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Abstract: Photonic or phononic crystals and metamaterials, due to their very different typical
spatial scales—wavelength and deep subwavelength—and underlying physical mechanisms—Bragg
interferences or local resonances—, are often considered to be very different composite media. As
such, while the former are commonly used to manipulate and control waves at the scale of the unit
cell, i.e., wavelength, the latter are usually considered for their effective properties. Yet we have
shown in the last few years that under some approximations, metamaterials can be used as photonic
or phononic crystals, with the great advantage that they are much more compact. In this review,
we will concentrate on metamaterials made out of soda cans, that is, Helmholtz resonators of deep
subwavelength dimensions. We will first show that their properties can be understood, likewise
phononic crystals, as resulting from interferences only, through multiple scattering effects and Fano
interferences. Then, we will demonstrate that below the resonance frequency of its unit cell, a soda
can metamaterial supports a band of subwavelength varying modes, which can be excited coherently
using time reversal, in order to beat the diffraction limit from the far field. Above this frequency, the
metamaterial supports a band gap, which we will use to demonstrate cavities and waveguides, very
similar to those obtained in phononic crystals, albeit of deep subwavelength dimensions. We will
finally show that multiple scattering can be taken advantage of in these metamaterials, by correctly
structuring them. This allows to turn a metamaterial with a single negative effective property into a
negative index metamaterial, which refracts waves negatively, hence acting as a superlens.
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1. Introduction

It is well known in solid states physics that the periodicity of atoms composing crystals is
responsible for the existence of both conducting bands and band gaps for electrons. This property is
a direct consequence of the Bloch theorem [1,2] applied to the wavefunction of electrons. Similarly,
optical waves propagating in periodically stratified media are subject to the same theorem giving rise
to the existence of ranges of frequencies for which no propagation is allowed, so-called optical band
gaps. At an interface with free space, such a medium acts as a mirror for incoming waves, termed a
Bragg mirror [3]. Physically, this can be quite easily understood since at each interface between two
layers of different indices of refraction, part of the waves is transmitted and part of them is reflected.
The total wave field travelling forward is thus the summation of many multiply scattered waves,
that all interfere. Those interferences can be destructive when the optical path difference between
two multiply scattered waves correspond to a multiple of half a cycle. In these periodic media, this
Bragg condition typically occurs when the period of the medium scales with the optical wavelength.
As a consequence, Bragg mirrors are typically structured with a period corresponding to half the
operating wavelength.
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Analogously to crystals for electrons, this property is not limited to one dimensional periodic
problems and, in the late 80s of the past century, similar frequency bands prohibiting the propagation
of optical waves have been observed in 3D periodic media [4,5]: the name of photonic crystals was born.
As acoustic waves are subject to the same Helmholtz equation as optical ones, similar results were
demonstrated later on in this domain, in one dimension [6] and in higher dimensions [7]. Again, and
by analogy, these periodic composite media were named phononic crystals. Similarly to the applications
found in optics with the Bragg mirror, those photonic/phononic crystals are mostly used for their
ability to inhibit the propagation of waves at specific frequencies. Since they are governed only by
interferences, they have been proved to be ideal candidates for controlling the propagation of waves
at the scale of their unit cell. Indeed, local modifications of these media can be realized without
altering the properties of the whole medium, notably its ability to support band gaps, resulting in the
creation of cavities or waveguides [8]. Yet the lowest frequency exhibiting this property is typically
the frequency for which the wavelength corresponds to twice the medium periodicity. Therefore, any
application of those composite materials suffers from the fact that the medium typical period has to
scale with the operating wavelength, which can become very impractical when dealing with lower
frequency waves.

To circumvent this issue, in 2000 Pr. Ping Sheng proposed a new class of acoustic composite
media: a locally resonant sonic crystal [9]. This proposal echoes to preliminary works in the field
of electromagnetic waves [10,11] where the medium, even if periodic, exhibits a band gap at low
frequencies, meaning for operating wavelengths much bigger than the typical scale of the medium.
Those composite media owe their fascinating properties to their unit cell which resonantly interacts
with the incident wave field. This resonant effect is very specific to the object composing the medium
and is no longer linked to the typical distance between adjacent cells. Many efforts have been made
to diminish the size of those resonant inclusions in order to build media that are now described
with effective parameters. Indeed, because the spacing between resonators is small compared to
the wavelength, they all supposedly see the same incident field and their responses can henceforth
be averaged. The field of metamaterials was born and with it its typical terminology and viewpoint.
Notably, metamaterials are usually not studied using dispersion relations and band structures, but
rather using concepts of effective properties which can be negative, near-zero or very high [12]. For
example, the initial proposal of Ping Sheng [9], which is now considered as the first example of
an acoustic metamaterial, can be described in terms of a negative mass density. For this reason,
metamaterials are usually studied using homogenization procedures. A relatively large variety of
acoustic metamaterials have been proposed within the last 15 years [9,13–23].

In this article, we review recent results that we have obtained in the field of locally resonant
metamaterials. The latter are defined as composite media made out of unit cells that resonantly interact
with waves. In airborne acoustics, there is a typical object that fulfills the resonant condition on
which these metamaterials are based: the Helmholtz resonator [24]. Incidentally, many objects of
the everyday life are Helmholtz resonators, for instance bottles or glasses, and we have used in all
our experiments very well calibrated and widely available Helmholtz resonators: soda cans [25]. In
the first section of this article, we show that arranging several soda cans on a subwavelength scale
builds a propagating medium that typically behaves as a locally resonant metamaterial. Notably, the
propagation in this medium can be described by effective parameters, one of them being typical of
a resonant behavior. We show that it can equivalently be described by a polariton-like dispersion
relation that results from the coupling of a continuum of propagating waves and a local resonance.
We stress that the mechanism underlying the physics of this type of metamaterial is solely governed
by interferences, analogous to phononic crystals, and we make the analogy between the negative
effective property of the metamaterial and the so-called hybridization band gap in acoustics. In the
next two sections, we exploit this specific dispersion relation for applications in different frequency
ranges. Below the intrinsic resonance of one resonator, the wave propagation exhibits an effective
wavelength that is of the order of the spacing between two cans, meaning deeply subwavelength
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compared to the free space wavelength. We show that one can exploit this property in order to beat the
diffraction limit in air from the far field using time reversal. At higher frequency, the medium can be
described with a negative compressibility which overall results in an inhibited propagation of waves, a
phenomenon which we refer to as the hybridization band gap. The latter resulting from interferences
only, we show how one can exploit it in order to trap and guide sound waves on scales that are much
smaller than the wavelength in air, by introducing small defects in the structure. We underline that
these defects cannot be caught by the usual homogenization approaches which average the response
of the unit cells of a metamaterial over a wavelength. This last observation eventually leads us to
the last section of this article where we study the physics of a novel type of metamaterial, that is, a
metamaterial consisting of a single resonant unit cell, that has been slightly modified to impact directly
the metamaterial structure. This proves that it is possible to build a double negative metamaterial
just with one type of resonator that should expectedly only bring one negative effective property,
using a clever structuration of the metamaterial. This last result opens the era of metamaterial crystals,
thereby highlighting clearly the fact that metamaterials are similar to phononic crystals, even if the
typical spatial scales of the former are much smaller than those of the latter, and although they are
ruled by different physical mechanisms.

