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In this paper, a theoretical foundation is proposed and numerical results are provided for 
focusing by plane, time-reversal mirrors of finite dimensions in a homogeneous fluid. The basic 
ideas are the same as those used in the closed time-reversal cavity (CTRC) system [Cassereau 
et al., Proc. IEEE Ultrason. Syrup., 1613-1618 ( 1990); D. Cassereau and M. Fink, IEEE Trans. 
Ultrason. Ferroelec. Freq. Control 39, 579-592 {1992)], except that the most unrealistic 
assumptions made in this theoretical approach are dropped. Plane mirrors are considered that 
do not surround the object source, and different kinds of radiation conditions are introduced on 
the surface of these mirrors, in order to obtain more realistic situations from an experimental 
point of view. The results are compared with those of the CTRC system and it is shown how the 
focal pattern is changed in comparison with the pattern of the theoretical (and ideal) model. 
The differences between several radiation conditions on the surface of the mirror are also 

analyzed. The theory is based on a time domain formulation of diffraction, but a frequency 
analysis provides dosed form solutions in some particular cases. Numerical results show that 
plane time-reversal mirrors of finite dimensions represent an efficient and realistic alternative to 
the CTRC system. 

PACS numbers: 43.20.Fn, 43.20.Px, 43.20.Bi 

INTRODUCTION 

One of the most significant problems in propagation of 
acoustic waves lies in wave front or phase distortion cor- 
rection. For example, it is always difficult to focus an 
acoustic field on a target after propagation in an inhomo- 
geneous medium. Indeed, the inhomogeneitics generate a 
distortion of the incident wave front, such that the knowl- 
edge of the spatial localization of a target is not enough to 
optimize focusing on it. 

Among the different techniques proposed to solve this 
problem, the time-reversal method provides encouraging 
experimental as well as theoretical results. •-5 The basic 
principle of the time-reversal method is based on a classical 
property of the wave equation in a lossless propagation 
medium: the time derivative operator appears to the see- 
ond order only, •-• such that if p(r,t) is a solution, then 
p(r,--t) is also a solution of the same equation. In other 
words, the wave equation is unchanged by the time- 
reversal transform if there is no absorption. The basic idea 
consists of a two-step process: 1-5 First, the target is con- 
sidered as an active source that generates an acoustic field 
p(r,t) that is subsequently recorded, and second, the infor- 
mation contained in this field is then used to try to generate 
p(r,-t). The theoretical limitations of the method have 
bccn predicted in a work published recently about focusing 
using the CTRC system. z's In this work, the cavity is as- 
sumed to be a closed surface surrounding the medium of 
interest. Each point on the surface of the cavity is assumed 
able to measure the pressure field and its normal derivative 
generated by the active source inside the cavity. During the 
second step, the source is removed or remains passive and it 

is possible to create secondary sources on the surface of the 
cavity (monopole and dipole sources), such that the 
boundary conditions on the surface of the cavity exactly 
correspond to the time-reversal of the components mea- 
sured during the first step. In this theoretical context, it is 
shown how the pressure field generated during the s•ond 
step is focused on the initial source position after propaga- 
tion in a homogeneous or inhomogeneous fluid. 2'5 This the- 
oretical work is interesting, but it is not very realistic from 
an experimental point of view due to the following reasons. 

(i) In the reception mode, the ultrasonic transducer 
cannot simultaneously measure the pressure field and its 
normal derivative. 

(ii) In the transmission mode, it is not possible to 
simultaneously impose the pressure and its normal deriva- 
tive. 

(iii) The reception and re-transmission operations 
cannot be performed at each point of the surface of the 
cavity; ultrasonic transducers have finite apertures, result- 
ing in spatial filtering of the incident acoustic field. 

(iv) The closed surface surrounding the region of in- 
terest is not easy to realize experimentally. 
These are the reasons why the CTRC system must be con- 
sidered as a theoretical approach to the analysis of the 
intrinsic limitations due to propagation and diffraction of 
the process. 2'• 

In this paper, we start with the theoretical description 
of the CTRC system and progressively modify it in order 
to eliminate the most unrealistic assumptions. During this 
process, we show how the efficiency of the focusing by 
time-reversal is altered. First, we consider a plane time- 
reversal mirror instead of a closed cavity. During the: first 
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step of the process, each point of the mirror is assumed to 
be able to measure the incident acoustic pressure, its nor- 
mal derivative or both. During the second step, we create 
secondary sources (monopole sources, dipole sources or 
both) according to the same basic idea as in the case of the 
CTRC system. Then, the time-reversed pressure field is 
computed near the initial source position using the impulse 
diffraction theory. The dimensions of the mirror are as- 
sumed to be finite. 

In the first section, we develop the basic transient the- 
ory of the time-reversal process. Then, we distinguish be- 
tween the following radiation conditions on the surface of 
the mirror. 

(I) The time-reversal mirror is mounted on an infinite 
rigid planar baffle: in the first step, each point on the sur- 
face of the mirror measures the normal derivative of the 

incident acoustic pressure field; in the second step, this 
field is time-reversed and then re-transmitted. 

(II) The time-reversal mirror is mounted on an infi- 
nite soft planar baffle: in the first step, each point on the 
surface of the mirror measures the incident acoustic pres- 
sure field; in the second step, this field is time-reversed and 
then re-transmitted. 

(III) The time-reversal mirror behaves as it would in 
free-space: in the first step, each point on the surface of the 
mirror measures simultaneously the incident acoustic pres- 
sure field and its normal derivative; in the second step, 
these two components are time-reversed and then re- 
transmitted. 

(IV) The time-reversal mirror is mounted on an infi- 
nite rigid planar baffle: in the first step, each point on the 
surface of the mirror measures the incident acoustic pres- 
sure field; in the second step, the normal derivative of the 
re-transmitted pressure field results from the time-reversal 
of the components measured in the first step. 

For these different radiation conditions on the surface 

of the mirror, we derive and compare the expressions ob- 
tained for the time-reversed pressure field. Case IV is in- 
teresting since it corresponds, according to the previous 
remarks made about the limitations of the CTRC system, 
to the most realistic configuration when compared with 
experimental conditions? In the second section, a fre- 
quency analysis of the results obtained in the first part is 
provided. This analysis allows an additional interpretation 
of the differences between the expressions of the time- 
reversed pressure field depending on the radiation condi- 
tions on the surface of the mirror. 

The third section considers some particular cases 
where a closed form solution for the time-reversed pressure 
field is available. These closed form solutions allow a de- 

scription of the time-reversed pressure field in terms of two 
wave fronts. These wave fronts are separated in time far 
from the initial source position, while they can overlap in 
the neighborhood of the origin. These results are compared 
to those obtained with the CTRC system. Finally, it is 
shown how the application of one mirror on each side of 
the source increases the performance of the focusing by 
time-reversal. 

In the fourth and last section, we present numerical 

results and analyze the influence of different parameters 
(size of the time-reversal mirror and radiation conditions 
on its surface) on the focal pattern. 

