
easily with a piano slightly out of tune, or with two equal tuning-forks
on the. prongs of one of which we have put a little sealing wax to
decrease its frequency. Determination of the beat frequency between a
standard tuning-fork and an unknown frequency is one of the best
methods of determining the unknown frequency. Low frequency beats
are unpleasant to the ear.

§90 Amplitude modulation

There is another phenomenon closely related to beats. Let us suppose
that we have a harmonic wave ¢ = A cos 2#(nt — kx), with amplitude
A and frequency n. Suppose further that the amplitude A is made to
vary with the time in such a way thatatx =0, A =a +b cos 2#pt. If the
wave is to move with velocity ¢ =n/k, ¢ must be some function of
ct —x. So for the general x, A =a + b cos 2@p(t —kx/n). This is known
as amplitude modulation. The result is

¢ ={a +b cos 2mp(t —kx/n)} cos 2 (nt — kx)

=q cos 2w (nt —kx)

b k. kx
+§{cos [21r(n +p)(t -—f)] +cos [217(11 -—p)(t —7)]}
The effect of modulating, or varying, the amplitude, is to introduce two
new frequencies as well as the original one; these new frequenciesn + p

are known as combination tones. In the same way we can discuss phase
modulation and frequency modulation. (See §99, questions (11)-(12).)

§91 Group velocity

If the velocities of §89 are not the same (n,/k; not equal to n,/k,),
then the profile curves in Fig. 31 move with aspeed (n, —n,)/(k1—k2),
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which is different from that of the more rapidly oscillating part, whose
speedis (n, +n2)/(k1+k>). In other words, the individual waves in Fig.
31 advance through the profile, gradually increasing and then decreas-
ing their amplitude, as they give place to other succeeding waves. This
explains why, on the seashore, a wave which looks very large when it is
some distance away from the shore, gradually reduces in height as it
moves in, and may even disappear before it is sufficiently close to
break.

This situation arises whenever the velocity of the waves, that is, their
wave velocity V is not constant, but depends on the frequency. We
have already met this phenomenon which is known as dispersion. We
deduce that in a dispersive system the only periodic wave profile that
can be transmitted without change of shape is a single harmonic wave
train; any other wave profile, which may be analysed into two or more
harmonic wave trains, will change as it is propagated. The actual
velocity of the profile curves in Fig. 31 is known as the group velocity
U. We see from (6) that if the two components are not very different,
V=n/k, and

U= (n,—ny)/(k,—kz)=dn/dk. 7

In terms of the wavelength A, we have k = 1/A, so that

dn - 2_d_n_
d(1/A) dr’

We could equally well write this

dn _d(kV) dv dv
U ak - dk V+kdk | % Ad)t' )

Our calculation has considered just two waves. But the form of
equation (7) shows that we could equally well consider any number of
waves superposed, provided that for any two of them n,—n, and
k,—k, were sufficiently small for us to take their ratio constant and
equal to dn/dk. If this condition is not satisfied we have to go to a closer
approximation, as in §92.

The importance of group velocity lies in the fact that the energy is
propagated with this velocity. We have already met several cases in
which the wave velocity depends on the frequency; we shall calculate
the group velocity for three of them.

U= t)

Surface waves on a liquid of depth h. The analysis of Chapter 5,
equation (32) shows that the velocity of surface waves on a liquid of
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depth h is given by

2_8A . p2mh
| % = tanh o
According to (9) therefore, the group velocityis V —A dV/dA, so that
U=%v{1+z‘}\l'fcosechil’\’—h}. (10)

When h is small, the two velocities are almost the same, but when h is
large, U= V/2, so that the group velocity for deep sea waves is
one-half of the wave velocity. Equation (10) is the same as the
expression obtained §59, equation (47), for the rate of transmission of
energy in these surface waves. Thus the energy is transmitted with the
group velocity.

Electric waves in a dielectric medium. The analysis in Chapter 7,
§76, shows that the wave velocity in a dielectric medium is given by

2_ 2
Ve=c"/eopoxem.

We may put x,, = 1 for waves in the visible region. Now the dielectric
constant x. is not independent of the frequency, and so V depends on
A. The group velocity follows from (9); it is

(11)

U= V{1+ A a"°}.

2x%e 0A

In most regions, especially when A is long, x. decreases when A
increases so that U is less than V. For certain wavelengths, however,
particularly those in the neighbourhood of a natural frequency of the
atoms of the dielectric, there is anomalous dispersion, and U may
exceed V. When A is large, we have the approximate formula

xe=A+B/A*+C/A"
It then appears from (11) that

A-C/A*
+B/A*+C/A*

U=VA

Electric waves in a conducting medium. The analysis in Chapter 7,
§83, shows that the electric vector is propagated with an exponential
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term exp{ip(t—yz)}, where y>=ouoxm/2p. Thus VZ=1/y*=
2p/opoxm. According to (7), the group velocity is

If we suppose that o and x,, remain constant for all frequencies, then
this reduces to

U=2/y=2V. 12)

The group velocity here is actually greater than the wave velocity.

§92 Motion of wave packets

We shall now extend this discussion of group velocity to deal with the
case of more than two component waves. We shall suppose that the
wave profile is split up into an infinite number of harmonic waves of
the type

exp {2mi(kx —nt)}, (13)

in which the wave number k has all possible values; we can suppose
that the wave velocity depends on the frequency, so that n is a function
of k. If the amplitude of the component wave (13) is a (k) per unit range
of k, then the full disturbance is

o, )= J a(k) exp {2mi(kx — nt)} dk. (14)
This collection of superposed waves is known as a wave packet. The
most interesting wave packets are those in which the amplitude is
largest for a certain value of k, say ko, and is vanishingly small if £k — ko
is large. Then the component waves mostly resemble exp {27 (kox —
not)}, and there are not many waves which differ greatly from this.
We shall discuss in detail the case in which

a(k)=A exp{—a(k —ko)’}. (15)

This is known as a Gaussian wave packet, after the mathematician
Gauss, who used the exponential function (15) in many of his investi-
gations of other problems. A, o and k are, of course, constant for any
one packet. :

Let us first determine the shape of the wave profile at ¢t =0. The
integral in (14) is much simplified because the term in n disappears. In
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fact,

d(x,0)= J A exp {~o(k —ko)?} . exp (2mikx) dk.
On account of the term exp {—a (k —ko)?}, the only range of k which
contributes significantly to this integral lies around k,; since when
k—ko=1/ Vo this term becomes e ! and for larger values of kK —k it
becomes rapidly smaller, this range of k is of order of magnitude
Ak =1/vo. In order to evaluate the integral, we use the result

+00 +00
J‘ exp (au — bu®) du = e**/** J' exp {~b(u>—au/b+a’*/4b>)} du

+00
="/ J’ exp (—bv?) dv

o}

=(m/b) exp (a*/4b). (17)
This enables us to integrate at once, and we find that
& (x, 0)=exp Av(m/a) exp (—m°x%/ o) 2mikox). (18)

The term exp (2rikox ) represents a harmonic wave, whose wavelength
A=1/ko, and the other factors give a varying amplitude
AW(mr/o) exp (—mx?*/c). If we take the real part of (18), ¢ (x, 0) has
the general shape shown in Fig. 32. The outer curves in this figure are
the two Gaussian curves

y =+AV(m/o) exp (—m*x*/a),

and ¢ (x, 0) oscillates between them. Our wave packet (14) represents,
at t =0, one large pulse containing several oscillations. If we define a
half-width as the value of x that reduces the amplitude to 1/e times its
maximum value, then the half-width of this pulse is (vo)/r.

Fig. 32
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At later times, ¢t >0, we have to integrate (14) as it stands. To do this
we require a detailed knowledge of n as a function of . If we expand
according to Taylor’s theorem, we can write

n =no+a(k —ko)+B(k —ko)2/2+ ey
where
a=(dn/dk)y, B =(d’n/dk,.... 19)

As a rule the first two terms are the most important, and if we neglect
succeeding terms, we may integrate, using (17). The result is

dx, t)= f N A exp {—a(k —ko)*}exp {2mi[kx —t(no+a(k —ko))]} dk
=AV(z/o)exp{-m*(x - at)’/o} . exp {2mi(kox —not)). (20)

When ¢ =0, it is seen that this does reduce to (18), thus providing a
check upon our calculations. The last term in (20) shows that the
individual waves move with a wave velocity no/k, but their boundary
amplitude is given by the first part of the expression, namely, by
A jz'rr/ o) exp {~m*(x —at)’/o}. Now this expression is exactly the
same as in (18), drawn in Fig. 32, except that it is displaced a distance at
to the right. We conclude, therefore, that the group as a whole moves
with velocity a = (dn/dk),, but that individual waves within the group
have the wave velocity no/ko. The velocity of the group as a whole is
just what we have previously called the group velocity (7).

If we take one more term in (19) and integrate to obtain ¢ (x, t) we
find that ¢ has the same form as in (20) except that o is replaced by
o +mBit. The effect of this is twofold; in the first place it introduces a
variable phase into the term exp {2i(kox —not)}, and in the second
place it changes the exponential term in the boundary amplitude curve
to the form

ex [ -mlo(x —at)z]
a_2+1TZB2t2 .
This is still a Gaussian curve, but its half-width is increased to
{@*+nB) fon} 2, (1)

We notice therefore that the wave packet moves with the wave velocity
no/ko, and group velocity (dn/dk)o, spreading out as it goes in such a
way that its half-width at time ¢ is given by (21).
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The importance of the group velocity lies mainly in the fact that in
most problems where dispersion occurs, the group velocity is the
velocity with which the energy is propagated. We have already met this
in previous paragraphs.

§93 Kirchhoff’s solution of the wave equation

We shall next give a general discussion of the standard wave equation
1 9%

V=3,
¢ c2 6!2

in which c is constant. We shall show that the value of ¢ at any point P
(which may, without loss of generality be taken to be the origin) may be

obtained from a knowledge of the values of ¢, g%’ and %? on any given
closedsurface S, which may or may not surround P; the values of ¢ and
its derivatives on S have to be associated with times which differ
somewhat from the time at which we wish to determine ¢p.

Let us analyse ¢ into components with different frequencies; each
component itself must satisfy the wave equation, and by the principle
of superposition, which holds when ¢ is constant, we can add the
various components together to obtain the full solution. Let us con-
sider first that part of ¢ which is of frequency p: we may write it in the

form

¥(x, y, z) exp (ikct), (22)
where
k =2mp/c. (23)

¢ is the space part of the disturbance, and it satisfies the Helmholtz
equation

(V2+ky =0. (24)
This last equation may be solvea by using Green’s theorem. This

theorem states that if ¢, and ¢, are any two functions, and S is any
closed surface, which may consist of two or more parts, such that y,
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and ¢, have no singularities inside it, then

[[wrv-ovydar=[{.22-y,22as @)

The volume integral on the left-hand side is taken over the whole
volume bounded by S, and d/dn denotes differentiation along the
outward normal to dS.

In this equation ¢; and ¢, are arbitrary, so we may put ¢, equal to ¢,
the solution of (24), and ¢,=(1/r) exp (—ikr), r being measured
radially from the origin P. We take the volume through which we
integrate to be the whole volume contained between the given closed
surface S shown in Fig. 33 and a small sphere X around the origin. We
have to exclude the origin because ¢, becomes infinite at that point.
Fig. 33 is drawn for the case of P within S; the analysis holds just as
well if P lies outside S.

}".

Fig. 33

Now it can easily be verified that Vi, = —kzwz, so that the left-hand
side of (25) becomes

[[patv+k2yp
and this vanishes, since (V> +k)y =0 by (24). The right-hand side of
(25) consists of two parts, representing integrations over S and 2. On X

the outward normal is directed towards P and hence this part of the full
expression is

J' { (/) exp (~ikr)( =

When we make the radius of 2 tend to 0, only one term remains; it is

‘;_'r”) ~¥( -1/ exp (~ikr)]) } d.

- j (1/r%) exp (—ikr) dS = — j w(1/r%) exp (—ikr) . r* do,
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where dw is an element of solid angle round P. Taking the limit as r

tends to zero, this gives us a contribution —4my,. Equation (25) may
therefore be written

4t = [{(1/r exp (-ikn) 22—y 1(1/r) exp (-ikn)]) ds
= H (1/r)exp (—ikr)%/:—- ¢ exp (—ikr) %(—i—)
+iky(1/r) exp (—ikr)gr-:-} ds.

Since by definition ¢ =y (x, y, z) exp (ikct), we can write this last
equation in the form

d)p———[XdS (26)

where

=(1/r) exp {ik(ct _,)}%f_ W exp {ik (ct — r)}a%(-})

+iky (1/r) exp {ik (ct - r)};—r:,

=A —B+C, say.

We may rewrite X in a simpler form; for on account of the time
variation of ¢, ¢ exp {ik (ct —r)}is the same as ¢ taken not at time ¢, but
at time ¢ —r/c. If we write this symbolically [¢],—,/., then

B=2{()6h-ne
an)e

1 i[aﬁ]
cr onlL ot t—r/c’
where, for example, [d¢/dn];—,,c means that we evaluate d¢/on as a
function of x, y, z, ¢t and then replace ¢ by t—r/c. We call t—r/c the

In a similar way,

and
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retarded time. This retardation arises, of course, because of the finite
speed of propagation of the wave and the dependence of the solution
on the corresponding domain of dependence (cf. Chapter 1, §11). We
have therefore proved that

1
P—Z;Ide’

where

R P (0 S+ I

cr onl ot t—r/c

So far we have been dealing with waves of one definite frequency.
But there is nothing in (27) which depends upon the frequency, and
hence, by summation over all the components for each frequency
present in our complete wave, we obtain a result exactly the same as
(27) but without the restriction to a single frequency.

This theorem, which is due to Kirchhoff, is of great theoretical
importance; for it implies (a) that the value of ¢ may be regarded as the
sum of contributions X/4 from each element of area of S; this may be
called the law of addition of small elements, and is familiar in a slightly
different form in optics as Huygens’ Principle; and (b) that the
contribution of dS depends on the value of ¢, not at time ¢, but at time
t—r/c. Now r/c is the time that a signal would take to get from dS to
the point P, so that the contribution made by dS depends not on the
present value of ¢ at dS, but on its value at that particular previous
moment when it was necessary for a signal to leave dS in order that it
should just have arrived at P. This is the justification for the title of
retarded time, and for this reason also, [¢ ],/ is sometimes known as
a retarded potential.

