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Transient Radiation from Pistons in an Infinite Planar Baffle * 

PETER R. STEPANISHEN 

General Dynamics/Electric Boat Division, Groton, Connecticut 06340 

An approach is presented to compute the near- and farfield transient radiation resulting from a specified 
velocity motion of a piston or array of pistons in a rigid infinite baffle. The approach, which is based on a 
Green's function development, utilizes a transformation of coordinates to simplify the evaluation of the 
resultant surface integrals. A simple expression is developed for an impulse response function, which is the 
time-dependent velocity potential at a spatial point resulting from an impulse velocity of a piston of any 
shape. The time-dependent velocity potential and pressure for any piston velocity motion may then be 
computed by a convolution of the piston velocity with the appropriate impulse response. The response of 
an array may be computed using superposition. Several examples illustrating the usefulness of the approach 
are presented. The farfield time-dependent radiation from a rectangular piston is discussed for both con- 
tinuous and pulsed velocity conditions. For a pulsed velocity of time duration T it is shown that the pressure 
at several of the field points can consist of two separate pulses of the same duration, when T is less than the 
travel time across the piston. 

INTRODUCTION 

The area of acoustic transient radiation phenomena 
has undergone considerable recent investigation. Pre- 
vious investigators have considered several transient 
problems of interest and have obtained solutions to the 
appropriate boundary value problems consisting of the 
time-dependent wave equation with initial and bound- 
ary value conditions. Among these problems of interest, 
the transient acoustic loading on a baffled piston •,2 
and on a baffled strip a have been investigated using 
Laplace and Fourier transform techniques. In addition, 
the study of transient acoustic pressures generated by 
impulsively accelerated three-dimensional bodies has 
recently been investigated. 4 

The present paper studies the transient acoustic 
radiation resulting from the velocity of a piston 
mounted in a rigid infinite planar baffle. An excellent 
review of contributions in the area of transient radia- 

tion from baffled pistons has been published by Hanish. 5 
A more recent survey of the literature of acoustic 
transients has been published by Freedman? In addi- 
tion, a recent paper by Freedman 7 discusses the tran- 
sient radiation from radiators on plane or gently curved 
surfaces. 

Although the necessary integral solutions to compute 
the transient acoustic pressures resulting from the 

velocities of baffled pistons have been known 5 for a 
considerable period of time, little effort has been devoted 
to obtaining numerical results. A simple approach to 
evaluate the Green's function integral solution for the 
time-dependent pressure resulting from the time- 
dependent velocity of a baffled piston is thus developed 
in the present paper and is used to obtain several 
numerical results. The development of the approach is 
based on the Green's function solution to the time- 

dependent boundary value problem. An impulse re- 
sponse function is defined which is the time-dependent 
velocity potential at a spatial point resulting from an 
impulsive velocity motion of a piston. The impulse 
response function, which is expressed as a surface 
integral, is then evaluated using a transformation from 
the source to observer coordinates. As a result of the 

transformation, a simple expression is obtained for the 
impulse response as a function of the spatial coordinates 
and time for any shape of piston radiator. 

The approach is applicable to study the transient 
and steady-state radiation characteristics of a piston 
radiator or an array of pistons vibrating with a specified 
spatial and temporal velocity distribution where the 
piston velocities may be either sinusoidal or nonsinu- 
soidal pulsed motions. Also, the approach is applicable 
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Fro. 1. A two-dimensional multielement planar array. 

to the analysis of pressures at spatial points in the near- 
and farfield of the pistons. 

I. THEORY 

Consider the problem of determining the time- 
dependent pressure in the half-space xa_>0 resulting 
from the velocity of the piston as shown in Fig. 1. 
The piston is assumed to vibrate with a specified 
velocity which may be nonsinusoidal and/or pulsed, 
and the medium in the half-space is assumed to be 
isotropic with a constant velocity of propagation. In 
addition, the piston is assumed to be mounted in an 
infinite planar baffle, the xa=0 plane, whose normal 
velocity is zero. 