2. The Soda Can: A Resonant Building Block

2.1. Why the Soda Can?

Our research started in electromagnetics in the microwave range where we studied a wire
medium [26–28]. The latter consists of a subwavelength arrangement of identical conducting wires. It
is well known that each of these wires exhibits a resonance resulting from the stationary current in
the wire when the length of the wire is a multiple of half the freespace wavelength. Therefore, such
a wire can be seen from the top as a physically tiny object compared to the wavelength. Packing such
resonant wires on a small scale we end up on a composite medium that falls within the class of locally
resonant metamaterials.

To transpose this electromagnetic example to acoustic, the first idea was therefore to reproduce the
behavior of the half-wavelength-long conducting wire by using an open-ended half-wavelength-long
pipe [29,30]. Indeed, there is always a propagating mode in a rigid-walled pipe whatever its cross
section. Especially, at low frequency when the wavelength becomes large compared to the typical scale
of the cross section, the pipe behaves as a single mode waveguide. This propagating mode presents a
uniform profile of pressure along the cross section and propagates at the speed of sound. When cutting
the pipe with two open-ended terminations, the impedance mismatch at both extremities builds a
stationary resonant mode inside the pipe. The resonance frequency occurs when the frequency f = n c

2L
(where L is the pipe’s length and n an integer). Such a pipe is therefore the acoustic equivalent of the
conducting wire in our microwave experiment. We built the acoustic equivalent of the wire medium
and we unfortunately did not manage to reproduce the physics of the wire medium. This comes from
a strong difference between the two types of resonators: while the electromagnetic resonator can be
considered as almost lossless because copper is a good conductor, the acoustic resonance suffers from
severe damping. Indeed, the attenuation in the pipe originates from the viscous damping along the
walls by the sliding layer near the interface. The ratio between the damping volume, which is located
on a skin layer along the pipes walls, and the overall volume in the pipe increases while reducing the
cross-section of the pipe. As a consequence, a pipe with a small cross-section (remember that we want
to have a subwavelength resonator) is described by an attenuation length that can be much smaller
than the attenuation length in air [31].

After this first try, we had to look for another acoustic resonator that fulfills the requirements of
being small compared to the wavelength while presenting relatively low losses due to viscous damping.
This drove us to consider the case of the well known acoustic resonator introduced by Herman von
Helmholtz [24] more than one century ago. The latter consists of a rigid container embedding a volume
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V, terminated by an open-ended neck of length l and cross section S (Figure 1a). The resonant behavior
of such an object is due to the oscillation of the mass of the gaz column located in the neck, while
the cavity behaves as the restoring force of the harmonic oscillator. The resonant frequency of the
Helmholtz resonator therefore simply writes:

f =
c

2π

√
S

Vl
(1)

The resonance frequency can occur in the low frequency range where the operating wavelength
is much larger than the resonator dimension. In our case, we want a subwavelength unit cell so we
prefer to choose a relatively high volume V. We also know from the pipe’s experiment that most
of the damping effects occur in the small cross-section, so short neck’s length l is preferred. As a
consequence, keeping the resonance in the low frequency range imposes to decrease S. Then started
a real experimental strategy during which we tested dozens of mass-produced objects: glass bottles,
glasses of different geometries, Christmas baubles or even chemical flasks. . . We ended up on the use
of a 33 cL soda can as a Helmholtz resonator (Figure 1b) for which the neck’s length is indeed short
hence minimizing the viscous damping. Experimentally, we measure a resonance frequency of 420 Hz
(Figure 1c) meaning that the lateral dimension of the can (i.e., 6.6 cm) is roughly λ/12 at resonance.
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Figure 1. (a) A basic Helmholtz resonators with the important parameters; (b) The chosen experimental
resonator: A soda can; (c) Experimental measurment of the resonance frequency measured with
a microphone inside the can.

2.2. Band Structure of the Soda Can Medium

Now that we have our unit cell, we want to study the propagation of waves in a locally resonant
metamaterial based on it by moving from the single soda can to a medium made of several ones.
And since the resonance occurs in the low frequency range, namely in the large wavelength regime,
this medium in first approximation can be seen as a homogenous medium as sketched in Figure 2a.
This homogenization procedure which is the scope of most of the metamaterials research is the exact
analogue of dielectrics for light. Indeed, in this case the resonant unit cells are the atoms, which are
deep subwavelength resonators. They are excited by the incoming optical waves and their relaxation
participate to the total transmitted optical field. This gives rise to variations of the optical index
of refraction, which can present values larger or lower than that of vacuum. Stated otherwise, the
interaction of light with microscopic resonant scatterers creates at the macroscopic scale an effective
index of refraction. Our locally resonant metamaterial behaves just the same way: the interaction of
acoustic waves with the soda cans gives birth, at the macroscopic scale, to effective properties that are
linked to the resonant behavior of each of them. There is, however, a big difference between atoms in
dielectrics and the soda cans. While the former present an albedo that is close to zero, meaning that
their scattering cross-section is much smaller than their absorption cross-section, the latter present an
albedo close to unity [32]. In other words, while most of the incoming light on dielectrics is absorbed
by atoms through inelastic scattering, the soda can is able to re-radiates most of the stored energy at
resonance because we typically looked for the least lossy acoustic resonator.
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Nevertheless, the physics of dielectrics is very similar to that of locally resonant metamaterials.
We make the approximation that the metamaterial unit cells are not strongly coupled by any near field
interaction. This approximation is not valid for any unit cell, but in the present case it means that
the soda can’s walls are rigid enough to guarantee that the pressure field inside a given one does not
directly influence the pressure field on its nearest neighbors. Under this approximation, the interaction
of acoustic waves with the subwavelength resonators creates a polariton, just as light interacts with
atoms in a dielectric. Namely, there is an avoided crossing between the local resonance of the soda can
and the plane wave dispersion line, which gives rise to a binding branch of subwavelength modes
below the resonant frequency f0 of a single can, a band gap above it, and above this band gap an
anti-binding branch of supra-wavelength modes. We have recently interpreted this behavior in terms
of Fano interferences [33] between the continuum of plane waves propagating in the matrix and the
local resonance [34]. In the case of the soda cans medium, the dispersion relation is therefore obtained
by measuring the transmission coefficient in the far field through a single can. The latter necessarily
takes into account the resonant nature of the unit cell by exhibiting the Fano-like profile, and the
multiple scattering is taken into account by applying the Bloch theorem with respect to the periodicity
of the medium. The result of COMSOL multiphysics simulations applied to the lossless problem is
presented in Figure 2b.
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Figure 2. (a) The metamaterial made of soda cans can be seen as a homogeneous medium in the long
wavelength regime; (b) The dispersion relation obtained from the simulated transmission coefficient
through a unit cell exhibits the so-called polariton behavior resulting from the avoiding crossing of
the free space dispersion relation and the local resonance; (c) Description of the dispersion relation in
terms of a effective compressibility extracted from the simulations including losses.

