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RADIATION RESEARCH 109, 184-189 (1987) 

On Fano's and O'Connor's Theorems 

BENGT E. BJARNGARD 

Joint Centerfor Radiation Therapy, Department of Radiation Therapy, 
Harvard Medical School, Boston, Massachusetts 02115 

BJARNGARD, B. E. On Fano's and O'Connor's Theorems. Radiat. Res. 109, 184-189 (1987). 

Fano's theorem states that the fluence of particles, emitted uniformly per unit mass, is con- 
stant throughout an infinite medium of uniform composition but varying density. O'Connor's 
scaling theorem says that the ratio of the fluence of secondary particles to that of primary parti- 
cles, caused by an external source irradiating a medium in a collimated beam, is the same in two 
uniform media of the same composition but different density, provided geometrical distances 
are scaled inversely to density. These two theorems are proved by one line of reasoning. The 
scaling theorem is given a more general formulation. ? 1987 Academic Press, Inc. 

INTRODUCTION 

Fano's theorem was originally formulated in 1954 (1): "In a medium of given com- 
position exposed to a uniform flux of primary radiation (such as X rays or neutrons) 
the flux of secondary radiation is also uniform and independent of the density of 
the medium as well as of the density variations from point to point." More specific 
conditions for the validity of the theorem were provided by Failla (2): "the interac- 
tions of the primary radiation and the secondary radiation with the atoms of the 
medium are both independent of its density." Harder (3) pointed out that the uni- 
form primary flux has to extend throughout a volume which is large compared to the 
range of the secondary particles. 

O'Connor's scaling theorem (4), on the other hand, compares two situations where 
media of uniform density but finite dimensions are irradiated by photons from an 
external source in a collimated beam. The media differ only in density. The geome- 
tries are such that all linear measures (source positions, beam edges) relate with a 
single scaling factor, inversely proportional to density. Two points are said to be "cor- 
responding" if they occupy the same relative position in the two systems, and the 
theorem states that the ratio of scattered to primary photon fluences is the same in 
corresponding points. 

Fano's theorem addresses a situation with what he called "flux balance," i.e., "radi- 
ation equilibrium" (5, 6), while O'Connor's theorem deals with conditions where 
such equilibrium does not exist. In spite of this difference, one may anticipate that 
the two theorems have a common foundation, since both derive from the fact that 
the probabilities of interaction between both the primary and the secondary radiation 
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and the atoms of the medium are independent of density. This is explored in 
this study. 

THEORETICAL 

General 

Consider a medium of varying density p in which particles of various energies E 
are emitted and move in different directions u. The particles interact with the medium 
with probabilities per unit mass that do not vary from point to point. (All particles 
do not have to be of the same kind. We may for instance consider photons and elec- 
trons. In the following we will omit this aspect. The generalization follows easily.) We 
divide the particles into groups, characterized by energy and direction, and single out 
for the initial discussion those belonging to the energy interval (E, E + AE) and the 
directional interval (u, u + Au). 

We will first demonstrate that the fluence t1(E, u) of this particular group of particles 
is uniform if its mass-source function S(E, u), i.e., the number of particles emitted 
per unit mass, is constant. When these particles undergo interactions, they contribute 
to the mass-source functions for particles of other energies and directions. If 4^(E, u) 
is uniform, these mass-source functions for subsequent generations of particles are 
also uniform, since the interaction probabilities per unit mass do not depend on posi- 
tion r. Hence, if the initial (primary) particle has a uniform mass-source function or 
fluence, so do all subsequently generated particle groups. 

This approach differs from Fano's proof only in minor details, primarily that Fano 
considered isotropic fluences and source functions (1). However, to derive O'Con- 
nor's theorem with the same formalism, we start with an expression that describes 
particle radiance, i.e., the fluence A = ,I(E, u) of paricles of energy (E, E + AE) 
coming in toward the point of observation from a given solid angle AQ (Al = Au) in 
the direction Q = -u. 

The probability that such a particle can travel a distance R without undergoing 
such an interaction that it loses energy and/or changes direction sufficiently to leave 
this group (E, E + AE), (u, u + Au) is 

exp[- k(E)p(r)dr]. (1) 

Here k, the probability, per unit mass per unit area, of the interaction does not de- 
pend on the density and hence not on the position r. This expression, Eq. (1), is 
justified if AE and Au are small enough. 

Using Eq. (1) the fluence A of particles of energy (E, E + AE) and direction (u, u 
+ Au) at a point can then be written 

= JS(R)p(R)exp[-f kp(r)dr]}dR. (2) 

The notation has been simplified in that it is not shown that k is a function of and 
that A1 and S are functions of E and u. 
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Fano's Theorem 

If the number of particles emitted per unit mass is constant and does not depend 
on position, i.e., S(R) = S, Eq. (2) becomes 

= S {p(R)exp[-J kp(r)dr]}dR. (3) 

This can be written as 

f' Jd- [exp- kp(r)dr]dR = 

if frOkp(r)dr = oo, which is fulfilled in an infinite medium, independently of how p(R) 
varies. Hence, if S does not depend on R, neither does 4, and A is the same as in a 
medium of uniform density with the same mass-source function. IfS or ~4 is constant 
for an original (primary) group of particles, so are these functions for all subsequent 
generations of particles. This proves Fano's theorem. Since Eq. (4) is formulated for 
the fluence differentiated in energy and direction, it follows that the energy spectrum 
and the directional distribution do not vary from point to point either. 

In the particular case of isotropic source-function we can integrate over all direc- 
tions with the same conclusion, which is how Fano formulated the theorem (1). 