I. BASIC TRANSIENT THEORY 

Similar to the theory of the CTRC system, we con- 
sider, during the first step (recording mode), a point-like 
source located at the origin of a spatial coordinate system, 
as illustrated in Fig. 1 (throughout this paper, we will use 
the word source both when considering step I and step II, 
ever though the source is acoustically inactive during step 
II). As this source is considered to be located inside an 
unbounded homogeneous fluid, it generates a scalar pres- 
sure field, p(r,t), that satisfies the wave equation formu- 
lated in the time domain as 6 

(•72- C---• 10tt)p(r,t)=--qb(t)t•(r), (1) 
where Ott is the differential operator defined by Ott =02/or 2 
and c is the sound speed. Here, •72 represents the Laplacian 
operator with respect to the r coordinates [the scalar 
(x,y,z) and cylindrical (r,O,z) coordinates will be used], 
6(r) is the Dirac distribution in three-dimensional (3-D) 
space, and qb(t) is any function of time that describes the 
temporal variations of the source excitation. This function 
of time is assumed to be causal [i.e., qb(t)=0 for t < 0] and 
defined within a finite time interval [0, T•] [i.e., qb(t) =0 for 
t> T•]. 2'5 Since the pressure field p(r,t) propagates in a 
free unbounded homogeneous fluid, the solution to ( 1 ) can 
be found as 6 

p(r,t) = •b t- =gf(r,t) • •b(t). (2) 
In this equation, */t represents the time-convolution oper- 
ator and gœ(r,t), defined by 

gf(r,t) =4-•-•T g t- , 
is the free-space Green's function; the latter corresponds to 
a diverging spherical impulse wave and satisfies (1) as 
well, when •b(t) is replaced by &(t) on the right-hand side 
of the expression. 6 

The recording surface • is included in the plane lI 
defined by z=z o with z0> 0, as illustrated in Fig. 1. This 
plane is divided into two complementary parts and is writ- 
ten II = • + •, where • corresponds to the active aper- 
ture surface of the time-reversal mirror. We introduce the 

aperture function of the mirror, o(x,y), as follows: 

1, if r(x,y,zo)•, c•, o(x,y) = 0, otherwise, i.e., if r(x,y,zo)•9 •. 
As in the case for the CTRC system, we also assume that 
the plane time-reversal mirror does not perturb the prop- 
agation of the pressure field, such that the infinite free- 
space hypothesis remains valid? 

In the following, we consider the surface of the time- 
reversal mirror to be finite. This assumption is important 
since it permits introduction of a time parameter T such 
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FIG. 1. Spatial coordinate system, r is the observation point of the acous- 
tic field, r' is the mirror of r with respect to the plane H, r s is a point on 
the surface • of the time-reversal mirror and n s is the normal vector 
to H. 

that the pressure field p(r,t) vanishes everywhere on •'• for 
any observation time t) T: p(r,t) =0(Vr•, (•, ¾t) T). 

Defining d,, as the greatest distance from the source to 
any point on the surface of the time-reversal mirror •'•, 
dr• = max( I rl ), T equals at least (T•3+d,•/c), where dr•/C 
is the maximum time of propagation from the source to 
any point on the surface of the mirror. Once the parameter 
T is found according to this condition, the time-reversal 
mirror is assumed to be able to measure the pressure field 
and its normal derivative at any point of its surface during 
the time interval [0, T]. As for the CTRC system, we can 
imagine an infinite set of elementary transducers on the 
surface •q' of the mirror that measure the pressure field and 
its normal derivative without perturbing the field. 2'5 

During the second step of the process (transmission 
mode), we assume that we are able to create secondary 
sources on the surface of the mirror (monopole and dipole 
sources) such that the boundary conditions on the surface 
•'• correspond to the time-reversed components of the 
pressure field recorded during the first step. To insure cau- 
sality, the time-reversal process is described by the trans- 
formation t•T-t and the secondary sources are de- 
scribed as follows? 

al(rs,t)=p(rs,T--t), ao(rs,t)=ns'V•o(rs,T--t). (3) 

The two functions rr• and % correspond to the pressure 
field and its normal derivative on the surface of the mirror, 
respectively, and are measured in Pa and Pa' m- •. In (3), 
r s represents any point on the surface of the mirror, n s is 
the normal vector to the plane II as illustrated in Fig. 1, 
and n s. Vs is the normal derivative operator. It is important 
to note that e I and a0 are only valid on the surface of the 
mirror •,c•,; they can be completely different on the surface 
•9 • and we are not interested in their expressions. 

Since the time-reversal mirror is included in the plane 
H defined by z=z o, the normal derivative operator ns.V s 
reduces, within a sign E= q- 1 (orientation convention), to 

the partial derivative operator with respect to the z s coor- 
dinate. In the following, the time-reversed pressure: field 
resulting from the new boundary conditions on the surfac. e 
•'• is computed in front of the mirror, corresponding 'to the 
half-space z(z 0. According to the convention generally 
used in diffraction theory, 6qi the normal vector n s is ori- 
ented outward (in direction of increasing values ofzL such 
that e= + 1. It follows therefore that the secondary sc.urces 
created on the surface of the mirror •' are: 

1 

(4) 
z0 

+•b' T--t-- ], 

where &'(t) is defined as the temporal derivative of the 
excitation function &(t). 

The point-like source considered during the first step i.s 
now removed or remains passive. It follows from the: new 
boundary conditions on the surface of the mirror • that a 
time-reversed pressure field, ptr(r,t), is radiated from the 
mirror. Starting with Green's formulation of 
diffraction, 6'9-11 pt•(r,t) can be found as 

Ptr(r,t) = •o(rs,t) 7g(r,rs,t) 

' 1 --oi(rs,t) •n•-V•g(r,rs,t) dxsdy s, (5) 

where g(r,rs,t) is the Green's function adapted to the ra- 
diation conditions on the surface of the mirror. We., will 

now show how the diffraction pattern is modified by con- 
sidering four different baffle conditions. 

Case I: The time-reversal mirror is mounted c,n an 

infinite rigid planar baffle. In this situation, it can be shown 
that the Green's function corresponding to this baffle con- 
dition contains two free-space Green's functions at two 
different spatial locations and can be written as 9-11 

g(r,rs,t) =g f(r--rs,t) +g f(r'--rs,t ), (6a) 

where the point r' is the mirror of the point r with respect 
to the plane H; it is defined by the coordinates 
r'(x,y,2zo--z). Using (6a), we obtain the following equa- 
tions, valid for any point r s on II: 

g(r,rs,t)=2gf(r--rs,t), ns'Vsg(r,rs,t)=O. (6b) 

It also follows from the baffle condition that the nc,rmal 

derivative of the acoustic pressure a0(rs,t) vanishes every- 
where on the plane H outside the surface of the time- 
reversal mirror •9 • and we obtain the following equation, 
valid for any point r s on • :9-•1 

rr0(rs,t) =0, Vrs• •. (6c) 

Introducing (6b) and (6c) in the expression for the time- 
reversed pressure field given by (5), we obtain 
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p•r•)(r,t) =2 a0(rs,t) •gf(r--rs,t)dx•dy• 