It is not difficult to verify that we could have obtained a solution
exactly similar to the above, but involving ¢ +r/c instead of t ~r/c; we
should have taken ¢, in the previous work to be (1/r) exp (ikr) instead
of (1/r)exp (—ikr). In this way we should have obtained advanced
potentials, [¢],-.,., and advanced times, instead of retarded potentials
and retarded times. More generally, too, we could have superposed the
two types of solution, but we shall not discuss this matter further.

In the case in which ¢ = o0, so that signals have an infinite velocity,
the fundamental equation reduces to Laplace’s equation, V¢ = 0, and
the question of time variation does not arise. Our equation (27)
reduces to the standard solution for problems of electrostatics.
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§94 Fresnel’s principle

We shall apply this theory to the case of a source O sending out
spherical harmonic waves, and we shall take S to be a closed surface
surrounding the point P’ at which we want to calculate ¢, as shown in
Fig. 34. Consider a small element of dS at Q; the outward normal

Fig. 34

makes angles 8, and 6 with QO and PQ, and these two distances are r,
and r, respectively. The value of ¢ and Q is given by the form
appropriate to a spherical wave (see Chapter 1, equation (24)):

Thus

do = rg_ cos m(ct —ry). (28)
1
o _ _ L4
n cos 0, e

1 m .,
=4 cos 01{;5 cos m(ct—rl)—r— sin m(ct—rl)}.
1 1

Now A =27/m, so that if r, is much greater than A, which will almost
always happen in practical problems, we may put

Also

F) ma cos 0,
9% _ ————Lsinm(ct—r).
on n
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and

d amc
-a{-’= ~ -—r—l—-sm m(ct—r,).

The retarded values are easily found, and in fact, from (27),

ma cos 6, .
X= ——;—r-——lsm m(ct—[r+r.))
1

a
+;Tcos 0 cosm(ct—[r+ry)
1

1 amc

cr n

cos @ sin m(ct —[r +r,]).

We may neglect the second terms on the right if r; is much greater than
A, and so

= —%—q(cos 0 +cos 6;) sin m(ct —[r +r,)). (29)
1
Combining (29) with (26) it follows that

p= —ij'ﬂ(cos 6 +cos 0,) sin m(ct —[r +r1])dS
4l r

= —%J—(cos 6 +cos 0,) sin m(ct —[r +r,]) dS. (30)

If, instead of a spherical wave, we had had a plane wave coming from
the direction of O, we should write

¢p=—a cos m(ct—ry),

r; now being measured from some plane perpendicular to OQ, and
(30) would be changed to

24

We may interpret (30) and (31) as follows. The effect at P is the same
as if each element dS sends out a wave of amplitude

¢ _—iJ’ (cos 6 +cos ;) sin m(ct —[r +r1]) dS. (31)

A /cos 0 +cos 0,
Ar( 2 )dS,
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A being the amplitude of the incident wave at dS; further, these waves
are a quarter of a period in advance of the incident wave, as is shown by
the term —sin m(ct —[r +r,]) instead of cos m(ct —ry). 3(cos 8 +cos 6,)
is called the inclination factor and if, as often happens, only small
values of @ and 6, occur significantly, it has the value unity. This
interpretation of (30) and (31) is known as Fresnel’s principle.

The presence of this inclination factor removes a difficulty which was
inherent in Huygens’ principle; this principle is usually stated in the
form that each element of a wave-front emits wavelets in all directions,
and these combine to form the observed progressive wave-front. In
such a statement there is nothing to show why the wave does not
progress backwards as well as forwards, since the wavelets should
combine equally in either direction. The explanation is, of course, that
for points behind the wavefront cos 6 is negative with a value either
exactly or approximately equal to —cos 61, and so the inclination factor
is small. Each wavelet is therefore propagated almost entirely in the
forward direction.

Now let us suppose that some screens are introduced, and that they
cover part of the surface of S. If we assume that the distribution of ¢ at
any point Q near the screens is the same as it would have been if the
screens were not present, we have merely to integrate (30) or (31) over
those parts of § which are not covered. This approximation, which is
known as St. Venant’s principle, is not rigorously correct, for there will
be distortions in the value of ¢o extending over several wavelengths
from the edges of each screen. It is, however, an excellent approxima-
tion for most optical problems, where A is small; indeed (30) and (31)
form the basis of the whole theory of the diffraction of light. With
sound waves, on the other hand, in which A is often of the same order
of magnitude as the size of the screen, it is only roughly correct.

§95 Diffraction at a pin hole

Let us illustrate this discussion with an example of the analysis
summarised in (31). Consider an infinite screen shown in Fig. 35 which
we may take to be the (x, y) plane. A small part of this screen (large
compared with the wavelength of the waves but small compared with
other distances involved) is cut away, leaving a hole through which
waves may pass. We suppose that a set of plane harmonic waves is
travelling in the positive z direction, and falls on the screen; we want to
find the resulting disturbance at a point P behind the screen.
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P(x,y,2)

d

<Y

Q(&.n,0)

Fig. 35

In accordance with §94 we take the surface of S to be the infinite
(x, y) plane, completed by the infinite hemisphere on the positive side
of the (x, y) plane. We may divide the contributions to (31) into three
parts. The first part arises from the aperture, the second part arises
from the rest of the screen, and the third part arises from the hemi-
sphere.

If the incident harmonic waves are represented by ¢ =
a cos m(ct — z) this first contribution amounts to

_ifl(l +cos 6) sin m(ct —r) dS.
2A)r

We have put 8, = Oin this expression since the waves fall normally onto
the (x, y) plane. We shall only be concerned here with points P which
lie behind, or nearly behind, the aperture so that we may also put
cos 8 =1 without loss of accuracy. This contribution is then

1
-4 J = sin m(ct—r) dS. (32)
Alr
The second part, which comes from the remainder of the (x, y) plane

vanishes, since no waves penetrate the screen and thus there are no
secondary waves starting there.
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The third part, from the infinite hemisphere, also vanishes, because
the only waves that can reach this part of S are those that came from
the aperture, and when these waves reach the hemisphere their
inclination factor is zero. Thus (32) is in actual fact the only non-zero
contribution and we may write

ép= —%j %sin m(ct—r)dS. (33)

Let P be the point (x, y, z) and consider the contribution to (33), that
arises from a small element of the aperture at Q(¢, n, 0). If OP = f, and
QP =r, we have

f2=x2+y2+22,
rP=(x-¢&+(y—-n)+z’
=f2-2x¢—-2yn+&2+ 72 (34)

Let us make the assumption that the aperture is so small that £2/f2 and
n>/f* may be neglected. Then to this approximation (34) shows us that

_g XE+ym
f -

ép= —)%J'-}sin m(ct -f+3‘—§—;—yﬂ) ds.

Again without loss of accuracy, to the approximation to which we are
working, we may put 1/r = 1/f, and then we obtain

¢p=—Assin{m(ct—f)+e},
where
A?’=C?+S?  tane=S/C,

and

Clx,y)= Y j cos v(xﬂyn) d¢ dn,

S(x,y)= fjsm—7(x£+yn)ds dn. (35)
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Once we know the shape of the aperture it is an easy matter to
evaluate these integrals. Thus, if we consider the case of a rectangular
aperture bounded by the lines ¢ =+a, n ==, we soon verify that
$ =0, and that

+a

a MY

C=— J’ cos — (x& + dnd

vl L, )‘f(ﬁ yn) dn d¢
4a sin pax sin pBy

=—— 36

Af  px py (36)

where p = 2#/Af. If we are dealing with light waves, then the intensity
is proportional to C” and the diffraction pattern thus observed in the
plane z = f consists of a grill network, with zero intensity correspond-
ing to the values of x and y satisfying either sin pax =0, or sin pBy =0
but excluding x =0 and y =0.

§96 Fraunhofer diffraction theory

The discussion of the'last paragraph related to the case of plane waves
falling normally on an aperture whose size, while large compared with
the wavelength, was still small compared with the distance from the
aperture to the screen on which the pattern was being observed. We
might refer to this as diffraction at a pin-hole. But the equations (35)
arise in another far more important way which we must now explain,
and which is known as Fraunhofer Diffraction.

Consider a plane wave shown as AA' in Fig. 36 falling normally on a
convergent lens L. (L now replaces the previous pin-hole). This lens
will convert the plane wave into a spherical wave which converges at Z,
the focus. On account of the finite size of the lens the focus is not
perfect, and we ask the question: what will be the intensity observed at
a point P in the focal plane through Z?

To answer this question it is convenient to draw the wavefront ROR’
of a wave that has just left the lens. We may regard this as part of a
spherical surface with centre Z and radius equal to the focal length f. If
we take O as origin and OZ as axis of Z, then the coordinates (¢, n, {)
of any point Q on the surface satisfy the equation

E+n’+(-N’=r,
or (37)
E+n’+L=21L
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Z P(x,5/)
A
/
/
/
s/ /
/
R/ / R
/ ds \
Converging /// \

wavefront

A4’ Incident wavefront A

Fig. 36

Now by reasoning very similar to that used in §95 we may argue that if
Pis near Z, the total effect at P is just the sum of separate contributions
arising from all the elements dS within the curved wavefront RR'. Let
us suppose that the inclination factor may be put equal to unity, and
that the amplitude at all points on RR' is a; this is the same as the
amplitude in the incident wave AA'. Thus

do =a cos m(ct+f). (38)

Let us write (x, y, f) for the coordinates of the point P at which the
observation is made, and put QP =r. Then the appropriate form of
30) is

o = —%I%sin m(ct—r+f) dS. (39)
We may replace 1/r by 1/f in the first part of this integral: and note
that
==&+ -n’+(f-0)’
=f>+x*+y’>—2x¢—2yn by (37).

In cases where this type of diffraction is important, f is large and x and
y are small. We may therefore write

r’=f>—2x¢&—2yn,
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so that effectively

x¢é+yn
=f_ 2500 40
f 7 (40)

Combining (39) and (40) we have

¢p= _)Li J’ sin m(ct+x§;—yn) ds.

Thus, on integrating,
¢p =—A sin (mct +¢), 41)

where A and ¢ are given by precisely the same formulae as in (35).

This kind of analysis will apply particularly to the image of astar in a
telescope of long focal length. The star is so far away that it may be
regarded as giving out a beam of parallel light. We have just shown
therefore that the image of the star is not a point, but a pattern with
maxima and minima, depending on the shape and size of the lens. For
example, if a rectangular aperture (bounded by £ =+a, n =x8) is
placed immediately behind the lens L, the diffraction pattern is a grill
network, as in (36), and a circular aperture (Example 9 at the end of
the chapter) gives diffraction rings around Z. In any case the finite
extent of the central maximum, or zone, will put limits to our power of
resolving the light from two close stars. For if the geometrical images of
the two stars lie within one another’s central zones, we shall experience
difficulty in distinguishing whether there is really only one star, or two.
But there is no space here to deal with this important matter any more
closely.

§97 Retarded potential theory

We now offer a brief discussion of the equation

14>
Ve = p a—fz?— 47p, (42)

where p is some given function of x, y, z and t. When p = 0 this is the
standard wave equation, whose solution was discussed in §93. Equa-
tion (42) has already occurred in the propagation of electric waves
when charges were present (Chapter 8, equations (17) and (18')). We
may solve this equation in a manner very similar to that used in §93.
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Thus, suppose that p(x, y, z, t) is expressed in the form of a Fourier
series with respect to ¢, namely,

p(x,y,z,t)=Yax(x,y, z) exp (ikct). (43)

There may be a finite, or an infinite number, of different values of &,
and instead of a summation over discrete values of k we could, if we
desired, include also an integration over a continuous range of values.
We shall discuss here the case of discrete values of k; the reader will
easily adapt our method of solution to deal with a continuum.

Suppose that ¢ (x, y, 2, t) is itself analysed into components similar
to (43), and let us write, similarly to (22),

¢(x,y,2,0)= % i (x, y, z) exp (ikct), (44)

the values of k being the same as in (43). If we substitute (43) and (44)
into (42), and then equate coefficients of exp (ikct), we obtain an
equation for . It is

(V2 + k) = — dma. (45)

This equation may be solved just as in §93. Using Green’s theorem as
in (25), we put¢; = ¢ (x, y, 2), Y2 =(1/r) exp (—ikr), takingZ and S to
be the same as in Fig. 33. With these values, it is easily seen that the
left-hand side of (25) no longer vanishes, but has the value

J'ak(x,rys z)

~4qr exp (—ikr) dr, 46)

the integral being taken over the space between £ and S. The right-
hand side may be treated exactly as in §93, and gives two terms, one
due to integration over X, and the other to integration over S. The first
of these is

—4mpy (xp, yp, Zp). 47)

The second may be calculated just as on p. 159. Gathering the various
terms together, we obtain

%, 2) exp (—ikr) dr

Ui (xp, yp, Zp) = j
1 8 /1
t J' { (1/r) exp (—ikr)%‘ff—.p,, exp (—ikr)5;(7)

+ik (1/r) exp (—ikr):—;} ds. (48)
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Combining (43), (44) and (48) we can soon verify that our solution can
be written in the form

¢(xPa yp, ZP) = J’[p]‘_'/c dr + 1 J'X dS (49)

where X is defined by (27). This solution reduces to (27) in the case
where p = 0, while it reduces to the well-known solution of electrosta-
tics in the case where ¢ = c0.

We have now obtained the required solution of (42). Often, how-
ever, there will be conditions imposed by the physical nature of our
problem that allow us to simplify (49). Thus, if p(x, y, z, t) is finite in
extent, and has only had non-zero values for a finite time ¢ > £, we can
make X =0 by taking S to be the sphere at infinity. This follows
because X is measured at the retarded time ¢ —r/c, and if r is large
enough, we shall have t~r/c <to, so that [¢];—,/. and its derivatives
will be identically zero on S. In such a case we have the simple result

¢(XP, yp, Zp) = f[ﬁl:‘:i d‘l’, (50)

the integration being taken over the whole of space. Retarded poten-
tials calculated in this way are very important in the Classical theory of
electrons.

§98 Wave propagation in an inhomogeneous
medium

So far, all our analysis has been based on the assumption that the wave
propagation speed c¢ that occurs in the wave equation is constant.
There are, however, many situations in which the equation provides a
suitable description of some physical phenomenon provided the wave
speed ¢ is allowed to vary with position. This happens, for example, in
optics when light travels through a medium with a variable refractive
index, in acoustics when sound waves travel through any inhomogene-
ous continuum which may be gaseous, liquid or solid, and when
electromagnetic waves travel through an ionized gas.

