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Abstract Cellular automata (CA) are discrete models that are being ever more
widely used to study urban forms and, more broadly, to understand, simulate, and
forecast land use changes (LUC). But LUC models are not based on CA dynamics
alone and so they are not fully consistent with mathematical definitions of CA.
Accordingly, to study urbanization, authors often use “constraint CA” or “geographic
CA” (GCA), i.e., CA which are coupled with other models in order to integrate
geographical assumptions related to urban form and to provide more realistic results.
These complementary models are usually calibrated according to expert knowledge
and do not lead to reproducible deterministic results. Consequently, there is often a
sizeable gap between the theory of CA as defined in mathematics and their practical
use for LUC. In this chapter, cellular automata are constrained by a Markovian
process helping to determine the number of cells that can change from one land use
category to another. Second, a potential model is used to create a suitability map and
define the probability of a cell changing fromone category to another. Finally, all these
additional constraints lead to a suite of models which is clearly more complex than
classical CA as it can be considered mathematically. Nevertheless, as far as possible,
it presents GCA as a mathematical adaptation of CA integrating the geographical
assumptions necessary for studying urban forms in a realistic way.

Keywords Cellular automata · Markov chain · Potential model · Urban form ·
Spatial modeling

J.-P. Antoni (B) · G. Vuidel
Laboratoire ThéMA, UMR 6049—CNRS et Université Bourgogne
Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
e-mail: jean-philippe.antoni@u-bourgogne.fr

H. Omrani · O. Klein
Luxembourg Institute of Socio-Economic Research, Maison des
Sciences Humaines, 11, Porte des Sciences, 4366 Esch-sur-Alzette,
Belval, Luxembourg

© Springer Nature Switzerland AG 2019
L. D’Acci (ed.), The Mathematics of Urban Morphology,
Modeling and Simulation in Science, Engineering and Technology,
https://doi.org/10.1007/978-3-030-12381-9_7

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12381-9_7&domain=pdf
mailto:jean-philippe.antoni@u-bourgogne.fr
https://doi.org/10.1007/978-3-030-12381-9_7


148 J.-P. Antoni et al.

1 Introduction

Urban form may be defined as the relationship between buildings and open spaces
within agglomerations or different types of urban aggregates according to the speci-
ficities of local context. It refers more specifically to the outer envelope or contours
of the city (Antoni 2008). This form, which is characterized by developments at
different scales (from the entire agglomeration to a single building), is the result
of human occupation of the territory. As a result of individual behaviors, it reflects
urban lifestyles generated through several factors such as the urban fabric, the built
environment, density/compactness, and the spatial distribution of activities and facil-
ities.

Geographers tackling urban forms seek primarily to understand the mechanisms
that lead to the current form of a given urban context, to provide procedures for
designing optimal forms, and to simulate future developments. Such approaches
rely on adapted modeling tools that integrate features based on explanatory and
predictive models, which can be used as tools to support reflection and decision-
making. Among the mathematical models, many computer-based solutions attempt
to simulate the evolution of cities and specially to understand how urban forms
change over time, past and/or future. Among them, cellular automata (CA) stand
out as a form of mathematical computation models based on a discrete dynamic
modeling system. They are structured into procedures based on the nesting of simple
rules that reflect the complexity of real systems. This approach is attractive because
it relies on a generic development principle that fits very well with the way systems
in general, and urban systems in particular, evolve. In this framework, LucSim1 was
designed and developed by ThéMA Laboratory (Antoni et al. 2017) as a cellular
automata model specially designed for geographical analysis and spatial simulation
for both researchers and advanced planning institutes. This user-friendly software is
well adapted for analyzing and simulating land use changes and spatial dynamics at
different scales for decision-making in urban and land planning.

After having recalled somedefinitions ofCAas used in geography, the next section
shows why they remain difficult to apply directly to concrete urban form planning
or studies. Section 3 then presents two major constraints (temporal and spatial) that
can improve CA simulation results by refining basic assumptions related to land use
change. Section 4 presents the results in a new theoretical CA formalization, leading
to more realistic urban form simulations illustrated by the example of Wroclaw in
Poland. These results are then discussed in Sect. 5 questioning the extent to which
these constraints need to be contained.

1See https://sourcesup.renater.fr/lucsim/ for more details.

https://sourcesup.renater.fr/lucsim/
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2 CA-Based Discrete Modeling

Starting from a formal definition of CA-based discrete modeling, this section focuses
on the strengths and limitations of this type of approachwhen considering urban form
simulations.