--2rr Ir-r,l orø rs't dxsdys' ½ 

(6d) 

Loo•ng at (6d), we note that the time-reversed pressure 
field, p?(r,t), only depends on a 0 on the surface of the 
mirror •. In p•ticular, p?(r,t) does not depend on a• 
on the plane H. Introducing (4) into (6d), we obtain 

(•)(r,t) = zø f• dxsdy• • ' -• Ir•l•X Ir-r•l 

( x r-t+ 

+•' c )]' (6e) 
C•e II: The time-reversal mirror is mounted on an 

infinite soft planar baffle; this case is anflogous to the dif- 
fraction by an opaque screen in optics. 7'8 This situation is 
very similar to the previous case and the Green's function 
corresponding to this baffle condition contains the same 
two terns as (6a) and can be written as (note the "-" 
sign) 

g(r,rs,t) =gf(r--rs,t) -gf(r' -r s,t). (7a) 
Treating (7a) in the same way as (6a) provides us with the 
following equations, valid for any point r, on H: 

g(r,r•,t) =0, ns.V•(r,r•,t)=2ns. V•f(r-r•,t). (7b) 
It also follows from the baffle condition that the acoustic 

pressure al (rs,t) vanishes eveuwhere on the plane U out- 
side the surface of the time-reversal mirror • and we 

obtain the following equation, valid for any point r s on 

al(rs,t) =0 , Vrs• •. (7c) 

Introducing (7b) and (7c) in the expression for the time- 
reversed pressure field given by (5), we obtain 

L ' p•)(r,t) =--2 al(rs,t) 7n,.V•f(r-rs,t)dx, dy •, 
(7d) 

where the normal derivative of the free-space Green's func- 
tion is given by 

n•. V•f(r-r•,t) 

( 
--4•]r_r•l 2 • t-- c 

+7 • ' 

Looking at (7d) and (7e), we note that the time-reversed 

pressure field, p[r •) (r,t), now depends on o' 1 on the surface 
of the mirror •. We also specifically note that p?(r,t) 
does not depend on cr 0 on the plane II. Finally, introducing 
(4) and (7e) into (7d) yields 

Zo-- Z ;• dxs dy• P? (r't) = 8-----r• Irs[ X ]r-r•l 2 

x [ ir_•lr•l •(r-t+ 'r-r•l- Ir•[ ) c 

-7 of' T-t+ c ' 

Case III: The pressure field propagates on both sides 
of plane II and the time-reversal mirror does not perturb 
the propagation. In this case, the Green's function corre- 
sponding to this radiation condition reduces to the free- 
space (3reen's function. Looking at cases I and II described 
above, it appears clearly that the diffracted pressure field 
only depends on the acoustic pressure and its normal de- 
rivative on the surface of the time-reversal mirror, such 
that it was not necessary to determine the expressions of 
ao(rs,t) and/or a•(rs,t) outside • [remember that the 
expressions given in (3) are only valid on the surface of the 
mirror •9•]. However, in the case of the free-space Green's 
function, such a simplification is not possible. By carrying 
out the integration over the planes •9 • and • separately, 
we obtain from (5): 

p? (r,t) = ao(r,,t) 7gf(r-rs,t)dx•dy• 

- f• al (rs,t) 7 ns' V•gf(r-rs,t)dx• dys 

+ L (•o(rs,t) •gf(r--rs, t) 
' ) --al(rs't) 7 ns'V•gf(r-rs't) dxsdy•. 

(8a) 

Comparing (8a) with the equations written in cases I and 
II, the time-reversed pressure field can be simplified as 
follows: 

(3) __1 (•) _1 (2) 
Ptr (r,t)--2Ptr (r,t)+•Ptr (r,t) 

+ ;• (ao(rs,t) -• gf(r--r•,t) 
. ) -a•(rs,t) 7n•'V•gf(r-r•'t) dx•dy•. 

(Sb) 

As a consequence, the time-reversed pressure field reduces 
to half the sum of the pressure fields diffracted for cases I 
and II (rigid and soft baffle conditions), up to a correction 
term corresponding to the integral over the surface •. 
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This correction term is clearly due to the finite size of the 
time-reversal mirror •. 

Case IV: The time-reversal mirror is mounted on an 

infinite rigid planar baffle, but the normal derivative of the 
acoustic pressure on the surface of the mirror during the 
second step is assumed proportional to the time-reversal of 
the incident pressure. This case is interesting since the 
most commonly used approximations for characterization 
of ultrasonic transducers are the following. 9-•2 

(i) A transducer working in receiving mode essentially 
measures the average incident acoustic pressure on its sur- 
face. 

(ii) A transducer working in transmission mode es- 
sentially imposes the velocity distribution components that 
are perpendicular to the aperture surface on its surround- 
ings (if p is the density of the propagation fluid, the normal 
velocity vector and the normal derivative of the acoustic 
pressure on the surface of the transducer are identical, up 
to a constant -p and a temporal derivative). 

Although the time-reversal mirror, as described in this 
paper, cannot be realized experimentally, case IV is more 
realistic in comparison with time-reversal experiments that 
are performed in the laboratory using transducer arrays. 

Since the baffle is assumed to be rigid, the results are 
very similar to those obtained in case I; it is enough to 
replace the expression of a0(r•,t) by •71(rs,t) in (4). After 
some elementary computation steps that we do not present 
here in detail, we obtain the following expression of the 
time-reversed pressure field: 

P•r4) (r't) = 8---• Irsl X Ir--r•l 

x(r_t+ Ir--rl-- Irl). c 
(9) 

II. FREQUENCY ANALYSIS 

In the previous section, the problem has been analyzed 
exclusively in the time domain. We will now perform a 
frequency analysis to complete the physical interpretation 
of the time-reversal process. We will use the following con- 
ventions: 

(i) f is the frequency, linked to the time variable t via 
the Fourier transform; 

(ii) fx and fy are the spatial frequencies, linked to x 
and y via the spatial two-dimensional Fourier transform; 

(iii) a function of space is generally written as a func- 
tion of r; however sometimes it will be written as a function 
of the explicit coordinates (x,y,z); 

(iv) if u(x,y,z,t) is any function of time and space, 
•(x,y,z,f ) corresponds to its Fourier transform over t, 
U(fx,fy,z,t) to its spatial twp.o-dimensional Fourier trans- 
form over x and y, and U(f•,fy,z,f ) to its three- 
dimensional Fourier transform over x, y, and t. 