Because of the complexity of the subject, we can offer no more than
a brief outline of an important approximate method of approach that
may often be used to resolve these problems. It is called the WKBJ
method after Wentzel, Kramers, Brillouin and Jeffreys who first
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developed it. For simplicity, we shall discuss it in the context of the -
one-dimensional wave equation

a¢ 1az_4>
ax? c2(x) at* 1)

We already know that when c(x) = c is constant, a wave travelling to
the right with speed ¢ and frequency p/2# will be a solution of (51) if

¢ =A exp{ip(x/c—1)}. (52

Our approach will be to seek a generalisation of this form of solution
that will be appropriate to (51) when c(x) is a slowly varying function
relative to some reference speed, say c(xo), where xo is a convenient
reference point. The form of solution that will be adopted as the
analogue of (52) will be

o(x,t)=A(x) exp {i(Z(x)~-pt)}, (53)

where A (x) and Z(x) are slowly varying functions of x’ that are to be

determined.
Substitution of (53) into (51) followed by the cancellation of the

common exponential factor leads to the result

%’2_4,[% (if) ]A+z<2%‘%%+Adzz) 0. (54)

This immediately implies the pair of simultaneous ordinary differential
equations

d’A T VAT
| Em (&) Ja=o (55)
and
dAdz | d*z
ZEd—x- +A—5 o =0. (56)

In general, we cannot hope to solve these exactly, but an approxi-
mate solution may be obtained as follows. We begin with equation (56)
which can be expressed in a more convenient form without any
approximation. Setting g = dZ/dx it becomes

dA dq

2qu —=
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or

Integration then gives

2logA(x)—2logA (xo)+log(%>—log (%) =0,

which in turn yields
Ax)=Ax)[Z'(x0)/Z' ()], (57)

with the prime signifying differentiation with respect to x.

Turning our attention now to equation (55), let us assume that A (x)
is a slowly varying function for which we may neglect d°A/dx?. It then
follows that to a first approximation

z_»r_
dx - c (x ), (5 8)
which is equivalent to 4
Z(x)= J —_ ds (59)
Employing this approximation for Z (x) in (57) gives
_ c (x) ] 1/2
A(x)—A(xo)[c =) (60)

Substitution of (59) and (60) into (53) then yields the approximate
solution

d(x, t)= A(xo)[ (( 0))]1/2 exp{ (L: Zzs—)ds—-pt)}. 61)

To estimate the range of validity of this expression it is necessary to
make more precise the nature of the slow variation of ¢(x) with x.
However, the source of the error was that when deriving expression
(58) we neglected d°A/dx? in (55). So, to estimate the effect this has,
let us now suppose that the true form of dZ/dx can be written

dz

a=—(‘—)(1+h(x)), (62)

where A(x) is the correction needed to make this result exact.
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Substituting (60) and (62) into (55) gives

1d% 1 /dc\2 p? )

> i(5) “Eeh+rd=o.
This expression also requires simplification, and to achieve it we
assume the slow variation of c(x) to be such that (dc/dx ) » d%c/dx>.
Consequently, neglecting this second derivative together with h%(x)
which we have taken to be small relative to h(x), gives

|h(x){=§ll-’—2(%)2. 63)

The approximation will thus be valid provided |k (x)| as defined here is
such that |h(x)|« 1.

A corresponding solution to (61) exists for a wave travelling to the
left and the approximate general solution will be the sum of these two
solutions.

Result (61) shows that the amplitude of this travelling wave varies
like Ve (x), while the term x/c in (52) is replaced by

[

§99 Examples

1. An observer who is at rest notices that the frequency of a car
appears to drop from 272 to 256 per second as the car passes him.
Show that the speed of the car is approximately 36-2 km per hour.
How fast must he travel in the direction of the car for the apparent
frequency to rise to 280 per second and what would it drop to in that
case as the car passed him.

2. Show that in the Doppler effect, when the source and observer are
not moving in the same direction, the formulae of §88 are valid to give
the various changes in frequency, provided that ¥ and v denote, not
the actual velocities, but the components of the two velocities along the
direction in which the waves reach the observer.

3. The amplitude A of a harmonic wave A cos 27 (nt —kx) is mod-
ulated so that A =a +b cos 27pt +c cos’ 2mpt. Show that combina-
tion tones of frequencies n+p, n+2p appear, and calculate their
partial amplitudes.
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4. The dielectric constant of a certain gas varies with the wavelength
according to the law x.=A +B/A*—CA>, where A, B and C are
constants. Show that the group velocity U of electromagnetic waves is
given in terms of the wave velocity V by the formula

A-2CA\?
v=v1 +(B/AH)-CA*

5. In a region of anomalous dispersion (§91), the dielectric constant
obeys the approximate law

A\?
xe=1 +_A—T:X_(2)'
A more accurate expression is
AL’ (A%=1))
(A*=A3)*+BA?
where A, B and A, are constants. Find the group velocity of electric
waves in these two cases.

x. =1+

6. Calculate the group velocity for ripples on an infinitely deep lake.
(861), equation (54).)

7. Investigate the motion of a wavepacket (§92) for which the amp-
litude a is given in terms of the wave number k by the relation

ak)=1 iflk —ko}<k1
= ( otherwise,

ko and k, being constants. Assume that only the first two terms of the
Taylor expansion of n in terms of k are required. Show that at time ¢
the disturbance is

sin {27 (x —at)k}
w(x—at)

where a = (dn/dk),. Verify that the wavepacket moves as a whole with
the velocity a.

8. Show that when dS is normal to the incident light (§94), the
inclination factor is (1 +cos 8)/2. Plot this function against 6, and thus
show that each element dS of a wave gives zero amplitude immediately
behind the direction of wave motion. Using the fact that the energy is
proportional to the square of the amplitude of ¢, show that, taken

d(x, t)= exp {2mi(kox —not)},
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alone, each element sends out 3 of its energy forwards in front of the
wave, and onlyé— backwards.

9. A plane wave falls normally on a small circular aperture of radius b.
Discuss the pattern observed at a large distance f behind the aperture.
Show that with the formulae of §95, if the incident wave is ¢ =
a cos m(ct—z), then § =0, and if P is the point (x, 0, f), then

b
c=i—}lj V(b*~¢?) .cos pg d¢  where p =2mx/)f,
-b
2 ~rw/2
=4)‘:)l: J cos (pb cos 8) sin” § dé.
0

Expand cos (pb cos 8) in a power series in cos 8, and hence show that

R GG Re
Af 2\11/ 3\2!] 4\3! B
where k = pb/2 = wbx/Af. Since the system is symmetrical around the
zaxis, this gives the disturbance at any pointin the plane z = f. It can be
shown that the infinite series is in fact a Bessel function of order unity.

It gives rise to diffraction rings of diminishing intensity for large values
of x.

10. The total charge g on a conducting sphere of radius a is made to
vary so that g =4ma’c, where o =0 for t <0, and o =0y sin pt for
t > 0. Show that if %, = »,, =1, (§98 equation (18’)) the electric poten-
tial ¢ at a distance R from the centre of the sphere is given by

¢$=0 forct<R-—a,

¢=21;algao{l—cosp[t—(R—a)/C] forR-a<ct<R+a,
=41:1Rca'osin%a_sinp(t_R/c) forR+a<ct.

11. The wave represented by ¢ = A cos 27 (nt —kx + ) suffers phase
modulation in which ¢ =a +b cos 2#pt. a, b and p are constants, and
b* may be neglected. Show that in addition to the wave of given
frequency n and amplitude A, combination tones appear, with fre-
quency n % p, and amplitude wAb.

12. The wave represented by ¢ = A cos 2w (nt —kx +¢) suffers fre-
quency modulation in which n =no+a cos 2wpt. a, no and p are
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constants, a> may be neglected and p < n,. Show that in addition to a
wave of frequency no and amplitude A, there are four combination
tones of frequency no+p +a and amplitude A/4. It may be assumed
that at is small.

13. Consider the ordinary differential equation
d’X
—5+f(x)X =
dx2 f (x) O
in which f(x) is a slowly varying function of x. Modify the WKBJ
method to show that when a solution is sought in the form
X(x)= exp (iZ(x)),
then neglecting d’Z/dx” leads to the first approximation
Z(x)= :l:ff”2 dx.
Hence, by using this result to approximate the neglected term
d®Z/dx?, show that the second approximation is
Z(x)= ij'f‘/2 dx +i—logf, |
and the corresponding approximate general solution is

X(x)= {A exp[i J' 12 dx] +B exp[ i f 12 dx] } / [F)*.

14. Waves propagate in the (x, z) plane in an inhomogeneous medium
in which the wave propagation speed ¢ = c¢(x) is a function only of the
penetration x into the medium. By assuming a solution of the type

@ (x, z, ) = X(x) exp {i (2z — pt)},

show how the result of the previous question may be used to find the
approximate variation of the amplitude factor X(x).
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Nonlinear waves

§100 Nonlinearity and quasilinear equations

The linearity of a partial differential equation implies that any linear
combination of solutions of the equation will also be a solution. This
fundamental fact was first commented upon in §6 when introducing
superposibility of solutions and then, more generally, in §7 in justifica-
tion of the method of seperation of variables. In the event that a partial
differential equation is nonlinear this property is lost, and it becomes
impossible to employ separation of variable techniques, or any other
argument that depends on superposibility.

Nonlinearity may enter a differential equation in many different
ways. For example, in our derivation of the wave equation for a string
in §17, we first obtained the nonlinear second order equation

-l (3)
—Z=cH1+{2 . 1
a? ¢ ox ox? (1)

Here the right-hand side is a nonlinear function of y and it only
. ay\? P
becomes linear when we may neglect the term (i) . The situation is

somewhat different when studying the mechanics of compressible
fluids, for in the simplest case there are two simultaneous first order
equations that govern the flow in three dimensions:

conservation of mass

g7p+div (ou)=0, 2)

equation of motion

ou 1
-—+u. += =0.
YRR grad u p gradp=0 3)



Nonlinearity and quasilinear equations 179

These relate the fluid velocity u, the density p and the pressure p. When
there is an adiabatic equation of state p = f(p), with f a known function
characterising the fluid in question. This last relationship between p
and p has already been used in the specific form

p=kp” @)

in Chapter 6, §63, equation (1) when discussing sound waves in an
adiabatic gas. ‘

In this particular system of simultaneous partial differential equa-
tions nonlinearity enters in various forms. The term div (pv) is non-
linear because of the product of the two dependent variables p and u,
whileu . grad uis nonlinear because u and its derivatives are multiplied
together. Finally the term (1/p) grad p is nonlinear both because of the
factor 1/p and because of the relationship between p and p given in
4).

Naturally, the study of a system such as the one comprising equa-
tions (2) and (3) is more complicated than the study of the single
equation (1), but although apparently very different, both have, in fact,
more in common than is at first apparent. First, they are both examples
of what are called quasilinear partial differential equations. That is to
say, although their orders are different, in each case the highest order
derivatives occur only to degree one. Thus (1) is a second order
quasilinear equation and (2), (3) form a simultaneous first order
quasilinear system of equations. Secondly, it is always possible to
express a higher order equation as a first order system. Such a
reduction is not unique but this turns out to be unimportant in most
cases. Tosee one way in which this may be achieved for equation (1) set
u =3y/ot, v =9y/ox, when (1) becomes

ou 22 0V
—= + —.
ot cd+v7) ox )

To obtain the necessary second equation relating « and v we only need
to use the fact that as the second order derivatives are assumed to exist
and to be continuous we must have equality of mixed derivatives,
giving

ov ou

—=— 6

at ox ©)
System (5), (6) of two first order quasilinear equations now replaces the
original second order equation. Although we shall not prove it here, it
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is a simple matter to check that solutions of (5), (6) are also solutions.of
(1)

It is most convenient to employ matrix notation when discussing
both linear and quasilinear systems. Let us illustrate this first in the
case of equations (5), (6). Define

[ o -c*1 +vz)_2] _ [u]
A_[-1 0 and U= ol @)
then (5), (6) can be written as the matrix equation
oU . aU
_..+ —
o A o 0, 8)
with
ou ou
oU ot U {ox
Ft—— @ and ;— @ . (9)
at ox

In the case of the system of equations (2) and (3), once the indicated
differentiations have been performed, it is easily shown that in the
one-dimensional case the matrix form of this system is

oU oU
—+A—=
ot ax (10)
where
u p p
= = . 1 1
A [az/p u] and U [u] (1)
Here we have used the result p = f(p) to write, in one space dimension,
dP 9p _ ,0p
gradp = dp ox =a % 12)

where a® = dp/dp is the square of the local sound speed in the gas.

§101 Conservation equation

In many physical problems the equations that arise come directly from
the laws of conservation of some quantity, such as mass, momentum,
energy or electric charge. Such laws are called conservation laws, and
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they express the balance between the rate of outflow of a quantity from
a volume V and the time rate of change of the amount of that quantity
that is contained within V. For a scalar quantity q such a conservation
law has the general form

3-;1+divh(q)=0, (13)

where h(q) is some vector function (linear or nonlinear) of q.
In one space dimension a matrix conservation law may be written

oU oF(U)
_.+_._.._._=
ot ox 0, (14)

with U and F(U) both column vectors. When the equations from which
(14) are derived are linear constant coefficient equations it is always
possible to write F(U)= AU, with A a constant coefficient square
matrix. If the equations giving rise to (14) are quasilinear then column
vector F depends nonlinearly on the elements of U through its own
elements.

The situation is well illustrated by the one-dimensional form of the
two equations (2), (3) which, after a little manipulation, can be written
as conservation laws. Equation (2) is already in the precise form (13),
since in one dimension it becomes

apa

2 T PW=0-

Equation (3) can be put into this same form if it is first multiplied by p
and then added to u times equation (2), for it may then be written

—(Pu)+ (pu +p)=0, (15)

which merely expresses the conservation of momentum. So the matrix
conservation law expressing (2) and (15) is

aU aF
at ax =0, (16)
with
U=[‘°] and F=[ pu ] 17)
pu pu“+p

The nonlinear dependence of the elements of F on those of U is now
clearly apparent.
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§102 General effect of nonlinearity

It is now necessary to make clear that the effect of nonlinearity in a
wave equation involves more than the loss of superposibility, for it can
also change the entire nature of the solution. In the first instance this is
best shown by a simple non-physical example.