A more common way of describing the physics of locally resonant metamaterials consists in
using the idea of effective properties. In acoustics, a given unit cell acts on macroscopic properties
which are typically the effective mass density ρeff and the effective compressibility χeff depending
on which type of excitation it is sensitive to [35]. For the soda can medium, the volume V behaves
as an extra compressive volume for the incident wave encountering it and it therefore locally affects
the effective compressibility seen by the incident pressure field. Applying the parameters retrieving
procedure from [36] to a simulation including losses of a can, the complex effective compressibility is
obtained (Figure 2c). The soda can creates below its resonance frequency a band of very high effective
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compressibility—equivalent to the branch of subwavelength modes in the polariton description—,
then a band of negative effective properties—the band gap—, and finally a band of low effective
property—the supra-wavelength modes branch.

3. Exploiting the First Propagating Band with High Bloch Wavenumbers for Subwavelength
Focusing from the Far Field

3.1. Subwavelength Focusing in the Context of Metamaterials

In the community of metamaterials, much attention has been paid in the past 10 years to using
the negative effective property band for wave focusing below the diffraction limit. Indeed, if one can
realize a metamaterial presenting two almost co-localized subwavelength unit cells which are resonant
at the same frequency and which act on both properties of the medium, one can obtain a metamaterial
that has both its effective properties negative. This results, as was pointed out more than 40 years
ago by Veselago [37], in a medium whose effective index is negative. John Pendry proposed in a
seminal paper in 2000 [38] that a slab of such a medium should behave as a perfect lens for imaging
and focusing purposes since it amplifies infinitely the evanescent waves coming from a source or
object, making them measurable in the far field with conventional optical components. This approach
has been shown to be largely hampered by losses of materials, especially for applications in optics
where materials are relatively dissipative.

Subwavelength control of acoustic waves has not been studied as much as in electromagnetic, but
there have been few proposals in order to realize super-resolution imaging based on canalization [39]
or hyperlens [40]. Concerning focusing under the diffraction limit, there have been propositions based
on the analogue of the optical “Bull’s eye” [41], or based on the use of negative index material [16].
Nevertheless, none of those proposals clearly demonstrated subwavelength control of the acoustic
waves below the wavelength scale. The only experimental proofs that clearly showed super-focusing
come from the use of an acoustic sink [42] which requires an active source at the focal point, or
a proposal which uses a phononic crystal where both the source and the image stand in the near field
of it [43].

While most groups were focused on the negative index metamaterial, we realized that the
high effective property band offered by the locally resonant metamaterial could be used for such
a purpose. Indeed, this band is inherently composed of evanescent waves since at a fixed frequency
the wavenumber is higher than the freespace one. In the following, we explain, based on the soda can
metamaterial example, how and under which conditions they can indeed be used. The reader has
to keep in mind that the soda can medium is a very good airborne acoustic example for this study
which has been published in [25], but similar results have been obtained in underwater acoustics
in the ultrasonic range with a bubble as a unit cell [44], with Lamb waves in a thin plate [45], in
electromagnetics in the microwave regime [27,46], and in the optical range [47,48], making this
approach very robust and general.

3.2. Eigenmodes of a Finite-Sized Array of Soda Cans

The infinite medium described in the previous section is not experimentally realizable and we will
see in this section that the finite dimension of a real medium plays a crucial role for the subwavelength
focusing application. So, let us first start by the experimental measurements that we have been able to
perform. We conducted experiments on a two-dimensional array of 7× 7 closed-packed square lattice of
soda cans as shown in Figure 3a. The medium is surrounded by a set of 8 computer-controlled speakers,
and a motorized microphone is placed on top of the array of Helmholtz resonators. We first emit a
short pulse (actually we used chirped emission and apply matched filtering to recover a short pulse)
from one speaker and record the temporal signal received by the microphone placed 1 cm on top of
the aperture of one can. The typical temporal signal obtained is shown in Figure 3b. It extends over
hundreds of milliseconds, compared to the initial pulse duration of 20 ms, which is a clear signature
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of the resonant effect. The spectrum of this signal (Figure 3c) reveals the existence of many resonant
peaks ranging from 250 Hz up to the resonant frequency of a single resonator, that is f0 = 420 Hz.
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Figure 3. (a) Experimental setup: 8 commercial computer speakers (1) are controlled using
a multi-channel soundcard (4) and create sounds exciting the soda cans metamaterial (2). Mounted on
a 3D moving stage (5), a microphone records the pressure field; (b) Typical emitted pulse (red) and the
measured signal (blue) on top of one can and their spectra (c); (d) Measured monochromatic patterns
at distinct frequencies and with different emitting patterns; (e) Experimental dispersion relation and its
equivalent in terms of effective compressibility (f).

We then repeat the same experiment when each speaker emits a short pulse while moving the
microphone on top of the array. Knowing the entire set of temporal Green’s functions relating the
pressure field at a given position in the medium to the emission from one of the speakers, we can
then mimic different monochromatic experiments. We show in Figure 3d the monochromatic field
maps at various frequencies and with different emission patterns (a monopolar, a dipolar along the
x-direction, a dipolar along the y-direction and a quadrupolar). All of those maps clearly show the
subwavelength nature of the modes supported by the medium. For example the first mode shows
two nodes of the field while the entire dimension of the medium is roughly λ/2. We have not yet
discussed the importance of the different radiation patterns but we will come back on this aspect
later on.
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The measured bank of data does not limit to those 4 modes and we therefore performed an
automatic treatment of all the measurements in order to draw a dispersion relation. For each frequency
and for each radiation pattern the wave field is spatially Fourier transformed in order to extract
an effective wavenumber of the mode. The result of such a treatment is summarized in Figure 3e.
The measured dispersion relation exhibits the expected polariton behavior that has been introduced
in the first section. One can note that some wave fields oscillate on a scale as small as the medium’s
lattice. From this dispersion curve, the effective compressibility can be extracted (Figure 3f): the high
effective compressibility below the resonance frequency f0 is revealed. Above, the absence of modes
has two origins: in the band gap regime there is no propagating wave so no mode is measured, higher
the modes correspond to leaky modes that radiate acoustic waves out of plane.

Interestingly, and quite surprisingly, the homogenization procedure that applies for an infinite
medium can be probed on a physical two-dimensional metamaterial which typical dimension is only
half a free space wavelength. Notably, the finiteness of the sample as well as the boundaries shape do
not influence on the measured dispersion relation. Because of the finiteness of the medium however,
other phenomena have to be discussed. Indeed, as the typical spectrum shows in Figure 3c the finite size
medium only supports a discrete set of resonant eigenmodes. This has several consequences that are
the key features for the next paragraph where we demonstrate subwavelength focusing. First, because
of the finiteness, the supported eigenmodes are stationary modes trapped inside the medium and
therefore they experience a resonance phenomenon. Second, such collective eigenmodes can leak some
energy through radiative damping to the far field area, and this is the reason why we have been able
to probe them when doing the reciprocal operation, namely exciting from the far field and probing in
the near-field of the medium. As a consequence, the high effective compressibility which results in the
existence of subwavelength (with respect to the freespace wavelength) modes cannot be used as it in
order to build a focal point: if one excites the medium with a single monochromatic source placed in
the far field one only excites the combination of eigenmodes that can radiate energy in the direction of
the source, and for our small medium (i.e., λ/2 × λ/2) it reduces to four modes (monopolar, dipolar
and quadrupolar radiation patterns). Furthermore, one has no control over the relative phases between
the 4 trapped monochromatic eigenmodes by using only one source. Increasing the number of sources
allows the manipulation of the relative phases between the different types of radiation patterns but
actually it is not sufficient enough to focus waves everywhere on the sample. This strategy has been
adopted in [49] where the authors demonstrated the ability to build a focal hot spot in the middle of
the sample that is thinner than the free space wavelength. If we want to be able focus everywhere
in the sample we need to have access to all the different spatial scales which is only realizable by
taking advantage of the dispersion of the medium: at one frequency the spatial variation of the field
is given by the dispersion relation. Consequently, we proposed to use a polychromatic approach,
namely time reversal [50], in order to treat coherently the spatio-temporal degrees of freedom of the
metamaterial [51–53].

