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The Time-Dependent Force and Radiation Impedance on a 
Piston in a Rigid Infinite Planar Baffle* 

General Dynamics/Electric Boat Division, Groton, Connecticut 06340 

An approach is presented to compute the time-dependent force acting on a piston in a rigid infinite planar 
baffle as a result of the specified velocity of the piston. The approach to computing the force is applicable 
to both sinusoidal and nonsinusoidal velocity pulses and is valid for all piston shapes. The approach, which 
is based on a Green's-function solution to the time-dependent boundary value problem, utilizes a trans- 
formation of coordinates to simplify the evaluation of the double surface integrals. An impulse response 
function is defined such that the time-dependent force can be obtained by differentiating the convolution 
of the impulse response and piston velocity time functions. A closed-form expression for the impulse response 
of a circular piston is derived and discussed. Numerical results for the impulse response and the forces on 
large square pistons resulting from sinusoidal piston velocities are then presented and discussed to compare 
the transient and steady-state behavior of the forces. Finally, an approach is presented to compute the 
radiation impedance as a function of normalized frequency from the impulse response data, and the approach 
is used to obtain the normalized radiation resistance and reactance for square pistons. 

INTRODUCTION 

The area of acoustic transient phenomena has under- 
gone considerable recent investigation. Previous investi- 
gators have considered several transient problems of 
interest and have obtained solutions to the appropriate 
boundary value problems consisting of the time-depen- 
dent wave equation with initial and boundary value 
conditions. Among these problems of interest, the transi- 
ent acoustic loading on a baffled circular piston •,•' and 
on a baffled strip a have been investigated using Laplace 
and Fourier transform techniques. In addition, the study 
of transient acoustic pressures generated by impulsively 
accelerated three-dimensional bodies has recently been 
investigated 4 along with the energy exchange between 
the near- and farfield. 5 In a still more recent article, 
Freedman investigated the time-dependent sound field 
from radiators in large rigid planar baffles ø and also 
published a tutorial paper on the transient fields of 
acoustic radiators. 7 

This paper presents an extension of an approach 
developed in an earlier paper a to computing time-depen- 
dent acoustic interaction forces among pistons in a 
planar array. The present paper is concerned with the 
transient and steady-state acoustic loading on a baffled 
piston of any shape. An approach is now presented to 
compute the time-dependent force acting on a piston in 

a planar baffle as a result of the time-dependent 
velocity of the piston. Unlike the earlier works, the 
present approach is based on the use of the Green's- 
function solution to the time-dependent boundary value 
problem for an impulsive piston motion. The solution 
to the time-dependent boundary value problem is then 
utilized to obtain the steady-state radiation impedance 
of the piston, and the results are then compared to those 
of earlier investigators. ø 

I. THEORY 

In this section the development of an approach to 
compute the time-dependent acoustic force on a piston 
as a result of the time-dependent velocity of the piston 
is presented. The development is based on results pre- 
sented in an earlier papera; however, for the sake of 
completeness, a detailed development of the approach 
from basic considerations is now presented. 

Initially consider the problem of determining the 
pressure versus time at a spatial point in the half- 
space xa>_0 resulting from a specified velocity of the 
piston in Fig. 1. The baffle is considered to be an infinite 
planar rigid baffle, i.e., the normal velocity is zero, and 
the problem is formulated as a classical boundary value 
problem in the velocity potential, •(x,t), where x de- 
notes the spatial point of interest in the half-space. 
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L(R) 

Fro. 1. Geometrical variables used to compute h(x,t). 

From the velocity potential, the pressure p(x,t) and 
the velocity v(x,t) are obtained using the following 
equations' 

0(x,t) 
p(x,t) =o• (1) 

Ot 
and 

v(x,t) = - Vq0(x,t), (2) 

where o is the density of the medium. The mathematical 
specification of the boundary value problem yields the 
following system of equations' 

1 02q0 

c • Ot • 
.... WqO=0, x in B, (3) 

and 

.... v(x,t) x on e', t>0, 
Oxa 

,t,(x,t) 
t•O 

o 

ot t=0 

=0, (4) 

where B is the half-space xa>O, •r' is the xa=0 plane, 
and x is a point in B and e'. It is noted v(x,t)=0 for x 
not on e, the piston area of the piston. 

