CURSO: TÉCNICAS ASTRONÓMICAS

4^{to} semestre Licenciatura de Astronomía 2021

Teórico: Gonzalo Tancredi

Práctico: Manuel Caldas y Gonzalo Tancredi

CONTENIDOS I

- Pasaje de la Radiación a través de la atmósfera
- Coordenadas Astronómicas y Efemérides
- Colectores de Luz
 - Tipos de telescopios: refractores y reflectores
 - Ecuaciones de la óptica del telescopio
 - Tipos de monturas
- Detectores
 - Ojo
 - Fotografía
 - Cámaras CCD y CMOS
- Observación Astronómica
 - Reconocimiento de cielo
 - Mantenimiento y colimación de telescopios
 - Puesta en estación
 - Calado

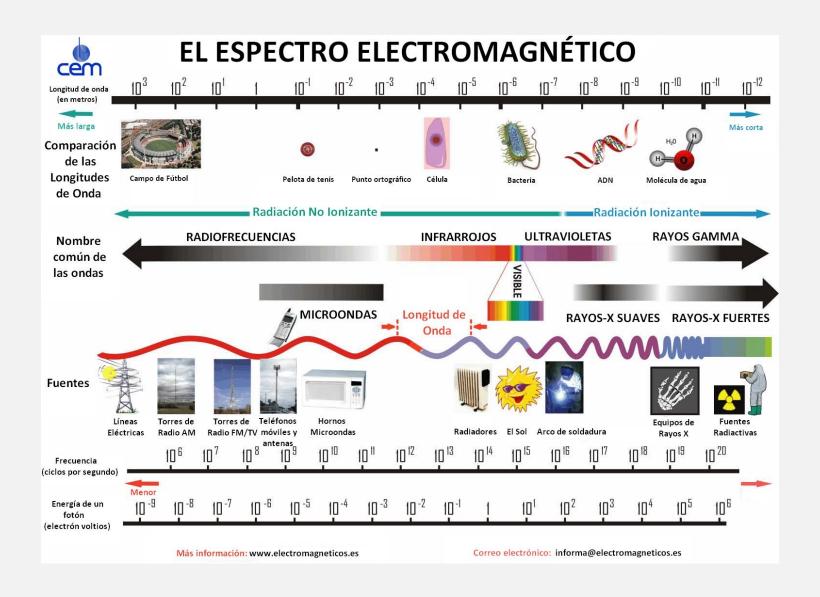
CONTENIDOS II

- Reducción y tratamiento de imágenes
 - Formato de imágenes
 - Visualización
 - Defectos de las imágenes
 - Preprocesamiento
 - Máscaras y Filtros
- Astrometría
- Fotometría
 - Fotometría de síntesis de apertura
 - Fotometría de síntesis de perfil
 - Fotometría diferencial
 - Fotometría absoluta
- Fotografía Astronómica Artística
- Espectroscopía

ASISTENCIA Y METODOLOGÍA

- Clases Teóricas: Lunes de 14:30 a 16:30 por zoom, quedarán grabadas. Se subirán luego al EVA o drive.
- Clases Prácticas: Viernes de 9 a 12h por zoom. Es esencial contar con una computadora, para usar el navegador e instalar software.
- EVA: <u>Técnicas Astronómicas 2021</u>
- Slack: CursosAstro: #tecnicasastronomicas

GANANCIA Y APROBACIÓN DEL CURSO

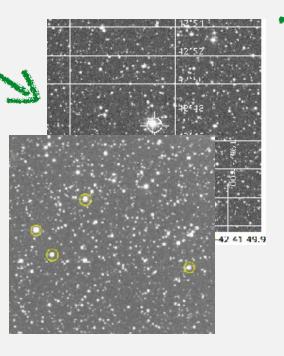

Ganancia:

- Asistencia a por lo menos 2 visitas al OALM (a coordinar)
- Asistencia al 80% de las clases prácticas
- Entrega del 100% de los informes prácticos con una nota superior a 50% en c/u

Aprobación:

- Si la nota promedio de los informes es inferior a 75%, se hará la presentación de una o dos prácticas mas preguntas sobre el teórico.
- Si la nota promedio de los informes es superior a 75%, se harán preguntas sobre el teórico.

Es un curso de Técnicas Astronómicas en el visible y regiones cercanas (IR y UV)



OBJETIVO DEL CURSO

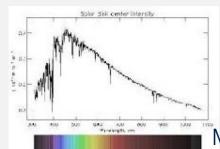
 Capacitar al estudiante para las diferentes etapas del proceso de obtención de datos astronómicos usando herramientas profesionales

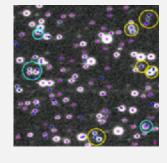
¿qué hace falta para observar un fenómeno astronómico dado?

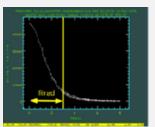
¿cómo "pasamos" de una imagen (o varias) a un catálogo?