3.3. Subwavelength Focusing from the Far Field

Before entering the case of the soda can medium, let us start by a control experiment while
removing the Helmholtz resonators’ array: the microphone, placed at a given position, records the
set of 8 Green’s functions when each of the speakers emits a short pulse. Each of those signals is
time reversed, and they are simultaneously reemitted by their corresponding speaker, meaning that
each speaker emits first what arrives later in time and reciprocally. Note that in this experiment, we
also take advantage of the spatial reciprocity of the wave equation since we did not place a source
at the position where we want to focus, but we learn the Green’s functions from the speakers to the
microphone. We then map the wave field generated around the initial microphone’s position by
moving it (and repeating the simultaneous emission each time the microphone has moved). As a result
of such a procedure, we plot the square of the maximum in time of each received signal. This is
equivalent to show the maximum power received on each position. The result of such an operation
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is displayed in Figure 4a. The obtained field maps show that 8-channel time reversal in a typical
laboratory room permits to focus waves on isotropic focal spots whose dimension is half-wavelength,
only limited by the diffraction limit [54].

a) Control (without cans): λ/2 Time reversal: λ/8 Iterative time reversal: λ/25b) c)

Figure 4. Sub-diffraction focusing of sound. (a) Diffraction limited focal spots obtained using time
reversal without the array of cans; (b) The foci obtained using time reversal onto the same locations
with the array of Helmholtz resonators; (c) Foci obtained with inverse filter signals demonstrating focal
spots as thin as λ/25.

The same procedure in the presence of the cans is then performed. This time, the set of emitting
signals span a longer time range as a signature of the modes resonances and the time reversal permits
to synchronize at the desired location and at the desired time all of the eigenmodes that are non-zero.
This results in a spatio-temporal focusing of the acoustic waves. The measure of the focal width is as
thin as λ/8 (Figure 4b), far beyond the diffraction limit. This is a consequence of the subwavelength
nature of the modes inside the metamaterial. This experiment clearly shows that thanks to the resonant
nature of the eigenmodes trapped inside the metamaterial, the conversion from free space wavelength
to subwavelength varying fields is guaranteed. This permits to beat the diffraction limit from the far
field and to focus waves on a thinner scale compared to the free space wavelength.

But, we have not yet reached the limit of the device since we initially probed eigenmodes that
oscillate on scales as thin as the distance between two cans. This limitation comes from the fact that
time reversal does not compensate for losses during the propagation. It only recombines the different
frequency components by coherently adding them—they all add in phase at the focus—but does
not play any role on their relative amplitudes. And, we know that the modes that suffer most from
the losses are the highest Q ones, or equivalently the ones with the smallest group velocity, which
exactly corresponds to the most subwavelength ones. Compensating for the losses is performed by
increasing the relative weight of these modes at the emission. To do so, signals, that are the equivalent
of an inverse filter [55], are built. This procedure first requires the knowledge of the set of all impulse
responses between the 8 speakers and each desired focal position on top of the resonators, which we
limited to 49 as the number of cans. Then we numerically compute a bank of 8 × 49 signals based
on an iterative scheme of time reversal [56] that supposedly focus on each position with the lowest
possible level of spatio-temporal side lobes. 8 of those signals are simultaneously emitted with the
speakers. Eventually, we map the wavefield on top of the cans while emitting those signals and we
end up on the result shown in Figure 4c with focal spots as thin as λ/25. Of course, because we cannot
focus waves in between cans, the focusing resolution is actually limited by the period of the medium.
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Overall, we prove that we can beat the diffraction limit by a factor of 12.5 with a positioning accuracy
of λ/12. We only present two maps but this focusing can indeed be performed at any position on top
of a can. We stress here that the λ/25 hot spot is due to extra evanescent feature of the Bloch wave
near the can aperture. Therefore, measuring the acoustic field slightly upper of the cans decreases
this effect.

Apart from its evident fundamental interest, this experiment opens up many avenues in terms of
applications for sound and ultrasound. We believe that our approach is very promising for the design of
arrays of actuators, micro-mechanical actuators in general and, by reciprocity, of sensors. Indeed, using
subwavelength coupled resonators offers three tremendous advantages. First, it introduces the
possibility to engineer matrix of actuators or sensors that are arranged on a subwavelength scale.
Second, because our approach takes advantage of dispersion, it allows to address independently many
sensors using their temporal signature. Finally, as we initially proved [25], it also enhances the intensity
deposited onto one location, because of the subwavelength dimensions of the focal spots. This entails
that our approach can be utilized for subwavelength-sized actuators and micro-electromechanical
systems as proved recently by Lani et al. [57].

4. Subwavelength Trapping and Waveguiding by Exploiting the Low Frequency Band Gap

4.1. Existence of a So-Called Hybridization Band Gap

Now, we move to a slightly higher frequency range, just above the resonance frequency of a single
soda can. In the previous experiment, we were not able to measure any wavenumber because of the
absence of resonant eigenmodes, and therefore we were not able to extract the effective compressibility
this way. In order to show what happens in this spectral domain, we represent in Figure 5a the sketch
of the new experiment that is conducted. A speaker placed in the far field emits a short pulse that
spans frequencies ranging from 200 Hz to 600 Hz and a microphone measures the signal received on
top of one can. The spectrum represented in a logarithmic scale (Figure 5b) clearly shows two distinct
regimes. Below the resonance frequency of one can (blue shaded area), the transmission is high and
evidences the existence of the resonant peaks discussed in the previous section; Above the resonance,
the transmission drops down to −60 dB and almost no energy is transmitted from the speaker to the
microphone. This frequency region is therefore associated to a so-called band gap (red shaded area).
One has to keep in mind that the overall dimension of the soda can remains smaller than the free space
wavelength, meaning that the attenuation length is really short. In order to investigate deeper this
attenuation effect, we mapped the field at a frequency within the band gap (450 Hz) while we emit
from the loudspeaker. We represent in Figure 5c the absolute value of the measured monochromatic
field in decibel scale again. This map highlights that the field cannot penetrate inside the soda can
metamaterial at this frequency and that the attenuation length is really short since after only one layer
of cans the transmission is already reduced by a factor ten. Again, we stress that in the specific case of
our two dimensional medium, the destructive interferences responsible for the absence of propagating
solutions occur in the near field of the cans. As a consequence if one moves the microphone up the
attenuation effect decreases.
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Figure 5. (a) Single channel experimental setup: the sound-card of a computer is connected to a single
speaker placed in front of the metamaterial and to a microphone that is mounted on a 2D moving stage
and positioned above the sample in its near field; (b) Transmission measured between the speaker and
the microphone when the latter is placed in the middle of the acoustic metamaterial. The transmission
is normalized to unity. Below 420 Hz, resonant deep subwavelength modes can be observed, while
above a deep asymmetric band gap can be identified; (c) Map of the absolute value of the pressure field
at 450 Hz in logarithmic scale. No field can penetrate inside the metamaterial and after only one layer
an attenuation of 20 dB is observed.