The solution of the preceding system of equations is 
easily obtained using a Green's-function development. 
The solution for the velocity potential may then be ex- 
pressed as a function of the source coordinates as 
follows: 

rk(x,t)=fotdtof• dS V(Xo,to)g(x,t[Xo,to), (5) 

where g(x,tlxo,to ) is the time-dependent Green's func- 
tion for the problem and v(x,t) is the specified velocity 
of the piston. Using the method of images, the well- 
known Green's function TM for the problem is 

(t-to- Ix- xo 
g(x,tlxo,to)= . (6) 

2lx-x01 

Substituting Eq. 6 into Eq. 5, qO(x,t) may then be ex- 
pressed as 

f0 i qO(x,t) = dtov(to) .dS, (7) 
2lx-x0l 

where the piston is assumed to be rigid, i.e., v(x,t)-v(t). 
Equation 7 may then be expressed as 

q0(x,t) = V(to)h(x, t--to)alto, (8) 

where 

to- Ix- xo h(x,t--to)= .dS. (9) 
2lx-x01 

It is noted that Eq. 8 is a familiar convolution integral 
and may be expressed as 

qO(x,t) = v(t).h(x, t), (10) 

where. denotes the convolution of the indicated time 
functions. 

A simple expression for h(x,t) may be obtained by 
evaluating the surface integral indicated in Eq. 9. Con- 
sider the piston and geometrical variables shown in Fig. 
1. The piston which is located in the xa= 0 plane may be 
any shape and the spatial point of interest is indicated 
by x in the figure. Locating a spherical coordinate sys- 
tem at the spatial point of interest, the transformation 

R-Ix-x01 

is noted, where R may be considered as the radius of a 
sphere centered at x. Also indicated in the figure is the 
arc length of intersection L(R) of the piston with the 
surface of a sphere of radius R centered at x. The angle 
O(R) indicated in the figure is defined by points on the 
arc length of intersection L(R) and the normal to the 
xs= 0 plane passing through the spatial point of interest. 
It is further noted O(R) is a constant for all points on 
L(R); however, both O(R) and L(R) vary as R varies. 

To simplify the evaluation of h(x,t) the transforma- 
tion is applied to Eq. 9. Since a relationship exists 
between the incremental surface area /xS in the xa=0 
plane and R, the surface integral may be simplified. In 
Fig. 1, fid is shown as the width of the incremental sur- 
face element in the xa=0 plane resulting from the two 
radii, R--«/XR and R+«/XR. From geometric considera- 
tions fid may be expressed as 

Ad • AR/sinO (R). (11) 
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Since the incremental surface area/xS is equal to 

•=L(R)ad, (12) 

then, utilizing Eq. 11, AS may be expressed as 

AS= L (R) /XR/sinO(R). (! 3) 

Taking the limit as fir • 0 in Eq. 13 and utilizing the 
coordinate transformation, then h(x,t) may be expressed 
as 

h(x,/)=f0 • ii(t--R/c).L(R)dR. (14) 2rR sin0(R) 

Making the substitution, r- R/c, 

f0 = 
2rr sinO(cr) 

Now, using the sifting property of the 15 function, Eq. 
15 reduces to 

h(x,t) = L(ct)/2rt sinO(ct). (16) 

For the piston shown in Fig. 1, the time-dependent 
[orce acting on the piston is simply written 

f(l) = • p(x,t)dS. (17) 
Alternatively, f(t) may be expressed as 

f(t) =o-- ck(x,t)dS. 
dt 

(18) 