Consider the single first order partial differential equation

ou ou
57+f(u)a=0 (18)

for the scalar u(x, ¢) that is subject to the initial condition
u(x, 0)=g(x). (19)

Now the total differential du is given by
du= Qﬂdt + a—udx,
at ox =

so thatif x and ¢ are constrained to lie on a curve C, then at any point P
on C we have

du ou (dx) ou 20)

dr ot \dr)ax’
where now dx/d¢ is the gradient of curve C at point P.
Comparison of (18) and (20) now shows that we may interpret (18)
as the ordinary differential equation

- du
—=0 21
ar (1)
along any member of the family of curves C which are the solution

curves of

E_ fw). (22)

These curves C are called the characteristic curves of equation (18).
The solution of the partial differential equation (18) has thus been
reduced to the solution of the pair of simultaneous ordinary differential
equations (21) and (22).

Equation (21) shows that u = const. along each of the characteristic
curves C. The constant value actually associated with any characteris-
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tic curve being equal to the value of ¥ determined by the initial data
(19) at the point at which the characteristic curve intersects the initial
line ¢ = 0. Setting u = const. in (22) then shows that the characteristic
curves C of (18) form a family of straight lines. So, if we consider the
characteristic through the point (¢, 0) on the initial line, we find after
integrating (22) and using (19) that the family of characteristic curves C
have the equation

x=£+1f(g(£)) @3)

where ¢ now plays the role of a parameter.

Expressed slightly differently, we have shown that in terms of the
parameter £, u = g(£) at every point of the line (23) in the (x, t) plane.
In physical problems ¢ usually denotes time, so that it is then necessary
to confine attention to the upper half plane in which ¢=0.

The solution to (18) and (19) may be found in implicit form if ¢ is
eliminated between u = g(£), which is true along a characteristic, and
the equation (23) of the characteristic itself. We find the general result

u = g(x—1f(u)). 24)

Result (23) is probably more instructive than (24), because it shows
that if the functions f and g are such that two characteristics intersect
for ¢t >0, then since each one will have associated with it a different
constant value of «, it must follow that at such a point the solution will
not be unique. This can obviously happen however smooth the two
functions may be, since intersection of two characteristics depends
merely on the value of f(g(¢£)) that is associated with each of the
straight line characteristics. This is to say on the two points (¢, 0) and
(&2, 0) of the initial line through which they pass. We conclude from
this that such behaviour of solutions is not attributable to any irregu-
larity in the coefficient f(u), or in the initial data «(x, 0)= g(x).

Behaviour of this nature has not been encountered elsewhere in this
book and it typifies an important feature of quasilinear wave equations
that we have not so far seen. Later we shall show that discontinuous
solutions called shocks are possible in solutions of equations of this
type. Their origin is attributable to precisely this sort of process,
though a more complicated method of analysis than we can present
here is required to show this for general quasilinear systems of wave
equations.

This example may be developed a little further, because the family
of characteristic curves C may have an envelope for t > 0, and since it is
a family of straight lines this envelope is easy to find. If an envelope is
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formed then the envelope marks the locus of points at which non-
uniqueness of the solution first starts and a shock forms (see §§107 and
108).

Now it is a familiar result from elementary calculus that if a family of
curves C has the equation

D(x,1,£)=0, (25)

with ¢ a parameter, then the envelope, when it exists, is found by
solving simultaneously (25) and the equation

ad
E(x’ t9 f) - O' (26)

Applying these results to (23) shows that, in terms of the parameter &,
the envelope is defined by

x=¢+1f(g(€) and 1=-1/{f(g(£)g' )} 27)

When ¢ is time we shall only be interested in the case when > 0.
Differentiating (24) partially with respect to x gives

u__ gl—ifw)
ox 1718~ f)F (@) 28)

showing ou/dx becomes infinite whenever 1+ 1g'(x —tf(u))f'(u)=0.
So, finally, inspection of (27) and (28) then makes it clear that du/ox
will actually become infinite on the envelope of the characteristics.
Hence, whenever an envelope exists, the solution will steepen as it is
approached.

Many physical effects owe their existence to this form of nonlinear
behaviour which has no counterpart in the linear theory of wave
equations. Typical of these effects is the formation of a bore in a river.
This occurs under certain conditions in a tidal river when the incoming
tide gives rise to an almost vertical wall of water (a bore), which then
propagates along the river in a remarkably stable manner for an
appreciable distance.

§103 Characteristics

The notion of a characteristic curve introduced briefly in the previous
section requires generalisation if it is to be applied to quasilinear
systems of first order equations as typified by equations (10) and (11).



Characteristics 185

We now make this generalisation for the system

U aU
—+ A — + B=0, (29)
ot
in which U and B are n element column vectors with elements
Uy, Uz, ... U, and by, by, . . ., by, respectively, and A is an n X n matrix

with elements a;;. The system (29) will be quasilinear if, in general, the
elements a; of A depend nonlinearly on uy, us, ..., 4,, When B #0
the elements 5, of B may, or may not, depend linearly on
Ui, Uz, ..., Un. It will be assumed throughout this section that the
elements b; and a;; are continuous functions of their arguments.

It follows from what has been said so far that both of the simple
systems discussed in §100 are of the form (29), each with n = 2. They
are, however, homogeneous since in each case B=0.

Although x, ¢ are the natural variables to use when deriving systems
of equations describing motion in space and time, they are not
necessarily the most appropriate ones from the mathematical point of
view. So, as we are interested in the way a solution evolves with time,
let us leave the time variable unchanged in system (29), but replace x
by some arbitrary curvilinear coordinate ¢ and then try to choose £ina
manner which is convenient for our mathematical arguments. Accord-
ingly, our starting point will be to change from (x, ) to the arbitrary
semi-curvilinear coordinates

E=£(x, 1), =t 30)

If the Jacobian of the transformation (30) is non-vanishing we may
thus transform (29) by the rule

9 _0£a oo _dEd . 9

ot ot of ot ot' ot 3¢ ot
9 or o _oad

ox odx of ox ' ox ag

where, of course, 3¢/0t and 3&/dx are scalar quantities. This leads
directly to the transformed equation

a—‘—']+a—"¢ﬂ+6—§AE+B=0,
ar' ot 3¢ ax  o&
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the terms of which may be grouped to yield

U, (36, 3 ,\0U
= (atl A)a§+B 0, G1)

where I is the n X n unit matrix.

Equation (31) may now be considered to be an algebraic relation-
ship connecting the matrix vector derivatives dU/dt’ and dU/d¢. It is
then at once apparent that this equation may only be used to determine
aU/o¢ if the inverse of the coefficient matrix of 0U/o¢ exists. That is to
say, if the determinant of the coefficient matrix of dU/d¢ is non-
vanishing. This condition obviously depends on the nature of the
curvilinear coordinate lines £(x, ) =const., which so far have been
chosen arbitrarily. Suppose now that for the particular choice ¢ = ¢ the
determinant does vanish, giving the condition

8(0 6(p t
32
oL St (32)

Then because of this the derivative 0U/d¢ will be indeterminate on
the family of lines ¢ = const. Consequently, across such lines ¢ (x, 1) =
const., 3U/d¢ may actually be discontinuous. This means that each of
the n elements du;/d¢ of 3U/d¢ may be discontinuous across any of
the lines ¢ = const. To find how, when they occur, these discontinuities
in du,;/d¢ are related one to the other across a curvilinear coordinate
line ¢ = const., it is necessary to reconsider equation (31).

We shall now confine attention to solutions U which are everywhere
continuous but for which the derivative 3U/d¢ is discontinuous across
the particular line ¢ = k(say). Because of the continuity of U, and the
continuity of the elements a;; of A and b; of B, the matrices A and B
will experience no discontinuity across ¢ = k. So, in the neighbour-
hood of a typical point P of this line, A and B may be given their actual
values at P. In equation (31) there is no indeterminacy of 9U/dt’ across
the lines ¢ = const., and as d/d¢' denotes differentiation along these
lines it must follow that §U/dt' is everywhere continuous and, in
particular, that it is continuous across the line ¢ = k at P.

Taking these facts into account and differencing equation (31) across
the line £ =¢ =k at P gives

do_ ¢ ) aU]]
—_— +_. — —
(a:l axA dpllp 0 (33)
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where [a] = a- — a. signifies the discontinuous jump in the quantity «
across the line ¢ = k, with - denoting the value to the immediate left
of the line and a. the value to the immediate right at P. As the point P
was any point on this line the suffix P may now be omitted. The
operator 8/d¢ is differentiation normal to the curves ¢ = const., so that
equations (33) express compatibility conditions to be satisfied by the
component of the derivative of U on either side of and normal to these
curves in the (x, f)-plane.

This is a homogeneous system of equations for the n jump quantities
[oui/d¢] = (du:/d¢)-— (3u;/3¢)+ and there will only be a non-trivial
solution if the determinant of the coefficients vanishes. The condition
for this is

do. d¢ |

—I+—A;=0. 34

a  ox ‘ (34)
However, along the lines ¢ =const. we have, by differentiation,

b dpdx_

ar dx dt

s0 that these lines have the gradient

dx d¢ [d¢
dx_ _9% /5¢_ ) (say). 35
ar ot/ ax ot 6aY) (33)

Combining (34) and (35) we deduce that A must be such that
|A—AIl=0. (36)

Consequently the A in (35) can only be one of the eigenvalues of A,
and since (33) can be re-written

(A- Al)ﬂ%}-ﬂ —o, (37)

the column vector [dU/d¢] must be proportional to the corresponding
right eigenvector of A. This, then, determines the ratios between the n
elements [ou;/d¢] of the vector [0U/d¢] that we were seeking.

As A is an n X n matrix it will have n eigenvalues. If these are real
and distinct, integration of equations (35) will give rise to n distinct
families of real curves C¥, C®, ..., C™ in the (x, f) plane:

Cm:g—):=/\“), i=1,2,...,n (38)
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If x denotes a distance and ¢ a time, the eigenvalues will have the
dimensions of a speed. Any one of these families of curves C “ may be
taken for our curvilinear coordinate lines ¢ =const. The A ©) associated
with each family will then be the speed of propagation of the matrix
column vector [dU/d¢] along the curves C” belonging to that family.

When the eigenvalues A® of A are all real and distinct, so that the
propagation speeds are also all real and distinct, and there are n
distinct linearly independent right eigenvectors r” of A satisfying the
defining relation

Ar(i)=,\(i)r(i), fori=1,2,...,n, (39)

the system of equations (29) will be said to be totally hyperbolic. We
may, if we desire, replace the words right eigenvector by left eigen-
vector in this definition, where the left eigenvectors 1 of A satisfy the
defining relation

1PA=A"9 fori=1,2,...,n. (40)

This follows because simple linear algebra arguments establish that
when n linearly independent vectors r exist, then so also do n linearly
independent vectors 1©.

Hereafter our concern will be with such systems, since they charac-
terise the type of wave propagation that has been the object of our
study so far. The families of curves C® defined by integration of
equations (38) are called the families of characteristic curves of system
(29). A totally hyperbolic system (29) is thus one in which there are n
distinct real speeds of propagation of a disturbance, each of which
when characterised by the appropriate right eigenvector is different.
The precise nature of these differences will be examined shortly.

The relationship between characteristic curves and the solution
vector U to system (29) is illustrated in Fig. 37 in the case of a typical
element u; of U. Here it has been assumed that initial conditions have
been specified for system (29) in the form

U(x, 0)=W¥(x),

where the ith element u; of U has for its initial condition u;(x, 0)=
i(x).

The line PQ in the solution surface S is the one across which du;/d¢
is discontinuous, and its projection onto the (x, #) plane is the charac-
teristic which has equation ¢(x, )= k. Since such a line marks the
boundary between the different solutions to the left and right of it, it is
natural to think of the solution to the left of ¢ =k as a propagating
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S Wavefront

Ui(x,0) 2
Y
oy

Wavefront trace

Fig. 37

disturbance wave, and the solution to the right as the solution in a
region not yet reached by the disturbance. With these ideas in mind we
shall call the line PQ in S the solution surface wavefront, its projection
onto the (x, t) plane which forms the characteristic curve ¢ = k the
wavefront trace, the region R, to the left of ¢ =k the disturbed
region and the region R, to the right of ¢ = k the undisturbed region.
At any time #, the physical wavefront is at the intersection of the
wavefront trace and the line ¢t =t,.

Since it was not necessary that 9U/d¢ should be discontinuous
across the characteristics ¢ = const., it must follow that continuous and
differentiable elements of the initial data u;(x, 0)= y;(x) will also
propagate along characteristics. In the case of the element of initial
data at A, this will propagate along the characteristic ¢ = k; (say)
starting from the point (x;, 0) which is the projection of A onto the
initial line. The characteristic ¢ = k; is then the projection onto the
(x, t) plane of the path AB followed by the element of the solution
surface S that started at A. Characteristics corresponding to k =
k,, ks, k4 etc., may be interpreted in similar fashion.

The way the constants kq, ko, . . . are assigned to different charac-
teristics is arbitrary, apart from the fact that ¢ =const. are coordinate
lines so that k must be assignec monoronically along the initial line
t= 0. If it is necessary to do this, then possibly the simplest and most
convenient method of parameterisation is to assign to the characteris-
tic through (x, 0) on the initial line the value ¢ = x —a. This has the
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effect that the wavefront trace then becomes ¢ = 0, while ¢ <0 in the
disturbed region R, and ¢ >0 in the undisturbed region R,.