We first compute the Fourier transform 
•œ(fx,fy,z,f) of the free-space Green's function 
gf(x,y,z,t). The Fourier transform over the time variable t 
is 

•f(x,y,z,f ) = • 4rrR •5 t-- exp(j2rrft)dt 

- 4rrR exp , 

where R is defined by R ---- x/x2+y:-4-2 2. Since •/.(x,y,z,f ) 
i_s radial symmetric and only depends on r = x/• 7, 
Gf(f•,f ,z•_,•f)• is symmetric as well and only depentds on 
fr = •/f}+fy2. In this case, the spatial two-dimensional 
Fourier transform over x and y can be changed to a Hankel 
transform using the Bessel function of zeroth order: •3'•4 

•f(f•,f y,z,f ) =2rr fo •- © exp(j2z'fR/c) rJo(2rrf,r)dr. 4z'R 

This integral can be found in tables of integral transforms •5 
and we obtain ]6 

•f(f x,f y,z,f ) = (j/2v)exp(jvlz I ) (10) 
where v, in units m-•, is defined by 

[ x/f2/c2--f•, if fr<f/c, 
v'=2Ir)<[j•f•_f2/c2, if fr>f/c. (11) 

Note that (10) and ( 11 ) are only valid for positive values 
of the frequency f. For negative v_alues of f, these equa- 
tions must be re-written such that Gf(f•,fy,z,f ) is a Her- 
mitic function of f [the free-space Green's function 
gf(x,y,z,t) takes only real values]? '•6 Looking at the ex- 
pression in ( 11 ), we note that v can be either real or purely 
imaginary. The real values of v correspond to the propa- 
gating components in the angular spectrum of the free- 
space Green's function, while the purely imaginary values 
correspond to nonpropagating (evanescent) components 
with an amplitude that decreases exponentially with I zl. • 
Finally, it follows from (2) that the Fou•er transform 
over x, y, and t of the pressure field p(r,t) generated d:ufing 
the first step is given by • 

,z,f ,z,f ). 
Starting from (4), it follows from the basic properties of 
the convolution operator that the secondary source term 
(acoustic pressure) a•(r•, t) can be written as follows? 

a•(r•,t)-4•lr•l • T-t- 

i ( ,½).. -4•lr•l • t+ 7•(t-r) 7&(-t) 

=gf(r$,-t) j•(t--T) • •(--t). •13a.) 
Taking the Fourier transform of (13a) over the time vari- 
able t, we obtain 

5• (r•,f)=exp(j2rcfT)•(f )*•f(r•,f )*, (13b.) 
where * indicates the complex conjugate. Therefore, it fol- 
lows from (13b) and (10) that the spatial two-dimensional 
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Fourier transform, •l(fx,fy,ZO,f ), of •l(r,,f ) over xs 
and Ys is given by 

). •q(f x,f y,zo,f )=--• (• exp(jvzo) 
Xexp(j2rrfT)g(f )*. (13c) 

Since the secondary source term (the derivative of the 
acoustic pressure normal to the plane 11), a0(rs,t), is 
linked to al(r,,t) by the relationship 

0 

aø(r•'t) =•z• a•(r"t) I's=z0 ' (13d) 
and z• is not included in the Fourier transform of interest, 
(13d) can be used to modify (13c) to yield 

ff, o(f ,,,f •,,Zo,f )= --«[exp(jvz0) ]* exp(j2,n'fT)•(f )*. 
(13e) 

We will now consider the four different cases from the 

previous section. 
Case I: As stated previously in (6d), the time-reversed 

pressure field can be calculated by an integration over the 
surface • of the mirror; introducing the aperture function 
of the mirror o(x,y) as defined in the first section, this 
integration can be extended to the complete plane 11 at 
Z=Zo, so that 

p? (r,t) = 2 ;n ø(xs'Ys)trø(x•'Ys'Zø't) 
7 gf(x--xs,y--ys,z--Zo,t)dx• dye. (14a) 

Next, this equation can be interpreted as a spatial convo- 
lution ofo(x,y)ao(x,y,zo,t) with gf(x,y,z-zo,t) over x and 
y, yielding the simplification: •3 

p? (r,t) = 2 [o(x,y)ao(x,y,zo,t)] •c • 7 gf(x'Y'Z-Zø't)' 
(14b) 

Finally taking the Fourier transform of (14b) over x, y, 
and t, it follows from (10) and (13e), and from the basic 

properties of the Fourier transform with respect to the 
convolution operator, that 13 

•l)(f • ,f •, ,z,f ) 

= --2• exp(j2rrfT)•(f )* exp(jvzo)exp(--jYz) 

( ) X O(f•,,fy) • exp(jyzo)* . (14c) 
The main difficulty that arises in (14c) is the computation 
of the convolution over fx and fy. In general, we cannot 
obtain a closed form expression of the time-reversed pres- 
sure field •?(f•,fy,z,f) and the convolution must be 
performed numerically. It is noted though, that if the ac- 
tive aperture of the time-reversal mirror is infinite, i.e., 
o•' = ll, we immediately obtain o(x,y) = 1 (¾x,y), such that 
O(f•,fy) reduces to 5(f•)5(fv). In this case, the convo- 
lution is straightforward, but the finite-valued time param- 
eter T introduced in the first section cannot be defined for 

a time-reversal mirror of infinite size. Furthermore, such a 
time-reversal mirror is not realistic experimentally. 

Alternatively, the simplification of (14c) can be ap- 
proached as follows. It is well known from the classical 
properties of the Fourier transform that a wide function 
has a narrow Fourier transform. •3 With this in mind, we 
will choose the size of the mirror (in both directions x and 
y), such that the spatial two-dimensional Fourier trans- 
form over x and y of the aperture function of the mirror, 
O(f•,fv), is much more narrow than exp(jYzo)*, where ¾ 
is given by (11). This choice of the mirror dimensions 
depends on the variations of exp(jvzo)* with f• and fy; 
consequently, it depends on the frequency f. Assuming 
that O(f•,fv)--•5(f•)5(fy), (14c) can be simplified and 
written as follows: 

•rl)(f x,f y,z,f ) 
__• -- (j/2v)exp(j2•rfT)•(f )* 

X [ exp(jvzo) [2 exp(--jvz). (14d) 

We now replace v by the expression given in (11) and 
obtain 

J --j2rrzx/f2/c2--f2•], if f,<f/c, - 1 _ x/f2/c2_ f2• exp t 
i3•)(f•,,fy,z,f )_• --•-•exp(j2rrfT)•(f )* 1 

ß 2 2 2exp[2•'(z--2Zo) x/f2r--f2/c2l if f,>f/c. . x[f,--f/c ' 

(14e) 

From the spatial and temporal Fourier transform of the 
time-reversed pressure field in (14e), we can make the 
following observations. 

( 1 ) Comparing (14e) with (10), where ( 11 ) is in- 
serted, we see that the propagating components (f•< f/c) 
of the time-reversed pressure field have a form which is 

similar to the form of the complex conjugate of the pres- 
sure field generated by the source during the first step (the 
time-reversal process in the time domain is equivalent to a 
complex conjugation in the frequency domain). 17 

(2) In the neighborhood of z=0, the time-reversed 
pressure field only propagates in direction of decreasing 
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values ofz [the term exp(-jvz) in ( 14d)], while the pres- 
sure field generated by the source during the first step prop- 
agates in both directions [the term exp(jvlz l) in (10), 
due to the spherical geometry of the wave front]. 

(3) The propagating components of the time-reversed 
pressure field do not depend on the position z 0 of the time- 
reversal mirror. 