Now, using the results of Eq. 10, f(t) may be expressed 
as 

f(t) =o• h(x,t).v(t)dS. (19) 
Since v(t) is independent of a, f(t) may be expressed as 

d 

f (t) = pS[h * (t),vi(t) 3, (20) 
where h*(t) is defined as 

h*(t) = f, h(x,t)dS. (21) 
By performing the indicated differentiation, the time- 
dependent force may also be expressed in the following 
forms: 

f(t) =o h*(O)v(t)+ /•*(t--r)v(r)dr (22) 
or 

(23) 

To investigate the time-dependent force acting on the 
piston as a result of the piston velocity, the impulse 
response h*(t) is required. A simple expression for h*(t) 
is now presented. Substituting the closed-form expres- 
sion for h(x,t) shown in Eq. 16 into Eq. 9, the following 
expression is obtained' 

h*(t) = f, 2rt sinO(x,ct) 
(24) 

For points on the piston area O(x,ct)=90ø; thus 
sinO(x,ct)= 1. The impulse response function h*(t) can 
then be simply expressed as 

h*(t) -• L(x,ct)dS, (25) 
2rt 

where the 1It variation is independent of the surface 
integral. In general, a closed-form expression of h*(t) for 
a specified piston shape cannot be obtained. 

An approach to evaluate the normalized mutual 
impedance coefficients from the impulse response data 
h*(t) is now presented. The approach utilizes a numeri- 
cal evaluation of the Fourier transform of h*(t). The 
Fourier transform of a function g(t) is now defined as 
follows: 

G(joo) =F{g(t) } = g(t)e-Jø'tdt, (26) 

where an upper-case letter denotes the transform. Thus, 
the inverse transform is defined as 

g(t) =•fr G(Jøø)e+Jøøtdøø' (27) 

From Eq. 20 the following equation is easily obtained: 

F (joo) = p(joo)tt* (joo) V (joo). (28) 

The radiation impedance of a rigid piston is commonly 
defined as follows: 

(29) 

where it is noted that the force, F (jc0), is the force acting 
on the piston and is thus identical to the force in Eq. 28. 
From Eqs. 28 and 29 the radiation impedance may then 
be expressed as follows: 

Z• (joo) = pjooIl* (joo). (30) 

The evaluation of ZR(joo) is a simple task once tt*(joo) 
is known. To compute tt*(joo) we make use of the 
relationship' 

H* (it0) = F { h* (t) }. (3 !) 

It is noted that h*(t) is a time-limited function; i.e., the 
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X3 

RADIUS = a 

Xi 

Fro. 2. Circular piston in an infinite rigid planar baffle. 

time duration of the function is finite. Now h* (t) can be 
approximated as a sum of appropriately weighted 
impulse response functions and then expressed as 
follows' 

iv 

h*(t)• • {h*(nT)T}•(t--nT), (32) 
n--•-O 

where T is the sampling interval. Substituting Eq. 32 
into Eq. 26, the following approximation for tt*(jw) is 
obtained- 

iv 

H*(jw)• • {Th*(nT)}e-J ,-o•. (33) 
n•O 

be written as follows' 

and 

iv 

R(kW)•mkW • h*iv(nT) sin(nmkW) 

X(kW)•mkW • h*iv(nT) cos(nmkW), 
n--•-O 

(37) 

where NT is equivalent to the time duration of h*(t) 
and h*iv(nT)=h(nT)/cA. 

II. THE CIRCULAR PISTON 

The time-dependent force on a circular piston as 
shown in Fig. 2 vibrating in an infinite rigid baffle is now 
investigated. A derivation of a simple analytic expres- 
sion for the impulse response h*(t), defined as a surface 
integral in Eq. 25, is presented. As a result of the circu- 
lar symmetry of the radiation from the circular piston, 
the surface integral representation of h*(t) in Eq. 25 
may now be simplified to obtain 

h*(t) = h(r,ct)2rr dr. (38) 

An analytic expression for h(x,t) for a circular piston 
is developed in Appendix A, and for points on the surface 
of the piston the expression for h(x,t) reduces to 