This band gap was actually introduced initially when we mentioned the polariton dispersion
relation. In terms of effective parameters, the existence of the band gap is associated to the negativeness
of the effective compressibility which results in an imaginary propagating velocity, or equivalently
evanescent waves. We have to mention here that in the acoustic community this type of band gap
has been observed before the emergence of metamaterials and in the early 1990s researchers referred
to them as “hybridization band gap” [58–64]. Hybridization is a very generic term originating from
solid state physics that refers to the coupling between two states resulting on the existence of two
hybrid states [65]. In the context of wave propagation it mostly refers to the avoided crossing between
two modes that share a common geometry. Yet the term “hybridization band gap” clearly refers to the
avoided crossing between the free space dispersion relation and the localized resonator, as depicted
in the polariton picture at the beginning of this article. We have therefore reinterpreted this band
gap in terms of Fano interferences [33,66] since it is clearly the interaction between a continuum of
modes (the free space waves) and a resonator [34]. Note that there are several works in the acoustic
community that have tried to mix in the same frequency range the “hybridization band gap” and the
Bragg gap that is due to the periodicity of the medium and mostly occurs when the lattice constant is
half a wavelength [62,67–69].

4.2. Creating a Defect within the Hybridization Band Gap

This kind of band gap that occurs in the low frequency regime, i.e., when the wavelength is large
compared to the typical distance between resonators, presents an important difference compared to
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the well documented ones in the context of phononic crystals [6,58,70–74]. In the phononic crystals,
the forbidden band is due to Bragg interferences which are inherently the consequence of the periodic
nature of the medium: the destructive interferences occur thanks to the periodic patterning of the
medium. As a consequence, the proposed applications exploiting the forbidden propagation consists in
locally breaking the translational symmetry of the medium. Indeed, when doing so, solely evanescent
waves can penetrate from this location on small distances inside the crystal. For example, a point
defect can be created in a phononic crystal by locally removing a scatterer. This results in a small
cavity because a resonant mode is created by the defect within the band gap. Following this concept,
many components have been demonstrated based on periodic media such as waveguides using line
defects [75–78] and the envisioned applications span a large amount of domains from optronics [79] to
light matter interactions [80]. However, because of their wavelength scale period, phononic crystals
result in relatively large devices. This seriously restrains the range of applications, especially in the low
frequency regimes where the wavelength is large. Contrary to Bragg interferences based band gap, the
hybridization one, which originates from the destructive interferences between the resonant response
and the incident wave, is robust to a spatial disorder: breaking the translational periodicity of the
medium does not close the band gap [60,63,81]. As a consequence we cannot use the trick of breaking
the periodicity of the medium as performed in phononic crystals in order to create a defect state.

To illustrate the strong difference between those Bragg band gaps and the hybridization
one observed in the soda cans medium, we run a set of simulations where we created a defect by
removing one can inside the array. We show in Figure 6 (middle) the spectrum of the transmission
between an incident plane wave and the location where we removed the soda can. It has to be
compared to the one in Figure 6 (left) where no defect within the array has been created. We do not
notice any difference between the two spectra in the band gap, and this is confirmed by the typical
maps obtained at 440 Hz where no significant changes are observed. This makes a big difference
compared to a Bragg based band gap: the defect that we created this way is actually too small to
support a resonant mode, while in a phononic crystal removing one scatterer allows the existence of a
stationary defect mode since the typical scale of such a defect is the wavelength. In order to tackle this
issue, we have to physically introduce a resonant defect inside the soda can medium, which is simply
performed by detuning one resonator compared to the rest of the medium. In the case of the soda can
medium, this is fairly easy to build this defect resonator: the Helmholtz resonance of a single can is
parametrized by the volume of the air cavity. So, we create a detuned resonator just by changing this
volume which is realized by filling it with a few centiliters of water. It results in a resonance frequency
that is upward shifted, thus falling within the forbidden band. Again, we stress that since the medium
is governed by interferences only, akin to phononic crystals, introducing such a defect should not
destroy the bulk properties of the metamaterial. The simulation corresponding to a water volume of
6 cL clearly shows that this trick permits to create a defect: the spectrum of the transmission exhibits
a resonant peak near 440 Hz and the corresponding field map confirms the existence of confinement at
the defect position (Figure 6 (right)).

The existence of this defect mode deserves few comments. First, given the very small spatial scale
of the soda can medium, one would expect very strong near field interactions between the resonators.
Yet the polariton origin of the band gap, that is the coupling of a freespace plane wave and a local
resonance, actually proves that the dispersion in this deep subwavelength scaled medium is solely due
to interference effects, therefore guaranteeing the existence of this defect mode. Second, because the
unit cell is very small compared to the freespace wavelength, the modal volume of the confined mode
in this medium is deeply subwavelength. Third, while the quality factor of a single can is around
10 the quality factor of the defect mode reaches 80 solely limited by the viscous losses. This comes from
the fact that the can filled with 6 cL of waters cannot radiate waves toward far field thus canceling
any radiative damping of its intrinsic resonance. Those two effects, namely a high quality factor and
a low mode volume, are typical quantities that opticians are researching to enhance the emission rate
of an emitter and it is known under the name of Purcell factor [82]. Here, we have shown with an
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acoustic example that high Purcell factors are attainable in metamaterial defect cavities. We have
obtained similar results for microwaves [34,81] that allows us to be confident on the fact that the optical
community can certainly reach this goal.
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Figure 6. Simualtions corresponding to 3 different configurations: the unchanged 7 × 7 soda can array
(left), an array where we removed the central can (middle) and an array where volume of the central
can is reduced by 6 cL (right). For each, we show the spectrum of the transmission 1 cm above the
array and the pressure field map at the frequency of 440 Hz. While removing a can cannot create
a resonant cavity, introducing a detuned resonator permits to create a (λ/15)2 area cavity with an
enhanced pressure field 5 times higher than the incident wave in the scanned plane.

4.3. Molding Experimentally the Flow of Acoustic Waves at a Subwavelength Scale

We now come back to the experimental setup described in Figure 5a and we use it to
experimentally prove that it is possible to control the waves at the subwavelength scale, by introducing
defects similarly as we numerically performed. Obviously, the first experiment consists in reproducing
the point defect. So, we locally introduce a defect state by introducing 6 cL of water in the central can.
While emitting sound with the loudspeaker, the microphone mounted on the 2D moving stage maps
the field on top of the array. The real part of the monochromatic map of the field is given in Figure 7a
as well as the absolute value profile along the dashed line. Clearly, we observe that the pressure field
is localized within one can of the array, meaning that waves have tunneled through the metamaterial,
and filled the cavity. The effective cavity size of λ/15 is much smaller than in any realized phononic
crystal. And again, experimentally the measured quality factor for the cavity is around 80, in very
good agreement with the numerical results.
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Figure 7. Molding the flow of acoustic waves at the deep subwavelength scale. Spatial distributions
of the acoustic near field of the sample in amplitude when the speaker emits sounds and (a) the can
positioned at (0,0) is filled with 6 cL of water, resulting in a (λ/15)2 area cavity at 465 Hz; (b) a line of
partly filled Helmholtz resonators at y = 0 constitutes a λ/14 wide waveguide for acoustic waves at
447 Hz; (c) a 90◦ curved similar waveguide permits to bend with unity efficiency acoustic waves on
a λ/14 distance at 451 Hz and (d) a T-shaped waveguide splits acoustic waves into two identical arms
with almost equal amplitudes at 450 Hz. The insets show the profiles of the magnitude of the fields
along dashed colored lines.