It will help clarify ideas if we consider the specific problem from fluid
mechanics introduced in equations (10) and (11). The eigenvalues A
are determined by

|A—=AIl=0,
which becomes
u—A Pl
a’/p u-Arl" "
giving
(u—AY=a® or A=u=a.
Setting

AV=y+q, AP=y—aq, (41)

the families of characteristic curves C* and C® defined by (38)
become

c®: :—:= u+a and C‘z):%= u-—a. 42)

Expressed in physical terms we see that in the C’ family, disturbances
thus propagate with the sum of the fluid speed and the sound speed. In
the C® family they propagate with the difference of the fluid speed

and the sound speed.
The right eigenvectors r'” and r® must, by (39), satisfy

A-A?=0. (i=1,2) 43)

So, denoting the elements of r” by r{” and r{’, we have from (11),
(41) and (43)

(1)

u _A(i) p (l)
[az/p u_/\(‘-)][ (,)] 0 i= 1 2. (44)

Since only the ratios of the elements of the right eigenvectors are
determined by (43) it is often convenient to normalise the eigenvectors
so that the first element is unity, when it follows from (44) that

b1 y T 17
r()—La/p] andr®=|_ ] 5)
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It may thus be concluded that wherever a wavefront exists, since the
form of U in (11) implies

ﬂﬁ’]] _ [l[ap/awﬂ]
dp [ou/de])’
a comparison of (37) and (43) followed by the use of (45) will yield:

across a wavefront in the C® family of characteristic curves

[9p/0¢] _[ou/de]
1 a/p’ (46)

and

across a wavefront in the C® family of characteristic curves

[9p/0¢] _[ou/ 849]]’ @7
1 —a/p
where a and p in (46) and (47) have values appropriate to the
wavefront.

This result generalises without difficulty, for suppose that the vector
r® with elements r, r{, ..., r is the ith right eigenvector of A
corresponding to the eigenvalue A =A®. Then across a wavefront
belonging to the C*” family we may write,

dus dua/d Un/d
[ u’(l/i;w]]___l[ u:g/i)rp]l_ _l urs/:)tp]]’ (48)

where the elements of r” = r'’(U) have values determined by U on the
wavefront. This is a result we shall have occasion to use again later.

§104 Wavefronts bounding a constant state

In physical situations the solution vector U describes the “state” of the
system described by equations (29). It is thus convenient to refer to a
region in which U is non-constant as a disturbed state, and a region in
which U is constant as a constant state, irrespective of whether or not
the system involved described a physical situation. Our purpose here
will be to examine the simplification that results in equations like (46)
and (47) when a wavefront bounds a constant state.

First, as the elements a; of A are continuous functions of their
arguments, it follows directly that the eigenvalues A® of A are
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continuous functions of a;;, and hence of the elements u,, u, . . ., 4, of
U. Since U is itself continuous across a wavefront we conclude that
A?=A§ = const., on a wavefront bounding the constant state U = Uj,
where A= A ©(U,). From equations (38) we thus see that if a charac-
teristic curve from the ith family C® bounds a constant state, then it
must be a straight line.

If such a straight line characteristic C§’ belonging to the ith family
C® bounds a constant state U= U, that lies to its right (say), then
because (3U/d¢)+ =dUo/d¢ =0,

l[8<o _(a«7 ) (3(0 . (a¢ _ forj=1,2,...,n 49)

Now 9U/a¢' is continuous across C3’ while 3Uo/ot' =0. Thus in the
disturbed region immediately adjacent to C{ the total differential du;
reduces to

au,-

du}-:(g)_d(p fOI'j=1, 2,...,". (50)

By virtue of (48) and (49) this is equivalent to
du; = Kr{ d, (51)

where K is some constant of proportionality. It proves convenient to
choose K so that the first element Kr{" of Kr® becomes unity. Setting
j=1in (51) then gives du; =de, so that all the other differentials
duy, dus, . .., du, become expressible in terms of du,, because (51)
becomes

duj=r®du; forj=1,2,...,n or dU=rdu;. (52)

The convenience of this normalisation is well illustrated by means of
the eigenvectors given in (45) for the equations of one-dimensional
unsteady isentropic gas flow. We find that in the disturbed region
immediately adjacent to a wavefront belonging to the C* family of
characteristics that bounds a constant state uo, po (in which a = ao), it
must follow from r®’ that

du = (ao/po) dp. (53)

The corresponding behaviour adjacent to a wavefront belonging to the

C® family that bounds this same constant state is, from r®,

du =—(ao/po) dp. (54)



Riemann invariants 193

A simple rule that is sometimes useful for deriving results of this
form follows by combining the matrix vector form of (52) and the
defining relationship

Ar=Ar
for the right eigenvector corresponding to the eigenvalue A.
Immediately adjacent to the constant state U = U, this gives the result

(AO—A()I) dU=0, (55)

where Ao=A(Up) and Ao=A(U,). Comparison of this result with
system (29) from which it was derived now yields the following rule.

Rule for compatibility conditions for elements of dU. To find the
relationships that exist between the elements du,, du,, .. ., du, of dU
in the disturbed region immediately adjacent to a wavefront that
bounds a constant state U=U,, the vector B in (29) should be
neglected, the undifferentiated variables should be replaced by their
constant state values, and in the differentiated terms the following
replacements should be made

a d
5-»—Ad(.) and g;ad(.). (56)
For example, a term dp/o¢ should be replaced by —A dp and one like
u dufdx should be replaced by uo du. When applied to the scalar
equations represented by (10) and (11) which gave rise to (53) and (54)
this rule gives
—Adp+tuodp+podu=0,
2
—A du+uodu +£—9dp =0.
Po

Then, as before, we find

1 2
AP =up+ao, AP=uo—ao,

while for a C® characteristic wavefront du = (ao/po) dp and for a C®
characteristic wavefront du = —(ao/po) dp.

§105 Riemann invariants

In this section we offer a brief discussion of an important technique
that can lead directly to a solution when certain calculations can be
performed, and which in any case provides a valuable insight into the
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nature of solutions to a special class of problems. This method applies
to any totally hyperbolic system of two homogeneous first order
equations involving two dependent variables u,, u; of the general form

U, U 1723
—+a;—+ap—=0,

ar  lox  TPoax

ous Uy ous
—+an—+anp—=0, 57
ot Plax P ax 67

which is subject to the initial data
ui(x, 0)=di(x) and wus(x,0)=i(x). (58)

The coefficients a;; = a;;(u;1, uz) will, in general, be assumed to be
functions of the two dependent variables u; and u,, but not to have any
explicit dependence on the independent variables x and +. The system
(57) will be quasilinear when a;; = a;;(u;, u,) and it will be linear in the
special case when the coefficients a; are all constants.

Defining A and U to be

A=[a11 012}’ U=['41]
az ax Uz
enables equations (57) to be written
—+A—=
" 0, (59)

when we know from §103 that the system will be fotally hyperbolic
provided the two eigenvalues A®, i =1, 2 of

IA-ALl=0 (60)

are real and distinct and A has two linearly independent eigenvectors.
In place of the right eigenvectors r that were useful in §103, and which
were defined in (39), let us now make use of the corresponding left
eigenvectors 1 defined in (40) by

1PA =219, fori=1,2. (61)

If, now, we pre-multiply (59) by 1’ and use (61) we obtain the result

l(i)(g_p_+/\(')&) = 0, for i = 1, 2- (62)
ot ox .
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In this the bracketed expression will be recognised as the directional
derivative of U with respect to time along the family of characteristics
C®. Denoting differentiation with respect to time along members of
the C® family of characteristics by d/da and differentiation with
respect to time along members of the C*® family of characteristics by
d/dB enables us to replace (62) by the following pair of ordinary
differential equations which are defined

along the C® characteristics by

l‘”%= 0, (63)
and along the C® characteristics by
|‘2>%=0. (64)

Hence B = const., along C" characteristics and a = const., along
C® characteristics as indicated in Fig. 38.

" |
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Setting the left eigenvector 19= (I{, 1{), for i =1, 2 then enables
(63), (64) to be re-expressed as

d
l{l)—ul+ 151)9& =0 alongthe C® characteristics (65)
da da
and
I} (12)%%1 +1 (22)%%2 =0 alongthe C® characteristics. (66)

Since, by supposition, A depends only on u; and u,, so also will the
coefficients /{” of the left eigenvectors 1, 1°). Consequently, both (65)
and (66) will always be integrable along their respective characteris-
tics, though they may first require multiplication by a suitable integrat-
ing factor u.

Integrating (65) with respect to e along the C" characteristics, and
(66) with respect to B along the C® characteristics gives:

along C® characteristics

[t du+ [ i) duz = @) 67)
and

along C*® characteristics
_"ulﬁz) du1+Iul§2)duz=S(a), (68)

where r, s are arbitrary functions of their respective arguments 8 and
a. The two families of characteristics are themselves given by integra-
tion of the equations

), dx
“dt

The functions r(8) and s(«) are called Riemann invariants and, by
virtue of their manner of derivation, r and s are constant along their
respective families of characteristics. To be more precise, r(8) is
constant along any C® characteristic, though as it is a function of B,
which in turn identifies the characteristics, it will, in general, be
different for different characteristics. Correspondingly, s(a) is con-
stant along any C® characteristic, though here again the constant will
be different for different characteristics depending on the value of «
associated with each characteristic.

CO—==)\D fori=1,2. (69)



Riemann invariants 197

Equations (67) and (68) enable u; and u, to be expressed in terms of
r and s, the values of which are determined at points of the initial line
t=0 by the initial data (58). Suppose r(8) in (67) is denoted by
R (u1, u;) and s(a) in (68) is denoted by S(u1, u,). Then along the CV
characteristic issuing out from the point (xo, 0) of the initial line in the
sense of increasing time we have from (58) and the property of r(8)
that

R(u1, u2)= R(#1(x0), 2(x0)). (70)

Similarly, along the C*® characteristic issuing out from the point (x1, 0)
of the initial line in the sense of increasing time we have from (58) and
the property of s(a) that

S(u1, u2)= S(d1(x1), é2(x1)). (1)

Solving these two implicit equations for u; and u, then determines
the solution at the point P in Fig. 38 which is the point of intersection of
the C™ and C® characteristics along which the respective constant
values of R and § are transported. In principle the initial value
problem is now solved, since as the points (xo, 0) and (x;, 0) of the
initial line were arbitrary, so also is the point P which may be anywhere
in the upper half plane. However, in any particular case, the task of
solving the two implicit relationships and of finding the characteristic
curves in order to determine their point of intersection P is usually
difficult. Nevertheless, this method of solution can often be used to
solve problems and it is, in any case, of considerable theoretical
importance.

To illustrate the method we apply it to the system of equations (10),
(11) which are of the precise form given in (57). The eigenvalues of this
system have already been found in (41) and the characteristic curves
follow by integration of (42). A simple calculation shows that the left
ei‘genvector 1¥ corresponding to AP =u +a is

1=(1, p/a) (72)
and the left eigenvector corresponding to A®=u—a is
19=(1, -p/a). (73)

Making the identifications u;=p, u,=u equations (65), (66) then
become
dp p du

—+=-—=0 along C") characteristics (742)
da a da
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and
——=—=0 along C*® characteristics. (74b)

As a=a(p), the integrating factor is seen by inspection to be
u = a/p, so that (67) and (68) become

J 5 dp+u=r(B) along C® characteristics 75)
and

J’ -s dp—u=s(a) along C® characteristics. (76)

If the gas law p = kp” is assumed then, since a*=dp/dp, it follows
that (75) and (76) finally take the form

2a
+y=
—Z+u=r) (77)
is constant along CY characteristics, and
2a
Y_l—u—s(a) (78)

is constant along C® characteristics. Hence, working in terms of a
rather than p, we find

a=(y—1)r+s)/4, u=(r-s)/2, (79)

showing, as has already been remarked, that it is possible to express the
dependent variables in terms of the Riemann invariants. The determi-
nation of the characteristics by integrating

), dx

Cdt

=u+a and C(Z):gi:=u—a (80)

is, however, only possible in special cases.

We shall look in more detail at an important special case of Riemann
invariants in the next section, but in the meantime we conclude this
section by making an application of the method to a linear problem.
This both enables us to solve a complete problem and to illustrate the
use of the method in the linear case.
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Consider the pair of equations

ous  u _

ot ox 0
(81)
ouy dur_ o
at  ox
where
ui(x,0)=e* and wuy(x,0)=e" (82)
Then the matrix A in (59) is
01
S
10

so that the eigenvalues and left eigenvectors are easily seen to be
AP=1,  AP=-1, 1P=[1,1], 1®=[1,-1].

The problem is thus seen to be totally hyperbolic. When integrated,
equations (65) and (66) give

ur+u,=r(B) along C® characteristics
and
u;—u,=s(a) along C? characteristics.
The characteristics follow by integrating (69) to get
CY: x=xo+t and CP:x=x,—1t, (83)

with xo and x; arbitrary constants of integration.
Using the initial data (82) shows that at the point (xo, 0) of the initial
line
ui(xo, 0)+ uz(xo, 0)=e€"+e * =2 cosh xo

while at the point (x, 0) of the initial line
u1(x10)— ux(x, 0)=e" —e ™ =2 sinh x;.
Hence it follows directly that the Riemann invariants are
uy(x, t)+uzx(x, t)=2 cosh xo
along the C® characteristic through the point (xo, 0) of the initial line

and uy(x, t)—u2(x, t)=2sinh x,

along the C® characteristic through the point (x;, 0)of the initial line.



200 Nonlinear waves

Using the results xo = x — ¢, x; = x + ¢ that follow from the equations
(83) describing the characteristics then shows

uy(x, t)=cosh (x —t)+sinh (x +1),
ua(x, t)=cosh (x —¢)—sinh (x +1¢).

It is a simple matter to verify that these results both satisfy the
original equations (81) and the initial conditions (82) so that they are,
indeed, the solution to our problem. See §109, question 17, for the
connection that exists between this method of solution and d’Alem-
bert’s method of solution for the wave equation.

§106 Simple waves

When one of the Riemann invariants r or s is identically constant, the
corresponding solutions of equations (57) of §105 are known as simple
wave solutions. That is, simple wave solutions occur either when
r(B8)= ro = const., or when s(a)= s, = const., and we now deduce the
basic properties of this fundamental class of solutions directly from this

simple definition.
Suppose, for example, that s(a)=so, then equations (67) and (68)
may be written

fri(u1)+ fi2(u2)=r(B) along C® characteristics (84)

and

(2)

f21(u1)+ f2(u2)=so along C*’ characteristics, (85)

where
)= [l dug (86)

This shows that everywhere along a C* characteristic specified by
B = Bo = const., say, 4, and u, must also be constant, for they are the
solution of the nonlinear system of simultaneous equations

fu(u)+ fiz2(u2) = r(Bo),
and
F21(u1)+ f22(u2) = so.