Since h*(t) is a time-limited function, the number of 
samples can be selected to yield a specified accuracy at 
the frequency of interest. Now ZR(jw) may be expressed 
as 

ZR(ioo)•p(iw) • {h*(nT)T}e -•'"ø•. (34) 
n:O 

Since Z•(jw) may also be written as 

Z•(jw)=pcA {R(jw)+jX(joo)}, (35) 

the normalized radiation resistance and reactance may 
then be written as 

and 

•oT iv 

R(joo)=-- • h*(nT) sin(n•T) 
cA n=O 

cot iv 

X(joo)= • h*(nT) cos(ncoT). 
cA 

(36) 

Now the sample period T may also be expressed as a 
fraction of the travel time across the piston width, i.e., 
T=mW/c, where 0<m<<l. Then both the normalized 
resistance and reactance can be expressed as a function 
of the k W of the piston, where k =w/c is the wavenum- 
ber. The resistance and reactance functions may then 

h(r,ct)=c, (ct<a--r), 

c /(ct)•'q-r2-a2.) =--COS'-I[ • , (a--r<ct<a+r), 
r \ 2rct 

=0, (aq-r<ct). (39) 

Figure 3 shows a pictorial representation of h(r,t) as a 
function of r and ct. It is noted that the surface h(r,ct) 
may be used to obtain the behavior of h(r,ct) easily for 
fixed ct and r variable, or vice versa. From Eq. 39 and 
Fig. 3 it is thus easily seen that h* (t) may be expressed 

h(r,t ) 
•.o/ 

o/c 2 o/c 

! 

/ 

,/ 

Fro. 3. The surface h(r,ct) for a circular piston. 

844 Volume 49 Number 3 (Part 2) 1971 



FORCE AND RADIATION IMPEDANCE ON A PISTON 

as follows' 

(4O) 

where at t-0 it is noted that h*(O)-•ra2c. 
To evaluate h*(t) in Eq. 40, a somewhat indirect 

route is followed. Differentiating h*(t) with care to in- 
clude the endpoint contributions of the integrals,/•*(t) 
may be expressed as 

fa a ½ =2,r - 

{ --ren t- [- (½t)2+ a •-] } rdr 
x . 

Utilizing the transformation u=r •, (t) may be ex- 
pressed as 

f( ag 19 /•* (t)=2r -- 
a-½t) ' 'lrt 

{ 
X ß {-u•+2[(½t)•+aqu-['(ct)•-a•-]} • (42) 

Equation 42 can now be readily evaluated using stan- 
dard integral tables to obtain the expression 

/•* (t)= --c'[- (2a)'- (ct)'-]ltt (2a--ct), (43) 

where tt(2a-ct) is the familiar Heaviside function, i.e., 

tt(2a--ct) = 1, 2a> ct, 
(44) 

=0, 2a•ct. 

To obtain h* (t) from/•* (t), Eq. 43 must be integrated, 
i.e., 

t a*(t) = (4s) 

Performing the indicated integration and noting the 
initial value of h*(t), h*(O)=ra•c, then h*(t) may be 
expressed as 

2{ h*(t)=(c•ra•)- cos -•- 
71' 

(46) 

1.0 

NORMALIZgD TIM[[ 

Fro. 4. The normalized impulse response of a circular piston. 

Normalizing the impulse response by the piston area 
times the velocity of propagation in the medium, a 
normalized impulse response can be defined as follows' 

2{ h*•(t) =- cos -• 

(47) 

The force on the piston can thus be obtained from 

d 

f (t) =(pcA )--I-h* •r(t) *v(t) -I, (48) 
dt 

where ocA is the plane-wave resistance of the piston. 
In an earlier paper, Miles • solved for the indicial im- 

pedance of a circular piston, i.e., the normalized time- 
dependent force required to produce a unit step change 
in the piston velocity, using both Laplace transforms 
and integral properties of Bessel functions. It is noted 
that h*•v(t) as defined in Eq. 47 is identical to the 
indicial impedance of a circular piston derived by Miles, 
and thus the impulse response approach represents an 
alternative formulation and solution to the problem. In 
addition, Miles has also shown that the time-dependent 
force resulting from a specified piston velocity may be 
expressed as the derivative of a convolution integral in 
agreement with Eq. 48. 