(4) The evanescent components of the time-reversed 
pressure field explicitly depend on z 0. 

As a consequence, the pressure field radiated from the 
time-reversal mirror looks very similar to the complex con- 
jugate of the pressure field generated by the initial source 
during the first step, resulting in a reconstruction of the 
initial wave front by time-reversal. But the above men- 
tioned remarks also exhibit some differences that introduce 

limitations in the reconstruction process. 
Case II: Similar to the developments in case I, the 

time-reversed pressure field in (7d) can be written as a 
convolution of o(x,y)a• (x,y,zo,t) with the normal deriva- 
tive of the free-space Green's function on ll: 

p•r 2) (r,t) = -- 2 [o(x,y)tr 1 (x,y,zo,t) ] .... 
x y t Ozs 

Xgf(x,y,z--zs,t) I zs=z0. (15a) 
Taking the Fourier transform of (15a) over x, y, and t, it 
follows from (10) and (13c) that 

•) (f•,f y,z,f ) 

----J exp(j2rrfT)•(f )*exp(jvzo)exp(--jvz) 2 

' * * 1 ) • exp(J•zo)* X O(f•,fy) f•fy . (15b) 

Once agmn, the main difficulty is the computation of the 
convolution over fx and fy. If the size of the time-reversal 
mirror is large enough, such that O(fx,fy) behaves like 
•i(f•)&(fy) compared to the variations of exp(jvzo)*/v* 
with f• and fy, (15b) can be re-written as follows: 

•2) ( f •,,f •,,z,f ) = - ( j /2v* )exp( j2•'fT)•(f )* 
X I exp(jvZo) 12 exp(-jvz). 

(15c) 

Comparing (15c) with (14d), we note that the only dif- 
ference is the substitution of v by its complex conjugate v* 
in the amplitude coefficient -j/2v. Since v is either real or 
purely imaginary, the consequence is that the propagating 
components of the time-reversed pressure field are the 
same as in (14e), while the evanescent components are the 
opposite of those obtained in case I. Thus in case II we get: 

j 1 x/f2/c2_f2 r exp[ --j2z-z x/f2/c2--f•2l, if f,<f/c, 
•tr(fx,f.v,Z,f ) = --•-• exp(j2z'fT)•(f )* -- 1 2 2/c2 , x/f2•_f2/c2eXp[2vr(z--2Zo) x/f•--f ] if f•> f/c. 

(15d) 

Case Ill: As found from the time analysis for case III, 
Eq. (8b) reveals that the pressure field is equal to half the 
sum of the pressure fields found for cases I and II, plus a 
correction term. Assuming that this correction term is neg- 
ligible, •r 3) (f • ,f •,z,f ) can be written as 

•3)(fx ,f y ,z,f ) = «• )(f• ,f y ,z,f ) 

+«•2) (fx,f •,z,f ). (16a) 
Further assuming that the convolution terms in (14c) and 
(15b) containing O(fx,fy) can be ignored (same as done 
in cases I and II), we obtain 

j 1 1 - 

•3)(f •,f y,z,f )_• --• (• + •)exp(j2rrfT)cp(f )* 
X I exp(jvz0)12 exp(--jvz). (16b) 

Once again, this expression is very similar in form to (14d) 
and (15c). It also follows from (16b) that the propagating 
components of the time-reversed pressure field are the 
same as in (14e) and (15d), while the sum of the cranes- 

cent components is zero. This result has been observed in 
holographic techniques and is in complete agreement with 
previous works? -22 

Case IV: As mentioned in the previous section, th•s 
case is similar to case I. Replacing the secondary source 
term a 0 by a•, we obtain 

p•r 4) (r,t) =2 [o(x,y)rq (x,y,zo,t) ] •c • • g f(x'Y'Z--Zø't)' 
(17a) 

Taking the Fourier transform of (17a) over x, y, and t, we 
immediately obtain •3 

(f,f ) 
= ( 1/2v)exp(j2•rfT)c•(f )* exp(jvz0)exp(-j,vz) 

' * * 1 ) X O(fx,fy) fx fy ¾* exp(jYzø)* ' (17b) 
As done m cases I and II, if the convolution term in (17b) 

containing O(fx,fy ) can be ignored, the simplification 
yields 
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( 1/21 vl 2)exp(j2•'fT)•(f )* I exp(jvz0) 12 

Xexp( -- jwz). (17c) 

In conclusion, when considering the different expressions 
for the Fourier transforms of the time-reversed pressure 
fields in (14d), (15e), (16b) and (17e) corresponding to 
the four eases above, we can make the following conclu- 
sions. 

(1) In the frequency domainsall the expressions con- 
rain the same term exp(j2zrfT)ck(f )*, thus in the time 
domain, the time-reversed pressure field varies linearly (in 
the frame of the linear system theory) with respect to •b( T 
--t), and not with respect to &(t). 2'5 

(2) Except for ease IV, the reconstruction of the prop- 
agating components of the time-reversed pressure field de- 
pends neither on the baffle conditions (rigid, soft or free- 
space), nor on the position z 0 of the time-reversal mirror. 

(3) The only observable difference between the three 
baffle conditions (cases I, II, and III) is the evanescent 
components of the time-reversed field; since these compo- 
nents decrease exponentially with z, it is foreseeable that 
this difference tends to be insignificant when z o is great 
enough compared to the wavelength •.=c/f. 

III. PARTICULAR CASES 

This section considers some particular cases for which 
closed form solutions are available for the time-reversed 

pressure field. 
More specifically, we will consider case III introduced 

in the two previous sections, i.e., corresponding to the free- 
space Green's function. We assume that the mirror is large 
enough such that the correction term (integration over • ) 
in (Sb) is negligible, and the convolution terms containing 
O(f,,,ffi in (14c) and (15b) can be ignored. These as- 
sumptions are supposed to be valid in the frequency range 
of the excitation function •(t). Under such conditions, 
(16b) is valid and can be re-written, with v inserted, as 
follows: 

j exp(j2•rfT)•(f )* 
•t•)(f x,f ,•',f )= 

X exp ( -- j2wz df2/c 2 -- f2 r) 

• •)(f/c--fr), (18a) 

where {D(--. ) is the Heaviside step function. In (18a), the 
time-reversed pressure field only depends on fr and will 
subsequently be written as •[ra}(fr, ',z,f ). It follows from 
the radial symmetry that the time-reversed pressure field in 
the space and frequency domain, •tr 3) (x,y,z,f), also has 
radial symmetry 13 and only depends on r = x/'•r•: it 
will subsequently be written as •r 3) (r,' •,f ). In this case, 
the forward and inverse spatial two-dimensional Fourier 
transforms are identical and reduce to a Hankel transform 

using the Bessel function of zeroth order: •aJ4 

•t•)(r,',z,f ) =2•r •tt•) (f•,-•z,f ) 

X f , Jo( 2•rrf r)d f •. (18b) 