We now concentrate on a second type of defect that probably can lead to more applications in
acoustics: a line defect. To that aim, using a 5 × 12 cans array, a subwavelength line defect is obtained
by filling the soda cans of the central line with 6 cL of water. Now, instead of having a resonant cavity
we actually create a subwavelength waveguide in the soda can array. Again, we measure the acoustic
field distributions on top of this array. The map of the measured acoustic field for a frequency of 447 Hz
is presented in Figure 7b, as well as a transverse profile of the waveguide mode. This demonstrates
a λ/14 wide waveguide and we measure an attenuation transversely of 25 dB after the first row
of cans. This kind of waveguide is therefore extremely confined on the defect line at the operating
frequency. We cannot present all of the results here but similar propagating behavior has been obtained
for frequencies around the presented one, except that the effective wavelength within the waveguide
is changing while changing the frequency. The bandwidth is centered on the defect’s resonance
frequency, which is typical of a tight binding coupling. Indeed, the filled cans creating the waveguide
are embedded in a medium that does not support any propagating waves, therefore the only channel
for the coupling is tunneling from can to can. Note that we stated initially that the physics of the soda
can medium can be described by neglecting any near field coupling because the picture of the polariton
catches all of the physics. The tunneling channel that we discuss here is created by the hybridization
band gap of the entire array so this is not in contradiction with the previous statement.

Using the same experimental protocol, we now move to more complex components to manipulate
waves. We designed a corner waveguide and a splitter by inserting those partly filled Helmholtz
resonators in a 7× 7 array of empty cans. Maps of the spatial distributions of the fields in those samples
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are presented in Figure 7c and d alongside the profiles of their modulus in the directions of interest.
From those new experiments, we make a series of conclusions. First, one can force the guided waves
in any given direction, with no specific engineering of the material structure, owing to the resonant
nature of the unit cell. In our case, we bend the waves 90◦ with unity efficiency and within a λ/14 long
unit cell. Actually, because a soda can has an isotropic radiation pattern, there is no difference between
the 90◦ bend and the linear waveguide. This is in great contrast with designs based on designer’s
plasmons for instance [83], where scattering impairs seriously the ability of those structures to bend
waves within small propagation distances. Here, since the waveguide lies in a band gap material, no
scattering occurs. Second, we can use this approach to split waves into two arms, which ensures the
possibility to realize deep subwavelength interconnections and routing of acoustic energy.

As a conclusion, the approach presented in this section gives unprecedented solutions to
manipulate acoustic waves, especially those for which the wavelength is large compared to the
envisioned applications. It paves the way to the design of ultra compact components. We insist here
that this article is dedicated to the soda can medium but this approach is very general and applies to any
locally resonant medium with no near field coupling. Similarly, this guiding property was observed in
underwater acoustics in a bubbly liquid. Indeed, air bubbles in water present a very low frequency
resonance known as the Minnaert resonance for which the bubble size is very small compared to the free
space wavelength, thus creating a hybridization band gap [84]. By modifying a row of a bubble crystal,
the existence of guided modes exhibiting a tight-binding dispersion curve was demonstrated [85],
but it was not clear that the modification of the row led to the creation of upper-shifted resonators
within the hybridization band gap, nor was it explained in this way. Also, in our initial paper [34], we
demonstrated very similar results in the context of electromagnetic waves with a unit cell consisting
of a half-wavelength-long metallic wire. We also performed experiments in microwaves where the
subwavelength resonators were placed in a disordered way: locally introducing a detuned resonator
in such a medium still creates a very confined cavity [81]. Being robust to disorder is a great
advantage compared to phononic crystals, in which most of the experimental realizations suffer
from fabrication imperfections. Eventually, parametric experiments again performed in the microwave
range demonstrate very interesting applications for this kind of waveguides: thanks to the S-shaped
dispersion relation the waves can travel very slowly with unprecedented bandwidth-group index
product [86]. In the latter experiment a perfect matching to co-axial lines is performed, demonstrating
the ability to connect this component to other types of networks.

In the same time, those results raise interesting questions regarding the physics of metamaterials.
Indeed, with the conventional homogenization approach one cannot predict what happens inside
metamaterials containing one or several defects because this procedure averages the response of all the
resonators. For example, a straight waveguide or a 90◦ bending one present the same number of defects
but give completely different results. Our microscopic approach nevertheless permits to understand
that the interferences phenomena occurring at the deep subwavelength scale of the metamaterial are
actually very similar to the ones occuring at the wavelength scale in phononic crystals.

5. Spatial Structuration and Multiple Scattering Lead to Negative Refraction

5.1. Toward More Complex Metamaterial Crystals by Complexifying the Unit Cell

In this section, instead of introducing very localized defects we decide to engineer the material
with local defects that respect a given translational symmetry of the metamaterial. The previous
experiment has highlighted the fact that local modifications of the metamaterial gives rise to
interferences effect at the scale of the material no matter what is the free space wavelength. Therefore
here we slightly change the periodicity of the initial metamaterial either by changing the resonance
frequency of one resonator out of two, or by slightly off-centering one resonator out of two.
Consequently, the unit cell of the medium becomes a dimer, made of two resonant unit cells. This type
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of new cells because of its dimeric nature should support a dipolar resonance overlapping with the
monopolar one that gives the metamaterial its effective macroscopic property.

For the sake of simplicity, we start with the simplest example of locally resonant metamaterial
which consists in a one dimensional chain of point scatterers organized periodically on a deep
subwavelength scale. The dispersion relation of such a chain of resonant unit cells, with a = λ0/12,
is calculated analytically using a combination of a Green’s function formalism and a transfer matrix
approach [87,88]. As seen before, the obtained dispersion is typical of the soda can array already
studied and exhibits the polaritonic behavior (Figure 8a). Or again, equivalently, the medium can
be described by a set of two effective parameters with only one of them being negative, the medium
acting as a single negative metamaterial in the band gap region.

From this single negative medium, two new configurations are created just by breaking the
symmetry in two different ways: either a bi-periodic chain is built by off-centering one resonator
out of two, or a bi-disperse one is generated by slightly shifting the resonance frequency of half of
the resonators. In both cases, we again analytically calculate the dispersion relation and extract the
corresponding effective refractive index (Figure 8b,c). Both of the new symmetry broken metamaterials
now exhibit, in the band gap of the single negative medium, a new propagating band that is
characterized by a negative phase velocity.