In a more recent paper, Mangulis • utilized a Fourier- 
transform approach to compute the time-dependent 
force on a circular piston assuming the velocity is zero 
for t<0 and sinusoidal for t>_0. Unlike the work by 
Mangulis, the impulse-response approach is readily 
applicable to compute the time-dependent force result- 
ing from a piston velocity of any bandwidth or spectral 
content. Also, in contrast to the results of the impulse- 
response approach, where the force may be expressed as 
a convolution or derivative of a convolution integral, 
Mangulis expresses the force as a product of a time- 
dependent radiation impedance and the piston velocity. 

To conclude the discussion of the circular piston, Fig. 
4 presents a curve of the normalized impulse response, 
h*•v(t), where the time scale is normalized by the travel 
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o_ ø 1.5 

0 t;:::=._. I 
0.5 I.O 1.5 

NORMALIZED TIME [ t/(w/c):] 

Fro. 5. The normalized impulse response of a square piston. 

time across the piston radius. Several interesting obser- 
vations concerning the time-dependent force resulting 
from a piston velocity can be obtained from the figure. 
Since the length of the impulse response is noted to be 
equal to the maximum travel time across the piston, 
the force resulting from a sinusoidal piston velocity 
reaches steady state after turn-on in a time correspond- 
ing to the maximum travel across the piston. Another 
point of interest is the initial impedance or force pre- 
sented to the piston after turn-on. As a result of the step 
discontinuity in h*•v(t) at t=0, Eq. 22 may be utilized 
to show the initial impedance is the plane-wave resist- 
ance and the force and velocity are related by 

f (t+) = pea v(t+), (49) 

where t+ refers to the turn-on time. This result has also 
been previously obtained by Junger and Thompson n 
using the initial value theorem of Laplace transform 
theory. 

III. THE SQUARE PISTON 

Unlike the circular piston, a closed-form expression 
for the impulse response of a square piston cannot be 

,o[ 

0.5 

0 

-0.5 

,.; 
(• t, RADIANS x I0 • 

Fro. 6. Normalized reaction force for W/X = 1.0. 

ic 

0.5 

o 

0.,5 

-1.0 

•.o 
(•t, RADIANS x I01 

Fro. 7. Normalized reaction force for W/X =3.0. 

easily obtained. A direct numerical evaluation of the 
surface integral in Eq. 35 was thus required to obtain 
h*(t) for square pistons. The results of numerically 
evaluating the surface integral for the normalized im- 
pulse response, h*•v(t), are shown in Fig. 5. The integral 
was approximated using a finite sum of terms corre- 
sponding to weighted values of the integral evaluated 
at the midpoints of a square grid over the piston area. 
It is noted that the grid was required only over a quarter 
of the piston area as a result of symmetry. 

Similar observations to those made for the circular 

piston can also be readily noted for the square piston. 
Again the time duration of the impulse response corre- 
sponds to the maximum travel time across the piston, 
i.e., the time required for a wave to transverse the piston 
diagonal. The normalized impulse response for the 

ø"-"•o• RESI STANCE 
ø•o•.o•Jø/ 

o 

0 SWENSON 8• JOHNSON DATA 
7.0 

T IMPULSE RESPONSE DATA 

o / 

• 5.13 
u. REACT/•ICE 

•_ 4.C 

• :51:: 

2C 

o o o 
1.0 

i I I i i 

o ,.o ..o & ' & 7.0 8.0 

kW, RADIANS x I0 ø 

Fro. 8. Selœ-radiation resistance and reacmnce of a square 
piston, 
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square piston also has a step discontinuity at turn-on 
which leads to a purely resistive loading at turn-on 
equal to the plane-wave impedance of the piston. From 
the equations for the impulse response, it is easily noted 
that the preceding observations are valid for all piston 
sizes and shapes. 

