Práctico 7

Patrones de evolución molecular

Objetivos: A partir del análisis del patrón de sustituciones nucleotídicas de una secuencia codificante en un grupo taxonómico particular: 1) visualizar patrones generales de evolución molecular y 2) discutir la validez y el alcance de la idea de "reloj molecular", identificando factores que pueden producir desviaciones aparentes del mismo.

Datos

El archivo Primates_datos.meg contiene los 1000 primeros sitios del gen del citocromo b del ADN mitocondrial de 13 especies de primates.

Clasificación de los primates considerados en este práctico

Suborden	Familia	Género	Nombre común	Distribución		
Strepsirrhini	·		Lemur	Madagascar		
Platyrrhini			Mono capuchino Mono ardilla	Neotrópico		
	Cercopithecidae	Papio Macaca	Babuino Macaco	África		
Catambiai	Hylobatidae	Hylobates	Gibón	Asia, Indonesia		
Catarrhini	Hominidae	Pongo Gorilla Pan Homo	Orangután Gorila Chimpancé Humano	Borneo África África Cosmopolita		

<u>Tiempos de divergencia</u>

Datos paleontológicos sugieren los siguientes tiempos de divergencia¹ desde el ancestro común (dados en millones de años desde el presente):

58 Lemúridos vs. los restantes primates

40 Platirrinos vs. Catarrinos

15 Orangután vs restantes homínidos

6 Gorila vs. Chimpancés y Humanos

¹ En la discusión sobre el reloj molecular y temas relacionados se habla de "divergencia" para referirse al cambio total que ha ocurrido en la evolución de dos especies desde su ancestro común. Este cambio se cuenta, por tanto, a lo largo de dos líneas evolutivas; bajo la hipótesis del reloj molecular la "tasa de divergencia" de un gen o región cualquiera es el doble que la "tasa de evolución".

Actividades

1) <u>Usar el programa Mega X</u>

Una vez abierta la base de datos "primates_datos.meg" en el programa, realizar las siguientes actividades.

- ¿Por qué será útil indicarle al programa el carácter codificante de la secuencia? ¿y que el origen de la secuencia sea ADN mitocondrial de mamíferos?
- ¿Las secuencias aminoacídicas son más o menos informativas que las secuencias nucleotídicas?
- Obtener una filogenia usando el criterio de Máxima Parsimonia (utilizando las opciones que vienen por defecto). Definir como grupo externo a Lemuridae, reportar el índice de consistencia (en i > general). ¿Qué información aporta este índice acerca de la filogenia?
- Representar el árbol anterior como filograma (por defecto aparece un cladograma). Reportar si existen diferencias entre grupos en la tasa de evolución y reflexionar las posibles causas que pueden producirlas.
- Obtener una tabla de distancias absolutas pareadas. Escoger en el menú la opción Distances, Compute Pairwise y elegir la opción Model / Nucleotide / No. of Differences. Visualizar las otras opciones.
- Observar la copia de la matriz obtenida anteriormente que se encuentra a continuación. Luego: a) Completar la información ausente, b) en la matriz reconocer los recuadros para las 2 comparaciones con que se cuenta con información paleontológica.

		1	2	3	4	5	6	7	8	9	10	11	12	13
1	Lemur_catta													
2	Microcebus_griseorufus	170												
3	Macaca_mulatta	263	281											
4	Papio_hamadryas	262	278	135										
5	Cebus_albifrons	245	265	255	266									
6	Saimiri_sciureus													
7	Hylobates_agilis	254	263	203	209	249	246							
8	Hylobates_lar	251	262	206	215	258	243	55						
9	Pongo_pygmaeus	238	276	198	207	248	255	184						
10	Gorilla_gorilla	239	262	190	208	245	240	163						
11	Homo_sapiens	241	270	199	213	253	253	164			127			
12	Pan_paniscus	248	275	188	197	224	243	159			117	112		
13	Pan_troglodytes	239	276	189	201	225	236	164			120	115	50	

2) <u>Usar el programa Excel</u>

- Abrir el archivo "distancias primates.xls". Encontrarás el número de diferencias discriminadas entre las posiciones del codón, así como entre transiciones y transversiones, obtenidas de la forma anterior. Estas distancias pareadas se han graficado para cada uno de los tiempos de divergencia. Observe los rangos de valores para cada una de estas medias, y saque conclusiones de las dos gráficas.
- Pensar, discutir y responder: para el caso de la cantidad de cambios según las posiciones del codón, ¿qué gráfico esperaría obtener según el reloj molecular? ¿Se ajustan en apariencia las gráficas a la idea del reloj molecular? ¿Qué factores pueden dar cuenta de las variaciones observadas? ¿Cómo pueden explicarse estas tasas en términos neutralistas?
- De ser posible, estimar el tiempo de divergencia de los gibones y los homínidos.

3) Mencione los problemas asociados a la estimación del tiempo de divergencia entre gibones y homínidos, realizada anteriormente.

De encontrarse un pseudogen del citocromo b para estas especies, discuta cómo espera que sea el patrón de sustituciones nucleotídicas en esta secuencia.

Bajo neutralidad, ¿es esperable obtener un gen, o región de un gen, con mayor cantidad de cambios no sinónimos que sinónimos?, ¿qué interpretación podría darle a este fenómeno?