A = a

d

A = 2a

d= 0.76*a

f1= 1.0122*f0

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

f/
f 0

0.5 1 1.5
f/f0

k/[π/A]

0.6

0.8

1

1.2

1.4

0.6

0.8

1

1.2

1.4

−3

−2

−1

0

1

2

3

 

0.5 1 1.5
f/f0

0.5 1 1.5
f/f0

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

0 0.2 0.4 0.6 0.8 1
k/[π/A]

0 0.2 0.4 0.6 0.8 1
k/[π/A]

A = 2a

0 0.5
0.975

0.985

0.995

1

Re
(n

)

0 0.5
0.97

0.98

0.99

1

b) c)a)

Figure 8. (a) Typical polaritonic dispersion relation for a periodic arrangement of resonant point
scatterers (mathematical equivalent of the soda can) or its representation in terms of an effective index
of refraction. By locally breaking the periodicity of the chain either by off-centering one resonator
out of two (b) or by changing its resonant frequency (c) we end up on dispersion relations showing
a negative band (the effective index of refraction is negative).

5.2. Physical Origin of the Negative Index Branch

To understand the origin of the negativeness of the band, we parametrically study those
two symmetry-broken formal metamaterials. In the case of the bi-periodic chain, the parameter
is the shift in position, while for the bi-disperse one the frequency detuning between the resonators
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is varied. For each parameter, we analytically calculate the new dispersion relation with the same
approach that takes into account multiple scattering and extract an effective index from it. The results
are shown in color-coded maps (Figure 9). For the bi-periodic chain, a negative index exists whatever
the shift in position. In the bi-disperse case, however, this negative band only appears on a narrow
frequency detuning range. This suggests that multiple scattering may be involved since it seems that
the resonances due to each resonator have to overlap. To confirm this intuition, we extract for the same
set of parameters, the effective index only by considering the independent scattering approximation at
the scale of the new unit cell made of two resonators. Namely, we do not consider the Fabry-Perot
resonator that is built on a deep subwavelength scale between the two resonators. This approximation
does not permit to retrieve the existence of a negative index, and only positive index bands typical of a
double polariton appear. This clearly shows that the negative index arises from multiple scattering
between the resonators of the unit cell, even if the distance is far below the wavelength. This, in turn,
explains why, for the bi-disperse chain, the existence of the negative index depends strongly on the
chosen detuning: for too large a resonance frequency mismatch, the two resonators cannot couple any
longer owing to multiple scattering.
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Figure 9. Either for the biperiodic (top) or the bidisperse (bottom) chains, we extracted the effective
index of refraction for various strength of the symmetry breaking with a full multiple scattering
approach or with the independent scattering approximation (ISA). While the maps with the full
multiple scattering calculation show the existence of the negative band (blue color in the map) the ISA
does not retrieve it.

To grasp the physics of the approach, we carefully studied the fields created by a dimer (the new
unit cell of the symmetry-broken media) and made the following observation: multiple scattering
creates a dipolar resonance (the two resonators are out-of-phase) overlapping with a monopolar
resonance of the dimer. This dipolar resonance is responsible for the opening of a narrow transparency
window within the large out-of-phase response of the monopolar resonance of the dimer. This is
analogous to electromagnetic induced transparency in quantum physics [89], or more precisely to
its metamaterial equivalents [90]. This dipolar resonance results from multiple scattering occurring
between the two adjacent resonators. Moving from the unit cell to the infinite medium, this dipolar
mode gives rise to a band of propagating waves within the band gap of the single negative medium, the
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latter being a consequence of the monopolar resonance of the unit cell. This band has a negative slope,
or equivalently, the metamaterial now presents a negative index and this originates physically from the
fact that owing to the symmetry breaking, the lower polaritonic band folds in the first Brillouin zone,
analogous to optical branches in diatomic crystals or band folding in phononic crystals. Here, though,
the band folding, owing to the change of sign of the Bloch mode between the two edges of the unit
cell has a different origin. Indeed, while in phononic crystals, it arises from the fact that the host
medium wavelength becomes smaller than twice the lattice constant, in the former the change of sign
results from the dipolar nature of the resonant mode within the unit cell. This implies that, contrary to
negative refraction in crystals, this new phenomenon exists even if the scale of the metamaterial is
deeply subwavelength, and happens at the same frequency as the resonance of the original building
block, which we can qualify as the low frequency regime. Furthermore, since the original single
negative effective property does not rely on spatial order [81], this negative index band should be
robust even in a metamaterial constituted of randomly placed dimers: both the monopolar and the
multiple-scattering-induced dipolar resonances should remain, hence leading to a negative index
medium [91].

5.3. From 1D to 2D Media

This idea of breaking symmetry is rather simple in one dimension and we need to move on the
two dimensional world before performing a soda cans experiment. Finding a lattice that paves the
space and presents a bi-periodicity in all directions is far more complicated that in one dimension.
In order to stay as isotropic as possible, we choose the Bravais lattice that presents the first Brillouin
zone that is the closest to the circle which is the hexagonal lattice. Then, as we mentioned in the
one dimensional case the unit cell needs two resonant objects in order to have the dipolar resonance
creating the transparency window within the band gap created by the monopolar one. Therefore, we
ended up on the well-known honeycomb lattice. Carefully looking at the positions of the Bragg planes
one can see that it exhibits this double periodicity in any of the ΓM directions. This crystal is made of a
diamond-like unit cell consisting of two resonators, and is compared to the triangular lattice which
has the same unit cell but with only one resonator. Numerical simulations using Comsol Multiphysics
give the dispersion of both the regular and the symmetry-broken lattices (Figure 10a,b). The triangular
lattice medium presents a polaritonic dispersion relation, while the honeycomb lattice (which actually
consists of the superposition of two identical triangular lattice crystals) displays a negative band.
The dispersion depends slightly on the propagation direction but remains rather isotropic as shown in
the surface plot (Figure 10c) and can thus be described with an isotropic negative effective index of
refraction for almost all frequencies.

For the bi-disperse two-dimensional lattice, we have not found ideal solution to deal with the
isotropy issue so we decided to mix two square lattices of slightly detuned Helmholtz resonators in
order to build a new square lattice whose unit cell contains two resonators (Figure 10d,e). Again, the
detuning is really easy to build since it is experimentally realized by pouring some water in the can in
order to reduce its volume. This bi-disperse resonant crystal exhibits a negative branch although it is
simply the superposition of two almost identical single negative media. In this case, the propagation is
less isotropic, since the geometry of a square unit cell tends to deform the isofrequency contours near
the corners of the first Brillouin zone as shown from the surface plot describing the dispersion relation
of the negative band within the entire first Brillouin zone (Figure 10f). There is, however, no doubt that
one can find a more isotropic medium.
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Figure 10. Dispersion relations from numerical simulations with Bloch boundary conditions.
(a) a triangular lattice of soda cans displays the polaritonic dispersion behaviour while (b) the
honeycomb lattice which consists of the superposition of two triangular ones exhibit the presence of a
negative band in the two principal directions of the crystal. (c) The surface plot of this band shows
the almost isotropic nature of this band. Similarly, (d) the square lattice of soda cans displays the
polaritonic dispersion while (e) a square lattice made of two resonators with two different resonant
frequencies shows a negative band. (f) The surface plot for this bidisperse crystal shows less isotropy
but near its upper edge it seems isotropic.