The problem of computing the pressure is readily 
formulated as a classical boundary value problem in 
terms of the velocity potential, •(x,t). Using a Green's 
function approach, the following equation 8 is easily 
obtained' 

•(x,t) - dto dSv(xo,to)g(x, tlxo, to), (1) 

where v(x,t) is the piston velocity, • is the piston area, 
and g(x,t[ x0,t0) is the Green's function for the problem. 
It is noted that the field is specified to be initially undis- 
turbed, i.e., the initial conditions are zero. The pressure, 
p (x,t), may then be obtained from the velocity potential 
using the following relationship' 

p (x,t) = p (0/Ot)•k (x,t), (2) 

where p is the density of the medium. 
The integral solution for •(x,t) presented in Eq. 1 

can be further simplified when the piston velocity is 
uniform over the piston face. Assuming a uniform piston 
velocity v(t), Eq. 1 may then be expressed as 

•(x,t) = dtov(to) dXg(x,tl x0,t0). (3) 

Since the Green's function for the problem is well 
known, i.e., 

I (t-to- Ix- x0 
g(x, tlxo,to)=-- , (4) 

2r ]x-x0[ 

where c is the velocity of propagation within the 
medium, 8 then •(x,t) can be expressed as 

fo • f• •5(t-to- Ix-x0]/c) •(x,t) = dtov(to) dS . (5) 
2lx-x01 

If Eq. 5 is first integrated over time, Rayleigh's for- 
mula 9 for the time-dependent velocity potential is 
easily obtained' 

(t-Ix-x01/) =-- dS . (6) •(x,t) 2r Ix-x01 
Alternately, Eq. 5 may be evaluated by first performing 
the indicated spatial integration. The velocity potential 
may then be expressed as a convolution integral 

• (x,t)=v(t), h (x,t), (7) 

where the asterisk is used to denote the convolution 

operation and h(x,t) is defined as 

(t-Ix-x01/c) h(x,t) = dS . (8) 
2lx-x01 

The function h (x,t) is henceforth defined as the impulse 
response fi•nction of the piston to the spatial point of 
interest, since it is easily seen from Eq. 7 that h(x,t) 
is the time-dependent velocity potential at x resulting 
from an impulsive velocity of the piston. 

A knowledge of the impulse response function enables 
the pressure to be determined upon specification of the 
piston velocity. The study of the impulse response func- 
tion is now performed by means of a coordinate trans- 
formation to simplify the computation of the surface 
integral expressed in Eq. 8. 

Consider the piston and geometrical variables shown 
in Fig. 2(a). The piston which is located in the xa=0 
plane may be any shape and the spatial point of interest 
is indicated by x in the figure. Locating a spherical 
coordinate system at the spatial point of interest, the 
transformation 

R = I x-- x01 (9) 

is noted where R may be considered as the radius of a 
sphere centered at x. Also indicated in the figure is the 
arc length of intersection, L(R), of the piston with the 
surface of a sphere of radius R centered at x. The 
angle O(R) indicated in the figure is defined by points 
on the arc length of intersection, L(R), and the normal 
to the xa=0 plane passing through the spatial point of 
interest. It is further noted that O(R) is a constant for all 
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Fro. 2. Geometrical variables used in computing the impulse 
response. 

points on L(R); however, both O(R) and L(R) vary 
as R varies. 

To simplify the evaluation of h(x,t), the transforma- 
tion in Eq. 9 is applied to Eq. 8. Since a relationship 
exists between the incremental surface area AS in the 

x3=0 plane and R, the surface integral may be simpli- 
fied. In Fig. 2(b), Ad is shown as the width of the in- 
cremental surface element in the x3=0 plane resulting 
from the two radii, R--AR/2 and R+AR/2. From 
g.eometric considerations, Ad may be expressed as 

Ad= AR/sinO(R). (10) 

Since the incremental surface area AS is equal to 

then, utilizing Eq. 10, AS may be expressed as 

aS = L (R) aR/sinO (R) . ( • • ) 

Taking the limit as AR-, 0 in Eq. 11 and utilizing 
the transformation in Eq. 9, Eq. 8 may be expressed as 

h(x,t) ___f0 • i•(t--R/c) L(R)dR. (12) 2rR sin0(R) 

Making the substitution, r= R/c, 

fo •ø •(t--r)L(cr) h(x,t) = --dr. (13) 
2rr sinO(cr) 

Now, using the sifting property of the/5 function, Eq. 
13 reduces to 

h (x,t) = L (ct)/2rt sin0 (ct). (14) 

From the geometry of Fig. 2, we note h(x,t) is a 
time-limited function. The function is zero until the 

time corresponding to the minimum radius, Rrnin, of 
the sphere which intersects the piston and also zero 
after the time corresponding to the maximum radius, 
Rmax, of intersection. The time duration of h(x,t) is, 
therefore, (Rmax--Rmin)/C, which is larger for spatial 
points in the xa=0 plane and smaller for points ap- 
proaching the xa axis in the farfield of the piston. It is 
easily seen that the time duration of h(x,t) is thus a 
function of the piston dimensions and location of the 
spatial point of interest, and that the maximum time 
duration of h(x,t) to any point in the field is the maxi- 
mum propagation time across the face of the piston. 