We will now show that we can obtain a closed form solu- 

tion for the time-reversed pressure field •ra)(r, ' ,z,f ) in 
the two following cases: z=0 (the xy plane) and r=0 (the 
z axis). We first consider the case z=0; this corresponds to 
an observation point located in the xy plane, parallel to the 
mirror, that contains the source (see Fig. 1). Inserting 
(18a) into (18b) and setting z=0 yields 

exp(j2•'fT)•(f )* 
•r3) (r, ß •=0,f )- 

2j 

Xfo f/c fr f2 /x•T•r Jo( 211't'f r)d f r' 
(19a) 

The value of the integral over fr can be found in tables of 
integral transforms? • it reduces to the spherical Bessel 
function TM sin(2rrrf/c)/2•rr. It follows therefore that the 
time-reversed pressure field •r3)(r, ß ,z---0,f ) is given by 

1 sin(kr) exp(j2•rfT)•(f )*, •(•)(r,',z=O,f )=2j• kr 
(19b) 

where k is the wave number defined by k= 2•r/3.. Taking 
the inverse Fourier transform of (19b) over the frequency 
variable f, we obtain •3 

1 / r\ 1 /T--t+•). P? (r, ' ,z=O,t) =•--•r fi$[ T--t--• J --•rC• [ 
(19c) 

Comparing (19b) and (19c) to the two corresponding 
equations for the CTRC system in a homogeneous fiuid? 
we observe that they are pairwise identical, apart from an 
amplitude factor 1/2. The time-reversed pressure field be- 
haves as the superposition of two spherical waves, one con- 
verging to and one diverging from the source. Observed 
over time, the time-reversed pressure field exhibits two dif- 
ferent wave fronts, where the second is an exact replica of 
the first, except that it is time-shifted and multiplied by 
-1. As in the CTRC system, the two wave fronts can 
overlap near the origin (x=0, y=0, z=0), while they are 
completely separated in time far from the origin. At a 
given frequency, the maximum available resolution for the 
focusing process by time-reversal is Z/2. •'s'•*-:• 

We next consider the case r= 0; this corresponds to an 
observation point located on the z axis, perpendicular to 
the surface of the mirror, that contains the source (see Fig. 
1 ). Inserting (18a) into (18b) and setting r=0 yields 

•3) (r----0, ',z,f ) 

exp(j2•rfT)•(f )* ff/c f• -- 2j ao x/ f:/c•-- f r • 

X exp ( -- j2;rz •f2/c2-- f2 r)df,. (20a) 
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Making the change of integration variable defined by 
•2=f2/c2--fr2, we obtain, after some intermediate steps, 
the following expression: 

•t•3)(r=0, ' 1 ,z,f, =2_• exp(_j ___•)sin(kz/2) kz/2 

Xexp{i2rrfr)•(f )*. (20b) 
Taking the inverse Fourier transform of (20b) over the 
frequency variable f, we obtain •3 

(20c) 

Finally, comparing (19b), (19c), (20b) and (20c), we 
find some important differences. 

(1) Equation (20b) contains a phase term exp( --jtrz/ 
Z) varying with z; this term is due to the propagation of the 
pressure field along the z axis, which is perpendicular to 
the surface of the mirror. 

(2) Equation (19b) shows an amplitude variation 
sin(kr)/kr while (20b) shows a similar variation sin(kz/ 
2)/(kz/2); the minimum obtainable resolution size along 
the z axis is twice the size along the r-axis. 

{3) Equation {19c) contains two symmetrical wave 
fronts described geometrically by equations of the form 
t=C•=r/c, where C is a constant whose exact value is 
unimportant in this context. 

(4) Similarly, (20c) shows two different wave fronts, 
but they are not symmetrical; they are described geomet- 
rically by equations of the form t=C--z/c and t=C, re- 
spectively, and one of these two wave fronts has a geomet- 
rical shape that does not depend on z. 

It is important to note that these results are valid the- 
oretically only in the case of the free-space Green's func- 
tion. But as mentioned above, the only difference between 
the three baffle conditions (cases I, II, and III) lies in the 
reconstruction of the evanescent components of the time- 
reversed field. As a consequence, these results can be ex- 
tended to cases I and II introduced in the previous sections 
(i.e., for the hard and soft baffle conditions) if the evanes- 
cent components of the time-reversed pressure field are 
negligible. This condition is satisfied as long as the distance 
z0 between the source and the time-reversal mirror is large 
compared to the greatest wavelength corresponding to the 
frequency range of the excitation function 

In order to increase the performance of the focusing 
process on the source by time-reversal, we introduce a sec- 
ond time-reversal mirror, identical to the first one, located 

in the plane z=z I where z• < 0, and synchronized in time 
with the first mirror. The parameter T, introduced in the 
first section, is identical for the two mirrors and corre- 
sponds to that mirror furtherst away from the source. Con- 
tinuing with case III (the free-space Green's function), it 
must be noted that the time-reoersed pressure field does not 
depend on the position of the mirror. It follows therefore, 
and from elementary symmetry properties of the second 
mirror with respect to the first one, that the contribution of 
the second mirror to the total time-reversed pressure field 

at z is identical to the contribution of the first mirror at --z 

(symmetry around the source). Adding these two contri- 
butions, we immediately obtain from (16b) the following 
expression: 

j exp(j2rrfT)•(f )* 
•r 31 (f r, ' ,z,f ) = 

f:/XWZ-rr 

X cos (2rrz df2/c2--f2r)O(f/c--fr'}. 
(21a) 

The Hankel transform of this function with respect to fr 
can be found in tables of integral transforms, I• thus leading 
to 

1 sin(kx/-•-•) exp(j2rrfT)•(f)*. •3)(r,',z,f )=j2 c k •xf•-- • 
(2lb) 

Finally taking the inverse Fourier transform of (2lb) over 
the frequency variable f, we return to the space and time 
domain and obtain 13 

T--t-- T--t+7), 
(21c) 

with R = f•z 2. In this case, the total time-reversed 
pressure field resulting from two mirrors located around 
the source is spherically symmetric and corresponds ex- 
actly to the result obtained with the CTRC system. 2'• 
These different results can be interpreted as follows. 

(1) Using one or two mirrors, the radial dimension of 
the focal pattern is unchanged and identical to the result 
obtained with the CTRC system: since the mirror(s) is 
(are) assumed to be infinite (or very large), all the radial 
components of the initial pressure field are measured and 
effectively time-reversed. 

(2) Using only one mirror, the axial extent (z axis) of 
the focal pattern is twice that of the radial extent (r axis): 
this is due to the fact that the z direction is preferred by a 
single mirror configuration and the only components of the 
initial pressure field that propagate in direction of increas- 
ing values of z are measured and time-reversed. 

(3) In the two-mirror configuration, all the compo- 
nents of the initial pressure field are effectively measured 
and time-reversed, thus leading to results which are equiv- 
alent to those obtained with the CTRC system worle. ng in 
a homogeneous fluid. 