The actual constant values associated with u; and u, along this
characteristic are u;=,(£), u»=t,(£) determined by the values
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of the initial date (58) at the point (£, 0) of the initial line through
which this C® characteristic passes. Any function of u; and u, will
also be constant along this characteristic as, in particular, will be
A (€), d2(8)) = AP(£), say. Consequently, as the C™ characteristic
is found from (69) by integrating

dx

c®:
dr

=A%),

it must be the straight line
x =E+tAD(E). 87)

As Boand hence £, were arbitrary, this result implies that by allowing
£ to move along its permitted interval on the initial line, so (87) will
generate a straight line family of C® characteristics. Conversely, had
we set r(B)=ro, it would then have followed that the C® family of
characteristics was a family of straight lines along each of which u; and
u, were constant.

If the C® family of characteristics converges they will generate an
envelope in the (x, r)-plane at each point of which the solution u, and
u, will become non-unique, as in §102. This depends on the function
AD(£), and the envelope, when it occurs for ¢>0, is then given as in
§102 by solving the pair of equations

E+tAP(E)-x=0,

and
dA®

1+¢ a4 0. (88)
When this envelope is required, rather than attempting to eliminate £
between these two equations, it is usually simpler to solve for x and ¢ in
terms of ¢ as a parameter. A corresponding situation exists when
r(B)=ro and it is the C® family of characteristics that comprise the
straight line family.

By analogy with the situation in gas dynamics, when a straight line
family of characteristics converges, the associated simple wave is often
called a compression wave, whereas when it diverges, the associated
simple wave is called an expansion wave.

The property that in a simple wave u, and u, are constant along the
straight line characteristics means that simple wave solutions are the
ones that must occur adjacent to a region of constant state, as first
discussed in §104 (see also §109, question 19). This fundamental
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property of simple waves makes them useful when piecing together
solutions to more complicated problems, as will be illustrated in the
next section.

§107 The piston problem

The actual use of a simple wave solution to piece together a more
complicated solution is well illustrated by the so-called piston problem
in gas dynamics. This one-dimensional unsteady problem involves
determining the gas motion induced in a semi-infinite tube filled with
gas, that is initially at rest, when a piston closing one end is caused to
move, If the piston is withdrawn from the tube in a stnoothly acceler-
ated manner for a time ¢,, after which the speed of withdrawal remains
constant, the piston path will follow a curve in the (x, ¢) plane like the
dotted line in Fig. 39(a).

In Fig. 39(a) the initial region in which the gas is at rest, so that there
u =0, p=po, a=ayo, is denoted by (I), and the characteristic CS that
bounds it and passes through the origin is obtained by integrating

dx

E;=(u +a)o=a0,

so that C§” has the equation x = aot.

[

¢V expansion Y expansion
simple wave simple wave

(a)

Fig. 39

If point P is the point on the piston path after which the piston
withdrawal velocity remains constant at V, say, then region (II) is a
simple wave region and it is traversed by a family of straight line c®
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characteristics, each of which issues out from a point of the piston path
between O and P. The gradient of a typical member of these charac-
teristics through point Q will be the sum of the sound speed a and the
piston velocity at Q, since unless there is a vacuum at the piston face
the piston and gas velocity must be the same. As the piston velocity
remains constant after P, the straight line C" characteristics travers-
ing region (III) will all be parallel, indicating that this is a constant state
region in which u =u,, p =p;, and a = a,. This has thus provided a
physical example of the way in which a simple wave region connects
two different constant state regions (I) and (III).

A different situation arises if the piston is suddenly withdrawn with
the constant velocity V. The piston path in this case is the straight
dotted line with gradient V that is shown in Fig. 39(b). In this case the
family of straight line C* characteristics must all radiate out from the
single point O in order to traverse the simple wave region (II). Such
simple waves are called centred simple waves. The bounding charac-
teristic C through O will, of course, again be the straight line x = aof.

If the piston starts from rest and is pushed into the gas in a smoothly
accelerated manner, as shown in Fig. 40, the C characteristics

I3

Fig. 40

originating from points on the piston path will converge in region (II)
and form an envelope starting at P. The shape of this envelope will be
described by equations (88) in §106. Point P represents the start of a
gas shock, across which gas velocity and density are discontinuous.



204 Nonlinear waves

Region (I) bounded by the characteristic C§" with the equation x = aot
will be as before. We return to this problem at the end of this section
wl(llc;,n we will determine the precise location of P on the characteristic
Co’.

Let us now examine in detail the centred simple wave shown in Fig.
39(b). The Riemann invariants for this case have already been found in
equations (77) and (78) of §105. The family of straight line C
characteristics through O that traverse region (II) have the equation

x/t=§, (89)

where ¢ is a parameter, with C$” corresponding to £ = ao.

All the C® characteristics must enter the constant state region (I)in
which u =0, p = po, a = ao, so that the Riemann invariant s(a) in (78)
must be identically constant and of the form

2a _ 2a0

y—1 “Ty-T

This shows that

u=(-25)@-an 90)

but since, from (89), dx/dt = ¢ along C™ characteristics, which are
themselves defined by dx/d¢ = u + a, we have £ = u + a so that elimina-
tion of a then gives

2
u= (m)(f— ao). 1)
Elimination of u between (90) and (91) shows
b 2t 1) 2ap
=|—)¢&+
a (7+l ¢ y+1 (92)

and between (89), (90) and(92) we now have the complete solution to
our problem. In terms of x and ¢ we have

().

(2 2
y+1/\t/ y+1

and
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which specifies 4 and a, and hence p, at points in simple wave region
(ID) of Fig. 39(b).

As a’=dp/dp = ykp" ™', it follows that p =0 when a =0, so that
setting a = 0 on (92) shows that the critical value & = £ at which this
happens is

2ao

§c=—y_1-

The corresponding critical speed u. at which the gas density reduces to
zero is, then, from (91),

2(10

y-1

This speed is called the cavitation speed and if the piston withdrawal
speed V exceeds u. there will be a third region (III) in the flow in which

there is a vacuum. Such a situation is shown in Fig. 41 in which from
(89) and (96) the cavitation line has the equation x = —2aot/(y —1). It

lt

Ue=—

c expansion
simple wave

Fig. 41

should be remarked that the non-uniqueness of the solution at the
origin in this centred simple wave is immediately resolved in this
expansion process. The term expansion that is used here derives from
the fact that as ¢ increases from £ = ao, corresponding to CSP, so the
gas velocity u increases and the sound speed a, and hence the density p,
decreases. The converse occurs in the situation illustrated in Fig. 40, so
that there the physical process corresponds to a compression wave.
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To complete our examination of the piston problem let us now
determine the location of the point P, with coordinates (xp, tp), at
which a shock first forms on the advancing wavefront C§° when the
piston is pushed into the gas.

It follows directly from (91), and the fact that a= ykp" ™", that
throughout the simple wave region (II) in Fig. 40,

7*1)
= +|—
a=ag ( ) u,

and

y- 1) }2/(7—1)
=pol 1+ .
P po{ 1 ( 2a0 “

These equations relate both a and p throughout the simple wave
region (II) to the single variable u. To find out how u varies let us now
substitute a and p into the equation of conservation of mass given in
§100, equation (2) (equation (3) would serve equally well).

After a straightforward calculation we find that ¥ must satisfy the
quasilinear equation

du ﬁ_l) }3_"=
at+{ao+( —Jufz==0. ©3)

Arguing as in §102, we see that (93) is equivalent to the pair of
ordinary differential equations
y+1

du dx
e 0 alongthe curves Pt + (——2-—-) u, 94)

so that u = const., along members of the family of characteristic curves
that are obtained by integrating the second equation in (94).

Now suppose that the piston path in the (x, t) plane is given in terms
of time by the equation x =o(t), with ¢(0)=0 and (do/d7),—0=
o'(0)= 0, so that the piston starts from rest at the origin. Then at the
point Q on the piston path in Fig. 40 with coordinates (o'(7), 7), the
piston velocity will be o’'(7). As u = const., along the characteristics of
equation (93), and u equals the piston velocity at Q, the equation of the
straight line characteristic through Q obtained by integrating the
second equation of (94) is

x=o(r)+{ao+ (1—;—1)0'(7)}0—7). (95)
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As in §102, the envelope of this family of straight line characteris-
tics, with 7 as parameter, is obtained by eliminating » between (95) and
the equation that is obtained when it is differentiated partially with
respect to 7 to yield

y+1
2

Since our concern is only with the location of the start of the
envelope at point P on the characteristic C§ through the origin, and
not with the entire envelope, we require to take point Q to be at the
origin. This is equivalent to setting 7 = 0, when from (95), (96) and the
initial conditions for o(7) and o'(7) we discover that

O=a’(7)+(t—7)( )a"(r)—{ao+(YT+1)a"('r)}. (96)

2ao

tp= (YT)U"(O) and xp = aolp. 97)

This is the required result and shows that the time of shock forma-
tion #p is determined by the initial acceleration o”(0) of the piston. If
o"(0)> 0 the shock will form a finite time after the start of the motion,
but if o”(0)< 0 then no shock will form. The former case corresponds
to pushing the piston into the gas, and the latter to withdrawing the
piston. If the piston is pushed in impulsively, so that the initial
acceleration is infinite, then (97) shows that the shock will form
immediately on the piston face.

§108 Discontinuous solutions and shock waves

The development of a non-unique solution to a quasilinear hyperbolic
equation has already been encountered in several different contexts. In
the physical world this non-uniqueness usually manifests itself in the
formation of solutions which are discontinuous across some surface. In
gas dynamics these discontinuous solutions are called shocks, and
across a shock the gas velocity and density change discontinuously.
When discontinuities of this type propagate in a gas they are called
shock waves. By analogy, the term shock wave is also often used even
when the discontinuities occur in media other than gases as, for
example, when discontinuous stress waves propagate in solids. In the
remainder of this chapter we shall examine in fairly general terms the
type of discontinuous solution that is allowed by systems of conserva-
tion laws.
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The starting point will be the general scalar conservation equation in
three space dimensions and time which may be written

ou ..o
§+ divf=0, (98)

where the scalar u = u(r, t) is a function of the position vector r and
time #, and f = f(u) is a vector function of 4. To deduce the nature of the
discontinuous solutions u that are permissible in (98) we first establish
a general theorem. This will be required in order to allow for the
possibility that the discontinuity, or shock, may occur across a moving
surface.

Consider an arbitrary surface S(¢), moving with velocity q, that
bounds a volume V/(¢) in which a differentiable scalar function u is
defined.

Then setting

I= J udyv, (99)
V(D

we notice that I will change in the time increment 8¢ both because u is
time dependent and because the volume V(z) bounded by S(z) will
change as S(¢) moves. To the first order, in the time increment &t the
integrand of I changes from u to

ou
u+ (—) ét.
at
To deduce the effect of the change of volume we also notice that the
vector surface element dS of S(f) moves a distance q &¢ in time
increment 8¢, so that the corresponding element of volume change due
to movement of the surface must be q . dS 6¢. The increment in I due to

this change will be uq . dS 6. Adding these results and integrating the
two separate contributions over V(¢) and S(¢), respectively, gives

{'u +(a_u) 8!} dV+[ uq.ds s
(3] K0}

I+81=I
ot

\4

Substracting equation (99) from this result, dividing by é¢ and proceed-
ing to the limit as 8t - 0, finally leads to the rate of change theorem

D J J’ ou
= dv= (—) +I .dS.
Dt Jvw “ V(@) \ot dv 10 ugq.ds (100)

Here the notation D/D¢ has been used to denote the total derivative as
seen by an observer moving with velocity q (see §46, Chapter 5).
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Application of the Gauss divergence theorem to result (100) enables
it to be expressed in the following alternative form which is more
convenient for our purposes

> J iy G +iv )
— dv= =4 . 101
Dr V“)u | %4 v \az div (uq)) dV. (101)

We now use this theorem to derive the discontinuity conditions, or
the so-called jump conditions, for a solution u to the scalar conserva-
tion law (98). In doing so we assume that a discontinuity surface exists
and that an arbitrary part of it, $*(¢), divides the volume V/(¢) into
volumes Vy(t)and V(t), and the boundary surface S(¢) of V(¢)into the
two surfaces So(¢) and Si(t), respectively. The value of functions on
adjacent sides of and arbitrarily close to $*(¢) will be denoted by the
suffixes 0 and 1, according as $*(r) is approached from Vy(¢) or Vi(¢),
respectively.

Using the expression for du/ot from (98) in theorem (101), applying
the Gauss divergence theorem again and assuming that  has no
singularities other than the discontinuity then gives

D
——j u dv=j' (uq-f). dS. (102)
D¢ V() S

Substracting from this equation the corresponding equations in which
V() is identified, respectively, with Vo(¢) and V;(¢), and the surface
S(#) with the corresponding surfaces bounding these volumes, shows
that

[ (uq—B)o . dS¥ + I (ug—f); . dS¥ =0, (103)
S*(t) S$*(¢)

where dS¥ is the outwardly directed vector surface element of S*(f)
with respect to V;(t). However,

dS3§ = —dST =ndS*,

say, where n is the outward drawn unit normal with respect to Vy(z).
Thus as $*(¢) is an arbitrary part of the discontinuity surface it follows
directly from (103) that across $*(¢)

(uq—f£(u))o . n—(uq—f(u)) .n=0. (104)

Employing the notation [«] to denote the discontinuous jump ao—a;
in the quantity a across any point of $*(¢) allows (104) to be
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re-expressed as

[Au—n.fu) =0, (105)
in which
A=n.q (106)
igs*t(h)e speed of propagation of the discontinuity along the normal to
t).

This is the general result we were seeking in respect of discontinu-
ous, or shock, solutions to ¢onservation law (98). It is an algebraic
relationship that must be satisfied at each point of the discontinuity
surface and it connects the values of # on adjacent sides of the surface
with the speed of propagation A of an element of the surface along its
normal. It should, however, be observed that although (105) describes
the magnitude of the jump Ju], because of the nonlinearity it does not
necessarily determine the sense of the jump across $*(¢).

If instead of a scalar conservation law like (98) a system of simul-
taneous conservation laws is involved, result (105) must be applied
individually to each one. The resulting system of algebraic jump
conditions must then hold simultaneously. It is important at this stage
to recognise that the discontinuity or shock speeds A that are permitted
in such a system will not, in general, be the same as the characteristic
speeds A, though for a system of n conservation laws they will both
equal n in number. Only when the conservation laws are linear
constant coefficient equations will the A and the A always coincide.