The time-dependent force acting on a square piston 
of width W is now investigated for sinusoidal piston 
velocities of different frequency turned on at time zero. 
Similar to steady-state analyses, the force may be con- 
veniently normalized by the plane-wave resistance of 
the piston. In addition, the forces can also be investi- 
gated for different W/X ratios, where X is the acoustic 
wavelength in the medium, thus extending the useful- 
ness of the numerical results. 

Initially, the time-dependent forces on small pistons, 
where W/X<<I, are discussed. From results presented 
earlier, the time duration of h*•v(t) is thus considerably 
less than a period of the driving frequency. It can be 
easily seen from a graphical evaluation of the convolu- 
tion of h*•v(t) with the piston velocity that the time 
duration of the transient portion of the force is identical 
to the time duration of h*•v(t). Since the radiation 
impedance of the square piston is, for the most part, 
mass reactance at small W/X as shown in Fig. 6, the 
initial peak values of the steady-state force would thus 
occur at approximately a quarter of a cycle after turn- 
on. Thus, for cases where W/X<<I the peak value of the 
transient force is smaller than the initial peak value of 
the force which is equivalent to the steady-state value 
obtained from the radiation impedance. It can be easily 
seen that as the time duration of h*(t) approaches a 
quarter of a cycle of the drive frequency, i.e., V2W --• lX, 
the peak transient force approaches the corresponding 
steady-state value for the piston. For pistons of any 
W/X, the normalized force can be computed by evaluat- 
ing the convolution integral as indicated in Eq. 48 for 
a sinusoidal piston velocity. The velocity is zero at 
turn-on, and the normalized force is simply the convolu- 
tion of the impulse response shown in Fig. 5 and the 
piston acceleration. Figure 6 presents the normalized 
force resulting from a sinusoidal piston velocity for a 
piston where W/X= 1.0, and Fig. 7 presents a similar 
curve for the case where W/X-3.0. The forces were 
computed for a time period equivalent to the time dura- 
tion of h•v(t) plus a half-period of the driving frequency. 
Therefore, the peak value occurring within the last 
half-cycle of each figure is the peak value of the steady- 
state force. • 

The results in Figs. 6 and 7 illustrate an interesting 
point to be noted. Although the time duration of the 
transient exceeds the time period of the drive frequency, 
there is little peak-amplitude change during the tran- 
sient, and the peak amplitude agrees well with the 
steady-state value. We can thus conclude that the 
transient loading of the square piston is quite similar to 
the steady-state loading on the piston, i.e., the plane- 

wave resistance, and thus excessive transient overshoots 
do not occur for large pistons. Since the normalized 
frequency-dependent radiation impedance for the 
square and equivalent circular piston are quite similar, 1•' 
the normalized force on the square and circular pistons 
would also be expected to be quite similar for identical 
velocities; the observations for the square-piston case 
are thus applicable to the circular piston. 

Although the total force on a large piston does not 
exhibit any sizable overshoot characteristics during 
the transient, the pressure and local force at points on 
the piston can and do exhibit large transient overshoots 
above the corresponding steady-state value. This prob- 
lem is easily studied by substituting h(x,t) for h*(t) in 
the convolution relationships where x is the point of 
interest; it is discussed in a later paper. The lack of 
overshoot of the transient portions of the total force is, 
of course, the result of the surface averaging process. 

Although the main emphasis in the present paper has 
been the investigation of time-dependent phenomena, 
an approach was also presented to obtain the radiation 
impedance of a piston from the impulse response h*•v(t). 
Since h*•v(t) for a square piston is shown in Fig. 5, the 
normalized piston resistance and reactance functions 
can be obtained by utilizing the relationships in Eq. 37. 