The evaluation of h(x,t) has been reduced from 
evaluating the surface integral of Eq. 8 to evaluating 
the simple expression in Eq. 14. It is again noted that 
h(x,t) as expressed in Eq. 14 has been derived for a 
general spatial point with no approximation or dis- 
tinction being made between near- and farfield points 
and is thus valid for both near- and farfield studies. 

Section II illustrates the application of the technique 
to compute pressures at both near- and far-field spatial 
points. 

II. NUMERICAL EXAMPLES 

To illustrate the application of the impulse response 
approach to study the transient acoustic radiation from 
pistons, the radiation from a circular piston shown in 
Fig. 3 is initially discussed. Although Morse TM has pre- 
viously obtained a solution for the velocity potential 

X5 

i 

z 

• RADIUS -- o 
X• 

Fzo. 3. Circular piston in a planar baffle. 
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and pressure in the field resulting from an impulsive 
velocity of the piston, the solution is valid only in the 
farfield. Morse utilized a time domain approach which 
is quite similar to the impulse response approach being 
described here and may be obtained from the expression 
for the impulse response by specifying the arc lengths 
of intersections (see Eq. 14) to be straight lines. 

To solve for the transient radiation from a circular 

piston for both near- and farfield points, the curvature 
of the arc lengths of intersection as shown in Fig. 2 
must be accounted for. After a little geometrical 
manipulation, the impulse response h(x,t) may be 
evaluated for the two cases of a>r and a_<r using the 
geometry of Fig. 3. For the case a>r, 

h(x,t)=0, ct<z, 

= c, z < ct < R •, 

c {(ct)•'-z•'+r•'--a •' } (15) =- cos -• ....... R' < ct < R, 
•. 2r[-(ct) •.-z•.-]« ' 

=0, ct>R, 

where R'= [-z•'-+ - (a-r)2-] «, R= [-z2-+-a(-+-r)2-] «. It is noted 
that R' and R are the shortest and longest distances, 
respectively, from the observation point to the circum- 
ference of the piston. For the case a<r, we obtain 

h(x,t) =0, ct<R', 

c (ct)•'--z•'+r•'-a •' } =- cos -• ......... R' <ct<R, (16) 
•- 2r[(ct)•.-z•.-]« ' 

=0, ct>R, 

where R' and R are defined above. The expressions for 
h(x,t) are identical to earlier results published by 
Oberhettinger. n Oberhettinger's analysis of the problem 
was performed using integral transforms and is thus 

P(Zo,t) 

pc 

-pc 

t, SECONDS 

Fro. 4. On-axis pressure resulting from an impulsive velocity 
motion of a circular piston. 

øo 2.0 

05 ,.o ,5 
NORMALIZED DISTANCE x I0 • 

3'0 

Fro. 5. On-axis pressure magnitude for a circular piston of 
radius a- 4X. 

complementary to the impulse response analysis of the 
problem. 

The impulse response of the circular piston to an 
on-axis point is now discussed in more detail. Using 
Eq. 15, it is easily seen that h(x,t) is a delayed rectan- 
gular pulse with a time duration of [-(zo•'+a•')«-zo-]/c, 
where z0 is the distance of the spatial point above the 
piston. To obtain the on-axis pressure resulting from 
an impulse velocity motion, Eqs. 2 and 15 are used. 
The pressure versus time is shown in Fig. 4 and may be 
expressed as follows: 

(17) 

where •[-... • is the Dirac delta function. 
The pressure at an on-axis point is thus seen to con- 

sist of two Dirac delta or impulse functions of opposite 
strength equal to the characteristic impedance of the 
medium. The time delay of the initial impulse cor- 
responds to the propagation time from the center of the 
piston to the spatial point, and the time delay of the 
second impulse corresponds to the propagation time 
from the edge of the piston to the spatial point. 