To see this consider the one-dimensional system of conservation
laws

A + F_ 0, (107)
ot ox
as in (14), but with F= AU and with A an n X n constant coefficient
matrix. Then system (107) is equivalent to

and so will be hyperbolic if the n eigenvalues A satisfying

[A=AIl=0 (108)

are all real and the corresponding n eigenvectors (left or right) are
linearly independent.
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Now in one space dimension the discontinuity surface, or shock, will
be planar and (105) reduces to

[Au~f@w)=0, (109)

so that when this condition is applied simultaneously to each of the n
conservation laws in system (107) it is easily seen that we arrive at a
system of equations that can be put into the form

(A-AD[U] =0. (110)

For this homogeneous system to have a non-trivial discontinuous
solution we must require that

|A-A1=0.

This shows, by comparison with (108), that in this case A =X, and that
both are the eigenvalues of the constant coefficient matrix A. The jump
vectors [U] are then proportional to the corresponding right eigenvec-
tors of A.

Returning once more to systems of n quasilinear conservation laws,
but now considering only the one-dimensional case, we see from (105)
that discontinuous or shock solutions to the conservation system

ﬂj_+£=0

at ox (111)

must satisfy the matrix jump conditions
[AU-FU)] =0, (112)

where, as previously, U and F are n element column vectors. It follows
from (106) that A.is the speed of propagation of the planar discon-
tinuity surface, or shock, along its normal.

Because of a special résult in gas dynamics which we discuss later,
the general result (112) is often called the generalised Rankine-
Hugoniot relation that is to be satisfied by a discontinuous solution to
system (111).

To conclude this section let us now apply these results to one-
dimensional gas shocks. The equations that govern the gas flow are:

conservation of mass

3p  3pu) _

at  ax 0 (113)
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conservation of momentum

%“%aix(puuppo, (114)

conservation of energy

0 d
5, Gow’ +oe)+—{uGou’+pe+p)}=0. (115)

Equations (113) and (114) have both been encountered before, but
equation (115)is new and describes the energy of the gas in terms of its
density p, the gas velocity u, the gas pressure p and the specific internal
energy e of the gas. The form of ¢ depends on the nature of the gas, but
for most purposes it is justifiable to assume a perfect gas and to set

14
e= , 116)
p(y—1) (
where v is the adiabatic exponent for the gas.
Applying (105) to each of these results then shows that the jump
conditions across a gas shock are determined by

conservation of mass

[Ao ~pul =0, (117)
conservation of momentum
[Apu —(pu®+p)] =0, (118)
conservation of energy
[AGpu®+pe)—uGpu’+pe +p)] = 0. (119)

It proves convenient to re-express these results in terms of

-~

U=u—A, (120)

which is the gas speed relative to an observer moving with the shock at
the speed A. These results the become

conservation of mass
led]=o0, (121)
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conservation of momentum
lpdu +p], (122)

conservation of energy
[EG pu*+ pe)+up] = 0. (123)

In this form (121) may be interpreted as asserting that the mass flow
m through a unit area of the shock in a unit time is constant, so that

m = pollo = p11, (124)

where the suffixes 0, 1 are used to denote quantities on adjacent sides
of the discontinuity surface. In gas dynamics a discontinuity surface is
only called a shock when there is a mass flow across it, so that fluid
particles actually cross a gas shock. It is conventional to refer to the
side of a gas shock through which gas enters as the front of the shock or
as the side ahead of the shock. The other side is called the back of the
shock or the side behind the shock. We shall take the suffix 0 to refer to
the side ahead of the shock and the suffix 1 to refer to the side behind
the shock.

We remark here that discontinuity surfaces across which no mass
flow takes place can also occur in fluid mechanics. These are called
contact discontinuities, and they separate fluids belonging to different
thermodynamic states in which the flow is tangential to the discon-
tinuity surface.

The jump conditions (121) to (123) have been derived quite
generally for an element of a plane shock wave moving with the local
speed A along its normal. In a steady state situation the value attri-
buted to A will determine how the shock moves relative to the
reference frame in which A is measured. If, for example, we set A =0
the shock will be stationary, whereas if we set A = —ilo, then uo = 0 and
the shock will propagate with speed i, into the gas of region 0 which is
then at rest.

When the gas is perfect, so that the specific internal energy e is
determined by expression (116), use of (124) enables us to re-write the
energy equation (123) in the form

m
y—1
where 7=1/p is called the specific volume of the gas. If, now, we
multiply the momentum equation (122) by 3 (uo+ u1), which is the

$mlu’]+——[pr]+[up] =0, (125)
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average of the gas speeds on either side of the shock, and again use
(124) we find
3mlu®] = —3(uo+ u)lpl, (126)
so that (125) becomes
m
y—1
As the speed A of the shock must be continuous across the shock it
follows from (119) that

[pr]—3(uo+ u)pl +[up] = 0. (127)

[al=[ul (128)
or, equivalently, that
m{7] =[u]. (129)
So, applying the identity
[PQ] =3(Po+ P QI+3(Qo+ Q:)P]

to the second and third terms of (127), using (129) and cancelling the
non-zero factor m, finally reduces it to

1
y_lﬂPT]]'*'%(Po'*'Px)ﬂT]].:O- (130)
We remark, in passing, that this relationship, which is equivalent to
the more general result

le+3(po+p1)7] =0, (131)

is the thermodynamic relationship known in gas dynamics as the
Rankine-Hugoniot relation. It is, of course, for this reason that the
name generalised Rankine-Hugoniot relation was given to the general
matrix jump condition (112).

By introducing the ratio r = 7o/71(=p1/po), where as before the
suffixes 0,1 refer to conditions ahead of and behind the shock,
respectively, it is a simple matter to show from (130) that

pi_(y+r—(y-1)

—_— L 132

po (y+L)—-(y—1) (132)
This result is important because it relates the four quantities

Do, D1, Po, p1 across a shock and enables any one of them to be
determined in terms of the other three. As the pressure ratio p;/po is
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inherently positive, the numerator and denominator of (132) must be
of the same sign, so that as y>1 we arrive at the condition

- +
y-1_ ry*1

TS el (133)

Inspection of this inequality reveals that from the mathematical
point of view the density ratio r across a shock may assume values both
less and greater than unity. When r>1 the shock will then involve a
compression, but when r <1 it will involve an expansion, or rarefac-
tion. Clearly in any physical situation the sense of change of the density
and the corresponding pressure jump across a shock will be uniquely
determined, yet as it stands (133) will allow either a compression or a
rarefaction shock to occur. This ambiguity involving which of the two
types of mathematically possible shock should be used must be resol-
ved if our result is to be related to the physical world.

Expressed differently, we have found that in a given situation it is
mathematically possible for either a compression or a rarefaction gas
shock to occur as a solution to the jump conditions, but the uniqueness
we expect of situations in the physical world demands that somehow
we choose between them. As rarefaction shocks have not been ob-
served experimentally we must reject them as non-physical and,
accordingly, confine r to the interval.

y+1
=< —
1\r<y_1. (134)
This condition, which has been proposed here on the basis of experi-
mental evidence, is now sufficient to ensure uniqueness for gas shock
solutions to the jump conditions (121) to (123).

Itis, indeed, a feature of the generalised Rankine-Hugoniot relation
(112) that to obtain a unique shock solution it is necessary to supple-
ment the relation by some further condition such as (134). Although it
will not be done here, it is not difficult to show that in gas dynamics the
physically meaningful compression shock can be selected simply by
appeal to the thermodynamical requirement that the entropy of the gas
flow should not decrease across a shock. That is, this entropy inequality
is equivalent to condition (134), since across a rarefaction shock the
entropy would decrease, thereby violating the second law of ther-
modynamics.

In other physical situations different criteria must be used to select
the physically meaningful shock solutions from the mathematically
possible ones. Usually these amount either to an energy inequality or
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to the assumption that only a physically meaningful shock is stable with
respect to small disturbances. For example, when studying the
behaviour of a bore in a river (see §102), the inequality condition that
is used in place of (134) is that since there is no energy source in the
discontinuity surface that represents the bore, fluid cannot gain energy
when passing through such a discontinuity surface. An idealised
version of this situation is shown in Fig. 42 where the bore is moving to
the left from water of depth h; into water of depth h, (see §109
question (23)).

Y|

Fig. 42

§109 Examples

1. Give an alternative to the new variables u, v introduced in §100 to
reduce equation (1) to a quasilinear system of two first order equations.

2. Use matrix notation to write out the system of equations (2) and (3)
when u is a three dimensional vector with components u, v, w. Define
all matrices that are used.

3. Use matrix notation to write out the one-dimensional form of
Maxwell’s equations

oH oE
curlE = ~HoXm~ - and curlH= 60"35

when E and H depend only on the x coordinate and the time ¢.
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4. Express the result of the above question as a matrix conservation
law

defining the four element column vectors U and F(U) that are
involved.

5. The one-dimensional long wave approximation for water waves
leads to the equations

ou  ou dc dH
—+u—+2c———F=0,

+u
ot ox ax dx

ac ac  du
—+2u—+c—=0,

2
ot 0x 0x

Here u is the horizontal velocity component, ¢ = J (gh)is the surface
wave propagation speed, with 4 the depth of the water and g the
acceleration due to gravity, and H(x)=gY(x), with y + Y(x)=0 the
equation of the sea-bed relative to an origin in the equilibrium surface.
By inspection in the case of the first equation, and by inspection after
multiplication of the second equation by a simple factor, express the
equations as a matrix conservation law.

6. Derive the parametric equations of the envelope given in §102,
equation (27).

7. Find the parametric form of the characteristic curves and the
implicit solution of

when u(x, 0)=sin x. Hence find and sketch the envelope of the
characteristics for >0 in the interval 0<x <2#. Show that this
equation can be written as a conservation law. Compare this conserva-
tion law with §101, equation (15), when p and p are constant.

8. Consider the equation

ou ou
—+tanh u—=0,
ot ox
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when
() u(x,0)=tanh™" x
(b) u(x,0)=—tanh ' x.
Show that in case (a) the solution is defined for all x and #>0, but
that in case (b) the solution is not defined for r=1.
9. Show that the system of equations (7) and (8) in §100 is totally
hyperbolic and that the wave propagation speeds are

A =xc/(1+@y/ax)?)

10. By writing equation (6) of §64 in the form of a first order
quasilinear system, show that the equation governing sound wavesin a
gas is totally hyperbolic. Hence show that the speeds of wave propaga-
tion described by this equation are

A= i‘/(YPO/Po)[l + ag/ax]—(yﬂ)/z

11. Write the equations in question (5) above in the form of a system
and hence show that the long wave approximation for water waves is
totally hyperbolic. Show also that the speeds of wave propagation are

A=uzxc

12. Steady two-dimensional irrotational isentropic gas flow is gov-
erned by the equations

ov_du_
ox ady
d a i)
(a*- uz)—u— uv(—u+%) +(a2—vz)—v= 0,
ox dy ox ay

where (u, v) are the components of the fluid velocity q in the x and y
directions, and a is the local speed of sound. Show that these equations
are only totally hyperbolic in the (x, y) plane when the flow q is
supersonic, so that

u>+v>>a’
By defining the Mach number M = (u*+v*)"/?/a, show that the two

characteristics passing through a point in a supersonic flow are both
inclined to the fluid velocity vector q at an angle a, where sin @ = 1/M.
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13. The equations of unsteady one-dimensional non-isentropic gas
flow are
ad 9, u
2rully

ot Yox Pax
ou du a*adp 19
__+u_+__p+__p&_s=
at ox p dx paSox

’

where u is the gas velocity in the x direction, p is the density, S is the
entropy, p = p(p, S)is the pressure and a* = dp/dp is the square of the
local sound speed. Show that the system is totally hyperbolic and that
the three speeds of wave propagation are

A“)=u+a, AP=y—aq, AP =y,

Interpret physically the nature of the wave propagation associated
with A =1,

14. Consider question (5) above in which H = const. Show that in the
disturbed region immediately adjacent to a wavefront bounding a
constant state, either dc =3 du, or dc = —3 du. Interpret the meaning
of these wavefronts in physical terms.

15. Modify the rule derived in §104 so that it applies to steady state
problems in the (x, y) plane, and then apply it to the equations in
question (12) above for a supersonic flow adjacent to a constant state
region. Interpret your results in physical terms.

16. Complete the details of the calculations involved in the solution of
equations (81) of §105 when subject to the initial data (82).

17. By differentiation and elimination show that #, and u, in equa-
tions (81) of §105 are each solutions of the wave equation

i’¢_o'¢
ot ax*

Use equations (81) and the initial data (82) to derive appropriate initial
data for u; and u; as solutions of the wave equation and hence find u;
and u, by means of d’Alembert’s method as described in §11 equation
(57). Compare and contrast this method of solution with the one
described in §105 making use of Riemann invariants.
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18. Use the method of Riemann invariants to show that the solution to
equations (81) of §105 subject to the initial data
ui(x,0)=1, uz(x, 0)=sin x
is
uy(x, £)=1+3[sin (x —t)—sin (x +1)],
uz(x, £)=3sin (x — #)+sin (x +1)].

19. Show, using the equations of question (5) above, that when the
sea-bed is horizontal the Riemann invariants for the long water wave
approximation are

2u+c=r(B) along C'” characteristics,
and

2u—c=s(a) along C® characteristics.
20. Show by working directly with the Riemann invariants for one-
dimensional unsteady isentropic gas flow, as described by equations
(10), (11) of §100, that adjacent to a constant state (4o, ao, po) bounded
by a C characteristic, du = (@o/po) dp. Show also that if this state is

bounded by a C® characteristic then du = —(ao/po) dp. Hence verify
the conclusions of §104.

21. Show that the path followed by a gas particle in the centred simple
wave flow discussed at the end of §107 has the equation

_{ aot t_o)(y-l)/(vﬂ)_]
x—(y—l)[(7+1)(t 2)

where /, is the time at which the particle path crosses the line x = aot.

22. Use the jump conditions across a gas shock derived in §108 to
show that in terms of the Mach number My =uo/ao ahead of the
shock:

p1/po=uo/ur=(y+ DM3/i(y - 1)M5+2},
P1/po={2yM3/(y + 1} —{(y - 1)/(y + 1)},
and that in terms of My, the Mach number M, behind the shock is

M =2+ (y- 1)M3/{2yM5— (v - 1)}.
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23. The equations of the long wave approximation for water waves
can be expressed in the form
oh oh  du

—+u—+h—=0,
ot ax ax

and

du du oh

—tu—+g—=0,

at ox ax
where g is the acceleration due to gravity, u is the horizontal compo-
nent of the water velocity and 4 is the depth of the water. By re-writing
the first equation in conservation form, and by multiplying each
equation by a suitable factor and adding to form another equation
which can also be expressed in conservation form, show that across a
bore moving with speed A:

A[h]=[uh],
and
Aluh] =[u’h+3gh].