Full	RAJ2000	DEJ2000	Vmag	e	B-V	e_	U-R	e_	V-R	e_
	"home"	"dones"	mag	mag	mang	mag	mag	mag	mag	mag
49	27	479	24	200	20	49	200	207	28	400
<u> 1</u>	00 30 09	-46 31 22	14.651	0.0028	0.793	0.0046	0.380	0.0071	0.435	0.0019
2	00 30 16	-46 27 55	12.334	0.0115	0.405	0.0026	0.156	0.0039	0.262	0.0020
3	00 30 17	-46 32 34	14.376	0.0022	-0.298	0.0024	-1.217	0.0043	-0.148	0.0038
4	00 30 18	-46 31 11	13.118	0.0033	1.551	0.0030	1.871	0.0118	0.849	0.0015
. 5	00 30 19	-46 24 36	11.630	0.0017	0.443	0.0012	-0.103	0.0024	0.276	0.0007
- 6	00 30 50	-46 33 33	12,474	0.0004	0.855	0.0058	0.532	0.0161	0.492	0.0004
- 7	00 31 05	-46 22 43	10.442	0.0004	1.546	0.0013	1.915	0.0036	0.934	0.0004
- 8	00.31.50	402 38 26	15.268	0.0094	0.362	0.0174	-0.184	0.0112	0.251	0.0161
9	00 42 05	+05 09 44	12.877	0.0020	-0.019	0.0030	-0.871	0.0055	0.067	0.0035
10	00 53 14	+00 46 02	13.842	0.0035	0.513	0.0057	-0.024	0.0028	0.326	0.0014
11	00.53 16	400 48 29	10.595	0.0058	1.638	0.0045	1.984	0.0098	0.894	0.0031
12	00 53 47	+00 47 33	12,676	0.0007	0.528	0.0049	-0.002	0.0028	0.302	0.0014
13	00 54 16	+00 39 51	13.818	0.0028	1.418	0.0079	1.189	0.0301	0.929	0.0024
14	00.54.31	400 40 15	15.346	0.0255	1.128	0.0160	1.289	0.0955	0.690	0.0215
15	00 54 34	+00 41 05	14.325	0.0049	0.699	0.0085	0.240	0.0114	0.399	0.0046
16	00.54.37	+00.38.56	13.178	0.0022	0.814	0.0034	0.480	0.0074	0.446	0.0022

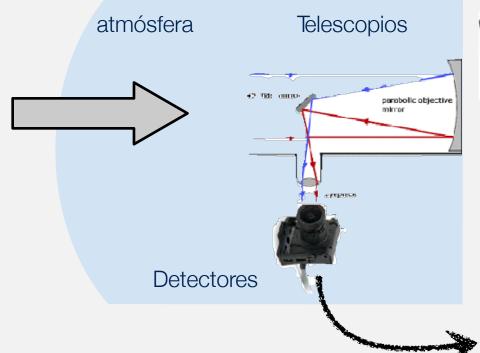
medidas de posición, brillo, color ... movimiento propio, paralaje...


designation	source_ld	random_index	ref_epoch	ra	ra_error	dec	dec_error
			Yr	dag	mas.	deg	enos
Guia DRZ 4268956666093883662	4268956556093383552	1388922116	2015.5	288.82895013795895	0.689619113820113	3.068.578919406268	0.5723547027838346
Gala DR2 5542991475467702656	5542991475467702606	84641693	2015.5	126.34253840045612	0.01829890031053926	-35.77303351124245	0.024117580806190607
Gala DR2 4247659300688408144	4247859300886406144	550798897	2015.5	303.2469788950952	0.3802633188758341	4.881739000481909	0.3867948510821889
Gala DRZ 3231411466096920256	3231411465065990256	130043047	2015.5	72.77804741638869	0.0683086441744878	0.5461412910986081	0.04380774375262735
Gala DR2 1462429153039553248	1462429153039653248	1643631432	2015.5	200.90834287775115	0.04354019519596024	30.455280278642267	0.03342775745423084
Gala DR2 6035766233137743672	8035786233137743872	1115433343	2015.5	242.19811564736212	0.3426785781343227	-32.8882037181711	0.24328538307143444
Gnio DRZ (807942921162076032	5907942921152076082	1661969199	2015.5	223.26063466580288	0.629198132838819	44.79735033578177	0.5160765204746956
Gala DR2 5955802909975979520	5955802909975979520	1388049920	2015.5	264.7675006484555	1.0436731061949675	-43.60403074416653	0.8705198388023071

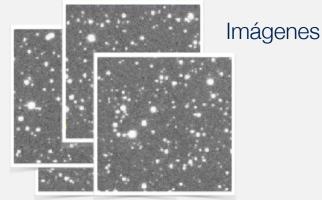

PROCESODE OBTENCIÓN DE DATOS ASTRONÓMICOS



Espectroscopía



Medidas del Brillo y Posición (Astrometría y Fotometría)


Calibración

Objeto Astronómico

PREPARACIÓN DE UNA OBSERVACIÓN

PREPARACIÓN DE UNA OBSERVACIÓN: TRABAJO PREVIO

- El tiempo de observación es muy valioso, así que siempre hay que llegar a la cúpula con un plan o protocolo:
 - Qué se va a observar:
 - selección de objetos / campos
 - objeto puntual: estrella? asteroides?
 - objeto extendido: nebulosas, galaxias
 - Dónde y Cuándo:
 - visibilidad y condiciones de observación
 - Cómo (con qué instrumentos):
 - telescopio campo de visión, magnitud límite
 - imagen directa (cámara, filtros)
 - espectroscopía (prisma objetivo, rejillas, etc.)

T1, Práctico 1

T2-3, Práctico 2

PREPARACIÓN DE UNA OBSERVACIÓN: TRABAJO PREVIO

- Qué se va a observar:
 - Lista de objetos / campos dados:
 - tenemos una lista de objetos o campos a observar seleccionados en base a la ciencia que queremos hacer
 - conocemos sus coordenadas (e.g. RA,DEC)
 - — > calculamos cuándo se pueden observar
 - Dada una fecha y lugar de observación:
 - fechas fijas de observación, e.g. en nuestro caso visitas fijas al O-CURE
 / OALM en base a disponibilidad del personal
 - --> seleccionamos objetos que cumplan las metas científicas y restricciones de visibilidad en las fechas dadas de observación

En el Práctico 1 se pretende resolver problemas de los distintos casos, para los que utilizaremos diferentes herramientas