2.1 CA Formal Definition

CA are discrete computer models composed of a grid of regular cells assigned to
one particular state (among a finite number of states) which may change into another
state over time. They were invented in the 1940s through the works of S. Ulam and J.
von Neumann (1963) and popularized in the 1970s by John Conway’s Game of Life
(Conway 1970). Initially, they were of interest only to a few theorists of mathematics
or computer science, who used them to solve puzzles or to build mathematical games
in scientific journals. In the 1980s, a number of papers, especially those of Wolfram
(1983, 2002) made CA fashionable, or rather showed them in a new light with
a multitude of possible applications for very different fields. Having been focused
initially onproblems in physics and chemistry, several innovative experiments opened
up biology, medicine, and ecology to CA before they were introduced into spatial
studies, particularly geography and urban planning. In geography, the use of CA
indeed echoes the cellular conception of geographical space defended by Tobler
(1979) and Couclelis (1985) and reveals the deeply geographical character of this
kind of tool (Couclelis 1988). For these authors, this cellular conception is more
advantageous than considering space through the irregular spatial polygons defined
by political and administrative jurisdictions. It provides a notational simplification
allowing a cell of an array to be indexed in the same way as in matrix algebra. In such
a notation, gt

i j is a cell characterized by a land use category (urban, forest, industry,
etc.) at the location i, j at time t, and gt+�t

i j corresponds to the change in the land use
category at the same location at time t + t.

From this basis, Tobler (1979) was probably the first geographer to envisage and
describe all the formal possibilities of cell transitions according to different processes
involving their neighborhood (Fig. 1):

1. An independent model where gt +�t
i j is not related to gt

i j in any way.
2. A dependent model where the land use at location i, j at time t + t depends on

the previous land use at that location, such that gt +�t
i j � f (gt

i j ).
3. An historical model where the land use at position i, j in the future

depends on the initial land uses at that location, such that gt +�t
i j �

f
(

gt
i j , gt − �t

i j , gt − 2�t
i j , . . . , gt − k�t

i j

)
.

4. A multivariate model where the land use at location i, j is dependent on several

other variables at that location, such that gt +�t
i j � f

(
ut

i j , vt
i j , wt

i j , . . . , zt
i j

)
.



150 J.-P. Antoni et al.

Fig. 1 Tobler’s cells transitions models

5. A geographical model where the land use at location i, j is dependent on the land

use at other locations, such that gt +�t
i j � f

(
gt

i + p, j + q

)
.

This fifth model clearly corresponds to the process implemented in most CA
models. Nevertheless, in the field of spatial studies and geographical sciences, for-
mal definitions remain rare except for Tobler’s former theoretical formalization.
Researchers using CA seldom take the time to describe the mathematical form of the
model they are using and refer only to other fundamental papers (White and Engelen
1993; Benenson and Torrens 2004), or describe CA as if -then-else algorithms (Batty
1997). Torrens (2000) is one of the rare geographers to use a mathematical notation
to define the principles of CA transition according to the geographical process (fifth
model) defined by Tobler.

2.2 CA Limits

A Tobler-like geographical notation is clearly pleasant mathematically and correctly
describes how a transition can operate from one cell state to another according to
theoretical neighboring configurations. But despite this advantage, it does not model
land use change in an operative way, nor does it reproduce or create realistic simu-
lations. An illustrative example based on a case study of Wroclaw (Poland) helps to
explain why.
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Fig. 2 The urban form of Wroclaw in 2006 and 2012

This example is built using data from the Urban Atlas (Copernicus Programme)2

which describes land use in 2006 and 2012. As shown in Fig. 2, land use is classified
into eight categories: water, fields, forest, dense urban, urban, industry, facilities,
and transport. To simulate the evolution of this territory in the future, we use four
transition rules implemented in the LucSim CA software (Antoni et al. 2017). These
rules are constructed from expert knowledge and are supposed to reproduce urban
expansion based on simple principles that have largely determined the evolution
of urban form in the past. Rules are here expressed in two ways: verbal language
and their conversion into a computer-based language specific to LucSim software
(dashes):

1. Fields will become urban if, within a neighborhood of two cells, the current
cell is surrounded by at least 10% of urban and dense urban cells, if, within a
neighborhood of fifteen cells, there is at least one cell of facilities, if there is no
direct connection to forest (within a neighborhood of one cell), and if within a
neighborhood of three cells less than 50% of the cells are urban and dense urban:

– Fields -> Urban: pCellCir(Urban,2) + pCellCir(Urban_dense,2) + pCell-
Cir(New,2) >� 10% and nbCellCir(Facilities,15) >� 1 and nbCell-
Cir(Forest,1) <� 1 and pCellCir(Urban,3) + pCellCir(Urban,3) <� 50%;

2. Urban cells will be densified if they are completely surrounded by urbanized
areas within a neighborhood of one cell:

– Urban -> Urban_dense: pCellCir(Urban,1) � 100%;

2See https://land.copernicus.eu/about for more details.

https://land.copernicus.eu/about
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3. Urban parks (forests) will be created from urban or dense urban if the density of
urbanized areas is more than 90% within a small radius (within a neighborhood
of 2 cells for an urban category and within a neighborhood of 1 cell for a dense
urban category):

– Urban -> Forest: pCellCir(Urban,2) + pCellCir(Urban_dense,2) >� 90%;
– Urban_dense -> Forest: pCellCir(Urban,1) + pCellCir(Urban_dense,1) >�

90%;

However, the strict application of these rules within LucSim produces results that
have nothing to do with the current land use, nor with any logical development from
a town planning or land use planning perspective.

Figure 3 indeed shows resulting spatial configurations, which are supposed to
reproduce an urban sprawl process. It clearly shows that the urban sprawl process
simulated by the model leads to a credible expansion of the urban form during the
first iterations of the CA run, with an expansion of the city taking the form of an
oil slick. But very quickly, the number of newly urbanized cells produced by the

Fig. 3 Simulation of the urban form of Wroclaw from T0 to T + 6, (To make the images easier to
read, newly urbanized areas appear in black before returning to their original color (red))
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Fig. 4 Land use changes in Wroclaw from T0 to T + 15

model generates a snowball effect that far exceeds any realistic forecast of future
urbanization for a city like Wroclaw.

From this example, we can conclude that the simple use of CA with transition
rules is not sufficient for forecasting realistic and operational simulations of urban
forms. On the one hand, the recognition of spatial patterns leading to the application
of a transition rule corresponds only very partially to the reality of the urbanization
process. Indeed, the number of possible transitions appears to be much greater than
the real needs in terms of new housing and population growth. On the other hand, the
results give no information about the timing of this urbanization. Therefore, although
it seems clear that a time step does not correspond to a regular and stable duration,
we are unable to say whether the images produced from t + 1 to t + 16 lead us to
2020, 2050, 2200, or 3500 (Fig. 4).

It appears clearly, then, that a CA cannot be directly applied to simulate city
growth and more generally land use change. It must necessarily be constrained to
answer more precise questions about space and time, so that the results produced can
be integrated more easily, and realistically within a range of analysis and decision-
making for planning. Only these kinds of constraints, based on assumptions about
urban form, enable CA to be used in geography and allow for the fundamental
difference between classical mathematical cellular automata and geographic cellular
automata (GCA).

3 Suitable Constraints for Urban Modeling

There are many methods by which to constrain CA and the literature abounds with
examples using severalmethods andmodels. In this section,we shall focus on just two
kinds of fundamental constraints. The first is a time constraint to situate the results
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producedby the automatonover time.As inmanypublications (Arsanjani et al. 2013),
it relies on aMarkov chain process. The second constraint is a space constraint, which
aims to reduce the number of neighboring configurations for possible transitions and
focuses on the most realistic of them. It is based on a potential model.

3.1 Temporal Constraint

The first step uses a Markov chain to constrain the process of land use change
in quantitative terms. Comparison of two static land use images (2006, 2012) can
be used to determine what has happened between each image and so formulate a
transition process. By comparing the land use categories date by date and cell by
cell, it is possible to determine cellular changes between t and t + 1 and to identify
the land use dynamics. Theoretically, each cell can either change from one land use
category to another or remain in its initial category. The dynamics of the model can
therefore be presented as a series of possible transitions from one land use category
k at time t to another land use category l at t + 1. For a given cell Ni, a transition �

can be written as:

�Ni,kl � 1 if Ni,k(t) � 1 and Ni,l(t + 1) � 1

To simplify the complexity resulting from the large number of cells and possi-
ble transitions, changes can be aggregated by land use categories. The aggregate
transition for the complete system is then