Hence show that if side 0 of the discontinuity lies to the left of side 1,
and the bore moves into water of depth s which is at rest, the speed of
propagation of the bore is

)

where A, is the water depth behind the bore, and that the water speed
u; behind the bore is
U= X ( 1- ilg‘) .

hy
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Chapter 1

() 27/(P+m*)'%;

3) A =2m/(A%+B*+C?»"?, velocity = AD/2m;
(7) A sin nx exp (—cnt);

(8) A exp{—n(x+ct)};

(9) A sin px sin cpt;

(10) A exp (—p*t)sinpx,p==/l,27/Il,...;

(11) Show that ¢ = const., n =const., { = const. form an orthogonal system of
coordinates, and transform V¢ in terms of £, 1, {. The result is ¢ =
X(E)Y(M)Z()T(t), where m, p and q are arbitrary constants, and

L4 X _m
sinh £ d¢ d¢ sinh*¢

1 d ., dy m?

X +p?sinh® ¢X = ¢*X,

Y +p’sin’ nY = —4%Y,

Chapter 2

(1) 1-5msec™’;

(2) $Fa*k?sin® ket, $ Fa*k? cos® kct;
(3) 1/16;

3 1
5) y=5b, cos +a2)"x sin CEDTE L Cyaad/r+yaie:

(6) 8pa®/15;

!
(N y=a, cosﬂln—r cos (E;i+ s,);
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27 2.2
(8) energy in rth normal mode = lc f 2p sin® %; sum = 3c’a’p/4l;

(11) 27/p where c, tan (pl/c,)=—c, tan (pl/c,), 3= F/p,, c3=F/p,.

Chapter 3
(1) (2,2)and (4, 1): in general 2m, n) and 2n, m);

(2) T=%4mpn?c*A*sin® nct J. {J(nr)¥?r dr,
0

V=4%4mpc?A?cos? nct J' [nHT(nr)P + m{J,.(nr)y*/r*]r dr,
(]
which becomes, after integration by parts,
V =4mpn’c?A? cos? nctj {Jm(nr)frdr;
(1]

(3) 391 persec.;
(4) z=A sin 27x/a)sin (37y/a- cos (\/131rct/a);

(5) z= A sin (mmx/a)sin (nmwy/b) cos wpt, p*p =m>Ty/a*+n>T,/ b2

Chapter 4
(1) 2km persec.;

_ [V~ V(Aap)2.
@ R T

(r Hmx (r+Ymct i
(5) é€=A,s 7 cos{ 7 ,},

(7) 1-690sec., 0-252 sec.;
(8) Period =2m/nc where k*—3k cot nl+cot* nl=1, k = Min/m.

Chapter 5

(1) igpla? cos? (—l—t+e,), lgpla? sin (—l-—t+e,),

223

(2) radial velocity —(gA/c)cos mJ,(nr)sin (nct+e), transverse velocity

(gAm/ncr)sin m@J,,(nr)sin (nct + ¢ ), amplitude (gA/c ) o(nr);

(3) {=A cos (pmr/ az) cos (qmy/a) (cosrmct/a), r*=p*+q> and kinetic

energy =3gpA‘a

sin® (rmct/a), potential energy = %gpA 2cos? (rmct/a);
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X p pmx qmy
4) —==tan —cot —;
“) Y ¢q a a

(8) X:Y:Z = nrJ,(nr):—mJ,,(nr)tan mé: nrJ,(nr)

(9) Same as in equations (39) to (41) except that 1 —m = 5k/2, where k =
0,1,2,....

Chapter 6
(2) Reflection coefficient R = {1 +4p3/M*n%,
transmission coefficient T'={1+M>n?/4p2}";
(5) Period =2#/pc, where (abp®+ 1) sin p(b—a)=p(b—a)cos p(b—a);
(7) 166 per sec.

Chapter 7

(2) H,=H, =0, H, = —A sin nx sin nct;

(4) 9°28,9°36';

(7) 12/13 of the incident energy is transmitted;
(8) 100°20’;

Chapter 8
(1) 33-2 km per sec., 249 per sec.;
() a+c¢/2,b/2,c/4;
AAA?
©) V[(A’—A%)(A’°—A3+A,\2)}’
where V =wave velocity;
6) U=%c+27nT/Apc.

AA’(B/\‘—,\?,(AZ—A%))’}

V{ I A=A+ BAZ

Chapter 9

(1) One possibility would be to set u =dy/dt +ay/ax and v =ay/dt—ay/dx,
there are many others;
aU aU U
at ax ay '}
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with
["p‘f !’u p 0 07 ) 0 p Oj
o _a2/pu00‘ 10 v 00
U= UJ’ A"Lo 0 u OJ’ Ar=l42p 0 v 0
w 09 0 0 u 0 0 0 v
rw 00 p7
0 w00
Aa"{ 0 0 w o!‘
a’/lp 0 0 W_j
oU d
3) ——+A—U=0
at ox
(With E= (Ez, Eg), H= (Hz, Hg) and
E; 0 0 0 —l/eox,"
U= E; A= 0 0 1/e0%. 0 .
H, ! 0 1/porm 0 o |
H. ~1/ o 0 0 o J
aU oF
4) —+—=
“) at o
with U defined as above and
—H3/80x¢
F= HZ/GOxc ;
Es/poxm
—E2/u0’¢m
aU oF
—_— —=
©) at  ox 0
with

Tu _ %u2+c2—H]
U—[cz}’ F_[ uc? ’

(7) Characteristic curves: x = £ + ¢ sin ¢ through point (£, 0) of initial line.

Implicit solution: u = sin (x — ut)
Envelope in parametric form: x = £+¢sin £, t=-1/cos &
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Absorption coefficient, 135
Adiabatic, 104
Advanced

potentials, 161

times, 161
Ampere’s Rule, 119
Amplitude, 2

modulation, 152
Amplitudes, partial, 46
Anharmonic lattice waves, 74-7
Anomalous dispersion, 154
Antinodes, 6

Bars and springs
longitudinal waves in, 67-74
variable cross-section of, 77
Basins, tides in, 84, 88, 914
Beats, 152
frequency of, 152
Bell, vibrations of, 64
Bernoulli’s equation, 80, 90, 99, 110
Bore, 184, 221
Boundary conditions, 1, 19, 40, 44, 51,
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fixed, 29
free, 29
Boundary value problem, 25
mixed, 25, 34
Brewster’s angle, 132

Capillary waves, 98-100

Cauchy data, 19

Cavitation speed, 205

Characteristic curves, 21, 182, 188, 195
envelope of, 184, 203

Chladni’s figures, 64

Circularly polarised light, 126

Combination tones, 152

Compatibility conditions across charac-

teristics, 193

Compressible fluid, 104

Compression wave, 201, 215

Condensation, 105

Conductivity, 118
Conical pipe, sound waves in, 112
Conservation laws, 180

matrix form, 181
Constant of separation, 9
Constitutive relations, 119
Contact discontinuities, 213
Continuous dependence of solution, 22
Coordinates, normal, 50, 62, 69
Cutoff frequency, 116, 142

D’Alembert, 7
D’Alembert’s formula, 20, 219
Damping, 15, 52
Decay, modulus of, 15 .
Degenerative vibrations, 62
Derivative

material, 80

total, 80
Dielectric displacement, 118
Diffraction

of light, 167

at a pin-hole, 164, 167

Fraunhofer theory, 167

Dispersion, 18, 153

anomalous, 154

relation, 18
Displacement current, Maxwell’s, 120,

134,136

Disturbed region, 189
Disturbed state, 191
Domain

of dependence, 20

of determinacy, 20
Doppler effect, 150
Drude, 133

Eigenfunction, 44, 49
Electric
and magnetic field strengths, 118
waves, 11845
Elliptically polarised light, 126
End correction, 107
Energy integral method, 54
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kinetic, 37, 47, 62, 63, 69, 95, 113
loss of, 138
potential, 38, 47, 62, 69, 95, 113
rate transmitted, 96, 126, 154
Entropy inequality, 215
Equation of
telegraphy, 15, 17,42, 134
wave motion, 1-30, 189
complex solutions, 16-17
Expansion wave, 201, 202, 215
Exponential horn, 115

Field strengths, electricand magnetic, 118
Fraunhofer diffraction theory, 167
Free surface, 81, 98
Frequency, 3
modulation, 152
Fresnel’s principle, 164
Fundamental, 48, 64, 73, 108

Gauss’ theorem, 119

Gaussian wave packet, 155

General considerations for waves, 149-74
Ground note, 48

Group velocity, 97, 152, 155, 157

Half-width, 156

Harmonic wave, 2, 16-18
Helmholtz equation, 142, 147
Horn, 112, 115

Huygens’ Principle, 161, 164
Hyperbolic, totally, 188, 194

Inclination factor, 154

Incompressible liquid, 79

Index refractive, 121, 133

Induction, magnetic, 118
Inhomogeneous wave equation, 23-5, 32
Initial conditions, 19

Intensity, 167

Internal or total reflection, 132
Isothermal, 104

Joule heat, 138

Kinetic energy
in bars, 69
in liquids, 95
in membranes, 63
of sound, 113
in strings, 37, 47
Kirchhoff, 161
Korteweg-de Vries equation, 76

Index 227
Lenz’s law of induction, 120
Light, velocity of, 121
Liquids, waves in, 79-101
Long waves in shallow water, 81,217,221
Longitudinal waves, 35
in bars and springs, 67-77, 104
Lowest frequency, 48

Mach number, 218
Magnetic and electric field strengths, 118
Maxwell’s displacement current, 120,
134, 136
Maxwell’s equations, 118
Maxwell’s relation, 121
Membranes, waves in, 59-65
Mersenne’s law, 48
Mode, normal, 44, 47, 48, 50, 52, 61, 63,
70, 108, 112
Modulation
amplitude, 152
frequency, 152
phase, 152
Modulus of decay, 15

Nodal planes, 6
Nodes, 6
Non-conducting media, 120
Normal coordinates, 49, 62, 69
Normal modes
in bars, 70
in circular membranes, 63
in rectangular membranes, 64
in sound waves in pipes, 107, 112
in strings, 43-5, 48, 50, 52

Observer, moving, 150
Organ pipe, 108
Overtones, 48, 64

Packet, wave, 155
Partial amplitudes, 46
Paths of particles, 88, 94
Period, 2
equation, 52, 94, 112
Phase, 3, 16, 152
Pin-hole, 164, 167
Pipes, sound waves in, 107-12
Piston problem, 202
Pitch, 48
Plane
nodal, 6
of polarisation, 126
polarised light, 126
wave, 4
Polarisation, plane of, 126
Polarising angle, 132
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Potential
advanced, 161
electric, 122, 123
energy in bars, 69
energy in liquids, 95
energy in membranes, 63
energy in sound, 113
energy in strings, 37, 47
magnetic or vector, 122, 123
retarded, 161, 171
velocity, 79, 90, 104, 109
Poynting vector, 120, 126, 138
Pressure, radiation, 138
Principle of superposition, 6, 150, 155,
157
Profile wave, 1
Progressive waves, 6, 13, 37, 40, 41, 43,
53, 84, 88, 91, 94, 99, 112, 114,
124-38

Quasilinear equation, 76, 179

Range of influence, 21
Rankine-Hugoniot relation, 211, 214
Reduction to a steady wave, 53, 88
Reflection

coefficient, 41, 131, 137

of light waves, 127

total or internal, 132 |
Refraction of light waves, 127
Refractive index, 121, 132

complex, 134
Relaxation, time of, 124
Resistance, specific, 118
Retarded

potential, 161, 171

time, 161
Riemann invariants, 196
Ripples, 100

Screen, 164, 165
Separation

constant, 9

of variables, 9
Shock wave, 210

back, 213

front, 213
Simple waves, 200, 203
Skin effect, 138
Snell’s law, 129
Solution by reflection, 27-9, 34
Sound

velocity of, 106

waves, 104-16

Source, moving, 149
Springs and bars
longitudinal waves in, 61-77
vibration of, 71
Stationary waves, 6, 45, 51, 61, 63, 68, 92,
111 :
Strings
normal modes, 44
waves on, 35-56
St Venant’s Principle, 164
Superposition, principle of, 6, 150, 155,
157
Surface
free, 81, 98
tension, 81, 98
waves in liquids, 81, 90-7

Telegraphy, equation of, 15, 17, 32, 42,
134
Tidal waves, 81-9
Time of relaxation, 124
Tone, 48
combination, 152
Total or internal reflection, 132
Transmission coefficient, 41, 131, 136
Transverse waves, 35, 59, 124
electric TE, 141
Electromagnetic TEM, 141
magnetic TM, 141

Undisturbed region, 189
Uniqueness, 54, 65

Vector, Poynting, 120, 126, 138
Velocity
groups, 97, 152, 155, 157
of light, 121
Velocity
of sound, 106
potential, 79, 90, 104, 109
wave, 153
Vibrations, degenerate, 62

Wave
capillary, 98-100
electric, 118-45
equation, 5, 23
harmonic, 2, 16-18
in bars and springs, 67-77
in inhomogeneous medium, 171, 177
in liquids, 79-101
in membranes, 59-65
lattice, 74



Wave (contd.)

long, in shallow water, 81
longitudinal, 35, 67-77, 104
motion, equation of, 1-30, §
number, 3

on strings, 35-56

packet, 155

plane, 4

profile, 1

progressive, 6, 13, 37, 40, 41, 43, 53,
84,88,91,94,99,112,114,124-38

reduction to a steady, 53, 88
relatively undistorted, 18
shock, 207, 210, 215
simple, 200, 203

sound, 104-16

stationary, 6, 45, 51,61, 63,68,92,111

Index

Wave (contd.)

steepening, 184
surface, 81, 90-7
tidal, 81-9
transverse, 35, 59, 124
velocity, 153
Wavefront, 4, 189
bounding constant state, 191
physical, 189
solution surface, 189
trace, 189
Waveguide, 139
Wavelength, 2
cutoff, 144
freespace, 144
guide, 144
WKBJ method, 171, 177
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