Several interesting numerical results are easily ob- 
tained from Eq. 17. Initially, we consider the field 
point at z0-0 and a piston of infinite radius. From Eq. 
17 and the use of the sifting property of the Dirac 
delta function, it can be shown that the pressure and 
particle velocity at z0-0 are related by the familiar 
relationship 

p=pcv, (18) 

where v is the velocity of the x•-x•. plane. Since the 
vibration of the piston of infinite radius is equivalent 
to the vibration of an infinite plane, the particle velocity 
and pressure must be related by the familiar plane-wave 
relationship shown in Eq. 18. Although the case z0-0 
has been discussed, the case z0•0 could be easily ana- 
lyzed following a similar analysis. 
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FzG. 6. Normalized nearfield on-axis pressure 
at a minima. 

n- 
O 
Z 

Zo Zo + Tp 

Tp, PERIOD OF DRIVING FREQUENCY 

t, SECONDS 

The on-axis pressure resulting from the sinusoidal 
velocity of a piston of finite radius is now discussed. 
A transfer function G(zo,s) is now defined as follows' 

G (Zo,S) = œ {p (Zo,t) }, (19) 

where œ{...} denotes the Laplace transform of the 
indicated function in brackets and s is the transform 

complex variable. Since p(zo,t) is the pressure at z0 
resulting from an impulsive velocity of the piston, then 
G(zo,s) is the transfer function relating the on-axis 
pressure to a sinusoidal piston velocity. 

For the general case z0•0, it is easily shown that 
G(zo,s) may be expressed as 

-- (Zo2-+-a2)«s 
G(zo,s) = 2pc exp 

½ 

Xsinh [(zø2-+-a:)'•--zø.ls } . (20) ½ 

Studying G(zo,S) as a function of z0/X, the curve shown 
in Fig. 5 is obtained by evaluating Eq. 20 at a fixed 
frequency, where a-4X. The curve shows the nearfield 
oscillations of the normalized on-axis pressure magni- 
tude resulting from a sinusoidal piston velocity, i.e., 
I G(zo,s)l/pc, and illustrates the region of spherical 
spreading. Kinsler and Frey TM present an identical 

curve which was derived directly from the steady-state 
field equations for the case a=4X. 

Although the steady-state on-axis pressure has been 
obtained using the impulse response approach, the 
main emphasis in the present paper is the investigation 
of transient phenomena. Of particular interest is the 
time-dependent behavior of the pressure at the maxi- 
mum and minimum locations shown in Fig. 5. The 
velocity of the circular piston is thus initially specified 
to be a sinusoidal function turned on at t-0 and 

vibrating at a frequency such as a-4X. 
The time-dependent pressures at the on-axis field 

points are easily obtained using the impulse response 
approach. Figure 6 presents the normalized pressure, 
p(zo,t)/pc, at the minimum location z0/X= 7.5 shown in 
Fig. 5. The transient pressure exists for a single cycle, 
and the steady-state condition of zero pressure is then 
reached. The time-dependent pressure at the maximum 
location z0/X=5.0 is shown in Fig. 7. It is noted from 
Fig. 7 that the transient pressure exists for one and a 
half cycles and the peak transient pressure is less than 
the steady-state pressure of the pressure maxima. It 
is thus noted that the large transient pressures are 
associated with small steady-state pressures. These re- 
sults are in general agreement with%tudies conducted 
by Sherman TM on the transient pressures generated from 
arrays of circular pistons. 

Fro. 7. Normalized nearfield on-axis pressure 
at a maxima. 

2.0 ! 

z o 
c 

t,SECONDS 
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The minima and maxima of the on-axis pressure are 
easily explained in terms of the impulse response 
approach. The minima occur at spatial points where the 
time interval between the impulse functions shown in 
Fig. 4 is an integer number of periods of the driving 
frequency. For the pressure maxima, the time interval 
is an odd multiple of half-periods of the drive fre- 
quency. An alternate, but equivalent, explanation is 
that the maxima or minima occur where the difference 

in path length from the edge and center of the piston 
to the spatial point is an even or odd multiple of half- 
wavelengths. 

For the preceding cases the nearfield on-axis pressures 
were investigated for a velocity which was specified to 
be a sinusoidal function of infinite time duration after 

turn on. We now consider the case where the piston 
velocity is a specified pulse with a finite time duration 
after turn on, and we also discuss the pressure at points 
in the near- and farfield of the piston. Freedman, in an 
earlier paper, 7 has discussed the farfield radiated pres- 
sure for this case. It is again noted that the on-axis 
pressures are initially discussed, since several interesting 
transient phenomena occur at the on-axis field points. 