�N kl �
n∑

i�1

�Ni,kl

This formulation allows us to build a contingency matrix indicating the number of
cell transitions froma category k to a category l between t and t +1 (i.e., between 2006
and 2012). This matrix can be easily converted into a transition matrix indicating the
probability of change between all land use categories (Table 1).When associatedwith
the previous vectors, this matrix provides all the elements needed for the construction
of a Markov chain (MC). In the literature, an MC is defined as a mathematical
process where transition probabilities are conditional on the past, and express the
state of a variable at a time t as a function of observations of this variable at t −
1 (Feller 1968, Berchtold 1998). It relies on the connection of three items: (i) the
description of the relative values associated with an initial state (land uses visualized
as a vector for example); (ii) a transitionmatrix expressing the transition probabilities
of different groups of observations fromone category to another; and (iii) a diachronic
transformation by an operator in the form of a matrix multiplication iteration.

If we follow this procedure, land use at time t + 1 can be simulated bymultiplying
the corresponding vector at time t by the corresponding contingency matrix, after the
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Table 1 The transition matrix for Wroclaw between 2006 and 2012

Water Fields Forest Dense U Urban Industry Facilities Transp.

Water 98.784 0.608 0 0 0.304 0 0 0.304

Fields 0.08 96.849 0.017 0.028 2.178 0.364 0.034 0.049

Forest 0 0.063 99.561 0 0.104 0.125 0 0.146

Dense U 0 0 0 99.831 0.042 0.085 0.042 0

Urban 0 5.755 0.719 11.151 69.784 6.475 0.719 5.396

Industry 0 0.558 0 0 1.275 98.088 0 0.08

Facilities 0 0 0.159 0.638 1.115 0.159 97.448 0.478

Transp 0 0 0 0 0.662 0 0 99.338

transformation of the latter into transition probabilities from one land use category
k to another l. To transform observed contingencies into transition probabilities, we
use the following:

pkl(t) � �Nkl

Nk(t)
and

m∑
k�1

pkl(t) � 1

We then consider the MC as follows:

Ni(t + 1) �
m∑
k�1

pkl · Nk(t)

where pkl � �Nkl

Nk(t)
� �Nkl∑

l
�Nkl

and
∑

l

pkl � 1

According to this formulation, theMCprocess gives us the chance to prospectively
calculate future states fromknown past states, based on observation of past trends and
probabilities. According to the method, this calculation is based on the assumption
that future changes will follow the trend of past changes, but as it is based on a
matrix calculation, this trend is not necessarily linear. Moreover, the values of the
transition matrix can also be modified by users of the model to integrate different
parameters for the quantification of future land use changes. In our case, LucSim
uses the original transition matrix to calculate the number of cells in each land use
category in 2018, 2024, 2030, etc., on the basis of 2006 and 2012 land uses (same
interval of 6 years between each date). This system gives us a more plausible picture
of urban dynamics by calculating land use vectors for each future date, as presented
in Table 2.

This table also indicates that the total number nl,t of cells that should be urbanized
in 2030 must not exceed 984 “urban” cells and 2571 “dense urban” cells.
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Table 2 Expected future land use vectors

Water Fields Forest Dense U Urban Industry Facilities Transp.

2018 339 17058 4771 2401 613 1322 620 1006

2024 348 16568 4758 2474 836 1407 615 1121

2030 357 16107 4747 2571 984 1504 612 1245

3.2 Spatial Constraint

Amongothermethods,MCs are away to quantify future land use changeswhen space
is considered through cells. However, they say nothing about the location of those
changes. The places where changes occur are strictly determined by the transition
rules of the CA. To integrate information known elsewhere about the spaces most
likely to be urbanized quickly (or on the contrary not to be if they are protected), it
is therefore mandatory to add a second constraint capable of determining the most
suitable locations. This second constraint is relatively conventional using GCA and
is usually based on expert knowledge. It consists of constructing a suitability map
based on driving factors, namely geographical features that are supposed to influence
urbanization (Clarke 2008).

It seems obvious that working on locations requires a theoretical framework for
geographical space. It is not surprising, then, that geographers have developed many
models for this, often dedicated to residential location (Putman1983).Diffusionmod-
els, for example, are spatial models that make it possible to locate certain elements
on the assumption that they are generated through the diffusion of other elements.
Fractal models are other models that can also simulate urban growth (Batty 2007).
The city is then considered as a system that maximizes interactions between the
elements it contains. Spatial interaction models are also another family of models
derived fromNewton’s law of universal gravitation. They are based on identical prin-
ciples and make it possible to locate changes where they are complementary to those
around them by minimizing the distances between them. They have been used for
calculating areas of traffic or influence (Helvig 1964) and for estimating residential
or industrial locations (Abler et al. 1972).