The results of evaluating the square piston resistance 
and reactance functions are shown in Fig. 8, along with 
the results of an earlier solution by Swenson and 
Johnson? A comparison of the two solutions for the 
piston resistance and reactance functions shows both 
approaches to be in excellent agreement for small kW. 

Although the impulse-response approach is in error 
at the higher kW values, these errors can be reduced by 
improving the approximations leading to Eq. 37. The 
errors in the resistance and reactance can thus be re- 
duced at the higher kW value by decreasing the sample 
period T with a corresponding increase in N. Since 
h*•v(t) shown in Fig. 5 for a square piston resulted from 
the numerical evaluation of a surface integral, it is also 
evident that the numerical errors in the resistance and 
reactance are thus dependent on the accuracy of the 
surface integration. The accuracy of the resistance and 
reactance is thus dependent on both the sampling inter- 
vals used in the spatial and time integrations, unless 
h*•v(t) is known exactly as in the case of the circular 
piston. 

* A portion of this paper formed part of the author's doctoral 
thesis at Pennsylvania State University, December 1969. 

1 j. W. Miles, "Transient Loading of a Baffled Piston," J. 
Acoust. Soc. Amer. 25, 200-203 (1953). 

•' V. Mangulis, "The Time-Dependent Force on a Sound Radia- 
tor Immediately Following Switch-On," Acustica 17, 223-227 
(1966). 

a j. W. Miles, "Transient Loading of a Baffled Strip," J. Acoust. 
Soc. Amer. 25, 204-205 (1953). 

4 M. C. Junger and W. C. Thompson, "Oscillatory Acoustic 
Transients Radiated by Impulsively Accelerated Bodies," J. 
Acoust. Soc. Amer. 39, 978-986 (1965). 

The Journal of the Acoustical Society of America 847 



P. R. STEPANISHEN 

5 M. C. Junger, "Energy Exchange between Incompressible 
Near and Acoustic Far Field for Transient Sources," J. Acoust. 
Soc. Amer. 40, 1025-1030 (1966). 

6 A. Freedman, "Sound Field of Plane or Gently Curved Plane 
Radiators," J. Acoust. Soc. Amer. 48, 221-227 (1970). 

7 A. Freedman, "Transient Fields of Acoustic Vibrators," J. 
Acoust. Soc. Amer. 48, 135-138 (1970). 

8 p. R. Stepanishen, "An Approach to Compute Time-Depen- 
dent Interaction Forces and Mutual Radiation Impedances 
between Pistons in a Rigid Infinite Planar Baffle," J. Acoust. Soc. 
Amer. 49, 283-292 (1970). 

9 G. W. Swenson, Jr., and W. E. Johnson, "Radiation Impedance 
of a Rigid Square Piston in an Infinite Baffle," J. Acoust. Soc. 
Amer. 24, 84 (1952). 

10 p.M. Morse and K. U. Ingard, "Theoretical Acoustics" 
(McGraw-Hill, New York, 1968). 

n M. C. Junger and W. Thompson, Jr., "Fresnel-Zone and 
Plane Wave Impedances on Very Large Pistons," J. Acoust. Soc. 
Amer. 38, 1059-1060 (1965). 

13 A. Sauter, Jr., and W. W. Soroka, "Sound Transmission 
through Rectangular Slots of Finite Depth between Reverberant 
Rooms," J. Acoust. Soc. Amer. 47, 5-11 (1970). 