Since Eq. 17 expresses the on-axis pressure resulting 
from an impulsive piston velocity, the pressure from 
any specified piston velocity v(t) is simply the con- 
volution of v(t) with the indicated function in Eq. 17. 
Performing the convolution and noting the sifting 
property of the delta function, the pressure at z0 is 
easily expressed as follows' 

p(zo,t) v(t- 
, (21) 

where H[-... • is the familiar Heaviside function, i.e., 

/-/(t)= 1, t>0, 
=0, t<0. 

It is easily seen from Eq. 21 that the pressure is 
composed of an initial pulse and a delayed pulse, both 
with the same time history as the piston velocity. If 
the pulse duration of the piston velocity is less than the 
time delay between the pulses, two separate pressure 
pulses are observed at the spatial point. Apart from the 
change of sign of the second pulse, the time history of 
the pulses is identical to the piston pulse. If the time 
duration of the piston velocity is greater than the time 
delay between the pulses, only a single pressure pulse, 
which is the sum of the two overlapping pulses, is ob- 
served. The pressures in Figs. 6 and 7 are now easily 
noted to be special examples of the preceding case, 
where the delayed pulse of infinite time duration adds 
in phase or out of phase with the original sinusoidal 
function to obtain the pressure maxima or minima. 

The preceding discussion has been limited to a study 
of the pressure at on-axis points in the nearfield of the 
circular piston. To study the pressure at an arbitrary 
near- or farfield point, the general expression for the 
impulse response which is indicated in Eqs. 15 or 16 
must be substituted into Eq. 7 and the resultant 
velocity potential substituted into Eq. 2. The use of 
Eqs. 15 or 16 is dependent upon whether the r co- 
ordinate of the field point is less than or greater than 
the piston radius (see Fig. 3). A simple expression may 
now be derived relating the pressure and piston velocity 
by utilizing Eqs. 2 and 7 with the appropriate impulse 
response. Performing the indicated substitutions and 
differentiation, it is readily shown that the pressure 
may be evaluated from the fo!lowing expression: 

p(x,t) =t• h,(x, t-r)v(r)dr, (22) 

where/,(x,t) is the time derivative of the impulse re- 
sponse, and/,(x,t) may contain Dirac delta functions 
corresponding to discontinuities in h(x,t). 

Several properties of the radiated field from a circular 
piston can be deduced from Eq. 22. If h(x,t) exhibits 
discontinuities, Eq. 22 clearly indicates that the resul- 
tant pressure would contain components of pressure 
which are delayed and weighted replicas of the piston ve- 
locity. The discontinuities in h(x,t) would thus yield the 
"replica pulses" discussed in Freedman's work. 7 Since 
h(x,t) is, in general, a continuous function, the "replica 
pulses" would not be observed in the radiated field of a 
circular piston. It is, however, noted that for spatial 
points, where r<a, discontinuities in h(x,t) do occur, 
and replica pulses would thus result for short pulse 
durations as shown earlier for on-axis points. It is also 
noted that for points where r> a, infinite discontinuities 
of opposite sign occur at the beginning and end of 
/z(x,t), although h(x,t) is a continuous function. The 
occurrence of these discontinuities can be shown by 
differentiating Eq. 16. Morse 8 has also noted the infinite 
discontinuities in the farfield pressures resulting from 
an impulsive velocity of the circular piston, i.e.,/z(x,t). 
Unlike the on-axis points where Dirac delta functions in 
/z(x,t) (see Fig. 4) result in replica pulses, replica pulses 
will not occur for points where r>a, since/•(x,t) is a 
continuous function with infinite discontinuities at its 

endpoints. 
It can, however, be noted from Eq. 22 that the infinite 

discontinuities at the endpoints of ]•(x,t) yield large 
contributions to the field pressures. Unlike Freedman's 
results, * which assume that the discontinuities yield the 
only contribution to the pressure, the impulse response 
approach yields the exact time-dependent pressures. 
When the time duration of the piston velocity is small 
relative to the time duration of h(x,t), the present 
approach shows the pressures to be amplitude-distorted 
time-expanded versions of the piston velocity pulse. 
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Fzo. 8. Rectangulaœ piston in a planar baffle. 