Among spatial interaction models, potential models indicate that the probability
of there being a relationship between places decreases with distance. Basically, they
are used to measure “accessibility” aiming to evaluate the variation of the relative
amount of relationship opportunity depending on the position of all places. Generally,
the potential of a place is calculated from the analysis of the importance of all the
other points of the system, an importance that is termed “mass” in reference to
the Newtonian gravity model. The potential of a cell is usually the sum of all the
potentials created at that location by the set of individual masses that make up the
system (i.e., all the other cells). The calculation of the potential P of each point i
therefore consists in applying to them a formula simultaneously taking into account
the mass value m of all the points j located in a geographical area as a function of the
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Fig. 5 Two contrasting realistic potential models

distance dα
i j separating those points from the one for which the calculation is made.

The operative formula is defined as follows:

Pi �
n∑

j�1

m j

dα
i j

Spatial constraints based on potential results were applied to the case study of
Wroclaw by distinguishing two contrasting scenarios. The first scenario (S1) focuses
on “Urban densification” and assigns significant masses to Dense urban and Urban
(m� 10) categories and mediummasses to Industry, Facility, and Transport (m� 5)
categories. As a result, the potential map (Fig. 5, left) shows high potential for land
use change around the heart of the city of Wroclaw. Areas with high potential for
change—urbanization—are limited to very closed urban areas. The second scenario
(S2) deals with “Rural expansion” and assigns significant masses to Urban (m� 10)
and medium masses to Forest and Water (m � 5) categories. Therefore, in this case,
the potential map (Fig. 5, right) highlights more sprawling areas with high potential
for change, mainly in the northwestern part of the study area, relatively far from
Wroclaw city center.

4 Constraint Geographical CA

Based on the spatiotemporal constraints presented in Sect. 3, a new more integrated
formalization of CA can be proposed. In this new formula, the state of a cell i at step
t + 1 still depends on the state of the cell at step t (cj, t) and the state of the cells in
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the neighborhood
(
V r

i, t

)
. This relation is clearly based on the classical CA definition

defined par Tobler or Torrens (Sect. 2). But, it also integrates the MC results limiting
land use development to within a number nt of cells for each land use category.
Moreover, the suitability of the simulations calculated by the CA is dependent on the
cell’s potential Pi based on land use attractiveness masses and distances. A synthetic
expression of the model could be written

ci, t+1 � f
(
ci, t , V r

i, t , nl, t , Pi
)

where nt � was defined in Sect. 3.1 and Pi was defined in Sect. 3.2.
This formula corresponds to the CA process integrated in the LucSim software

and was applied to produce two contrasting and realistic scenarios in the case study
ofWroclaw in 2006 and 2012. Scenario S1 seeks to densify the more urbanized areas
in a pronounced manner. This urban development is thus concentrated around the
previously densely built-up areas and seeks to fill the open space corresponding to
fields or less dense urban categories. S2 is a peri-urban development scenario which
takes place around villages relatively far from the most urbanized areas, where the
fields have high potential for change into the less dense urban category.

Moreover, for each scenario,MCsmake it possible to quantify future urbanization
by 2030 by estimating the number of cells that change from a nonurban to an urban
state with a distinction between two categories: urban and dense urban categories for
the years 2018, 2024, and 2030 (Table 2). In a second step, two contrasting suitability
maps (Fig. 5) constrain the spatial development according to the weighting of each
land use category. The resulting suitabilitymaps based on the potential model (Fig. 5)
show two contrasting potentials for development: one that is more concentrated
around the city core for S1, and the other that is more dispersed in the center and
northern part of the case study for S2. Then in a third step, based on the results of
steps 1 and 2, the AC could be run according to the three rules set out in Sect. 2.2.

As expected, S1 concentrates on urban development in the southern part of the
study area around the core ofWroclaw. This concentration around the core is accom-
panied by a few outgrowths mainly in the northwestern and northeastern parts of the
city. By contrast, S2 reveals a marked expansion in the urban category in the more
rural northwestern part of the study area. Urbanization there is less dense and takes
on more the form of urban sprawl. As can be seen from the example, LucSim makes
it easy to simulate urban development scenarios and their consequences for urban
forms, on the one hand reinforcing the compactness of the city and on the other
fostering its expansion in rural areas. This kind of modeling process helps in inter-
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Fig. 6 Simulation of two contrasting scenarios by 2030

actively analyzing the direct consequences of spatial planning policies. Finally, it is
also important to emphasize that by integrating space and time constraints, the sim-
ulation results are made much more realistic than in the total absence of constraints
(Fig. 6).