It follows, therefore, that the use of two time-reversal 
mirrors, located on each side of the source, increases the 
performance of the focusing process in comparison with a 
single mirror configuration. Such a setup behaves exactly 
like a closed surface mirror, and this conclusion is col'.erent 
with previous works, which have found that the recon- 
structed field does not depend on the geometrical shape of 
the cavity. 2'•'•8-22 

IV. NUMERICAL RESULTS 

In order to illustrate the effects of the different param- 
eters (radiation conditions on the surface of the mirror, 
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FIG. 2. Maximum temporal amplitude of the time-reversed pressure field 
as a function of x, y=z=0 ram, using a plane square mirror located at 
z0=20 mm. Curves (a), (b), (c), (d), and (e) correspond to a mirror of 
dimension a=10 mm, a=20 ram, a=40 mm, a=80 ram, and a=160 
mm, respectively. 

FIG. 3. Maximum temporal amplitude of the time-reversed pressure field 
as a function of z, x=y=0 ram, using a plane square mirror located at 
z0=20 mm. Curves (a), (b), (c), (d), and (e) correspond to a mirror of 
dimension a=20 mm, a=40 ram, a=80 mm, a=160 mm, and a=320 
mm, respectively. 

size of the mirror) on the time-reversed pressure field, 
equations (6e), (7f) and (9) have been evaluated numer- 
ically. The integrals are computed by use of classical Sim- 
pson's integration rule with a spatial sampling of the func- 
tion to integrate. 23'24 The computations are performed in 
the time domain, using 256 temporal points with a sam- 
pling frequency of 20 MHz. The sound speed c is 1500 
m/s. The excitation function &(t) is a sinusoidal burst with 
a Gaussian envelope function, explained in detail in the 
Appendix. The center frequency of &(t) is 3 MHz and its 
relative --6-dB bandwidth is 100%. The spatial sampling 
on the surface of the time-reversal mirror is defined by 
steps Ax=Ay=0,1 mm, corresponding to fifth the center 
wavelength in the frequency range of the excitation func- 
tion (in a first step, we have checked the validity of these 
values, taking into account the other parameters of the 
problem). In the following, we consider square time- 
reversal mirrors, with side length a, that are located such 
that the z axis intersects the center of the mirror. 

We first consider a square time-reversal mirror located 
at z0= 20 ram. The time-reversed pressure field is com- 
puted between x= --5 mm and x= +5 mm, y=z=0 ram. 
The boundary conditions on the surface of the mirror are 
those corresponding to case I introduced in the first and 
second sections of this paper. At each observation point, 
the maximum temporal amplitude is evaluated and repre- 
sented as a function of x. The results are shown in Fig. 2. 
Curves (a), (b), (c), (d), and (e) correspond to a mirror 
of dimension a=10 mm, a=20 mm, a=40 mm, a=80 
mm, and a= 160 mm, respectively. We observe a signifi- 
cant difference between curves (a) and (e), and how the 
focal pattern narrows as the size of the time-reversal mir- 
ror increases. Curves (d) and (e) are completely identical 
between --35 and 0 dB, while they exhibit insignificant 
difference in the range [--50 riB, --35 dB]. The plots also 
show how the focal pattern converges to the ideal focal 
pattern of an infinite time-reversal mirror. From Fig. 2, the 

width of the ideal focal pattern, measured at -10 dB, is 
about 0,38 mm. 

Similar to Fig. 2, the time-reversed pressure field is 
computed between z--5 mm and z= +5 mm, x=y=0 
mm, and the maximum temporal amplitude is represented 
as a function ofz in Fig. 3. The boundary conditions on the 
surface of the mirror are the same as above. Curves (a), 
(b), (c), (d), and (e) correspond to a mirror of dimension 
a--20 mm, a=40 mm, a=80 mm, a=160 mm, and 
a= 320 mm, respectively. The effect of the size of the mir- 
ror appears clearly, as the focal pattern narrows as the size 
of the mirror increases. As in Fig. 2, we see that the focal 
pattern converges to the ideal focal pattern of an infinite 
time-reversal mirror, but the convergence is not as rapid as 
in the previous case. From Fig. 3, the width of the ideal 
focal pattern, measured at --10 dB, is about 0,75 mm, 
which is twice the width obtained from Fig. 2. This is 

5.0- 

-2.5 

-5.0 

O.O 3.2 6.4 9.6 12.B l•rrm 

FIG. 4. Time-reversed pressure field using a mirror of dimension a = 5 
mm located at z 0 = 20 mm. The observation point varies from x = -- 5 mm 
to x= +5 mm, y=z=0 mm, and the amplitude of the field is converted 
to dB units in the range [--50 dB, 0 dB]. 
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FIG. 5. Time-reversed pressure field, same as Fig. 3, but using a mirror of 
dimension a=40 mm. 

consistent with the theoretical results obtained in the third 

section of this paper. 
A computation similar to the one above has been per- 

formed with a time-reversal mirror of smaller dimension, 
where a= 5 mm. The pressure field is now observed as a 

5.0- 

0.0 

x (mm) 

(a) 

-5. D 

0.0 3,2 8.4 0.8 

(u) 12.8 -5.0 

FIG. 6. Time-reversed pressure field using a mirror of dimension a= 160 
ram: (a) contour plot, (b) 3-D representation. 

FIG. 7. Time-reversed pressure field using a mirror of dimension a=20 
ram. The observation point varies from z=-5 mm to z=+5 mm, 
x=y=0 mm and the amplitude of the field is converted to dB units in the 
range [-50 dB, 0 dB]. 

function of time and space, where the spatial observation 
point varies from x= - 5 mm to x = + 5 mm, y=z=O min. 
The amplitude of the time-reversed pressure field is con- 
verted to dB units in the range [--50 dB, 0 dB] and the 
result obtained is represented in Fig. 4 as a contour plot. 
The pressure field shows a single wave front whose geo- 
metrical shape appears quadratic. This observation can be 
verified by consulting, for example, (6e) and considering 
the time-reversal mirror to be point-like. In (6e), the two 
vectors r and r s are given by their coordinates r(x,0,0) and 
rs(0,0,%), so the geometry of the resulting wave front is 
described by an equation of the form ct 
-- z 0. This equation corresponds to the spherical wave front 
generated by a point-like time-reversal mirror and we.. note 
here the quadratic shape visible in Fig. 4. 

In Fig. 5, the time-reversed pressure field is computed 
and represented in the same way as above, but the s!ize of 
the mirror is now a =40 mm. This plot shows two different 
wave fronts; geometrically, they can almost be represented 
by symmetrically straight lines. The slopes of these straight 
lines are about 4- 2.13 mm/ps. 

Finally, the time-reversed pressure field obtained with 
a mirror of dimension a= 160 mm is shown in Fig. 6(a). 
The two wave fronts observed in Fig. 5 are still present, but 
they are now, geometrically, completely linear and syrn- 
metric with slopes of about -4-1.56 mm/ps. This value 
very close to the theoretical slope that can be predicted 
according to the third part of this paper with an infinite 
time-reversal mirror: c=1.5 mm/ps. In Fig. 6(b), the 
pressure field is represented in 3-D; in this figure, we 
clearly see how the time-reversed pressure field is focused 
on the source; the two wave fronts and the overlap effect 
near the origin are also visible. 