Thus, unlike the replica pulses presented by Freedman, 7 
the pressures are distorted pulses of the original piston 
velocity where the amount of distortion is dependent 
on the piston velocity and the field point of interest. 

The near- and farfield radiation characteristics of a 

square or rectangular piston shown in Fig. 8 can also 
be determined using the impulse response approach. 
The application of the approach to study farfield pres- 
sures is now presented. For points where R>>W and 
R>>B, the impulse response in Eq. 14 can be simply 
evaluated using approximations resulting from the in- 
equalities. The arc lengths of intersection (see Fig. 2) 
required to compute h(x,t) are approximately straight 
lines. In addition, O(ct) (see Fig. 2) is approximately 
constant in value and the 1It variation in Eq. 14 can 
be approximated as 1/(R/c). The impulse response to 
a farfield point can then be simply computed and is 
shown in Fig. 9. 

Once again the steady-state radiation characteristics 
may be obtained from the impulse response. Transform- 
ing h(x,t) and using the pressure-velocity potential 
relation, the pressure transfer function may be ex- 
pressed as 

WB !sinhK(B/2c_) sin_a sinOs-]} G(x,s) 
2•'R [ (B/2c) sina sin0s 

{sinhK(W/2c) cosasinOs-]} (23) X (W/2c) cosa sin0s ' 
Substituting s= jco into the above equation, the classical 
steady-state result for the beam pattern is obtained. 

Several time-dependent pressures at spatial points in 
the farfield of the rectangular piston shown in Fig. 8 
are now presented. The points are specified to lie on a 
hemispherical surface of radius R, and the pressures are 
presented at several spatial points defined by the angles 
shown in Fig. 8. 

For all the pressures shown in the following figures 
the piston velocity was assumed to be a pulsed sinusoid 

D D_+T• 
•' c _D+T• _D+T• 

c c 

t, SECONDS 

Fro. 9. Farfield impulse response from a rectangular piston. 
A =Bc/2•-R cosa sin0; T• = (B/c) sina sin0; T2= (W/c) cosa sin0; 
Ta= (B sina-3-W cosa) sinO/c; and D equals minimum distance 
from x to the piston. 

with a time duration equal to three periods of the 
carrier frequency and the pressures are normalized to 
the peak on-axis pressure. The piston length, B, is also 
conveniently normalized by the carrier wavelength X, 
and was specified as B/X = 6.0. It is thus noted that the 
pulse duration of the piston velocity is equal to one-half 
the travel time over the piston length. 

The time-dependent pressure at a=90 ø and 0=4 ø 
resulting from the pulsed velocity is shown in Fig. 10. 
The transient portion of the pressure waveform consists 
of the first and last one-half cycle of data, and the re- 
maining pressure is the steady-state part of the pressure 
which may be obtained from Eq. 21. Figure 11 presents 
the time-dependent pressure at the spatial point de- 
fined by a=90 ø and 0= 14 ø. The transient portion of the 
waveform consists of the initial and last one and a half 
cycles of data. Although the velocity exists for only 
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Fro. 11. Normalized pressure at O= 14 ø. 

three periods of the carrier frequency, the pressure is 
noted to exist for 4.5 cycles of data. Figure 12 presents 
the pressure at 0=30 ø and a=90 ø. The steady-state 
pressure computed from Eq. 21 is zero; thus the 
entire time history of the pressure is a transient, and 
a steady-state condition is never reached. The time 
duration of the pressure is again noted to be larger than 
the time duration of the piston velocity. Figure 13 
presents the pressure at a=90 ø and 0--41.5 ø. The 
steady-state portion of the pressure is again zero; 
however, the pressure consists of two pressure-transient 
pulses separated by a zero pressure condition. 

The pressures that are shown in the figures indicate 
several interesting transient phenomena. These tran- 
sient effects become increasingly significant as the ratio 
of the pulselength to travel time over the piston de- 
creases. When the pulselength becomes less than the 
travel time across the piston, the field pressures may 
radically differ from the piston velocity as shown in the 
preceding figures. Also, under the same conditions the 
pressure at field points greater than a critical angle 
from the normal to the piston will consist of two sepa- 
rate pulses as indicated in Fig. 13. In all cases it is 
noted that, although the velocity input exists for only 
three cycles of the carrier frequency, the field pressure 
exists over a longer time duration which is the result 
of the propagation effect over the length of the piston. 
As 0-• 90 ø, the time duration of the pressure transient 
thus approaches nine periods of the carrier frequency. 