5 Discussion

The results presented in the previous section are certainly consistent, but they raise
a number of questions that call for discussion. First, the CA is driven by a dual
constraint system applied to the initial transition rules. However, although there is
no prior theoretical, conceptual, and formal incompatibility between the Markovian
model and the potential model, some inconsistencies may appear in its actual use.
For example, constraints derived from MCs, such as the transition rules themselves,
apply at the level of the land use categories. They are dependent on each transition
involving two-to-one states. On the other hand, the potential model produces a result
applicable for all of these categories. It is therefore independent of transitions and
less precise. One solution to overcome this problem would be not to calculate one
single potential model, but as many potential models as there are transitions. All
these potential models should then be calibrated on the masses of attractiveness
corresponding to each transition. Such a solution might be attractive in theory, but in
practice, it makes modeling increasingly more complex by multiplying the problems
of calibration, which were already questionable in the example discussed here.

The calibration of models also raises a second set of questions. Among the mod-
els used here, only MCs can be considered “autonomous” since they automatically
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produce results from two original images. The potential model and the definition of
the transition rules require the use of expert knowledge. In the current state of our
knowledge about the growth of urban forms, such recourse is a qualitative input that
does not guarantee the reproducibility of the results produced by the modeling in
any way. Moreover, insofar as these parameters are not directly derived from math-
ematical calculation, they appear questionable. This fundamental point is obviously
a limitation for the modeling exercise and for the application of mathematical tools
for forecasting urban forms. To overcome this problem, many authors have proposed
to use “machine learning” approaches so that transition rules are automatically gen-
erated based on known past states. Indeed, recent work simulates transitions using
decision trees (Samardžić-Petrović et al. 2015) or artificial neural networks (Li and
Yeh 2002; Almeida et al. 2008; Tayyebi et al. 2011). Although still very exploratory,
the results obtained so far seem promising and, through artificial intelligence pro-
cesses, they offer an additional step to mathematical and geographical modeling.

But finally, these recent developments also raise the question of the importance
of expert knowledge in forecasting urban growth. The results produced in this field
are often considered as “images of the future” leading to a collective reflection on
the future of territories, rather than final results. Given our difficulty in predicting the
future, and the fact that it is very unlikely that this future will be a mere reproduction
of the past, it is clear that these results will probably be wrong in the long run (Antoni
2016). Consequently, using expert knowledge to involve local actors in defining a
common future does not seem completely absurd. In essence, these reflections on
CA calibration ask how far the constraint should be contained. Depending on their
objectives, anyone can define the level of constraint they wish to apply to simulate
land use change, froma calibration entirely defined bymathematicalmodels or totally
derived from expert knowledge. The best way might be a mixed approach combining
both machine learning and expert knowledge.

6 Conclusion

After having shown the necessity for constraining CA in the study of urban forms,
this paper has proposed a mathematical formalization for specific geographic cellu-
lar automata (GCA) implemented in LucSim software. At this level of detail, such
a formalization adapted to the social sciences is rare in the literature and therefore
appears as one of the fundamental originalities of this chapter. In particular, it aims
to link the cellular design of geographical space, the Markovian approach to tran-
sition processes, the distance weighting included in gravity models (potential), and
the phenomenon of emergence that defines artificial intelligence models in a single
formal notation. That’s not so bad! In addition, the results produced using this set
of methods and models appear quite realistic and are able to correctly reproduce a
credible process of urban growth. But at the same time, this reproduction remains
open to the intricacy of planning scenarios and allows us to consider a wider use
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of CA in the framework of a more operational territorial forecast. And that’s even
better!

Finally, in a more general way, this chapter also shows that it is worth transferring
methods developed in mathematics, physics, computer sciences, or mathematics to
the social sciences. This transfer obviously requires a substantial effort of abstraction
and what may be considerable investment for researchers or developers who are not
immediately comfortable with mathematical tools. But since the quantitative revo-
lution started by geographers in the 1960s (Burton 1963), this approach is currently
enabling us to work the latest advances in artificial intelligence for decision support
into urban and land use planning.
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