Figures 7, 8, and 9 are equivalent to Figs. 4, 5, and 6, 
but they apply time-reversal mirrors of dimension it = 20 
mm, a= 80 mm, and a = 320 mm, respectively. The obser- 
vation point varies from z=--5 mm to z=q-5 mm, 
x=y=0 mm. In Fig. 7, we note that the pressure field 
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FIG. 8. Time-reversed pressure field using a mirror of dimension a= 80 
min. Otherwise, same conditions as Fig. 7. 

shows a single straight wave front with a slope of about 
- 1.56 mm/•ts. As above, we can consider (6e), for exam- 
ple, and assume that the time-reversal mirror is point-like. 
In this case, the two vectors r and r• are given by their 
coordinates r(0,0,z) and rs(0,0,z0), such that the resulting 
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FIG. 9. Time-reversed pressure field using a mirror of dimension a = 320 
mm: (a) contour plot, (b) 3-D representation. 

FIG. 10. Maximum amplitude of the time-reversed pressure field as a 
function of x, y=z=0 ram, using a plane square mirror of dimension 
a=20 mm located at z0=0.1 min. Curves (a), (b), and (c) correspond to 
cases I, II, and IV (radiation conditions) introduced in the first section, 
respectively. 

wave front is described by an equation of the form ct= C 
--z. This result is consistent with the approximate value of 
the slope of the straight wave front. As in Fig. 5, the time- 
reversed pressure field represented in Fig. 8 shows two 
straight wave fronts; their slopes are about -- 1.56 mm/tts 
and --7.14 mm/•s, respectively. Also in Fig. 9, two wave 
fronts are present. One of them has a slope of about - 1.56 
mm//•s while the second is almost vertical, thus resulting 
in an infinite slope and a wave front whose geometrical 
shape does not depend on z. Once again, these results are in 
perfect agreement with the theoretical predictions in the 
third part of this paper in the case of an infinite time- 
reversal mirror. 

Finally, we consider the influence of the radiation con- 
ditions on the surface of the mirror. If we compare the 
different expressions for the time-reversed pressure field 
given by (6e), (7f) and (9), we see that the temporal 
variation and the decrease of the amplitude of the time- 
reversed pressure field vary from one radiation condition to 
another, but the geometrical shapes of the wave fronts are 
unchanged. It is also foreseeable from these equations that 
the relative influence on the amplitude of the field de- 
creases as the distance z0 between the source and the mir- 
ror increases. This observation is consistent with the re- 
marks made in the second section and with other 

numerical results not presented in this paper. Similar to the 
previous computations, we consider a time-reversal mirror 
of dimension a=20 mm located very near the source: 
z 0 = 0.1 mm. The maximum temporal amplitude of the field 
is converted to dB units in the range [--50 dB, 0 dB] and 
the observation point varies from x=- 5 mm to x= + 5 
mm, y=z=0 mm. Figure 10 reveals the results with radi- 
ation conditions corresponding to cases I [curve (a)], II 
[curve (b)] and IV [curve (c)] introduced in the first sec- 
tion, respectively. From this figure, we make the following 
observations. 

(1) The three focal patterns are identical in the range 
[-- 15 riB, 0 dB]: the time-reversed pressure field is focused 
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on the source and the size of the focal zone does not 

change. 
(2) Except for some small oscillations, due to the finite 

spatial sampling frequency used to describe the surface of 
the mirror for the numerical computation of the field, we 
cannot observe any significant difference between curves 
(a) and (b): this is consistent with the theoretical predic- 
tions of the second section of this paper based on the fre- 
quency analysis of the time-reversed pressure field. 

(3) Comparing curve (c) with (a) and (b), we clearly 
see that the maximum amplitude of the time-reversed pres- 
sure field decreases more rapidly with the distance between 
the source and the observation point in cases I and II than 
in case IV: considering (6e), (7f) and (9), such an effect 
was also foreseeable. 

These results are very important since they prove that, 
except for the particular case of a time-reversal mirror 
located very near the source, there are no significant dif- 
ferences between the focal patterns obtained with the dif- 
ferent radiation conditions analyzed here. This result is 
particularly interesting in case IV that corresponds to the 
most realistic configuration from an experimental point of 
view, and we can see that the focal pattern is not altered in 
a drastic way. All these results allow the consideration of 
the plane time-reversal mirrors as an efficient alternative to 
closed cavities. 

v. CONCLUSION 

In this paper, we have presented a theoretical and nu- 
merical model for focusing of ultrasonic fields by means of 
the time-reversal technique using plane mirrors of finite 
dimension in a homogeneous fluid. Specifically, we have 
shown that the use of a single mirror of finite size, that does 
not surround the focal spot, reduces the focusing efficiency 
when compared to that which can be obtained theoretically 
with the CTRC system. The focusing efficiency also de- 
creases with the size of the time-reversal mirror as we mea- 

sure and time-reverse more information coming from the 
source using a greater mirror. The differences between the 
radiation conditions on the surface of the mirror are com- 

pletely negligible, except when the distance between the 
source and the mirror is small compared to the wave- 
length. In this case, the evanescent components of the pres- 
sure field are still present and observable, and have a sig- 
nificant contribution to the focal pattern generated by 
time-reversal. Although the time-reversal mirror, as pre- 
sented in this paper, is not completely realizable experi- 
mentally, this work proves the efficiency of this kind of 
mirrors as an alternative to the CTRC system. In particu- 
lar, the dimension of the mirror is an important parameter 
that can alter significantly the focusing efficiency if it is 
chosen too small. Based on the results presented in this 
paper, we are now working on experimental realizations of 
these kind of mirrors using 1-D and 2-D transducer arrays. 
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APPENDIX: MODEL FOR THE EXCITATION 
FUNCTION 

The excitation function •(t) is computed according to 
the following formula: 

d•(t) = sin (2•rf0t) exp [ -- (t-- T4/2) 2/o '2 ] 

X rect v• ( t-- T4/2 ), 
where 

(i) f0 is the central frequency of the signal: ./'0=3 
MHz; 

(ii) the relative bandwidth at --6 dB is B, such that 
the significant frequency range (it is assumed to be sym- 
metrical) is [( 1 -- B/2)fo,( 1 + B/2)fo]; once this param- 
eter is defined (B= 100%), it is easy to compute the pa- 
rameter a as 

oa=4 In 2/•fo2B2_•3.12X 10 -2 /,rs2; 

(iii) the function rectr•(t) insures that the excitation 
function 4•(t) is only defined on the finite time interwal 
[0, T•]; it is defined by 

1, if -T•/2<t< + T4,/2, rectr• (t)= 0, if t<-T4/2 or t>+T•/2; 
(iv) the width T• of the finite time support of the 

excitation function is chosen such that the gaussian mod- 
ulation of the amplitude is less than the maximum preci- 
sion available with numerical floating point values (10-:') 
outside this interval: 

T•=2a,filn 10_• 1.42 
This choice insures that the excitation function •(t) com- 
puted numerically does not show any discontinuity. 
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