5.4. Experimental Demonstration: Acoustic Superlensing

In order to prove the existence of the negative refraction, we build an experiment which consists
on a point source illuminating a slab that should behave as a flat lens. We focus on the bi-periodic
medium, i.e., the honeycomb arrangement of soda cans. We build a slab with 124 cans, surrounded
by acoustic absorbers to avoid reflections of sound off the boundaries of the room as shown in the
photography of the experiment (Figure 11a). An 8-cm-wide loudspeaker located approximately 5 cm
away from the input interface of the medium is used as the source of sound while 2 microphones
mounted on a two-dimensional translational stage measure the acoustic field above the medium.
The loudspeaker emits a long chirp ranging from 100 Hz to 800 Hz and the data are treated by Fourier
transform in order to have the field maps at the desired frequency. Here, we work at the frequency of
417.5 Hz, which corresponds to the frequency at the lower edge of the negative band, that is, where
the effective negative index norm is the highest.

The real part of the field at this frequency is shown Figure 11b and is hard to interpret. We thus
show the intensity within the slab by numerically compensating for the losses that occur during the
propagation in the lens (Figure 11c) and we can clearly distinguish the path for sound refraction, with
a focal spot inside the lens, in very good agreement with the Snell law for a metamaterial with an
effective index of −3, consistent with the numerical results. On the other side of the slab, in the vicinity
of the surface, we record the image of the source with a λ0/15 full-width at half-maximum (Figure 11d).
This is much smaller than the diffraction limited focus obtained without the lens (black curve), and
even smaller than the width of the source, λ0/5, owing to a hotspot created by the aperture of a single
soda can: not only this demonstrates the negative refraction property of the medium but it also proves
a superlensing effect. This effect owes to the high norm of the effective index of refraction that allows
the propagation of waves within the slab that are evanescent in air.

Super-resolution can also be demonstrated by being able to discriminate two sources separated
by less than half a wavelength. Two loudspeakers, emitting out-of-phase, are placed near the input
interface, separated by 13 cm (λ0/7). The measured pressure field, as well as the loss-compensated
intensity maps (Figure 11e,f) show that the slab produces two distinguishable foci inside the superlens.
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In the focal plane, the two images are efficiently separated (Figure 11g), thereby demonstrating a λ0/7
imaging resolution, far beyond the diffraction limit, contrary to the control experiment realized
without the superlens (black curve). We have further verified that the two sources can be distinguished
whatever the phase shift between them [87].
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Figure 11. Experimental demonstration of subwavelength focusing and imaging using a flat acoustic
lens. (a) A photography of the experimental setup: the flat lens, composed of a compact honey comb
arrangement of soda cans, is insonified by a loud speaker placed close to the surface of the medium.
Two microphones mounted on a 2D moving stage record the acoustic pressure field less than 1 cm
away from the top of the cans. Absorbers surround the lens to prevent from undesired reflections;
(b) The real part of the pressure field at 417.5 Hz and (c) its absolute value while compensating for the
losses due to the propagation within the lens. The direction of the refracted beams is highlighted with
the dashed arrows displaying the features of the negative refraction; (d) The normalized amplitude
of the field in the close vicinity of the output surface proves a focusing area of λ0/15 (red) while the
source (blue) is λ0/5 wide and the control experiment (black), that is without the lens, λ0/1.2 wide.
The same experiment is conducted with two sources playing sounds out of phase to demonstrate
super-resolution (e–g). It clearly proves the same negative refraction results with a resolution of λ0/7.
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As a conclusion of this part, we have demonstrated that it is fairly easy to build double negative
media starting from a single negative one. Breaking the symmetry of the unit cell of a single negative
medium (either by changing the spacing or by adding a frequency detuning), multiple scattering
of waves guarantees the existence of an overlap between a dipolar resonance and a monopolar
one. This ends on a negative effective index of refraction when considering the infinite medium.
This approach is very general and brings a new paradigm to the physics of metamaterials since multiple
scattering is often neglected owing to the subwavelength spatial scale of those media. We emphasize
that such a negative effective index of refraction should be insensitive to the random positioning of
dimers, and that it should be easily transposable to three-dimensional metamaterials.

6. Conclusions

In this article we have exemplified through the acoustic example of the soda cans medium that the
physics of many locally resonant metamaterials is very similar to the physics of phononic crystals albeit
the small scale with respect to the freespace wavelength. Indeed, the soda can interacts resonantly with
the continuum of freespace plane waves which results in Fano interferences. The π-shift occurring
at the resonance frequency is equivalent to the π-shift accumulated during propagation in usual
phononic crystals. And, because this phase shift is only obtained at the resonator position we can pack
the medium to reach deeply subwavelength scales as opposed to phononic crystals that are inherently
at the wavelength scale. Therefore, we can envision all of the applications of phononic crystals but
at a scale that is completely independent of the freespace wavelength. And, while phononic crystals
are mostly use for their ability to block the propagation of waves in some frequency ranges, the
propagating bands of the locally resonant metamaterials are also very interesting.

For instance, the low frequency band, below the resonance frequency, presents a dispersion
relation that is far below the cone shape of the freespace dispersion relation. This is a consequence
of the subwavelength nature of the soda cans packing. In other words, because the spacial scale is
very subwavelength the field can oscillate on scales that are now related to the physical one and reach
extremely large wavenumbers. By using the modes of a finite-sized medium in this frequency range,
we have demonstrated that one can focus acoustic waves far below the freespace diffraction limit.
By smartly exciting simultaneously those modes, we build interference patterns that are constructive
only at a desired position thus resulting on focal spots with dimensions much smaller than the
freespace wavelength.

By exploiting the low frequency band gap, one can mold the flow of acoustic waves at a scale
that is again completely independent of the wavelength. This is performed by introducing a resonant
defect, that is a new subwavelength unit cell which has a resonant frequency falling into the band
gap created by the others. In the context of the soda can medium it is really easy to realize since
diminishing the volume of the can by adding few centiliters of water at the bottom increases its
resonant frequency. We therefore demonstrated trapping, waveguiding, bending and splitting abilities
at the subwavelength scale without any engineering methods.

Eventually, we showed that moving to more complex unit cells of the crystal leads to the creation
of propagating bands with interesting properties. Indeed, we demonstrated that introducing some
local correlations by adding a local order like in the biperiodic medium, or by adding some spectral
correlations by introducing a small frequency detuning by pairs, we build media exhibiting negative
refraction. But, more interestingly, again because of the subwavelength nature of the medium, all of
the diffraction orders are evanescent at the exit of such a medium and it macroscopically behaves like
a homogeneous medium described with a negative effective index of refraction. This, in turns, creates
many opportunities in the context of metamaterials because we can now take advantage of the spatial
ordering in order to create new macroscopic properties: this paves the way to a new class of media
that are the “metamaterial crystals”.

There is no doubt that we are far from having exploited all of the properties offered from such
a locally resonant medium. We have exploited separately the subwavelength modes , the band gap or
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the local correlations, but there is no doubt that by combining two of those properties one can easily find
new applications. For example, by adding resonators creating a band gap between the adjacent cans in
the honey-comb crystal we turn the coupling between them from a polariton-like to a tight binding
one, and we therefore build a macroscopic analogue of graphene for the propagation of electrons.
By adding some disorder in the structure but by keeping the pair-correlations in positions we should
also keep the negative effective property. All of this will be the scope of future works and the soda can
medium is a fairly good platform to demonstrate experimentally all of these fascinating physics.
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