Appendix A. Evaluation of h(x,t) for a Circular Piston 

The object of the present Appendix is to evaluate 
h(x,ct) for a circular piston from the more general 
expression 

h(x,t) = L(ct)/2•rt sinO(ct). (A1) 

As a result of the circular symmetry, the transformation 
to circular coordinates shown in Fig. 2 is utilized and 
we can now study h(r,z,ct). To evaluate h(r,z,ct), an ex- 
pression for L(ct) which is implicitly a function of the 
field point (r,z) is required. Initially, the case where 
r>a is considered. From Fig. A-l(a) and the use of a 
little geometry, is it easily seen that 

L (r,z,ct) = L (r,O,ct). (A2) 

For the case of z-O, the evaluation of the arc length 
of intersection reduces to the two-dimensional problem 
shown in Fig. A-l(b). It is easily seen from the figure 
that 

L (r,O,ct) = 2r • cos-l(d/rl), (A3) 

where d is determined by the intersection of the edge 
of the piston with a circle of radius r • centered at r on 

o d r •-• X2 
Xi 

b 

Fro. A-1. Geometrical variables used to compute h(r,z,ct) for 
r>a. 

the Xl axis. From the equation for the circle of radius r 1 
centered at r and the equation of the circle describing 
the piston, it can then be shown that 

d= r-- [r2q-a 2-- (r•)2]/2r. (A4) 

From Fig. A-1 it can be seen that r • may be expressed as 

(AS) 
and 

r •- R sin0(R). (A6) 

Noting the space-time equivalence R-ct, r • may also 
be expressed in the forms 

r•=[(ct)•z•« (A7) 
and 

r•=ct sinO(ct). (A8) 

Substituting Eq. A7 into Eq. A4, d can then be ex- 
pressed as 

d= [-(ct)•--z•q-r2--a•/2r. (A9) 

Substituting Eqs. A9 and A8 into Eq. A3 and noting 
Eq. A2: 

(ct)•--z•4-r•--a2l . L(r,z,ct) = 2ct sinO(ct) cos -• { 2r-•-••-z•_• / (A10) 
Finally from Eqs. A10 and A1, it is readily seen that 
for the case a<r 

for 

where 

and 

h(r,z,t) =_c cos_•((ct)•'-z•nt-r•-•• 
Rl<ct<R2, 

R1• E27-2 I- (r-- a)•]« 

R2--= [z•+ (r+ a)•] «. 

The limits are, of course, the result of L(ct)=O for 
R•>ct and R2<ct as seen from Fig. A-1. 

The case of a>r may be handled in a similar manner. 
Unlike the case a<r, the projection of the point onto 
the z-0 plane is now on the piston area. From Fig. A-2 
the arc length of intersection is now the circumference 
of a circle of radius Rsin[0 (R)] for z < R< [z•+ (a-- r)2]•. 
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Once again accounting for the space-time equivalence, 
Eq. A! can be easily evaluated to obtain 

h(r,z,ct) =0, z> ct, 

=c, z<ct<[-z•+(a--r)•-I«. (A12) 

From Fig. A-2 it can be seen that for ct> [-z•+ (a--r)•-] • 
the arc length of intersection is no longer a circle. 
Following the same approach used to obtain h(r,z,ct) 
for r> a, it is easily shown that 

c { (ct)•--z•+r•--a • h(r,z,ct) =- cos -• l (A13) r 2-•r(--•t) =----•5; J' 
when 

[-z•+ (a--r)•-] 1 < ct < [-z•q - (ant-r)•-II. 

Combining Eqs. A12 and A13, h(r,z,ct) for r < a may be 
expressed as follows' 

h(r,z,ct) =0, ct<z, 

=c, z<ct<R•, 

c {(ct)•--z•+r•--a •} =-cøs-• •-r-[-(ct'-•--•5; ' 
=0, R•.<½t, (A14) 

where R• and R2 were defined earlier. 

Fro. A-2. Geometrical variables used to compute h(r,z,½t) for 
r<a. 

Equations All and A14 express h(r,z,ct) for the two 
cases a < r and r < a. It is noted that the expressions are 
valid for all field points, and no restrictions on piston 
size have been assumed. It is also noted that the equa- 
tions are in agreement with results of an earlier analysis 
by Oberhettinger A• using integral transforms andproper- 
ties of Bessel functions. 

x• F. Oberhettinger, "On Transient Solutions of the Baffled 
Piston Problem," J. Res. Nat. Bur. Stand. 65B, 1-6 (1961). 
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