An additional point of interest is noted from the time 
integral of the pressure at each point. The integral of 
each pressure in Figs. 10-13 is zero and is thus in agree- 
ment with a general rule credited to Stokes by Rayleigh 9 
stating that the time integral of the pressure at a spatial 
point is zero for an outgoing wave disturbance. 

The preceding figures have shown that the farfield 
time-dependent pressures can differ considerably from 
the velocity of the piston. Although the farfield on-axis 
pressure is proportional to the piston acceleration, the 
off-axis pressures are related to the piston velocity by 
Eq. 2 and the convolution integral in Eq. 7. The pres- 
sure and piston velocity can also be directly related 
using the convolution integral expression in Eq.. 22. 
Utilizing the impulse response shown in Fig. 7, h(x,t) 
can be easily shown to consist of two Dirac delta func- 
tions of equal and opposite weight with different time 
delays at the spatial points of interest indicated in Figs. 
10-13. The delta functions are again the result of dis- 
continuities in ],(x,t) which are associated with the 
piston edges. These discontinuities yield two replica 
pulses of pressure in the field, and the pressures in 
Figs. 10-12 are easily explained in terms of the over- 
lapping pulses. In Fig. 13 the pulses do not overlap in 
time, and the two separate pulses, which appear to 
originate at the piston edges perpendicular to the plane 
of interest, are observed. 

Although the impulsejresponse approach has been 
used to obtain farfield pressures, again it is noted that 
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the approach is also valid for nearfield calculations. 
Unlike the circular piston, the impulse response to a 
general field point for a rectangular piston cannot, 
however, be evaluated in a simple closed form. To 
evaluate nearfield pressures it is, therefore, necessary to 
evaluate numerically h(x,t) at the spatial point of 
interest. The pressure can then be evaluated utilizing 
Eqs. 2 and 7. Since h (x,t) is again a continuous function 
for points not directly above or on the piston, the replica 
pulses will not be observed in the nearfield pressures. 
For points directly above or on the piston, the initial 
discontinuity in h(x,t) will, however, yield a single 
replica pulse contribution to the total pressure at the 
spatial point. 

III. CONCLUSIONS 

An approach has been developed and presented to 
compute both near- and farfield transient radiation 
from a piston or array of pistons mounted in an infinite 
planar rigid baffle. Although the general solution of the 
problem as a surface integral (see Eq. 3) has been well 
known, little if any effort has been expended in obtain- 
ing numerical results. The present paper sets forth a 
simple method of evaluating the surface integral and 
thus the time-dependent pressure resulting from the 
specified velocity of any bandwidth for a piston or 
array of pistons. 

It is noted that for certain piston shapes and field 
point locations, closed form solutions for the pressures 
can be obtained using the approach. A simple expres- 
sion was derived to compute the time-dependent 
pressure at any point in the medium resulting from the 
specified velocity of a circular piston, and the time- 
dependent characteristics of the radiated field were then 
discussed. In addition, the farfield pressures resulting 
from the pulsed velocity of a rectangular piston were 
presented and discussed. In either of the principal planes 

of the rectangular piston, the pressure at a spatial 
point was shown to consist of two pulses with a time 
history identical to that of the piston velocity. Several 
time-dependent pressures were presented illustrating 
transient pressure phenomena resulting from over-lap- 
ping of the pulses. Finally, it was shown that for a piston 
velocity with a time duration less than the travel time 
over the piston, the two separate pressure pulses can be 
observed in regions of the field. 

The approach that was developed in the present 
paper to compute time-dependent pressures formed the 
basis for the work that was presented in earlier pa- 
pers TM by the author. It is noted that the first paper 
was concerned with the development of an approach to 
compute time-dependent interaction forces among 
pistons in planar arrays. In the second paper an ap- 
proach was developed to compute the time-dependent 
force on a piston as a result of its specified velocity. 
The present paper is thus the third in a series of papers 
discussing transient acoustic phenomena related to 
pistons mounted in planar baffles. 

* A portion of this paper was presented at the 79th meeting of 
the Acoustical Society on 22 April 1970, at Atlantic City, New 
Jersey [-J. Acoust. Soc. Amer. 48, 101 (A) (1970)'] and also formed 
part of the author's doctoral thesis at Pennsylvania State Univ., 
December 1969. 
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