O'Connor's Theorem 

O'Connor's theorem compares two situations with media of uniform densities, p 
and p'. The source functions are no longer constant but are S(R) and S'(R'), respec- 
tively. Using Eq. (2), the fluences r4 and 4' of particles of energy (E, E + AE) and 
direction (u, u + Au) in the two geometries are 

A = J S(R) p(R)exp[- kp(r)dr]dR (5a) 
Jo o 

4' = S'(R') p'(R')exp[- k'p'(r')dr']dR'. (5b) 

It is obvious that 
4' = 4 if k'p'(r')dr' = kp(r)dr 

and 
S'(R')p'(R')dR' = S(R)p(R)dR. 

These conditions are met if 

k' = k (6a) 

S'(R') = S(R) (6b) 

RIR' = r/r'= p'(R)/p(R). (6c) 

Since 4 and 4' contribute to the source functions for particles of lower energies 
and/or different directions, it follows that if = ^' for the original (primary) particles 
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this is also true for subsequent generations of particles. Hence the energy spectra, the 
directional distributions, and the total fluences are equal in corresponding points, 
defined by Eq. (6c), if k'(E, u) = k(E, u) and if Eq. (6b) is satisfied for the primary 
particles. 

For collimated beams, the situation that O'Connor addressed (4), S(R) = 0 for 
R > Rm(1), where Rm is the field edge in the direction G. Equation (5a) can then be 
written 

= =f {S(R)p(R)exp[- kp(r)dr]}dR (7) 

The corresponding expression can be written for i'. In the two systems ,' = i1 if 
Rm/Rm = p'/p as a special case of Eq. (6c). As before, if this is fulfilled for the primary 
particles, it is true for subsequent generations of particles of any energy E and direc- 
tion u. 

In its original and usual formulation (4), O'Connor's theorem addresses the ratio 
of scattered and primary photon fluences. The derivation above is somewhat more 
restrictive in that conditions were defined for 1 = /' and expressed as Eqs. (6a)-(6c). 
If conditions for {/l/' = constant are sought instead, it easily can be shown that it is 
sufficient that the quantities in Eqs. (6a)-(6c) are proportional rather than equal. 

O'Connor's theorem is usually restricted to the comparison of two media of uni- 
form densities and the same atomic composition. In this case, k = k' as required by 
Eq. (6a) if the probabilities of the interactions are independent of density. There may, 
however, be other situations when k = k' even when the compositions are different. 
One such case (Compton scattering of photons) is briefly discussed below. 

DISCUSSION 

Equations (5a) and (5b) with the conditions Eqs. (6a)-(6c) are more general than 
O'Connor's formulation in that the two media do not have to be of uniform density 
and the sources do not have to be external point sources. The fluences in two corre- 
sponding points remain the same if the mass-source functions S(R) = S'(R) and 
the ratio of densities in any pair of corresponding points is constant and inversely 
proportional to the scaling factor for the linear distances. The "external source" that 
O'Connor discussed can be thought of as internal and located in a portion of the 
volume of vanishingly low density. It is then obvious that for the fluences to remain 
the same, the source-to-surface distance must scale as other linear dimension (Eq. 6c) 
and the total source emission I must scale as I'/I = (p/p')2. This is the way Spencer 
formulated the scaling theorem (7). 

One may note that Eq. (5a) can be written, by integration-in-parts, 

= S(oo ) d exp[-o kp(r)dr] dR 

= S() {d k-lexp[-f kp(r)dr]}dR. (8) 
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This formulation expresses the need for a "gradient correction factor" when consider- 
ing the fluence in a situation which does not satisfy the conditions for Fano's theorem. 
The "gradient correction factor" was introduced in a recent protocol for the determi- 
nation of absorbed dose from high-energy photon and electron beams (8). This proto- 
col separates the "replacement correction factor" into a "gradient correction factor" 
and an "electron fluence correction factor." Equation (8) shows that this separation 
is somewhat artificial (9) and that the electron fluence changes only when gradients 
are present in the primary field, i.e., when dS/dR + O. This minor point does not, 
however, detract from the value of this protocol (8). 

Both theorems require that the probabilities for particle interactions per unit mass 
(k) are independent of density. For electrons, k is the mass-stopping power and the 
polarization effect introduces a density dependence for electrons of high energies, as 
pointed out, e.g., by Roesch (5) and recently examined by O'Connor (10). With this 
exception, Fano's theorem and the scaling theorem are applicable to photons, to neu- 
trons, and to electrons and other charged particles. 

Under certain conditions it is possible to relax the requirement of uniform compo- 
sition (Fano's theorem) or the same composition (O'Connor's theorem). For in- 
stance, for photons of such energies that Compton scattering dominates the interac- 
tion, one may apply the scaling theorem, provided the density p in Eq. (6c) is replaced 
by the electron density. This was utilized by Pruitt and Loevinger (11) when discuss- 
ing the scaling of measurement of 60Co -radiation doses in different media. 

CONCLUSION 

Fano's theorem and O'Connor's scaling theorem can be derived using the same 
approach. The latter relation can be given a more general formulation. A particularly 
interesting situation occurs when comparing two systems of uniform and the same 
composition but varying density, for which a linear scaling can be found such that in 
any two corresponding points in the two geometries the ratio of densities is constant, 
while the mass-source functions of primary particles are equal. The fluences of parti- 
cles are then the same in corresponding points and so are their energy spectra and 
directional distributions, if the interaction probabilities are independent of density. 
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